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Abstract 
in 1974, a group at IBM Research began work on a new im- 
plementation of Lisp. Because the work was initially done for 
internal use only, many design decisions led the developers 
away from the more traditional Lisp paths. The most impor- 
tant design decision was to create a language which would 
have consistent semantics between compilation and interpre- 
tation. This paper takes a retrospective look at the decisions 
we made to see how they have stood up against the test of time 
and usage, especially when seen against the decisions made for 
Common Lisp. 

The Lisp language issues discussed include scoping, operator 
evaluation and consistency, and state saving. Compiler issues 
include the integration of assembly code into Lisp programs, 
our underlying formal semantics, and optimization. Our pro- 
gramming environment is as sophisticated as the majority of 
Lisp systems. Aiming at hardware such as the IBM 3270 ter- 
minals has affected the design of the tools that make up this 
environment. These issues will also be discussed. 

Introduction 
In 1974, a group at IBM Research began work on a new im- 
plementation of Lisp. What they produced became widely 
used within the "company for internal research applications, 
and their work was the base on which future Lisp systems were 
built. The current Program Offering, LISP/VM, was a snap- 
shot of that system in 1984. Because our Lisp system was or- 
iginally intended only for internal use, some of our goals 
differed from those common in the wider Lisp community. 
Along with differing goals have come differing solutions to 
recognized problems. 

The value of our system is found in the success of the appli- 
cations running on it. Many, such as Alan Cobham's bridge 
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program, run directly. A description of this expert system can 
be found in Alan Trnscott 's column on bridge in the New York 
Times [Trnscott 1984]. Other appfications, such as YES/MVS 
[Griesmer et al 1984], Epistle [Heidom et al 1982] 
[Richardson 1985], and Scratchpad [Davenport 1985], are 
written in application languages which run on top of our sys- 
tem. 

Since we are a research group, we are interested in an appro- 
priate research vehicle, and also in making that vehicle reflect 
current thinking in language theory. Before we begin any re- 
design, we are taking this opportunity to examine our current 
design in the light of its success in achieving our goals, and in 
the shadow of other efforts which have found solutions to 
many of the same problems. This paper reflects that retro- 
spective investigation. 

Our language design was driven mainly by the goal of creating 
semantics which would be consistent under both interpretation 
and compilation. This was a goal we were able, for the most 
part, to meet. Our system had to compile efficiently, but an 
almost more important goal was that the semantics should be 
consistent, elegant and predictable. 

The environment was severely constrained by display hard- 
ware (24 by 80 character monochrome terminal) but, with that 
constraint, our goal was to produce a user-friendly system. 
The dynamic display of the structure editor and the integrated 
debugger were our solutions. 

Overall, we took the point of view that the features that set 
Lisp apart from other languages must be protected from ero- 
sion by premature performance concerns. In several cases, if 
we could not design a consistent facility, we backed off to a 
simpler design. But in any important area, we would not 
compromise. 

Language Issues 
At the time we began our design, there were many exciting 
ideas being discussed in the Lisp community. As a research 
group, we felt relatively free to innovate, and did not feel that 
we had to tie ourselves to compatibility with any other dialects 
of Lisp. This gave us the opportunity to actually try out many 
of these new ideas, concentrating instead on internal consist- 
ency of language and implementation. We wanted the se- 
mantic, s to be consistent and.predictable, so that they could 
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be easily described, and so that reasonable user expectations 
would be satisfied. We wanted the meaning of an expression 
to be clear without reference to subtle provisos or special 
cases. 

This emphasis extended to many facets of the system. We 
wanted above all to eliminate the distinction between inter- 
preted and compiled evaluation. The evaluation rules for op- 
erators were made to be the same as for arguments, and were 
applied in all cases. Most functions were extended to behave 
reasonably in the presence of substructure sharing and cycles. 
Variable scoping in compiled and interpreted code was made 
equivalent. 

In some of these endeavors, we feel that we succeeded and that 
the system is stronger for it. In others, some compromise was 
found to be required in order that other equally desirable goals 
might be met. 

Operator Evaluation 
An early decision was to abandon the tradition of the function 
value cell. This decision was influenced by the early Susman 
and Steele papers defining SCHEME [Sussman and Steele 
1975] [Steele 1976] [Steele 1977]. It was thought that this 
evaluation model would offer a cleaner and more easily un- 
derstood meaning for expressions. It also was seen as allowing 
great flexibility in defining and redefining operators, partic- 
ularly in light of the uniform scoping rules for compiled and 
interpreted code, and the facilities for creating multiple envi- 
ronments. Our final design went further than other SCHEME 
derived dialects in a number of ways. 

Expressions are initially classified as special forms, macros, 
and anything else. The first two cases involve the processing 
of the unevaluated form, while the last is assumed to be a 
function application. In that final case, the remainder of the 
form is treated as a list of expressions, the arguments, which 
are sequentially evaluated in a fixed order of evaluation. Only 
after the arguments have been processed is the operator ex- 
amined to determine its exact nature. If it is prima facie ap- 
plicable (i.e. a compiled function, explicit LAMBDA 
expression, funarg, partial application or state descriptor), the 
requisite action is carried out. If it is a non-applicable constant 
(e.g. a number or string), an error is signaled. If it is any other 
expression (an identifier or a list), it is repeatedly reevaluated 
until an applicable object or a constant is obtained. 

This allows such coding styles as the use of an array-accessing 
expression as an operator, where the array in turn contains 
identifiers (symbols) which will finally evaluate to applicable 
objects. 

A second way in which we differ from other Lisp dialects is in 
always evaluating the CAR of a form before classifying it. 
This means that, unlike other dialects (whether using function 
value cells or not), the meaning of an operator is never inher- 
ent in its identity within a form. Suppose the interpreter en- 
counters a form such as: 

(CONI) ((NUHBERP X) (+ 2 X)) . . .  ) 

This is not a Lisp conditional statement unless the value of the 
identifier COND is (the special form) COND. Conversely, a 
form such as 

((FO0 BAR) ((NUHBERP X) (+ 2 X))  . . .  ) 

will be recognlTed as a Lisp conditional only if that expression 
evaluates to the special form COND. In particular, the form: 

('COND ((NUHBERP X) (+ 2 X))  . . .  ) 

will be so recognized. 

In a newly generated system, most (but not all) special forms 
are bound to themselves as their value. Unfortunately we 
failed to make the final step and separate special forms and 
builtin functions from ordinary identifiers. Where we should 
have defined an object, say :SETQ (to use the Common Lisp 
[Steele 1985] notation for keywords), which always evaluates 
to itself, we simply have SETQ, distinguished as a special form, 
but usable as a variable. Thus if one wishes to write a SETQ 
expression which is immune to redefinitions, one must use 
(QUOTE SETQ) as the operator. 

We extended our SETQ operator to allow the same de- 
structuring possible in our LAMBDA variable lists. In imple- 
menting our definition of SETQ, which subsumes the Franz 
LISP DESETQ operator [Wilensky 1984], we define the value 
of the identifier SETQ to be a compiled macro which produces 
de-structuring code in terms of the primitive special form 
SETQ. The operators in the resulting macro expansion are 
QUOTEd, to preclude further invocations of the macro. 

One must be careful in the fully redefinable world not to lose 
the ability to quote expressions. H some value other than 
QUOTE is assigned to the identifier QUOTE, then unless the 
special form QUOTE has been saved as the value of some 
other identifier, the system will be irreparably damaged. 

