
Experience With an Uncommon Lisp

Cyri l N. Alberga , Chr is Bosman-C la rk , Mar t in Mikelsons , a n d M a r y S. V a n Deusen
IBM T. J. Watson Research Center :

Computer Science Department
Yorktown Heights, New York 10598

Jul ian Padge t
University of Bath

School of Mathematics
Bath, Avon BA2 7AY, England

Abstract
in 1974, a group at IBM Research began work on a new im-
plementation of Lisp. Because the work was initially done for
internal use only, many design decisions led the developers
away from the more traditional Lisp paths. The most impor-
tant design decision was to create a language which would
have consistent semantics between compilation and interpre-
tation. This paper takes a retrospective look at the decisions
we made to see how they have stood up against the test of time
and usage, especially when seen against the decisions made for
Common Lisp.

The Lisp language issues discussed include scoping, operator
evaluation and consistency, and state saving. Compiler issues
include the integration of assembly code into Lisp programs,
our underlying formal semantics, and optimization. Our pro-
gramming environment is as sophisticated as the majority of
Lisp systems. Aiming at hardware such as the IBM 3270 ter-
minals has affected the design of the tools that make up this
environment. These issues will also be discussed.

Introduction
In 1974, a group at IBM Research began work on a new im-
plementation of Lisp. What they produced became widely
used within the "company for internal research applications,
and their work was the base on which future Lisp systems were
built. The current Program Offering, LISP/VM, was a snap-
shot of that system in 1984. Because our Lisp system was or-
iginally intended only for internal use, some of our goals
differed from those common in the wider Lisp community.
Along with differing goals have come differing solutions to
recognized problems.

The value of our system is found in the success of the appli-
cations running on it. Many, such as Alan Cobham's bridge

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© 1986 A C M 0-89791-200-4/86/0800-0039 75¢

program, run directly. A description of this expert system can
be found in Alan Trnscott 's column on bridge in the New York
Times [Trnscott 1984]. Other appfications, such as YES/MVS
[Griesmer et al 1984], Epistle [Heidom et al 1982]
[Richardson 1985], and Scratchpad [Davenport 1985], are
written in application languages which run on top of our sys-
tem.

Since we are a research group, we are interested in an appro-
priate research vehicle, and also in making that vehicle reflect
current thinking in language theory. Before we begin any re-
design, we are taking this opportunity to examine our current
design in the light of its success in achieving our goals, and in
the shadow of other efforts which have found solutions to
many of the same problems. This paper reflects that retro-
spective investigation.

Our language design was driven mainly by the goal of creating
semantics which would be consistent under both interpretation
and compilation. This was a goal we were able, for the most
part, to meet. Our system had to compile efficiently, but an
almost more important goal was that the semantics should be
consistent, elegant and predictable.

The environment was severely constrained by display hard-
ware (24 by 80 character monochrome terminal) but, with that
constraint, our goal was to produce a user-friendly system.
The dynamic display of the structure editor and the integrated
debugger were our solutions.

Overall, we took the point of view that the features that set
Lisp apart from other languages must be protected from ero-
sion by premature performance concerns. In several cases, if
we could not design a consistent facility, we backed off to a
simpler design. But in any important area, we would not
compromise.

Language Issues
At the time we began our design, there were many exciting
ideas being discussed in the Lisp community. As a research
group, we felt relatively free to innovate, and did not feel that
we had to tie ourselves to compatibility with any other dialects
of Lisp. This gave us the opportunity to actually try out many
of these new ideas, concentrating instead on internal consist-
ency of language and implementation. We wanted the se-
mantic, s to be consistent and.predictable, so that they could

39

be easily described, and so that reasonable user expectations
would be satisfied. We wanted the meaning of an expression
to be clear without reference to subtle provisos or special
cases.

This emphasis extended to many facets of the system. We
wanted above all to eliminate the distinction between inter-
preted and compiled evaluation. The evaluation rules for op-
erators were made to be the same as for arguments, and were
applied in all cases. Most functions were extended to behave
reasonably in the presence of substructure sharing and cycles.
Variable scoping in compiled and interpreted code was made
equivalent.

In some of these endeavors, we feel that we succeeded and that
the system is stronger for it. In others, some compromise was
found to be required in order that other equally desirable goals
might be met.

Operator Evaluation
An early decision was to abandon the tradition of the function
value cell. This decision was influenced by the early Susman
and Steele papers defining SCHEME [Sussman and Steele
1975] [Steele 1976] [Steele 1977]. It was thought that this
evaluation model would offer a cleaner and more easily un-
derstood meaning for expressions. It also was seen as allowing
great flexibility in defining and redefining operators, partic-
ularly in light of the uniform scoping rules for compiled and
interpreted code, and the facilities for creating multiple envi-
ronments. Our final design went further than other SCHEME
derived dialects in a number of ways.

Expressions are initially classified as special forms, macros,
and anything else. The first two cases involve the processing
of the unevaluated form, while the last is assumed to be a
function application. In that final case, the remainder of the
form is treated as a list of expressions, the arguments, which
are sequentially evaluated in a fixed order of evaluation. Only
after the arguments have been processed is the operator ex-
amined to determine its exact nature. If it is prima facie ap-
plicable (i.e. a compiled function, explicit LAMBDA
expression, funarg, partial application or state descriptor), the
requisite action is carried out. If it is a non-applicable constant
(e.g. a number or string), an error is signaled. If it is any other
expression (an identifier or a list), it is repeatedly reevaluated
until an applicable object or a constant is obtained.

This allows such coding styles as the use of an array-accessing
expression as an operator, where the array in turn contains
identifiers (symbols) which will finally evaluate to applicable
objects.

A second way in which we differ from other Lisp dialects is in
always evaluating the CAR of a form before classifying it.
This means that, unlike other dialects (whether using function
value cells or not), the meaning of an operator is never inher-
ent in its identity within a form. Suppose the interpreter en-
counters a form such as:

(CONI) ((NUHBERP X) (+ 2 X)) . . .)

This is not a Lisp conditional statement unless the value of the
identifier COND is (the special form) COND. Conversely, a
form such as

((FO0 BAR) ((NUHBERP X) (+ 2 X)) . . .)

will be recognlTed as a Lisp conditional only if that expression
evaluates to the special form COND. In particular, the form:

('COND ((NUHBERP X) (+ 2 X)) . . .)

will be so recognized.

In a newly generated system, most (but not all) special forms
are bound to themselves as their value. Unfortunately we
failed to make the final step and separate special forms and
builtin functions from ordinary identifiers. Where we should
have defined an object, say :SETQ (to use the Common Lisp
[Steele 1985] notation for keywords), which always evaluates
to itself, we simply have SETQ, distinguished as a special form,
but usable as a variable. Thus if one wishes to write a SETQ
expression which is immune to redefinitions, one must use
(QUOTE SETQ) as the operator.

We extended our SETQ operator to allow the same de-
structuring possible in our LAMBDA variable lists. In imple-
menting our definition of SETQ, which subsumes the Franz
LISP DESETQ operator [Wilensky 1984], we define the value
of the identifier SETQ to be a compiled macro which produces
de-structuring code in terms of the primitive special form
SETQ. The operators in the resulting macro expansion are
QUOTEd, to preclude further invocations of the macro.

One must be careful in the fully redefinable world not to lose
the ability to quote expressions. H some value other than
QUOTE is assigned to the identifier QUOTE, then unless the
special form QUOTE has been saved as the value of some
other identifier, the system will be irreparably damaged.

This redefinability at the most primitive level was quickly put
to use. For example, in constructing a compatibility package
to allow the execution of MACLISP programs, the differing
ways of declaring dynamic variables was accommodated by
defining LAMBDA as a macro. At the same time, functions
are defined as the values of SPECIAL and UNSPECIAL.
These receive unevaluated arguments and maintain a list of the
currently declared special variables in a free variable accessible
by the LAMBDA macro. When a LAMBDA expression is
applied or compiled in the presence of this redefinition, the
macro examines the bound variable list of its form, together
with the list maintained by the functions SPECIAL and UN-
SPECIAL. Based on the occurrence or nonoccurrence in the
global list, variables may be replaced by the (FLUID variable)
form which we require.

Once we had built our "always evaluate the operator" system,
we discovered that full redefinability requires a more complex
set of rules. In the following example, by assigning FOO the
value MLAMBDA, we expect FOO to behave as the macro
expression marker.