This redefinability at the most primitive level was quickly put 
to use. For  example, in constructing a compatibility package 
to allow the execution of MACLISP programs, the differing 
ways of declaring dynamic variables was accommodated by 
defining LAMBDA as a macro. At  the same time, functions 
are defined as the values of SPECIAL and UNSPECIAL. 
These receive unevaluated arguments and maintain a list of the 
currently declared special variables in a free variable accessible 
by the LAMBDA macro. When a LAMBDA expression is 
applied or compiled in the presence of this redefinition, the 
macro examines the bound variable list of its form, together 
with the list maintained by the functions SPECIAL and UN- 
SPECIAL. Based on the occurrence or nonoccurrence in the 
global list, variables may be replaced by the (FLUID variable) 
form which we require. 

Once we had built our "always evaluate the operator" system, 
we discovered that full redefinability requires a more complex 
set of rules. In the following example, by assigning FOO the 
value MLAMBDA, we expect FOO to behave as the macro 
expression marker. 

(SETO. FO0 'I,ILAHBDA) 
(SETQ BAR '(FO0 ( ( )  . BODY) (CONS 'PRINT BODY))) 
(BAR X) 

But this does not follow from a naive operator evaluation 
scheme. The sequence of events in evaluating (BAR X) is" 
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BAR eva lua tes  to  (F00 . . .  ) 
- -  t h i s  va lue  is not  apparent  as a macro 

X is eva lua ted  
- -  t h i s  is the e v a l u a t i o n  o f  arguments in 

the case where the o p e r a t o r  is assumed 
to  be a f u n c t i o n  

(F00 . . .  ) eva lua tes  now to  a macro funarg  
- -  we now s i gna l  an e r r o r  s ince  we n o t i c e  

the macro a f t e r  the arguments have been 
eva lua ted  

To resolve this dilemma we had to refine the operator classi- 
f ication process. Simply put, i f  the value of an operator is a 
list, its CAR (the operator of the operator) is further exam- 
ined. I f  i t  also is a list, we recursively continue this process. 
I f  it is an identifier, i t  is evaluated in turn and the original op- 
erator is replaced by the new value (by CONSing, not by 
RPLACA) .  Once this procedure has been completed, the final 
result is examined to deterndne i f  the original form is a macro, 
a special form, etc. 

To return to the previous example, the sequence of operations 
is: 

BAR eva lua tes  to  (FO0 ( ( )  . BODY)  . . .  ) 
F00 eva lua tes  to  MLAMBDA 

- -  caus ing the o p e r a t o r  to  be r e b u i l t  
o p e r a t o r  becomes (MLAMBDA ( ( )  . BODY)  . . .  ) 

- -  and is seen to  be a macro 
form becomes (PRINT X) 

- -  and e v a l u a t i o n  s t a r t s  over 

While we would prefer a simpler operator evaluator scheme, 
the advantages of total redefinability lead us to favor this ap- 
proach. 

Operator Consistency 
In many Lisps, the implementation of operators such as 
COPY, READ and PRINT have to deal with tree-walking in 
the presence of circular structures. Because the identification 
of circularity can be expensive (sometimes quadratic), it is 
common to implement the operators to not terminate in the 
presence of circularity. If the structure might be circular, spe- 
cial operators are often provided which are understood to be 
expensive, although correct. 

One of the design goals of the language has been universality 
of operators, that is, trying to define operators to work con- 
sistently across types. Because of that we chose to implement 
only a single set of operators, using tree-walking algorithms 
which were as efficient as we could make them. Our algo- 
rithms turned out to be linear. We were able to accomplish this 
because of our alternate heap which guarantees the presence 
of the working storage needed by linear algorithms. 

SHAREDITEM is a function which makes the linear tech- 
niques available to the user. It does this by extracting the 
shared pointers from a circular structure. 

It is important to decide when to stop walking a tree. We must 
define which nodes are terminal or atomic. We identify ob- 
jects as atomic if we choose not to descend through their 
structure. Atomic objects include identifiers, state descriptors, 
binary program objects, hash tables and read tables. We saw 
a straightforward way to provide the user with useful infor- 
mation on funargs, and so did not make them atomic. We were 

not able to come up with ways to do this for hash tables or read 
tables, although we would have preferred to do so. 

 =Uty 
We used terminating, finear algorithms, similar to the opera- 
tors in the previous section, to implement our equality predi- 
cates. One consequence of this approach is that our equality 
predicates terminate in all cases. Another consequence is that, 
since the tree-walking algorithms detect shared sub-structure, 
our equality predicates can be sensitive to the subtle effects 
of sharing. The operators which we distinguish are" 

EQ Traditional pointer identity 
UEQUAL Structural isomorphism 
UGEQUAL Relaxation of structural isomorphism to ac- 

count for gensyms (in effect, unification of 
gensyms). 

EQUAL Access equivalence which finds two objects to 
be EQUAL if they are indistinguishable by any 
sequence of access operations 

We can illustrate some of these distinctions more easily with a 
few examples. Consider the following LISP program. 

(SETO. X (CONS 1 2) )  
(SETQ YI (CONS X X)) 
(SETO. Y (CONS 1 2 ) )  
(SETQ Y2 (CONS Y Y) )  
(SETO. Y3 (CONS (CONS 1 2) (CONS 1 2 ) ) )  

What can we say about the equality of YI, Y2 and Y3? 
Clearly none of them are EQ since they are the results of dis- 
tinct CONSes. But there is one sense they are all equal: any 
sequence of CAR and CDR applied to Y1, Y2 or Y3 will yield 
the same result. This is the kind of equafity tested for by our 
EQUAL predicate. 

Let us now consider the following expressions and their re- 
sults. 

(RPLACA (CAR Y1) 3) = ( (3  • 2) . (3 • 2 ) )  
(RPLACA (CAR Y2) 3) = ( (3  • 2) . (3 • 2 ) )  
(RPLACA (CAR Y3) 3) " ( (3  • 2) . (1 . 2 ) )  

We see that the three RPLACA expressions have identical ef- 
fects on Y1 and Y2, but a different effect on Y3. How are Y1 
and Y2 equivalent, but different from Y3? We can see that the 
representations of YI and Y2 consist of identical patterns of 
CONS cells and pointers. Both Y1 and Y2 consist of one 
CONS cell in which both the CAR and CDR components 
point to the same component. But the CONS cell in Y3 points 
to two distinct components. Our UEQUAL predicate tests for 
this kind of equality. This is also the kind of equality we use 
when hashing data structures. 

Since our Lisp reader renames gensyms on input, the same 
expression read twice in a row will yield two expressions with 
distinct gensyms. When comparing such expressions, it is of- 
ten useful to know if two expressions came from the same in- 
put form. The UGEQUAL predicate serves this purpose. 

Although we paid great attention to the distinguishing of 
structure equality, we neglected the opportunity to differen- 
tiate numeric equality as Common Lisp and many other Lisps 
do. 
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SeopMg 

Vmttble Scel~ng 

Compiler and interpreter semantics have traditionally diverged 
in the area of variable scoping. Lisp 1.5 and descendents such 
as MACLISP used pure dynamic scoping in the interpreter and 
a form of static scoping, modified by dynamic (or special) 
variables, in the compiler. Attention was drawn to this issue 
by Steele and Sussman who, having identified the adoption of 
dynamic binding as being a major contributor to errors, pro- 
posed a purely lexically scoped dialect of Lisp called 
SCHEME [Sussman and Steele 1975]. 

The initial design of LISP/370 [IBM 1978] recognized that 
both compiler and interpreter semantics should obey the same 
rules with respect to the scoping of variables. The rules we 
chose provided lexical scoping as a default, with dynamic 
(FLUID variables) as an option. Providing lexical scoping as 
a default allows users to choose to program without unex- 
pected side-effects. Adding dynamic variables as an option 
allows users to choose power at the expense of safety. Com- 
mon Lisp adopted a solution similar to ours. 

We also discovered situations in which it was valuable to ex- 
tend our scope rules. An application is commonly built using 
default interactive error handlers. When this application is 
sufficiently stable to use in a production environment, we no 
longer want those error handlers to take control because the 
users of this application will not understand what actions to 
take. We created a new error handier which could override all 
others, thereby providing automatically-taken, predefined 
actions. Since this type of an override should not be masked 
by any kind of environment switching during execution of the 
application (e.g., funargs or state saving), we extended scoping 
in the late 70's to allow the evaluation of dynamic variables 
using only the control chain. 

SCOld~ P r ~ v e s  

In early Lisps, the functional form identified by LAMBDA 
was the only way of introducing variables. Later, PROG was 
added to the language to allow local variables, labels, and 
transfer of control via GO. 

We tried to refine these concepts in LISP/370 by introducing 
the special form SEQ to define the context for labels and the 
scope for GO expressions. We retained LAMBDA (and the 
macro variant MLAMBDA) as the form that defines the scope 
of variables and the scope for RETURN expressions. 

The Common Lisp definition has taken this separation one 
step further by introducing the BLOCK special form as the 
scope for RETURN expressions and leaving LAMBDA to be 
a pure variable scope. 

Our experience has clearly demonstrated to us the value of the 
three scoping primitives in Common Lisp. In our definition, 
any macro that emits variable bindings must announce that 
fact to the programmer, since any use of that macro becomes 
implicitly a scope for user RETURN expressions. This situ- 
ation complicates the descriptions of many commonly used 
macros, and discourages the creation of new macros that need 
to introduce additional variables. 

Foruud Parameter Dc~larations 

From the very beginning, we associated any declarative infor- 
mation directly with the scope in which the variable is bound. 
Thus, in the following expression 

(LANBDA (X (FLUID Y)) (FO0 X)) 

the variable X is bound as a lexical variable and the variable 
Y is bound as a dynamic variable. With this notation, each 
variable is specified only once, and information about each 
variable is close to the variable name, even in long parameter 
lists. The result is an elegant, easy to write and easy to read 
notation. 

Common Lisp achieves the same semantics with the more 
awkward syntax 

(LAHeDA (X Y) (DECLARE Y SPECIAL) (FO0 X)) 

We have two objections to this notation. First, the variable is 
mentioned and declared in two different places. Second, each 
declaration may be the result of a macro expansion. This may 
result in programs that are difficult to understand, not only 
because declarative information may be hidden in obscure 
macros, but also because of the more subtle semantic problems 
caused by exposing the interpreter to arbitrary side-effects 
while it is still discovering critical information about an ex- 
pression. It is mainly for this "reason that we restrict our dec- 
larations to a part of the LAMBDA expression which is not 
macro-expandable. 

Our notation may also be extended to include type information 
in the formal parameter list. For  example, 

(LAHBDA (X (THE PAIR Y)) (RPLACA Y X)) 

could be used to declare the type of the variable Y. 

Pros and,Cons of  State Saving 
When our development process began, there was ferment in 
the Lisp community. One of the more important events relat- 
ing to the design of the new IBM Research Lisp system was the 
publication of the Bobrow and Wegbreit paper [Bobrow and 
Wegbreit 1973] proposing a new control structure, the 
spaghetti stack. We immediately seized on the elegance and 
flexibility of this idea. 

A key component of this model of computation was the con- 
cept of the saved state, a data object which captured both the 
set of current variable bindings (the environment) and the 
current call chain and point of execution (the control). We 
have used saved states (state descriptors) extensively, both as 
a form of continuation and as a component of closures. 

When State Saving Wins 

The Yorktown Lisp compiler was designed to meet several 
goals. The overriding requirement was the maintenance of the 
equivalence of compiled and interpreted code, as discussed 
elsewhere in this paper. Other goals were: 

• the protection of the compiler's inner state from the 
actions of arbitrary macro operators during their invo- 
cation, and 

• provisions for collections of operator values distinct from 
those in the compiler's, or even the ultimate program's, 
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runtime environment, for the purposes of cross- 
compilation and optimization. 

Saved states are used to provide the facilities that satisfy these 
latter goals during the compilation process. The strategy is to 
establish an isolation of the environment in which the compiler 
runs from those (separate) environments in which it resolves 
operators and in which it preforms macro expansions. By ju- 
dicious construction and augmentation of these various envi- 
ronments, the user is given the ability to provide operator 
values to the compilation process which differ from those 
present in either the compiler's runtime environment or the 
macro expansion environment. This ability may be used for 
cross-compilation or for optimizatious. In addition, it protects 
the compiler from interference by macros and the functions 
they invoke. 

One of the major debugging tools we provide is an interactive 
interpreter, or stepper, described in a later section. We were 
able to write this interpreter entirely in Lisp, with no secret 
escapes into system internals, because saved states, evaluation 
in a saved state, and resumption of a saved state were all the 
primitives necessary to allow one Lisp program to intermix its 
evaluation with that of another Lisp program. 

Another use of state saving is in exception handling in the 
top-level Lispedit read-loop. Rather than interrupting the user 
with an exception and requiring the user to give commands to 
continue execution, Lispedit saves the state in which the error 
occurs and returns immediately to the top-level, informing the 
user of the action which was taken. At this point, the user has 
the option of resuming the saved state and examining the error, 
or of simply continuing. 

Spaghetti stacks have turned out to be an invaluable technique 
for the original development and debugging of back-tracking 
algorithms, using saved states. The section below discusses the 
problems with this approach for production work. 

When State Saving Loses 

State saving has not always proven to be beneficial. At  times 
it has been a mixed blessing, or even the wrong way to do 
things. 

In the compiler, the isolation of the saved states which embody 
the macro environments has made it impossible for macros to 
obtain the expanded versions of their forms. It has also made 
it difficult to pass information from one macro to another and 
to determine if they are being applied as part of the interpre- 
tive or the compile process. 

Exception handling is a process with two main requirements: 
signals must be matched with handlers according to some 
scoping rule, and control must often bypass the normal call 
chain, passing directly back to some remote point in the com- 
putation. When control must bypass the call chain, as in 
ERRSET and UNWIND, a similar behavior is required. In the 
initial version of our system, exception handling and non-local 
returns (UNWIND) used saved states. That is, a program 
wishing to intercept a non-local return (e.g. ERRSET) would 
re-bind a specific dynamic variable to a saved state. The 
process wishing to return to such a point would evaluate that 
variable and apply its value to the datum to be returned. 

This mechanism was found to be deficient in two ways. First, 
since the evaluations followed the environment chain, control 
could return to  some remote point, unrelated to the current 
computation. Secondly, the number of stack frames 
immobilized by this constant state saving resulted in many 
more garbage collections than would have been needed other- 
wise. 

The first problem was solved by the introduction of the 
control-chain evaluation primitives, the second by the addition 
of CATCH and THROW primitives and by their use for non- 
local returns. 

Spaghetti stacks, while invaluable for prototyping, turn out to 
be too inefficient for production use. We have found the 
fastest way to program is to write backtracking algorithms us- 
ing saved states, and then reimplement them using explicit 
routines such as CATCH and THROW. The inefficiency may 
be due to the dependence on the normal garbage collection 
process to free discarded state descriptors and their associated 
stack frames. If an explicit de-allocation operator were pro- 
vided, another conclusion might have been reached. This 
would, of course, shift bookkeeping onto the shoulders of the 
programmer, which is contrary to the philosophy of Lisp. 

Underlying Formal Sonantics 

The interpreter is unusual in that it is rule-based. It is a con- 
crete implementation of an SECD machine [Landin 1964]. 
The basic semantics are specified by fewer than one hundred 
SECD rules. Before any part of the interpreter was written, 
numerous versions of the SEeD rules were created, circulated 
and debugged on paper [Blair 1976]. Changes in the primitive 
semantics of the Yorktown Lisp system have always been 
worked out in the form of proposed changes to the S E e D  
rules. 