(SETO. FO0 'I,ILAHBDA)
(SETQ BAR '(FO0 (() . BODY) (CONS 'PRINT BODY)))
(BAR X)

But this does not follow from a naive operator evaluation
scheme. The sequence of events in evaluating (BAR X) is"

40

BAR eva lua tes to (F00 . . .)
- - t h i s va lue is not apparent as a macro

X is eva lua ted
- - t h i s is the e v a l u a t i o n o f arguments in

the case where the o p e r a t o r is assumed
to be a f u n c t i o n

(F00 . . .) eva lua tes now to a macro funarg
- - we now s i gna l an e r r o r s ince we n o t i c e

the macro a f t e r the arguments have been
eva lua ted

To resolve this dilemma we had to refine the operator classi-
f ication process. Simply put, i f the value of an operator is a
list, its CAR (the operator of the operator) is further exam-
ined. I f i t also is a list, we recursively continue this process.
I f it is an identifier, i t is evaluated in turn and the original op-
erator is replaced by the new value (by CONSing, not by
RPLACA) . Once this procedure has been completed, the final
result is examined to deterndne i f the original form is a macro,
a special form, etc.

To return to the previous example, the sequence of operations
is:

BAR eva lua tes to (FO0 (() . BODY) . . .)
F00 eva lua tes to MLAMBDA

- - caus ing the o p e r a t o r to be r e b u i l t
o p e r a t o r becomes (MLAMBDA (() . BODY) . . .)

- - and is seen to be a macro
form becomes (PRINT X)

- - and e v a l u a t i o n s t a r t s over

While we would prefer a simpler operator evaluator scheme,
the advantages of total redefinability lead us to favor this ap-
proach.

Operator Consistency
In many Lisps, the implementation of operators such as
COPY, READ and PRINT have to deal with tree-walking in
the presence of circular structures. Because the identification
of circularity can be expensive (sometimes quadratic), it is
common to implement the operators to not terminate in the
presence of circularity. If the structure might be circular, spe-
cial operators are often provided which are understood to be
expensive, although correct.

One of the design goals of the language has been universality
of operators, that is, trying to define operators to work con-
sistently across types. Because of that we chose to implement
only a single set of operators, using tree-walking algorithms
which were as efficient as we could make them. Our algo-
rithms turned out to be linear. We were able to accomplish this
because of our alternate heap which guarantees the presence
of the working storage needed by linear algorithms.

SHAREDITEM is a function which makes the linear tech-
niques available to the user. It does this by extracting the
shared pointers from a circular structure.

It is important to decide when to stop walking a tree. We must
define which nodes are terminal or atomic. We identify ob-
jects as atomic if we choose not to descend through their
structure. Atomic objects include identifiers, state descriptors,
binary program objects, hash tables and read tables. We saw
a straightforward way to provide the user with useful infor-
mation on funargs, and so did not make them atomic. We were

not able to come up with ways to do this for hash tables or read
tables, although we would have preferred to do so.

 =Uty
We used terminating, finear algorithms, similar to the opera-
tors in the previous section, to implement our equality predi-
cates. One consequence of this approach is that our equality
predicates terminate in all cases. Another consequence is that,
since the tree-walking algorithms detect shared sub-structure,
our equality predicates can be sensitive to the subtle effects
of sharing. The operators which we distinguish are"

EQ Traditional pointer identity
UEQUAL Structural isomorphism
UGEQUAL Relaxation of structural isomorphism to ac-

count for gensyms (in effect, unification of
gensyms).

EQUAL Access equivalence which finds two objects to
be EQUAL if they are indistinguishable by any
sequence of access operations

We can illustrate some of these distinctions more easily with a
few examples. Consider the following LISP program.

(SETO. X (CONS 1 2))
(SETQ YI (CONS X X))
(SETO. Y (CONS 1 2))
(SETQ Y2 (CONS Y Y))
(SETO. Y3 (CONS (CONS 1 2) (CONS 1 2)))

What can we say about the equality of YI, Y2 and Y3?
Clearly none of them are EQ since they are the results of dis-
tinct CONSes. But there is one sense they are all equal: any
sequence of CAR and CDR applied to Y1, Y2 or Y3 will yield
the same result. This is the kind of equafity tested for by our
EQUAL predicate.

Let us now consider the following expressions and their re-
sults.

(RPLACA (CAR Y1) 3) = ((3 • 2) . (3 • 2))
(RPLACA (CAR Y2) 3) = ((3 • 2) . (3 • 2))
(RPLACA (CAR Y3) 3) " ((3 • 2) . (1 . 2))

We see that the three RPLACA expressions have identical ef-
fects on Y1 and Y2, but a different effect on Y3. How are Y1
and Y2 equivalent, but different from Y3? We can see that the
representations of YI and Y2 consist of identical patterns of
CONS cells and pointers. Both Y1 and Y2 consist of one
CONS cell in which both the CAR and CDR components
point to the same component. But the CONS cell in Y3 points
to two distinct components. Our UEQUAL predicate tests for
this kind of equality. This is also the kind of equality we use
when hashing data structures.

Since our Lisp reader renames gensyms on input, the same
expression read twice in a row will yield two expressions with
distinct gensyms. When comparing such expressions, it is of-
ten useful to know if two expressions came from the same in-
put form. The UGEQUAL predicate serves this purpose.

Although we paid great attention to the distinguishing of
structure equality, we neglected the opportunity to differen-
tiate numeric equality as Common Lisp and many other Lisps
do.

41

SeopMg

Vmttble Scel~ng

Compiler and interpreter semantics have traditionally diverged
in the area of variable scoping. Lisp 1.5 and descendents such
as MACLISP used pure dynamic scoping in the interpreter and
a form of static scoping, modified by dynamic (or special)
variables, in the compiler. Attention was drawn to this issue
by Steele and Sussman who, having identified the adoption of
dynamic binding as being a major contributor to errors, pro-
posed a purely lexically scoped dialect of Lisp called
SCHEME [Sussman and Steele 1975].

The initial design of LISP/370 [IBM 1978] recognized that
both compiler and interpreter semantics should obey the same
rules with respect to the scoping of variables. The rules we
chose provided lexical scoping as a default, with dynamic
(FLUID variables) as an option. Providing lexical scoping as
a default allows users to choose to program without unex-
pected side-effects. Adding dynamic variables as an option
allows users to choose power at the expense of safety. Com-
mon Lisp adopted a solution similar to ours.

We also discovered situations in which it was valuable to ex-
tend our scope rules. An application is commonly built using
default interactive error handlers. When this application is
sufficiently stable to use in a production environment, we no
longer want those error handlers to take control because the
users of this application will not understand what actions to
take. We created a new error handier which could override all
others, thereby providing automatically-taken, predefined
actions. Since this type of an override should not be masked
by any kind of environment switching during execution of the
application (e.g., funargs or state saving), we extended scoping
in the late 70's to allow the evaluation of dynamic variables
using only the control chain.

SCOld~ P r ~ v e s

In early Lisps, the functional form identified by LAMBDA
was the only way of introducing variables. Later, PROG was
added to the language to allow local variables, labels, and
transfer of control via GO.

We tried to refine these concepts in LISP/370 by introducing
the special form SEQ to define the context for labels and the
scope for GO expressions. We retained LAMBDA (and the
macro variant MLAMBDA) as the form that defines the scope
of variables and the scope for RETURN expressions.

The Common Lisp definition has taken this separation one
step further by introducing the BLOCK special form as the
scope for RETURN expressions and leaving LAMBDA to be
a pure variable scope.

Our experience has clearly demonstrated to us the value of the
three scoping primitives in Common Lisp. In our definition,
any macro that emits variable bindings must announce that
fact to the programmer, since any use of that macro becomes
implicitly a scope for user RETURN expressions. This situ-
ation complicates the descriptions of many commonly used
macros, and discourages the creation of new macros that need
to introduce additional variables.

Foruud Parameter Dc~larations

From the very beginning, we associated any declarative infor-
mation directly with the scope in which the variable is bound.
Thus, in the following expression

(LANBDA (X (FLUID Y)) (FO0 X))

the variable X is bound as a lexical variable and the variable
Y is bound as a dynamic variable. With this notation, each
variable is specified only once, and information about each
variable is close to the variable name, even in long parameter
lists. The result is an elegant, easy to write and easy to read
notation.

Common Lisp achieves the same semantics with the more
awkward syntax

(LAHeDA (X Y) (DECLARE Y SPECIAL) (FO0 X))

We have two objections to this notation. First, the variable is
mentioned and declared in two different places. Second, each
declaration may be the result of a macro expansion. This may
result in programs that are difficult to understand, not only
because declarative information may be hidden in obscure
macros, but also because of the more subtle semantic problems
caused by exposing the interpreter to arbitrary side-effects
while it is still discovering critical information about an ex-
pression. It is mainly for this "reason that we restrict our dec-
larations to a part of the LAMBDA expression which is not
macro-expandable.

Our notation may also be extended to include type information
in the formal parameter list. For example,

(LAHBDA (X (THE PAIR Y)) (RPLACA Y X))

could be used to declare the type of the variable Y.

Pros and,Cons of State Saving
When our development process began, there was ferment in
the Lisp community. One of the more important events relat-
ing to the design of the new IBM Research Lisp system was the
publication of the Bobrow and Wegbreit paper [Bobrow and
Wegbreit 1973] proposing a new control structure, the
spaghetti stack. We immediately seized on the elegance and
flexibility of this idea.

A key component of this model of computation was the con-
cept of the saved state, a data object which captured both the
set of current variable bindings (the environment) and the
current call chain and point of execution (the control). We
have used saved states (state descriptors) extensively, both as
a form of continuation and as a component of closures.

When State Saving Wins

The Yorktown Lisp compiler was designed to meet several
goals. The overriding requirement was the maintenance of the
equivalence of compiled and interpreted code, as discussed
elsewhere in this paper. Other goals were:

• the protection of the compiler's inner state from the
actions of arbitrary macro operators during their invo-
cation, and

• provisions for collections of operator values distinct from
those in the compiler's, or even the ultimate program's,

42

runtime environment, for the purposes of cross-
compilation and optimization.

Saved states are used to provide the facilities that satisfy these
latter goals during the compilation process. The strategy is to
establish an isolation of the environment in which the compiler
runs from those (separate) environments in which it resolves
operators and in which it preforms macro expansions. By ju-
dicious construction and augmentation of these various envi-
ronments, the user is given the ability to provide operator
values to the compilation process which differ from those
present in either the compiler's runtime environment or the
macro expansion environment. This ability may be used for
cross-compilation or for optimizatious. In addition, it protects
the compiler from interference by macros and the functions
they invoke.

One of the major debugging tools we provide is an interactive
interpreter, or stepper, described in a later section. We were
able to write this interpreter entirely in Lisp, with no secret
escapes into system internals, because saved states, evaluation
in a saved state, and resumption of a saved state were all the
primitives necessary to allow one Lisp program to intermix its
evaluation with that of another Lisp program.

Another use of state saving is in exception handling in the
top-level Lispedit read-loop. Rather than interrupting the user
with an exception and requiring the user to give commands to
continue execution, Lispedit saves the state in which the error
occurs and returns immediately to the top-level, informing the
user of the action which was taken. At this point, the user has
the option of resuming the saved state and examining the error,
or of simply continuing.

Spaghetti stacks have turned out to be an invaluable technique
for the original development and debugging of back-tracking
algorithms, using saved states. The section below discusses the
problems with this approach for production work.

When State Saving Loses

State saving has not always proven to be beneficial. At times
it has been a mixed blessing, or even the wrong way to do
things.

In the compiler, the isolation of the saved states which embody
the macro environments has made it impossible for macros to
obtain the expanded versions of their forms. It has also made
it difficult to pass information from one macro to another and
to determine if they are being applied as part of the interpre-
tive or the compile process.

Exception handling is a process with two main requirements:
signals must be matched with handlers according to some
scoping rule, and control must often bypass the normal call
chain, passing directly back to some remote point in the com-
putation. When control must bypass the call chain, as in
ERRSET and UNWIND, a similar behavior is required. In the
initial version of our system, exception handling and non-local
returns (UNWIND) used saved states. That is, a program
wishing to intercept a non-local return (e.g. ERRSET) would
re-bind a specific dynamic variable to a saved state. The
process wishing to return to such a point would evaluate that
variable and apply its value to the datum to be returned.

This mechanism was found to be deficient in two ways. First,
since the evaluations followed the environment chain, control
could return to some remote point, unrelated to the current
computation. Secondly, the number of stack frames
immobilized by this constant state saving resulted in many
more garbage collections than would have been needed other-
wise.

The first problem was solved by the introduction of the
control-chain evaluation primitives, the second by the addition
of CATCH and THROW primitives and by their use for non-
local returns.

Spaghetti stacks, while invaluable for prototyping, turn out to
be too inefficient for production use. We have found the
fastest way to program is to write backtracking algorithms us-
ing saved states, and then reimplement them using explicit
routines such as CATCH and THROW. The inefficiency may
be due to the dependence on the normal garbage collection
process to free discarded state descriptors and their associated
stack frames. If an explicit de-allocation operator were pro-
vided, another conclusion might have been reached. This
would, of course, shift bookkeeping onto the shoulders of the
programmer, which is contrary to the philosophy of Lisp.

Underlying Formal Sonantics

The interpreter is unusual in that it is rule-based. It is a con-
crete implementation of an SECD machine [Landin 1964].
The basic semantics are specified by fewer than one hundred
SECD rules. Before any part of the interpreter was written,
numerous versions of the SEeD rules were created, circulated
and debugged on paper [Blair 1976]. Changes in the primitive
semantics of the Yorktown Lisp system have always been
worked out in the form of proposed changes to the S E e D
rules.

These rules are actually implemented by assembly language
routines. The compiler implements the same semantics.
Writing the compiler was made much easier by having the
formal semantic description, as well as the interpreter source,
as a guide. An appendix to this paper shows examples of
SECD rules.

We found a gap in Landin's formalism. In order to fill this gap,
we found we needed to add one more component to the S E e D
machine, the exit routine. This component records various
actions, such as restoring shallow binding cells, which must be
performed when control returns from a stack frame. The im-
plementation of the S E e D machine has not been extended to
describe the actions of this component. For example, the se-
mantics of CATCH and THROW must be described as special
cases.

Machine Language Insertion

The code generated by our system is not assembly language,
but rather an intermediate language known as LAP (the Lisp
Assembler Program). LAP includes the complete System/370
instruction set plus extensions for testing types, performing
Lisp function calls, accessing components of Lisp objects,
manipulating the stack, etc. In addition, LAP is block-
structured with bound and free variables declared at the start
of a stack frame, or contour. LAP contains scoping rules for

43

both variable reference and transfers of control (GO and la-
bels). Once defined, LAP became the target for the compiler
and for macros which generate code. LAP is described further
in the Implementation Issues Section.

We provide in our system a construct for including LAP code
directly in a Lisp expression, the F ' C O D E construct. Having
the convenience of this feature has enabled us to reduce the
number of low-level functions needed, and to write most of the
functions more readably in Lisp. In our system, only 150
furlctions have been written in LAP. All the rest are Lisp
functions, with a small percentage of those taking advantage
of the F 'CODE.

The PNAME function is an example of a function which is a
mix of Lisp and LAP. PNAME returns a copy of the print
name of an identifier and, when we know we can safely ma-
nipulate the original print name, a single LAP instruction can
be used to fetch the pointer to that name.

An F ' C O D E expression must be used as an operator. It con-
tains two components, a Lisp expression and a list of LAP
statements. When encountered by the interpreter, the Lisp
expression is extracted and treated as if it had been the value
of the operator. When encountered by the compiler, the ar-
gument evaluation is compiled, with the final argument value
left in a specific register. Then the LAP statements are in-
serted into the code. The exclusive use of F ' C O D E ex-
pressions as operators requires that the Lisp expression be
applicable, or that it evaluate to an applicable object.