These rules are actually implemented by assembly language 
routines. The compiler implements the same semantics. 
Writing the compiler was made much easier by having the 
formal semantic description, as well as the interpreter source, 
as a guide. An appendix to this paper shows examples of 
SECD rules. 

We found a gap in Landin's formalism. In order to fill this gap, 
we found we needed to add one more component to the S E e D  
machine, the exit routine. This component records various 
actions, such as restoring shallow binding cells, which must be 
performed when control returns from a stack frame. The im- 
plementation of the S E e D  machine has not been extended to 
describe the actions of this component. For  example, the se- 
mantics of CATCH and THROW must be described as special 
cases. 

Machine Language Insertion 

The code generated by our system is not assembly language, 
but rather an intermediate language known as LAP (the Lisp 
Assembler Program). LAP includes the complete System/370 
instruction set plus extensions for testing types, performing 
Lisp function calls, accessing components of Lisp objects, 
manipulating the stack, etc. In addition, LAP is block- 
structured with bound and free variables declared at the start 
of a stack frame, or contour. LAP contains scoping rules for 
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both variable reference and transfers of control (GO and la- 
bels). Once defined, LAP became the target for the compiler 
and for macros which generate code. LAP is described further 
in the Implementation Issues Section. 

We provide in our system a construct for including LAP code 
directly in a Lisp expression, the F ' C O D E  construct. Having 
the convenience of this feature has enabled us to reduce the 
number of low-level functions needed, and to write most of the 
functions more readably in Lisp. In our system, only 150 
furlctions have been written in LAP. All the rest are Lisp 
functions, with a small percentage of those taking advantage 
of the F 'CODE.  

The PNAME function is an example of a function which is a 
mix of Lisp and LAP. PNAME returns a copy of the print 
name of an identifier and, when we know we can safely ma- 
nipulate the original print name, a single LAP instruction can 
be used to fetch the pointer to that name. 

An F ' C O D E  expression must be used as an operator. It con- 
tains two components, a Lisp expression and a list of LAP 
statements. When encountered by the interpreter, the Lisp 
expression is extracted and treated as if it had been the value 
of the operator. When encountered by the compiler, the ar- 
gument evaluation is compiled, with the final argument value 
left in a specific register. Then the LAP statements are in- 
serted into the code. The exclusive use of F ' C O D E  ex- 
pressions as operators requires that the Lisp expression be 
applicable, or that it evaluate to an applicable object. 

An example of the use of F ' C O D E  would be a macro defi- 
nition for ASSQ. The form (ASSQ X Y) could be expanded 
to the following form: 

( (F'CODE ASSQ () 
"Load the f i r s t  argument into a reg is te r "  
"*SCR2 points to what we are looking fo r "  

(L *SCR2 (TOP)) 
"Hove the second argument out of the " 
" resul t  reg is te r "  
"*$2 points to the current l i s t  t a i l "  

(LR *$2 *S1) 
LP " I f  the t a i l  is not a pa i r ,  i ts  a l l  over" 

(GOIFNOTR *$2 PAIR NG) 
"Pick up the CAR in *S! and advance *$2" 

(LH *SI (*S2 CAR) *$2) 
" I f  the CAR is not a pa i r ,  keep looking" 

(GOIFNOTR *$2 PAIR LP) 
"Look for the target in the CAAR" 

(CL *SCR2 (*S1 CAR)) 
(TeA NE LP) 

" i f  found, ex i t  with resul t  in *SI" 
(TRA U OK) 

NG (LR *SI *NIL) 
OK ) XY ) 

While it offers no guarantees, the syntactic proximity of the 
Lisp expression and the equivalent sequence of LAP state- 
ments does help to keep the programmer honest. A major 
deficiency in this construct is that there is no formal con- 
nection between the Lisp expression and the LAP code. 

Another major problem has shown up in the use of register 
allocation. Originally, F ' C O D E  was only used for machine 

code insertions and the use of actual register references was 
no problem. But once we realized that we could generate LAP 
through the expansion of macros, we found ourselves making 
heavy use of a facility that still required absolute registers. 
What we should have done is extended the notation of 
F ' C O D E  to have allowed logical register references as well, 
but we didn't. The result of this decision is that we cannot get 
the advantages of global optimization from register reallo- 
cations. 

Implementation Issues 
If there's one myth heard more than any other about Lisp, it's 
that programs written in Lisp run so slowly that they can't be 
used for production work. We wanted a system which would 
give us the advantages of fast prototyping, but when the pro- 
totype is determined to be stable enough to be the production 
system, still be fast enough to let that program be used without 
change. It was to this aim that we determined that the se- 
mantics of interpretation and compilation had to be consistent. 
Not only that, compilation itself had to be fast. 

As a research group, we were also intensely interested in con- 
sistent, elegant and predictable semantics for Lisp programs. 
In many compilers, when tradeoffs have to be made between 
fully defined semantics and compiler efficiency, the choice is 
in favor of compiler efficiency. We most often made that 
tradeoff the other way -- to preserve the intended semantics. 
Even so, we still find the final efficiency of our system ex- 
tremely good. 

The problems that we have found in our implementation stem 
mainly from two problems: locking ourselves into design de- 
cisions too quickly, and having to make many tradeoffs to 
achieve our goals of efficiency and consistency. The main 
tradeoffs came in the areas of flexibility and portability. 

E___~em Speed 
The Yorktown Lisp system achieves the good execution speed 
of its compiled code by a number of techniques. The chief 
among these are a large number of special-casing code emit- 
ters, extensive analysis and consolidation of nested variable- 
binding constructs, and the use of the VM/SP Discontiguous 
Shared Segment. These, in turn, depend on various underlying 
features of the system. 

inllne Code 

The efficiency of our system is greatly enhanced by the use of 
built-in functions recognized directly by the compiler, and by 
the use of macros that emit the F ' C O D E  forms described in 
the previous section. 

Built-in functions (such as CAR, CONS, and PAIRP) have 
definitions which are hard-wired into the compiler and inter- 
preter. When compiled, they expand to in-line code, avoiding 
all the overhead of function calls. The expansion of PAIRP, 
for example, results in the following LAP instructions, 

(SECTION 
(GOLFS *$1 V INLABEL) 
(LR *SI *NIL) 

I NLABE L ) 
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where the value of the argument has already been left in reg- 
ister *S 1. 

A macro which generates F ' C O D E  is expanded into very ef- 
ficient inline code. Many of the F ' C O D E  macros in the sys- 
tem are counterparts of function definitions, where the 
programmer chooses the macro or function version which 
meets the appropriate trade-off requirements. Some, like 
INTERLISP "fast" operators, don't  check their arguments for 
validity. (}CAR and QRPLACA, for example, assume that 
their first (or only) argument will be a pair. QSPLUS assumes 
its arguments will be small integers. Others, such QASSQ and 
QMEMO, are safe but allow the programmer to choose be- 
tween the bulk of in-line code or the overhead of a function 
call. 

The compiler is able to take advantage of these built-in func- 
tions and F ' C O D E  macros to do more extensive optimization 
in the context where they occur. 

c r u u p ~  of Bindinss 

Because of our semantics, each LAMBDA expression must 
build at run-time a stack frame called a contour. The compiler 
wants to efiminate the overhead of individual stack frames and 
so, where possible, we attempt to optimize them out. The 
compiler analyzes nested LAMBDA expressions and, where 
it can be determined to be safe, raises the variables of a nested 
expression to the local variable list of an enclosing contour. 
At the point where a new stack frame should logically be cre- 
ated, the argument values are instead placed in the value cells 
of the current stack frame and the display is modified to make 
them visible to the binding search mechanism. The logical 
structure of nesting is retained, with the scoping rules for var- 
iables and labels fully enforced, but the overhead of stack 
frame construction efided. 