An example of the use of F ' C O D E would be a macro defi-
nition for ASSQ. The form (ASSQ X Y) could be expanded
to the following form:

((F'CODE ASSQ ()
"Load the f i r s t argument into a reg is te r "
"*SCR2 points to what we are looking fo r "

(L *SCR2 (TOP))
"Hove the second argument out of the "
" resul t reg is te r "
"*$2 points to the current l i s t t a i l "

(LR *$2 *S1)
LP " I f the t a i l is not a pa i r , i ts a l l over"

(GOIFNOTR *$2 PAIR NG)
"Pick up the CAR in *S! and advance *$2"

(LH *SI (*S2 CAR) *$2)
" I f the CAR is not a pa i r , keep looking"

(GOIFNOTR *$2 PAIR LP)
"Look for the target in the CAAR"

(CL *SCR2 (*S1 CAR))
(TeA NE LP)

" i f found, ex i t with resul t in *SI"
(TRA U OK)

NG (LR *SI *NIL)
OK) XY)

While it offers no guarantees, the syntactic proximity of the
Lisp expression and the equivalent sequence of LAP state-
ments does help to keep the programmer honest. A major
deficiency in this construct is that there is no formal con-
nection between the Lisp expression and the LAP code.

Another major problem has shown up in the use of register
allocation. Originally, F ' C O D E was only used for machine

code insertions and the use of actual register references was
no problem. But once we realized that we could generate LAP
through the expansion of macros, we found ourselves making
heavy use of a facility that still required absolute registers.
What we should have done is extended the notation of
F ' C O D E to have allowed logical register references as well,
but we didn't. The result of this decision is that we cannot get
the advantages of global optimization from register reallo-
cations.

Implementation Issues
If there's one myth heard more than any other about Lisp, it's
that programs written in Lisp run so slowly that they can't be
used for production work. We wanted a system which would
give us the advantages of fast prototyping, but when the pro-
totype is determined to be stable enough to be the production
system, still be fast enough to let that program be used without
change. It was to this aim that we determined that the se-
mantics of interpretation and compilation had to be consistent.
Not only that, compilation itself had to be fast.

As a research group, we were also intensely interested in con-
sistent, elegant and predictable semantics for Lisp programs.
In many compilers, when tradeoffs have to be made between
fully defined semantics and compiler efficiency, the choice is
in favor of compiler efficiency. We most often made that
tradeoff the other way -- to preserve the intended semantics.
Even so, we still find the final efficiency of our system ex-
tremely good.

The problems that we have found in our implementation stem
mainly from two problems: locking ourselves into design de-
cisions too quickly, and having to make many tradeoffs to
achieve our goals of efficiency and consistency. The main
tradeoffs came in the areas of flexibility and portability.

E___~em Speed
The Yorktown Lisp system achieves the good execution speed
of its compiled code by a number of techniques. The chief
among these are a large number of special-casing code emit-
ters, extensive analysis and consolidation of nested variable-
binding constructs, and the use of the VM/SP Discontiguous
Shared Segment. These, in turn, depend on various underlying
features of the system.

inllne Code

The efficiency of our system is greatly enhanced by the use of
built-in functions recognized directly by the compiler, and by
the use of macros that emit the F ' C O D E forms described in
the previous section.

Built-in functions (such as CAR, CONS, and PAIRP) have
definitions which are hard-wired into the compiler and inter-
preter. When compiled, they expand to in-line code, avoiding
all the overhead of function calls. The expansion of PAIRP,
for example, results in the following LAP instructions,

(SECTION
(GOLFS *$1 V INLABEL)
(LR *SI *NIL)

I NLABE L)

44

where the value of the argument has already been left in reg-
ister *S 1.

A macro which generates F ' C O D E is expanded into very ef-
ficient inline code. Many of the F ' C O D E macros in the sys-
tem are counterparts of function definitions, where the
programmer chooses the macro or function version which
meets the appropriate trade-off requirements. Some, like
INTERLISP "fast" operators, don't check their arguments for
validity. (}CAR and QRPLACA, for example, assume that
their first (or only) argument will be a pair. QSPLUS assumes
its arguments will be small integers. Others, such QASSQ and
QMEMO, are safe but allow the programmer to choose be-
tween the bulk of in-line code or the overhead of a function
call.

The compiler is able to take advantage of these built-in func-
tions and F ' C O D E macros to do more extensive optimization
in the context where they occur.

c r u u p ~ of Bindinss

Because of our semantics, each LAMBDA expression must
build at run-time a stack frame called a contour. The compiler
wants to efiminate the overhead of individual stack frames and
so, where possible, we attempt to optimize them out. The
compiler analyzes nested LAMBDA expressions and, where
it can be determined to be safe, raises the variables of a nested
expression to the local variable list of an enclosing contour.
At the point where a new stack frame should logically be cre-
ated, the argument values are instead placed in the value cells
of the current stack frame and the display is modified to make
them visible to the binding search mechanism. The logical
structure of nesting is retained, with the scoping rules for var-
iables and labels fully enforced, but the overhead of stack
frame construction efided.

We find that the vast majority of internal LAMBDA ex-
pressions, such as those generated by PROGs, DOs, MAPping
operators, etc., are totally merged into the outermost function.

Shared Segment

The VM/SP operating system provides the ability to define a
readonly block of virtual memory, the discontiguons shared

• segment (DCSS), outside a user's normal memory. The DCSS
is shared among many users, and the chance of a page being
in real storage when it's required is enhanced by multiple users
being linked to the DCSS.

Our compiler and assembler have always produced read-only,
address-free code. It was thus a relatively simple matter to
place the bulk of the system code (the compiler, debugger, in-
terpreter, editor, and the various utility routines) in a DCSS.
This in turn has the paradoxical effect of making the proba-
bility of avoiding a page fault directly proportional to the
number of users running Lisp at the moment.

Lecking Ourselves In

An important tool in realizing the goal of compiler/interpreter
equivalence was a stack frame which did not distinguish be-
tween the two situations. Early decisions, which in certain
cases might have been made for efficiency reasons, have

proven to be stumbling blocks to graceful extensions of the
system.

Staek

The cost of maintaining the spaghetti stack as originally pro-
posed by Bobrow and Wegbreit [Bobrow and Wegbreit 1973]
was not fully appreciated. The allocation of components be-
tween the head-of-E (basic frame in their terminology) and
the dump (frame extension) was taken directly from the ori-
ginal design. This results in a inextricable combination of the
environment and the control components.

As part of our attempt to enforce compiler/interpreter equiv-
alence, stack frames which are used by compiled code and by
the interpreter have the same structure. Since frames used by
compiled code must have a slot pointing to the compiled
function object, a similar slot was added to all frames. Thus,
interpreter frames have a pointer to a dummy compiled func-
tion. For the same reason, all stack frames contain a display
component, mapping variable names to binding cells in the
head-of-E. To compound the problem, we made the display
a component of the compiled function, building it dynamically
into the dummy compiled function for the interpreter frames.

The end result is that the control cannot be separated from the
environment. All saved states must carry the weight of the
dump portion of the stack. We could have moved the envi-
ronment chain pointers from the dump, so that each head-of-E
pointed directly to its predecessor. We could also have made
the display an independent datum, also pointed to from the
head-of-E. The combination of these two decisions would
have allowed us to create "light" saved environments, usable
only for evaluation.

It was known from the first that realization of the spaghetti
stack would incur extra overhead at function call and return.
To minimize this cost, the stack frames were carefully designed
to allow their construction with the fewest possible machine
instructions. As a result, no spare space is available in the
stack frame structure. This, in turn, made certain changes to
the system difficult or impractical.

We have often wished we could expand the display and in-
clude, for example, type information about variables. This has
proven impractical, as every function and macro in the system
would have to be re, compiled in order to implement such a
change. While we have made such drastic transitions in the
past, they become more and more difficult in the presence of
an ever-growing body of code.

Another case where an excessively economical design has
made expansion of the stack frame difficult, was the
retrofitting of CATCH and THROW as primitive operators.
Because of the constraints of the stack structure, it was nec-
essary to make rather unorthodox (and unanticipated) use of
the exit field to record the presence of a CATCH-POint and
the alternative resume point in the code. The resume point is
used to distinguish a THROW from a normal return.

Pointers and Types

Another area in which early design decisions led to a dead end
is found in the structure of our pointers. Because of the nature
of the target hardware, and in fight of the thinking of the time,

,15

a pointer containing twenty-four bits of address, with eight bits
of type information, was used. While this often provided
faster type tests, since memory references could often be
avoided, it has prevented our moving easily to the new
System/370 XA architecture.

The tagged pointer architecture of the system is very much like
other Lisp systems, although there is an exceptionally wide
range of types for a system running on non-specialized hard-
ware. It is the tagged pointer architecture part of the system
that reveals its age. It is not easy to introduce new types since
they are hard-wired, whereas an object-oriented approach
such as Flavors [Keene 1985] or CommonLOOPS [Bobrow et
al 1985] would have provided for greater flexibility and
extensibility. We intend to remedy this deficiency in the near
future when it becomes clearer what the design fundamentals
of OOPS should be.

Envirosmmts, Variable Emlmtim, and Closures
The model of variable evaluation which we chose to implement
was predicated on the structure of the spaghetti stack, and af-
fected its detailed implementation. Rather than a single global
environment, we support multiple quasi-global environments,
referred to as non-LAMBDA environments. At any one in-
stant, one of these is elevated to the status of current
non-LAMBDA environment, and acts as a global name-value
space for variables not found in the stack.

For further details, including the interaction between the en-
vironments and closures, the reader is directed to the appen-
dix, "Appendix B. Environments and Closures".

LISP A s ~ b l ~ ~ (LAP)
Although the compiler does a number of general optimiza-
tions, such as flattening and merging the contours which cor-
respond to stack frames, the feature which has contributed
most to efficiency is the ability of macro operators to specify
machine instructions to be included in the generated code.
This feature has both positive and negative aspects.

Effects of Designing Too Close to the ~ a r e

We recognized the desirability of an intermediate language in
the creation of functions, such as long integer arithmetic,
which must manipulate fragments of Lisp objects. It's also
desirable for functions which require very high efficiency, such
as COPY and EQUAL. A small measure of the success of this
language, LAP, is found in the speed of the long integer
arithmetic package.

While LAP makes the writing of operations (such as COPY,
EQUAL and SHAREDITEMS) relatively easy, LAP is so
close to the machine that it would significantly impede transfer
of code to any other architecture.

The ArtifichdJy IAmited Power of the Assembler

LAP exhibits weaknesses in two ways. On one hand, it is too
close to the hardware. On the other hand, it is too close to
Lisp. it is too clo~e since the only programs LAP will assemble
are fhose which correspond to a LAMBDA (or MLAMBDA)
expression.

The effects of being too close to the hardware have been out-
lined previously. The effects of being too close to IAW have
caused a larger than desirable part of the system to be written
in Assembler H, a non-Lisp System/370 assembler. This code
includes the function-calling prologues and epilogues, the
out-of-line routines for CATCH, THROW and other primitive
operations, the binding search routine, the SECD machine in-
terpreter and the garbage collector, to name only a few. These
are pieces of code which must run in contexts different from
that of a compiled function. Some are called (with linkages
other than the normal Lisp to Lisp call) from compiled code,
and must run without a stack frame and without disturbing the
calling function. Others, such as the garbage collector, discard
almost all the base registers that compiled code expects to find,
throwing all conventions to the winds in an effort at main-
taining as much data as possible in registers.

Programming Environment Issues
In our programming environment, we tried to combine many
of the tools used by a programmer into an integrated package
that is more useful than the components taken separately.
We developed a few key ideas to their logical limits in order
to provide a useful interface in spite of severe hardware and
operating system limitations. We found that dynamic format-
ring and automatic condensation are necessary to make a
structure editor tolerable. We also found that the same tech-
niques were sufficient to make the structure editor an effective
tool -- even in a command-oriented environment. The struc-
ture editor and the display manager interfaced naturally with
a stepper/debugger in order to create a particularly useful de-
buggln 8 tool.

Strst'tmv F_Jitor
At first glance, the value of structure editors seems unques-
tionable when we must deal with complex but highly organized
objects like programs. In the Lisp context, this observation
applies equally well to data. But although structure editors
exist in almost all Lisp systems, these editors are not used ex-
tensively.

We decided that this neglect was due to the fact that the user
of most structure editors spends a sionificant fraction of the
time figuring out where an editing operation will take place
and what the effect of an editing operation was. Our solution
to this problem was to present the user with a more dynamic
view of the editing domain. By presenting a view that was
automatically formatted and continuously updated, we freed
the user to perform mostly editing operations.

DiJpt, y
The structure editor, Lispedit [Mikeisons 80], uses two tech-
niques to generate useful and interesting displays: dynamic
formatting and display condensation. A dynamically format-
ted display is one in which the screen always contains a
prettyprinted form of the context in which the focus occurs.
The focus is the current subexpression on which the editor is
operating, that is, the user's finger in the program. Display
condensation means the expression which is displayed can
contain elided parts. What is displayed and what is elided are

46

chosen by a set of heuristics based on the position of the cur-
rent focus. By the use of these two techniques, we find
Lispedit to be as usable as a smart text editor.

Much of the work on the programming environment was done
in parallel with research on a non-Lisp programming environ-
ment [Alberga et a11984]. This research resulted in some very
complex formatting and condensation techniques [Mikelsons
1981], which proved to be too expensive in CPU time and
memory for the Lisp production environment. Instead, a col-
lection of heuristics were developed based on trial and use.

The program display below illustrates many of these heuristics.
Line numbers are for descriptive purposes only. The focus of
attention on lines 6 through 16 is shown in almost full detail.
The only condensation takes place on line 10, where a sub-
expression is abbreviated to the symbol '&'. Expressions pre-
ceding the focus in the body of the containing PROG are
shown using one line for each. This forces the body of the DO
on line 4 to be efided. All the expressions following the focus
are efided since the focus has filled all the available space.

I (LAMBDA
2 (INPUT)
3 (PROG (WORDLIST)
4 (DO ((I 0 (+ (FINDENDWORD INPUT I) 1))) ...)
5 (SETO WORDLIST (REVERSE WORDLIST))
6 (NMAPCAR
7 (LAMBDA
8 (WORD)
9 (COND
10 (((ONE=OF a • i o u) (ELT WORD 0)) &)
11 ('ELSE
12 (CONCAT
13 (SUBSTRING WORD 1 (- (SIZE WORD) 1))
14 (SUBSTmNG WORD 0 l)
15 "ay "))))
16 WORDLlST) ...)

Figure 1. A Sample Program Display

Several numeric parameters can be set by the user to control
the heuristics that format the screen. These numbers deter-
mine the maximum number of levels of nesting shown con-
taining the focus, the maximum number of expressions shown
preceding the focus, and the maximum number of lines in
which to show the focus. These numbers are modified by
special circumstances. For example, since the bound variables
of the PROG expression are displayed on the same line as the
PROG operator, that subexpression is not included in the
count of expressions shown preceding the focus. Another
special case is made for lists or vectors of one element. These
are not included in the count of expressions shown containing
the focus because they take very tittle screen space to show.

Our experience indicates that users may complain about the
automatic choices made by the system, but are not willing, in

general, to tailor interfaces unless very friendly tools are sup-
plied to do the tailoring.

The key to speed in the display algorithm was to fill the screen,
from top to bottom and from left to right, with no backing up
and with only a small amount of looking ahead. One aspect
of this was to always show a fixed depth of nesting around the
focus. In many situations, this approach left a lot of blank
screen which could have been filled effectively if a greater
depth of nesting was shown. It turned out that in the cases
where the screen is not filled, the display process is so fast that
the solution was to repeat the display of that screen using a
larger nesting parameter.

The use of a structure editor has a definite effect on the pro-
gramming style that users develop. To many people, the form
of a program can seem almost as important as the contents.
A structure editor which continuously changes the indentation
of what is seen, and changes it from the way in which it was
originally typed, can be initially disconcerting. With experi-
ence, though, one stops relying on a particular indentation to
yield context information (such as how deeply nested the cur-
rent focus is within the enclosing expression) because the ex-
pression displayed by the structure editor will more likely be
elided to show the context in which one is most interested.

A structure editor may also have an effect on the language
definition and on the way the language is used. We have ex-
tended our definition of Lisp to allow more places where
comments can exist as part of the Lisp structure. This means
that when the program is read in by the structure editor, those
comments will be retained, unlike comments which are only
textually included.