We find that the vast majority of internal LAMBDA ex- 
pressions, such as those generated by PROGs, DOs, MAPping 
operators, etc., are totally merged into the outermost function. 

Shared Segment 

The VM/SP operating system provides the ability to define a 
readonly block of virtual memory, the discontiguons shared 

• segment (DCSS), outside a user's normal memory. The DCSS 
is shared among many users, and the chance of a page being 
in real storage when it's required is enhanced by multiple users 
being linked to the DCSS. 

Our compiler and assembler have always produced read-only, 
address-free code. It was thus a relatively simple matter to 
place the bulk of the system code (the compiler, debugger, in- 
terpreter, editor, and the various utility routines) in a DCSS. 
This in turn has the paradoxical effect of making the proba- 
bility of avoiding a page fault directly proportional to the 
number of users running Lisp at the moment. 

Lecking Ourselves In 

An important tool in realizing the goal of compiler/interpreter 
equivalence was a stack frame which did not distinguish be- 
tween the two situations. Early decisions, which in certain 
cases might have been made for efficiency reasons, have 

proven to be stumbling blocks to graceful extensions of the 
system. 

Staek 

The cost of maintaining the spaghetti stack as originally pro- 
posed by Bobrow and Wegbreit [Bobrow and Wegbreit 1973] 
was not fully appreciated. The allocation of components be- 
tween the head-of-E (basic frame in their terminology) and 
the dump (frame extension) was taken directly from the ori- 
ginal design. This results in a inextricable combination of the 
environment and the control components. 

As part of our attempt to enforce compiler/interpreter equiv- 
alence, stack frames which are used by compiled code and by 
the interpreter have the same structure. Since frames used by 
compiled code must have a slot pointing to the compiled 
function object, a similar slot was added to all frames. Thus, 
interpreter frames have a pointer to a dummy compiled func- 
tion. For the same reason, all stack frames contain a display 
component, mapping variable names to binding cells in the 
head-of-E. To compound the problem, we made the display 
a component of the compiled function, building it dynamically 
into the dummy compiled function for the interpreter frames. 

The end result is that the control cannot be separated from the 
environment. All saved states must carry the weight of the 
dump portion of the stack. We could have moved the envi- 
ronment chain pointers from the dump, so that each head-of-E 
pointed directly to its predecessor. We could also have made 
the display an independent datum, also pointed to from the 
head-of-E. The combination of these two decisions would 
have allowed us to create "light" saved environments, usable 
only for evaluation. 

It was known from the first that realization of the spaghetti 
stack would incur extra overhead at function call and return. 
To minimize this cost, the stack frames were carefully designed 
to allow their construction with the fewest possible machine 
instructions. As a result, no spare space is available in the 
stack frame structure. This, in turn, made certain changes to 
the system difficult or impractical. 

We have often wished we could expand the display and in- 
clude, for example, type information about variables. This has 
proven impractical, as every function and macro in the system 
would have to be re, compiled in order to implement such a 
change. While we have made such drastic transitions in the 
past, they become more and more difficult in the presence of 
an ever-growing body of code. 

Another case where an excessively economical design has 
made expansion of the stack frame difficult, was the 
retrofitting of CATCH and THROW as primitive operators. 
Because of the constraints of the stack structure, it was nec- 
essary to make rather unorthodox (and unanticipated) use of 
the exit field to record the presence of a CATCH-POint and 
the alternative resume point in the code. The resume point is 
used to distinguish a THROW from a normal return. 

Pointers and Types 

Another area in which early design decisions led to a dead end 
is found in the structure of our pointers. Because of the nature 
of the target hardware, and in fight of the thinking of the time, 
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a pointer containing twenty-four bits of address, with eight bits 
of type information, was used. While this often provided 
faster type tests, since memory references could often be 
avoided, it has prevented our moving easily to the new 
System/370 XA architecture. 

The tagged pointer architecture of the system is very much like 
other Lisp systems, although there is an exceptionally wide 
range of types for a system running on non-specialized hard- 
ware. It is the tagged pointer architecture part of the system 
that reveals its age. It is not easy to introduce new types since 
they are hard-wired, whereas an object-oriented approach 
such as Flavors [Keene 1985] or CommonLOOPS [Bobrow et 
al 1985] would have provided for greater flexibility and 
extensibility. We intend to remedy this deficiency in the near 
future when it becomes clearer what the design fundamentals 
of OOPS should be. 

Envirosmmts, Variable Emlmtim, and Closures 
The model of variable evaluation which we chose to implement 
was predicated on the structure of the spaghetti stack, and af- 
fected its detailed implementation. Rather than a single global 
environment, we support multiple quasi-global environments, 
referred to as non-LAMBDA environments. At any one in- 
stant, one of these is elevated to the status of current 
non-LAMBDA environment, and acts as a global name-value 
space for variables not found in the stack. 

For further details, including the interaction between the en- 
vironments and closures, the reader is directed to the appen- 
dix, "Appendix B. Environments and Closures". 

LISP A s ~ b l ~  ~ (LAP) 
Although the compiler does a number of general optimiza- 
tions, such as flattening and merging the contours which cor- 
respond to stack frames, the feature which has contributed 
most to efficiency is the ability of macro operators to specify 
machine instructions to be included in the generated code. 
This feature has both positive and negative aspects. 

Effects of Designing Too Close to the ~ a r e  

We recognized the desirability of an intermediate language in 
the creation of functions, such as long integer arithmetic, 
which must manipulate fragments of Lisp objects. It's also 
desirable for functions which require very high efficiency, such 
as COPY and EQUAL. A small measure of the success of this 
language, LAP, is found in the speed of the long integer 
arithmetic package. 

While LAP makes the writing of operations (such as COPY, 
EQUAL and SHAREDITEMS) relatively easy, LAP is so 
close to the machine that it would significantly impede transfer 
of code to any other architecture. 

The ArtifichdJy IAmited Power of the Assembler 

LAP exhibits weaknesses in two ways. On one hand, it is too 
close to the hardware. On the other hand, it is too close to 
Lisp. it is too clo~e since the only programs LAP will assemble 
are fhose which correspond to a LAMBDA (or MLAMBDA) 
expression. 

The effects of being too close to the hardware have been out- 
lined previously. The effects of being too close to IAW have 
caused a larger than desirable part of the system to be written 
in Assembler H, a non-Lisp System/370 assembler. This code 
includes the function-calling prologues and epilogues, the 
out-of-line routines for CATCH, THROW and other primitive 
operations, the binding search routine, the SECD machine in- 
terpreter and the garbage collector, to name only a few. These 
are pieces of code which must run in contexts different from 
that of a compiled function. Some are called (with linkages 
other than the normal Lisp to Lisp call) from compiled code, 
and must run without a stack frame and without disturbing the 
calling function. Others, such as the garbage collector, discard 
almost all the base registers that compiled code expects to find, 
throwing all conventions to the winds in an effort at main- 
taining as much data as possible in registers. 

Programming Environment Issues  
In our programming environment, we tried to combine many 
of the tools used by a programmer into an integrated package 
that is more useful than the components taken separately. 
We developed a few key ideas to their logical limits in order 
to provide a useful interface in spite of severe hardware and 
operating system limitations. We found that dynamic format- 
ring and automatic condensation are necessary to make a 
structure editor tolerable. We also found that the same tech- 
niques were sufficient to make the structure editor an effective 
tool -- even in a command-oriented environment. The struc- 
ture editor and the display manager interfaced naturally with 
a stepper/debugger in order to create a particularly useful de- 
buggln 8 tool. 