To Copy or Not To Copy

The original design of Lispedit caused changes made to the
expression on the screen to cause changes in the actual object
(essentially, using RPLACA and RPLACD). This design is
called editing-in-place. The design was chosen because it was
felt to be an elegant approach to the problem. Unfortunately,
it broke down at the top level expression. It was possible to
lose contact at the top level with the object being edited, and
from then on the effects of the editing may appear random and
incoherent. For example, the object being edited may be a
value of more than one identifier. When making changes be-
low the top level, the values of both identifiers are changed.
When making changes at the top level, it is necessary to make
an assignment to the identifier in order to bring the identifier
and the editor into synchronization again. The editor can au-
tomatically make the assignment to the identifier it knew it
was editing, but it would be too difficult to find all the identi-
fiers which also pointed to that value.

Our solution has been to back off £rom editing-in-place and to
now edit copies as the default case. Editing in place must be
requested by using the appropriate command. This means that
we must provide operators to move the copy back to the en-
vironment. We have found this approach to be more com-
fortable because, although we have to do the assignments by
hand, we are absolutely sure of the results and know that
nothing is going on behind our backs.

47

Windows

Our user interface at the display terminal consists of a single
command-oriented window. We realized at the outset that this
put us outside the general Lisp community, but we felt that the
advantages that we could offer our users would offset the in-
compatibilities.

Window management requires a certain minimum level of
hardware support which the terminals commonly available
within the IBM community did not have. The screen size was
too small, there were no bit map displays, and it was not pos-
sible to get full-duplex communication between the terminal
and the program. If we had chosen to implement on a non-
standard terminal, we would have found ourselves isolated
from this community. Because we were interested in devel-
oping a system for a large user base, we decided that we would
have to stay within the available hardware. And ' that meant
no windows.

Another related issue is that of allowing the user to type di-
rectly onto the displayed program text as well as in a pre-
defined command area. In our more general structure editor
[Alberga et a11981], we devised the principle that if some new
user text causes a well-formed program to become ill-formed,
then the new program text should be treated as the cause of
the error. Even though our half-duplex terminals allowed
typing on any part of the screen, we decided against full-screen
editing because in most cases it is not possible to determine
which parts of the screen were written by the system and
which were modified by the user. Unless this information is
available to the editor on a character by character basis, it is
not possible to apply the error principle consistently. As a re-
sult, we chose the command-oriented paradigm in order to
provide a more consistent interface to the user.

Debugger: A Step Beyond Steppers
Debuggers are available with all Lisp systems but, like struc-
ture editors, they can be difficult to use. Before you can figure
out what you want to do, you have to figure out how to get
there. From its earliest implementation [Alberga et al 1981],
our debugger, HEVAL, has offered the user the opportunity
for true two-way communication with the program through the
editor interface. In one direction, the debugger shows the next
expression to be evaluated in the context of the containing
expressions, that is, the expression is displayed as it would
normally be through the structure editor. In the other direc-
tion, the user gives normal editor commands to HEVAL to
guide the debugging. For example, we can point to an ex-
pression on the screen, make that expression the editor focus,
and ask for evaluation to continue from that location.

Lieberman [Lieberman 1984] addressed the desirability of a
stepper, or debugger, which could communicate back to the
user through an editor, but didn't see the natural extension to
two-way communication.

During development, we surprised ourselves with the general
utility and ease of use of HEVAL. Contrary to our expecta-
tions and subjective evaluation, we found that twenty percent
of all user commands invoke HEVAL. We also find that even
devout anti-structure-editor users become enthusiastic toward
this tool.

File System Integration
An attractive part of the system is the degree of integration
with the host file system and the way in which that file system
is accessed from the programming environment. The interface
is provided through Lispedit by storing Lisp definitions in in-
dexed files. Indexed files may be viewed conceptually as large
(external) a-lists, keyed on the name of the definition. By us-
ing indexed files, our users need never interact with the ex-
ternal operating system.

The existence of the external file system is irrelevant to the
user, and in this respect the environment approaches some of
the ideals of persistent programming. The main criticism of
indexed files stems from a more fundamental problem, the lack
of flavors. If these "external a-lists" could be regarded as just
another datatype by the system, and if there was a simple fa-
cility for providing a new method for those objects, then ex-
isting Lisp operators such as COPY, SETQ, and DELETE
could be applied.

Conclusions
In closing, we must review our goals and measure our suc-
cesses and failures.

In the language area, we wanted to define powerful and con-
sistent semantics. Our operator evaluation model has proved
to be precisely that. We have used the redefinability of fun-
damental operators on many occasions both to extend the
language and to achieve compatibility with other dialects. In
all cases, the extensions were done easily. We have used our
general operators for equality and other utilities more exten-
sively because of their uniform applicability and efficiency.
We have come to trust interpreter-compiler equivalence so
completely that we now take it for granted.

The power of state saving is irreplaceable when it is needed.
But we definitely need to separate the concepts of saving an
environment and the concept of saving a control state. The
cost of saving both when only the enviromnent is needed is too
much of a deterrent to effective use.

In the implementation, the cost of several early decisions did
not show until late in the life of the system. When extensions
needed to be made, there were too many constraints. The
availability of LAP and F ' C O D E was a big help, but at the
cost of portability. Such a facility must be designed at a higher
level in order to be most useful.

In the programming environment, the main lesson is that we
need more. All the features have been well received by the
user community. We also need to extend the facilities to
modern full-duplex terminals and bit-mapped screens.

Over the years, Lisp has evolved in a community with very
high expectations. It expects high expressive power in the
language in order to address complex application areas. It ex-
pects high efficiency when these applications become success-
ful and must cope with realistic quantities of data. It expects
flexibility in the language and portability in the code. And last,
but not least, it expects powerful and friendly user interface.
Our experience has shown that these expectations are deft-
nltely worth living up to. Our main regret is that we compro-

48

raised some of these expectations in order to achieve some
short-term implementation gains. In all the areas where we
kept to a hard line, the effort and the cost were well worth it.

Acknowledgments
In twelve years, the IBM Research Lisp has been designed,
built, influenced, and criticized by many. We would like to
especially acknowledge the following people for their contrib-
utions: Mark Wegman (LISP/VM and YKTLISP); Alan
Cobham, Barry Trager (Applications); Fred Blair, Alan
Brown, James Davenport, Arthur Norman, Mark Pivovonsky,
Richard Ryniker, Jon L. White (Lisp/370).

References

Alberga, C. N., Brown, A. L., Leeman, G. B. Jr., Mikelsons,
M., Wegman, M. N., "A Program Development
Tool", Eighths Annual ACM Symposium on POPL,
Williamsburg, Virginia, January 1981.

Alberga, C. N., Brown, A. L., Leeman, G. B. Jr., Mikelsons,
M., Wegman, M. N., "A Program Development
Tool", IBM Journal of Research and Development,
January 1984.

Alberga, Cyril N., LISP Assembler Program: Reference Man-
ual, IBM Research Division report RA172, Septem-
ber 1985.

Blair, F.W., "The Definition of LISP1.8+0.3i", IBM Internal
Report, 1976.

Bobrow, Daniel G., and Wegbreit, Ben, "A Model and Stack
Implementation of Multiple Environments", Commu-
nications ACM, Vol. 16 Number 10, October 1973.

Bobrow, Daniel G., Kahn, K., Kiczales, G., Massinter, L.,
Stefik, M., and Zdybel, F., "COMMONLOOPS -
Merging Common Lisp and Object-Oriented Pro-
gramndng", Xerox Palo Alto Research Center Intelli-
gent Systems Laboratory Series ISL-85-8, August
1985.

Davenport, James H., "The LISP/VM Foundation of
Scratchpad H", The Scratchpad I I Newsletter., Robert
S. Sutor editor, IBM Corporation, Computer Algebra
Group, Yorktown Heights, New York: Vol. 1, Num.
1 (September 1, 1985).

Griesmer, J.H., Hong, S.J., Karnaugh, M., Kastner, J.K.,
Schor, M.I., Ennis, R.L., Klein, D.A., Milliken, K.R.,
VanWoerkom, H.M., "YES/MVS: .A Continuous
Real Time Expert System", Proceeding of the National
Conference on Artificial Intelligence, American Asso-
ciation for Artificial Intelligence, Los Altos,
California.

Heidorn, G.E., Jensen, K., Miller, L.A., Byrd, R.J., and
Chodorow, M.S., "The EPISTLE Text-Critiquing

System", IBM Systems Journal, Vol. 21, Number 3,
1982.