Strst'tmv F_Jitor 
At first glance, the value of structure editors seems unques- 
tionable when we must deal with complex but highly organized 
objects like programs. In the Lisp context, this observation 
applies equally well to data. But although structure editors 
exist in almost all Lisp systems, these editors are not used ex- 
tensively. 

We decided that this neglect was due to the fact that the user 
of most structure editors spends a sionificant fraction of the 
time figuring out where an editing operation will take place 
and what the effect of an editing operation was. Our solution 
to this problem was to present the user with a more dynamic 
view of the editing domain. By presenting a view that was 
automatically formatted and continuously updated, we freed 
the user to perform mostly editing operations. 

DiJpt, y 
The structure editor, Lispedit [Mikeisons 80], uses two tech- 
niques to generate useful and interesting displays: dynamic 
formatting and display condensation. A dynamically format- 
ted display is one in which the screen always contains a 
prettyprinted form of the context in which the focus occurs. 
The focus is the current subexpression on which the editor is 
operating, that is, the user's finger in the program. Display 
condensation means the expression which is displayed can 
contain elided parts. What is displayed and what is elided are 
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chosen by a set of heuristics based on the position of the cur- 
rent focus. By the use of these two techniques, we find 
Lispedit to be as usable as a smart text editor. 

Much of the work on the programming environment was done 
in parallel with research on a non-Lisp programming environ- 
ment [Alberga et a11984]. This research resulted in some very 
complex formatting and condensation techniques [Mikelsons 
1981], which proved to be too expensive in CPU time and 
memory for the Lisp production environment. Instead, a col- 
lection of heuristics were developed based on trial and use. 

The program display below illustrates many of these heuristics. 
Line numbers are for descriptive purposes only. The focus of 
attention on lines 6 through 16 is shown in almost full detail. 
The only condensation takes place on line 10, where a sub- 
expression is abbreviated to the symbol '&'. Expressions pre- 
ceding the focus in the body of the containing PROG are 
shown using one line for each. This forces the body of the DO 
on line 4 to be efided. All the expressions following the focus 
are efided since the focus has filled all the available space. 

I (LAMBDA 
2 (INPUT) 
3 (PROG (WORDLIST) 
4 (DO ((I 0 (+  (FINDENDWORD INPUT I) 1))) ...) 
5 (SETO WORDLIST (REVERSE WORDLIST)) 
6 (NMAPCAR 
7 (LAMBDA 
8 (WORD) 
9 (COND 
10 ( ( (ONE=OF a • i o u) (ELT WORD 0)) &) 
11 ( 'ELSE 
12 (CONCAT 
13 (SUBSTRING WORD 1 (-  (SIZE WORD) 1)) 
14 (SUBSTmNG WORD 0 l )  
15 "ay ")))) 
16 WORDLlST) ...) 

Figure 1. A Sample Program Display 

Several numeric parameters can be set by the user to control 
the heuristics that format the screen. These numbers deter- 
mine the maximum number of levels of nesting shown con- 
taining the focus, the maximum number of expressions shown 
preceding the focus, and the maximum number of lines in 
which to show the focus. These numbers are modified by 
special circumstances. For example, since the bound variables 
of the PROG expression are displayed on the same line as the 
PROG operator, that subexpression is not included in the 
count of expressions shown preceding the focus. Another 
special case is made for lists or vectors of one element. These 
are not included in the count of expressions shown containing 
the focus because they take very tittle screen space to show. 

Our experience indicates that users may complain about the 
automatic choices made by the system, but are not willing, in 

general, to tailor interfaces unless very friendly tools are sup- 
plied to do the tailoring. 

The key to speed in the display algorithm was to fill the screen, 
from top to bottom and from left to right, with no backing up 
and with only a small amount of looking ahead. One aspect 
of this was to always show a fixed depth of nesting around the 
focus. In many situations, this approach left a lot of blank 
screen which could have been filled effectively if a greater 
depth of nesting was shown. It turned out that in the cases 
where the screen is not filled, the display process is so fast that 
the solution was to repeat the display of that screen using a 
larger nesting parameter. 

The use of a structure editor has a definite effect on the pro- 
gramming style that users develop. To many people, the form 
of a program can seem almost as important as the contents. 
A structure editor which continuously changes the indentation 
of what is seen, and changes it from the way in which it was 
originally typed, can be initially disconcerting. With experi- 
ence, though, one stops relying on a particular indentation to 
yield context information (such as how deeply nested the cur- 
rent focus is within the enclosing expression) because the ex- 
pression displayed by the structure editor will more likely be 
elided to show the context in which one is most interested. 

A structure editor may also have an effect on the language 
definition and on the way the language is used. We have ex- 
tended our definition of Lisp to allow more places where 
comments can exist as part of the Lisp structure. This means 
that when the program is read in by the structure editor, those 
comments will be retained, unlike comments which are only 
textually included. 

To Copy or Not To Copy 

The original design of Lispedit caused changes made to the 
expression on the screen to cause changes in the actual object 
(essentially, using RPLACA and RPLACD).  This design is 
called editing-in-place. The design was chosen because it was 
felt to be an elegant approach to the problem. Unfortunately, 
it broke down at the top level expression. It was possible to 
lose contact at the top level with the object being edited, and 
from then on the effects of the editing may appear random and 
incoherent. For example, the object being edited may be a 
value of more than one identifier. When making changes be- 
low the top level, the values of both identifiers are changed. 
When making changes at the top level, it is necessary to make 
an assignment to the identifier in order to bring the identifier 
and the editor into synchronization again. The editor can au- 
tomatically make the assignment to the identifier it knew it 
was editing, but it would be too difficult to find all the identi- 
fiers which also pointed to that value. 

Our solution has been to back off £rom editing-in-place and to 
now edit copies as the default case. Editing in place must be 
requested by using the appropriate command. This means that 
we must provide operators to move the copy back to the en- 
vironment. We have found this approach to be more com- 
fortable because, although we have to do the assignments by 
hand, we are absolutely sure of the results and know that 
nothing is going on behind our backs. 
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Windows 

Our user interface at the display terminal consists of a single 
command-oriented window. We realized at the outset that this 
put us outside the general Lisp community, but we felt that the 
advantages that we could offer our users would offset the in- 
compatibilities. 

Window management requires a certain minimum level of 
hardware support which the terminals commonly available 
within the IBM community did not have. The screen size was 
too small, there were no bit map displays, and it was not pos- 
sible to get full-duplex communication between the terminal 
and the program. If we had chosen to implement on a non- 
standard terminal, we would have found ourselves isolated 
from this community. Because we were interested in devel- 
oping a system for a large user base, we decided that we would 
have to stay within the available hardware. And ' that  meant 
no windows. 

Another related issue is that of allowing the user to type di- 
rectly onto the displayed program text as well as in a pre- 
defined command area. In our more general structure editor 
[Alberga et a11981], we devised the principle that if some new 
user text causes a well-formed program to become ill-formed, 
then the new program text should be treated as the cause of 
the error. Even though our half-duplex terminals allowed 
typing on any part of the screen, we decided against full-screen 
editing because in most cases it is not possible to determine 
which parts of the screen were written by the system and 
which were modified by the user. Unless this information is 
available to the editor on a character by character basis, it is 
not possible to apply the error principle consistently. As a re- 
sult, we chose the command-oriented paradigm in order to 
provide a more consistent interface to the user. 

Debugger: A Step Beyond Steppers 
Debuggers are available with all Lisp systems but, like struc- 
ture editors, they can be difficult to use. Before you can figure 
out what you want to do, you have to figure out how to get 
there. From its earliest implementation [Alberga et al 1981], 
our debugger, HEVAL, has offered the user the opportunity 
for true two-way communication with the program through the 
editor interface. In one direction, the debugger shows the next 
expression to be evaluated in the context of the containing 
expressions, that is, the expression is displayed as it would 
normally be through the structure editor. In the other direc- 
tion, the user gives normal editor commands to HEVAL to 
guide the debugging. For  example, we can point to an ex- 
pression on the screen, make that expression the editor focus, 
and ask for evaluation to continue from that location. 