Keene, Sonya E., and Moon, David A., "Flavors: Object-
Oriented Progranuaing on Symbofics Computers",
Unpublished Paper, Common Lisp Conference,
Boston, December 1985.

Landin, P. J., "The Mechanical Evaluation of Expressions",
Computer Journal, Vol. 6, 1964.

Lieberman, Henry, "Steps Toward Better Debugging Tools for
LISP", 1984 ACM Symposium on Lisp and Functional
Programming, Austin, Texas, August 6-8 1984.

Mikelsons, Martin, Lispedit Command Descriptions, IBM Re-
search Report RC8275, May 1980.

Mikelsons, Martin, "Prettyprinting in an Interactive Program-
ming Environment", ACM SIGPLAN SIGOA Sym-
posium on Text Manipulation, Portland, Oregon, June
1981.

Richardson, Stephen D., "Enhanced Text Critiquing using a
Natural Language Parser", Seventh International
Conference on Computers and the Humamties, Provo,
Utah, June 1985.

Steele, Guy L., "LAMBDA: the Ultimate Imperative", Memo
No. 353, Artificial Intelligence Laboratory, MIT,
Cambridge, Massachusetts, March 1976.

Steele, Guy L., "Debunking the 'Expensive Procedure Call'
Myth or, Procedure Call Implementations Considered
Harmful or, Lambda: the Ultimate GOTO", Memo
No. 443, Artificial Intelligence Laboratory, MIT,
Cambridge, Massachusetts, October 1977.

Steele, Guy L., Common LISP: The Language, Digital Press,
1984.

Sussman, Gerald J. and Steele, Guy L., "SCHEME: an Inter-
preter for Extended Lambda Calculus", Memo No.
349, Artificial Intelligence Laboratory, MIT,
Cambridge, Massachusetts, December 1975.

Truscott, Alan, New York Times, October 7, 1984.

Wilensky, Robert, LISPcraft, W. W. Norton & Company, New
York, 1984, p.329.

White, Jon L., "LISP/370: A Short Technical Description of
the Implementation", ACM-SIGSAM Bulletin, No-
vember 1978.

LISP/370 Program Description/Operations Manual,
SH20-2076, IBM Corporation (March 1978); avail-
able through IBM branch offices.

LISP/VM User's Guide., SH20.6477, IBM Corporation (July
1984): available through IBM branch offices.

49

Appendix A. SECD Rules

The SECD machine is an abstract machine containing four
components, the stack ($), the environment (E), the control
(C) and the dump (D). The state of the machine at a given
instant is shown by a diagram of the form:

(S~ E;' C; D}

The S and C are push-down stacks which can contain any data
objects (not to be confused with the stack consisting of linked
frames, which records both the binding environment and the
control structure of the overall system). The C can, addi-
tionally, contain any of a number of internal objects, referred
to as recta-objects, which act as markers. Three of the recta-
objects, PLIED, b'WM~ and OP2, will appear in the examples
extracted from our full set of rules.

The E is conceptually an a-list of variable/value pairs, aug-
mented by additional structure indicating the boundaries of
lexical scope. In practice, the E is implemented in stack
frames, containing value cells and displays, which allow the
cell corresponding to a variable to be located. This is done in
order that the binding search mechanism be uniform for com-
piled and interpreted code, simplifying the intermixing of the
two evaluation regimens. The D contains the state of the
machine which is to be restored upon returning from the cur-
rent state, e.g. via a RETURN. As with the E, the D is im-
plemented in stack-frames of the same form as those used by
compiled code, again upholding the uniformity of stack
frames.

The "program" for the SECD machine consists of a collection
of state transition rules. Each rule specifies a pattern of values
for the C and $ components of the currem state, and specifies
a new state in terms of the current components. The applica-
bility of the rules is tested in a prescribed order to avoid am-
biguities. The order of the rules below is implied by the
state/rule numbers.

In the actual implementation, we allow ourselves shortcuts.
Both the search for the applicable rule and for the transfor-
mation are hand-coded in assembler language, rather than as
rules for a general SECD interpreter. This allows us to arrange
the rules in a search tree, rather than in linear order, and to
manipulate the S and C stacks directly, examining their ele-
ments without popping them, and replacing elements in site.

In order to give a flavor of the programming of the SECD
machine, we will present a few of the rules defining our system.
These include the rule which recognizes a COND statement,
the rules which process the body of the COND, and the rules
which process the sequence of expressions in a PROGN, either
explicit or implicit.

In these fragmentary examples, boid-face items relxresent
meta-ob'~.'ts, italic items represent place holders, and other
objects represent themselves. Thus in the first rule of the
fragments of the SECD rules displayed, the interpretation of
the initial state:

|COND. s; e; OP2 (x. body), c; d}

is:

COND the special-form c o n e

OIq the recta=object which indicates that the ob-
ject at the head of $ is the value of the oper-
ator for the form being evaluated

(x. body) the form

x and body place-boiders for the CAR and CDR of the
form

Within the $ and C, the sub-components are written as if sur-
rounded by parentheses, in the example, the $

COND. s

represents a stack of one or more items, with the top item be-
ing "COND", and the remaining items (if any) represented by
the sub-component s.

In the resultant state:

* {0 . J; e; P n D 0 body. c; dl

we find the place-holders, such as s and body, marking the ar-
bitrary components of the initial state which are used in the
construction of the subsequent state.

Rule 8.2.1.2.

|COND. s; e; OP2 (x. body), c; d}
,,~ | 0 . s; e; PaED () body. c; d}

This rule is invoked when the value of the operator of a form
has been resolved, and is at the head of the $. The original
form follows the recta-object OP2. x, in this form, is the op-
erator expression which evaluated to COND. When this state
is found, we proceed to a state with the meta-object PRED at
the head of the C, followed by an arbitrary object (in this case
NIL) and the body of the COND. This mimics the state in
which the predicate of a clause in a COND statement has been
evaluated, has returned NIL, and thus forces the machine to
try the next clause. This is the state of the machine which
matches the following rule in our example, but in this case the
"next" clause is in actuality the f'um.

State 13.1.

10 . s; e; Pl tgD. c; al

This state is distinguished by EtED at the heud of C and 0
at the head of $. This condition occurs when •ptedicste has
been evaluated and retunw, d a value of NIL. There are three
sub-rnles under this state.

Rule 13.1,1.

| 0 . s; e; ~ e.~,ql (0,7. e-x-q2), x) . c; ,fl
,~ is; e;.o2 PRED e-xq7 x . c; dl

in this rule, the remaining portion of the body of the COND
starts with a pmr, (p2 . e.seq2), which must be tried next. The
sequence of expressions which had followed the previously
evaluated predicate, e-.~q7, is discarded and replaced by the
seqnence of expremdons following the sulx~qlnent iwedi~te,
e-seq2. At the same, time the new predicate, pT, is pushed on

50
/

!

the head of the C, where it will be evaluated, and the entire
clause is popped off the body of the COND.

Rule 13.1.2.

| 0 • s, e; PRED e-seql (a tom. x) . c; dJ
{0 • s; e; PRED e-seql x . c; d}

This rule discards any non-pairs found in the body of the
COND. This allows the use of character strings as comments
between the clauses of a COND. Note that "atom" is synon-
ymous with non-pair.

Rule 13.1.3.

{s; e; PRED e-seql a tom. c; d}
• [0 . s; e; c; a)

This rule causes the value of the COND to be NIL if no pred-
icate is satisfied.

State 13.2.

{x. s; e; PRED a t o m y , c; d]

This state is distinguished by an non-NIL value at the head of
$. Since the state number is higher than 13.1, it must have this
property.

Rule 13.2.1.

[x . s; e; ~ e-seqy , c; d~
(Where e-seq is a pair.)

,~ {0 • s; e; ~ e.seq, c; d]

ff there is an expressiom mqmence following the predicate here,
it is treated as an implied lq tOGN. Main , the C compoeems
associated with the COND body are popped, and a new
recta-object, S I 3 W n , is imshed ' ,into,the C, together with the
list of expressions to be evahtated. At the saute, time the S
is augmented with an arbitrary value, in this case, NIL.

Rule 13.2.2.

I x . s; e; PRED a t o m y , c; d}
,l~ {x . s; e; c; d]

This is the "predicate-only" case. The expression sequence
associated with the predicate, which evaluated to x, is not a
pair. In this case, the value of the COND is simply the value
of the predicate which is left at the head of the S, while the
meta-object PRED and the remainder of the COND body (if
any) are popped off the C.