Lieberman [Lieberman 1984] addressed the desirability of a 
stepper, or debugger, which could communicate back to the 
user through an editor, but didn't  see the natural extension to 
two-way communication. 

During development, we surprised ourselves with the general 
utility and ease of use of HEVAL. Contrary to our expecta- 
tions and subjective evaluation, we found that twenty percent 
of all user commands invoke HEVAL. We also find that even 
devout anti-structure-editor users become enthusiastic toward 
this tool. 

File System Integration 
An attractive part of the system is the degree of integration 
with the host file system and the way in which that file system 
is accessed from the programming environment. The interface 
is provided through Lispedit by storing Lisp definitions in in- 
dexed files. Indexed files may be viewed conceptually as large 
(external) a-lists, keyed on the name of the definition. By us- 
ing indexed files, our users need never interact with the ex- 
ternal operating system. 

The existence of the external file system is irrelevant to the 
user, and in this respect the environment approaches some of 
the ideals of persistent programming. The main criticism of 
indexed files stems from a more fundamental problem, the lack 
of flavors. If these "external a-lists" could be regarded as just 
another datatype by the system, and if there was a simple fa- 
cility for providing a new method for those objects, then ex- 
isting Lisp operators such as COPY, SETQ, and DELETE 
could be applied. 

Conclusions 
In closing, we must review our goals and measure our suc- 
cesses and failures. 

In the language area, we wanted to define powerful and con- 
sistent semantics. Our operator evaluation model has proved 
to be precisely that. We have used the redefinability of fun- 
damental operators on many occasions both to extend the 
language and to achieve compatibility with other dialects. In 
all cases, the extensions were done easily. We have used our 
general operators for equality and other utilities more exten- 
sively because of their uniform applicability and efficiency. 
We have come to trust interpreter-compiler equivalence so 
completely that we now take it for granted. 

The power of state saving is irreplaceable when it is needed. 
But we definitely need to separate the concepts of saving an 
environment and the concept of saving a control state. The 
cost of saving both when only the enviromnent is needed is too 
much of a deterrent to effective use. 

In the implementation, the cost of several early decisions did 
not show until late in the life of the system. When extensions 
needed to be made, there were too many constraints. The 
availability of LAP and F ' C O D E  was a big help, but at the 
cost of portability. Such a facility must be designed at a higher 
level in order to be most useful. 

In the programming environment, the main lesson is that we 
need more. All the features have been well received by the 
user community. We also need to extend the facilities to 
modern full-duplex terminals and bit-mapped screens. 

Over the years, Lisp has evolved in a community with very 
high expectations. It expects high expressive power in the 
language in order to address complex application areas. It ex- 
pects high efficiency when these applications become success- 
ful and must cope with realistic quantities of data. It expects 
flexibility in the language and portability in the code. And last, 
but not least, it expects powerful and friendly user interface. 
Our experience has shown that these expectations are deft- 
nltely worth living up to. Our main regret is that we compro- 
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raised some of these expectations in order to achieve some 
short-term implementation gains. In all the areas where we 
kept to a hard line, the effort and the cost were well worth it. 
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Appendix A. SECD Rules 

The SECD machine is an abstract machine containing four 
components, the stack ($), the environment (E), the control 
(C) and the dump (D). The state of the machine at a given 
instant is shown by a diagram of the form: 

(S~ E;' C; D} 

The S and C are push-down stacks which can contain any data 
objects (not to be confused with the stack consisting of linked 
frames, which records both the binding environment and the 
control structure of the overall system). The C can, addi- 
tionally, contain any of a number of internal objects, referred 
to as recta-objects, which act as markers. Three of the recta- 
objects, PLIED, b'WM~ and OP2, will appear in the examples 
extracted from our full set of rules. 

The E is conceptually an a-list of variable/value pairs, aug- 
mented by additional structure indicating the boundaries of 
lexical scope. In practice, the E is implemented in stack 
frames, containing value cells and displays, which allow the 
cell corresponding to a variable to be located. This is done in 
order that the binding search mechanism be uniform for com- 
piled and interpreted code, simplifying the intermixing of the 
two evaluation regimens. The D contains the state of the 
machine which is to be restored upon returning from the cur- 
rent state, e.g. via a RETURN. As with the E, the D is im- 
plemented in stack-frames of the same form as those used by 
compiled code, again upholding the uniformity of stack 
frames. 

The "program" for the SECD machine consists of a collection 
of state transition rules. Each rule specifies a pattern of values 
for the C and $ components of the currem state, and specifies 
a new state in terms of the current components. The applica- 
bility of the rules is tested in a prescribed order to avoid am- 
biguities. The order of the rules below is implied by the 
state/rule numbers. 

In the actual implementation, we allow ourselves shortcuts. 
Both the search for the applicable rule and for the transfor- 
mation are hand-coded in assembler language, rather than as 
rules for a general SECD interpreter. This allows us to arrange 
the rules in a search tree, rather than in linear order, and to 
manipulate the S and C stacks directly, examining their ele- 
ments without popping them, and replacing elements in site. 

In order to give a flavor of the programming of the SECD 
machine, we will present a few of the rules defining our system. 
These include the rule which recognizes a COND statement, 
the rules which process the body of the COND, and the rules 
which process the sequence of expressions in a PROGN, either 
explicit or implicit. 

In these fragmentary examples, boid-face items relxresent 
meta-ob'~.'ts, italic items represent place holders, and other 
objects represent themselves. Thus in the first rule of the 
fragments of the SECD rules displayed, the interpretation of 
the initial state: 

|COND. s; e; OP2 (x. body), c; d} 

is: 

COND the special-form c o n e  

OIq  the recta=object which indicates that the ob- 
ject at the head of $ is the value of the oper- 
ator for the form being evaluated 

(x. body) the form 

x and body place-boiders for the CAR and CDR of the 
form 

Within the $ and C, the sub-components are written as if sur- 
rounded by parentheses, in the example, the $ 

COND. s 

represents a stack of one or more items, with the top item be- 
ing "COND", and the remaining items (if any) represented by 
the sub-component s. 

In the resultant state: 

* {0 .  J; e; P n D  0 body. c; dl 

we find the place-holders, such as s and body, marking the ar- 
bitrary components of the initial state which are used in the 
construction of the subsequent state. 

Rule 8.2.1.2. 

|COND. s; e; OP2 (x. body), c; d} 
,,~ | 0 .  s; e; PaED () body. c; d} 

This rule is invoked when the value of the operator of a form 
has been resolved, and is at the head of the $. The original 
form follows the recta-object OP2. x, in this form, is the op- 
erator expression which evaluated to COND. When this state 
is found, we proceed to a state with the meta-object PRED at 
the head of the C, followed by an arbitrary object (in this case 
NIL) and the body of the COND. This mimics the state in 
which the predicate of a clause in a COND statement has been 
evaluated, has returned NIL, and thus forces the machine to 
try the next clause. This is the state of the machine which 
matches the following rule in our example, but in this case the 
"next" clause is in actuality the f'um. 

State 13.1. 

10 .  s; e; Pl tgD.  c; al 

This state is distinguished by EtED at the heud of C and 0 
at the head of $. This condition occurs when •ptedicste has 
been evaluated and retunw, d a value of NIL. There are three 
sub-rnles under this state. 