We will now display the rules controlling the body of an ex-
plicit or implied PROGN. These rules are distinguished by the
presence of the meta-object STMT2 at the head of the C.

State 15.

Ix . s; e; STMT2. c; d}

The value at the head of the S, x, is the value of the last eval-
uated expression in the sequence.

Rule 15.1.

[x . s; e; S T M T 2 (exp. e-seq) . c; d]
{s; e; exp S T M T 2 e.seq . c; d)

The item in the C following the recta-object STMT2 is the
portion of the the PROGN body which has yet to be evaluated.
If there remains one or more items in the expression sequence,
the first is popped off and placed at the head of the C to be
evaluated. At the same time, the previously computed value
is popped from the $.

Rule 15.2.

I x . s; e; S T M T 2 a tom. c; d}
• ~ {x . s; e; c; dl

If, on the other hand, the item following STMT2 is an atom,
then all the expressions in the body have been processed, and
the value at the head of the $ is the value of the last such ex-
pression. In that case, STMT2 and the objects associated with
it are popped from C and the value is left on the ,7.

51

Appendix B. Environments and Closures

There exist three distinct environments in which variables may
be bound. Two of these are strongly interrelated. The third
was designed as an afterthought, and is only weakly integrated
into the system.

The first environment (from the view point of a process
searching for the currently operative extant binding of a vari-
able) consists of the chain of stack frames. Each stack frame
contains a (possibly zero size) set of value cells, together with
a datum, referred to as the display. The display provides a
mapping from variables to value cells, and indicates which are
lexical and which fluid (i.e. dynamically accessible). The stack
frames are linked by a pointer which may differ from the link
used during a RETURN operation. These environment links
are marked to indicate the boundaries of lexicai scope.

Starting from a particular stack frame, usually the current head
of the stack or a frame pointed to by a state descriptor, the
binding search paradigm is to search for any (lexical or fluid)
binding of the desired variable. This search continues, fol-
lowing the environment chain, until a lexical scope boundary
is crossed. The search then changes, looking only at fluid
bound variables. If no binding is found when the root of the
stack is reached, the current non-LAMBDA environment is
searched.

A non-LAMBDA environment consists of one or more asso-
ciation list, linked by means of state descriptors. Each name-
value pair in the association list contains an identifier
(variable) and a value. If the final CDR of the list is a state
descriptor, the non-LAMBDA environment captured by that
state descriptor is searched in turn.

There is no unbound variable error. If the binding search re-
aches a non-state descriptor terminator of a non-LAMBDA
environment without locating a binding cell for the variable in
question, a new binding cell is created and initialized with the
variable itself as the value. This newly created binding cell
will be added to the first association list in the chain consti-
tuting the current non-LAMBDA environment.

The current non-LAMBDA environment acts much like a
global environment, but it must always be borne in mind that
it is only one of many. Every use of EVAL with a state de-
scriptor, every application of a funarg, every switch of envi-
ronment to a previously saved state, may install an entirely
different non-LAMBDA environment.

In fact, this facility is used heavily during compilation to pro-
vide the compiler with a set of operator definitions which dif-
fer from the operator definitions bound in the environment in

which the compiler itself executes. This allows both cross
compilation (as in the MACLISP compatibility package) and
optlmi~,~tion (by the provision of compile-time macros).

The third environment is a true global environment, containing
one value cell for each identifier. This set of global value cells
is not used by any part of the system itself, nor is it included
in any binding search. There exist functions,
EVAL-GVALUE and SET-GVALUE, which access and up-
date global value cells, together with a special form,
GVALUE, also used to access global value cells.

The general multi-environment philosophy precludes the use
of such a global environment.

In a restricted sense, the system may be thought of as actually
having four environments. There exist functions which allow
the control chain, rather than the environment chain, to be
searched for bindings. Such a search is never done by the
standard evaluation mechanisms but, during certain operations
involved in exception handling, it is explicitly requested.

This allows exception handlers to be established in the flow
of control, rather than in the evaluation environment. Thus,
an error occurring during the application of a funarg will be
handled by the applier, rather than by the context in which the
funarg was created.

The set of environments affects the collection of bindings
captured by a state descriptor. The closure is a general pur-
pose object, holding both a set of bindings and a control. It
can be used for evaluation of variables (and by extension, ex-
pressions), and it can be used to resume computation at a re-
membered point in the past.

The evaluation of a variable with respect to a state descriptor
elicits a search of the stack starting with the frame pointed to
by the state descriptor (the frame from which the primitive
operator STATE was called), and continuing, if need be, in the
non-LAMBDA environment which was current at the time of
the state descriptor's creation.

Note that at no time is the environment from which the eval-
uation is requested involved, unless it and the environment
captured by the state descriptor shares a common ancestor.
In this, evaluation with respect to a state descriptor differs
from Common Lisp's evaluation with respect to a (lexical)
closure.

It differs also in the fact that the LISP/VM state de~riptor
captures the complete environment, both lexical and dynamic.
Thus any variable bound in the captured state is accessible,
within the scoping rules, not simply the closest lexical variable.

52

Appendix C. The Structure of a Stack Frame

The stack in the Yorktown Lisp system is fully framed, as re-
quired by the Bobrow-Wegbreit stack model [Bobrow and
Wegbreit 19"/3]. The frames are divided into two components,
the head-of-environment (headE) and the dump. In the pres-
ence of state saving, a single headE may be referred to by two
or more dumps.

The headE contains the value cells for the variables bound in
its frame, both the lexicals and the fluids. In addition, it con-
taius a pointer to the end of the spatially preceding frame, and
a count of the excess dumps referencing it (over the single
dump in the case of simple LIFO control).

The dump contains all the information required to resume ex-
ecution of the function associated with the frame. This infor-
mation may not be completely valid in the currently active
frame, i.e. the frame of the function currently in control. All
other frames contain the saved registers required to run the
associated function, together with non-pointer data, the cur-
rent state of the execution stack, a list of actions to be exe-
cuted on returning from this frame, etc.

A more flexible structure would result if various components
of the stack frame were reallocated. In particular, the tail-E,
display, and abstack should be moved to the headE. This
would provide two improvements in the system, one semantic,
the other pragmatic.

On the semantic front, the move of the abstack area to the
headE would promote the non-pointer data to the same status
as the ordinary variables. While there is no means of using this
data in pure Lisp, it is accessible via LAP or F ' C O D E . It can
be used to implement a form of unboxed numbers, as well as
for efficiently allocated and released (not involving the gar-
bage collector) storage for numbers or character strings.
While one may argue against the sharing of value cells among
multiple saved environments, it is clear that all value cells
should be treated equivalently.

The shift of the display and tall-E pointer to the headE would
allow the creation of environment-only closures. As stated
previously, the only form of closure supported in the
Yorktown Lisp system captures the full environment and con-
trol. As such, they affect the amount of stack space which can
be released upon function return or by the garbage collector.

The current stack design was the result of careful thought. The
short comings were not at all obvious until the system had been
in use for a number of years. We might hope to have more
foresight, should we attempt a redesign, but we should pay

particular attention to providing for further modifications in a
less painful manner than having to recompile all existing
source code.

Sol id l i nes represent t rue addresses
Broken l ines represent o f f s e t addresses

(- x800)

r ~ li , l , i

i 1 I
bound v a r i a b l e s

~ s t cases
L -- p rev ious f r n t GPRx - GPRy

and the "coun t "
GPRx -e- r count in the headE

' is ad jacent to
I

(;PRy - +

I
L ~ ~ ~

41-

< 1 -

head-E

t a i I - E

dump

e x i t r t n

the bpi po in te r
in the dump

bpi

f o r t h i s frame •

prev ious E-frame •

p rev ious C-frame •

r e t u rn po in t

r stack f r n t

d i s p l a y J use

abstack

I saved shal lows l
and

I n d i r e c t p o i n t e r s I
pushed arguments

* In the usual case, head o f environment is
cont iguous wi th dump, i f so t h i s po in t w i l l
have the value ind ica ted by the arrow.

• Usua l l y , but not a lways, the same.

f o r t h i s frame

may be empty

may be empty

may be empty

Figure 2. Stack Frames

53