Rule 13.1,1. 

| 0 .  s; e; ~ e.~,ql (0,7. e-x-q2), x) .  c; ,fl 
,~ is; e;.o2 PRED e-xq7 x .  c; dl 

in this rule, the remaining portion of the body of the COND 
starts with a pmr, (p2 . e.seq2), which must be tried next. The 
sequence of expressions which had followed the previously 
evaluated predicate, e-.~q7, is discarded and replaced by the 
seqnence of expremdons following the sulx~qlnent iwedi~te, 
e-seq2. At the same, time the new predicate, pT, is pushed on 
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the head of the C, where it will be evaluated, and the entire 
clause is popped off the body of the COND. 

Rule 13.1.2. 

| 0  • s, e; PRED e-seql (a tom.  x ) .  c; dJ 
{0 • s; e; PRED e-seql x .  c; d} 

This rule discards any non-pairs found in the body of the 
COND. This allows the use of character strings as comments 
between the clauses of a COND. Note that "atom" is synon- 
ymous with non-pair. 

Rule 13.1.3. 

{s; e; PRED e-seql a tom.  c; d} 
• [ 0 .  s; e; c; a) 

This rule causes the value of the COND to be NIL if no pred- 
icate is satisfied. 

State 13.2. 

{x. s; e; PRED a t o m y ,  c; d] 

This state is distinguished by an non-NIL value at the head of 
$. Since the state number is higher than 13.1, it must have this 
property. 

Rule 13.2.1. 

[x .  s; e; ~ e-seqy ,  c; d~ 
(Where e-seq is a pair.) 

,~ {0 • s; e; ~ e.seq, c; d] 

ff there is an expressiom mqmence following the predicate here, 
it is treated as an implied lq tOGN.  Main ,  the C compoeems 
associated with the COND body are popped, and a new 
recta-object, S I 3 W n ,  is imshed ' ,into,the C, together with the 
list of expressions to be evahtated. At  the saute, time the S 
is augmented with an arbitrary value, in this case, NIL. 

Rule 13.2.2. 

I x .  s; e; PRED a t o m y ,  c; d} 
,l~ {x . s; e; c; d] 

This is the "predicate-only" case. The expression sequence 
associated with the predicate, which evaluated to x, is not a 
pair. In this case, the value of the COND is simply the value 
of the predicate which is left at the head of the S, while the 
meta-object PRED and the remainder of the COND body (if 
any) are popped off the C. 

We will now display the rules controlling the body of an ex- 
plicit or implied PROGN. These rules are distinguished by the 
presence of the meta-object STMT2 at the head of the C. 

State 15. 

Ix .  s; e; STMT2.  c; d} 

The value at the head of the S, x, is the value of the last eval- 
uated expression in the sequence. 

Rule 15.1. 

[x . s; e; S T M T 2  (exp.  e-seq) . c; d] 
{s; e; exp S T M T 2  e.seq . c; d) 

The item in the C following the recta-object STMT2 is the 
portion of the the PROGN body which has yet to be evaluated. 
If there remains one or more items in the expression sequence, 
the first is popped off and placed at the head of the C to be 
evaluated. At  the same time, the previously computed value 
is popped from the $. 

Rule 15.2. 

I x .  s; e; S T M T 2  a tom.  c; d} 
• ~ {x .  s; e; c; dl 

If, on the other hand, the item following STMT2 is an atom, 
then all the expressions in the body have been processed, and 
the value at the head of the $ is the value of the last such ex- 
pression. In that case, STMT2 and the objects associated with 
it are popped from C and the value is left on the ,7. 
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Appendix B. Environments and Closures 

There exist three distinct environments in which variables may 
be bound. Two of these are strongly interrelated. The third 
was designed as an afterthought, and is only weakly integrated 
into the system. 

The first environment (from the view point of a process 
searching for the currently operative extant binding of a vari- 
able) consists of the chain of stack frames. Each stack frame 
contains a (possibly zero size) set of value cells, together with 
a datum, referred to as the display. The display provides a 
mapping from variables to value cells, and indicates which are 
lexical and which fluid (i.e. dynamically accessible). The stack 
frames are linked by a pointer which may differ from the link 
used during a RETURN operation. These environment links 
are marked to indicate the boundaries of lexicai scope. 

Starting from a particular stack frame, usually the current head 
of the stack or a frame pointed to by a state descriptor, the 
binding search paradigm is to search for any (lexical or fluid) 
binding of the desired variable. This search continues, fol- 
lowing the environment chain, until a lexical scope boundary 
is crossed. The search then changes, looking only at fluid 
bound variables. If no binding is found when the root of the 
stack is reached, the current non-LAMBDA environment is 
searched. 

A non-LAMBDA environment consists of one or more asso- 
ciation list, linked by means of state descriptors. Each name- 
value pair in the association list contains an identifier 
(variable) and a value. If the final CDR of the list is a state 
descriptor, the non-LAMBDA environment captured by that 
state descriptor is searched in turn. 

There is no unbound variable error. If the binding search re- 
aches a non-state descriptor terminator of a non-LAMBDA 
environment without locating a binding cell for the variable in 
question, a new binding cell is created and initialized with the 
variable itself as the value. This newly created binding cell 
will be added to the first association list in the chain consti- 
tuting the current non-LAMBDA environment. 

The current non-LAMBDA environment acts much like a 
global environment, but it must always be borne in mind that 
it is only one of many. Every use of EVAL with a state de- 
scriptor, every application of a funarg, every switch of envi- 
ronment to a previously saved state, may install an entirely 
different non-LAMBDA environment. 

In fact, this facility is used heavily during compilation to pro- 
vide the compiler with a set of operator definitions which dif- 
fer from the operator definitions bound in the environment in 

which the compiler itself executes. This allows both cross 
compilation (as in the MACLISP compatibility package) and 
optlmi~,~tion (by the provision of compile-time macros). 

The third environment is a true global environment, containing 
one value cell for each identifier. This set of global value cells 
is not used by any part of the system itself, nor is it included 
in any binding search. There exist functions, 
EVAL-GVALUE and SET-GVALUE, which access and up- 
date global value cells, together with a special form, 
GVALUE, also used to access global value cells. 

The general multi-environment philosophy precludes the use 
of such a global environment. 

In a restricted sense, the system may be thought of as actually 
having four environments. There exist functions which allow 
the control chain, rather than the environment chain, to be 
searched for bindings. Such a search is never done by the 
standard evaluation mechanisms but, during certain operations 
involved in exception handling, it is explicitly requested. 

This allows exception handlers to be established in the flow 
of control, rather than in the evaluation environment. Thus, 
an error occurring during the application of a funarg will be 
handled by the applier, rather than by the context in which the 
funarg was created. 

The set of environments affects the collection of bindings 
captured by a state descriptor. The closure is a general pur- 
pose object, holding both a set of bindings and a control. It 
can be used for evaluation of variables (and by extension, ex- 
pressions), and it can be used to resume computation at a re- 
membered point in the past. 

The evaluation of a variable with respect to a state descriptor 
elicits a search of the stack starting with the frame pointed to 
by the state descriptor (the frame from which the primitive 
operator STATE was called), and continuing, if need be, in the 
non-LAMBDA environment which was current at the time of 
the state descriptor's creation. 

Note that at no time is the environment from which the eval- 
uation is requested involved, unless it and the environment 
captured by the state descriptor shares a common ancestor. 
In this, evaluation with respect to a state descriptor differs 
from Common Lisp's evaluation with respect to a (lexical) 
closure. 

It differs also in the fact that the LISP/VM state de~riptor 
captures the complete environment, both lexical and dynamic. 
Thus any variable bound in the captured state is accessible, 
within the scoping rules, not simply the closest lexical variable. 
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Appendix C. The Structure of  a Stack Frame 

The stack in the Yorktown Lisp system is fully framed, as re- 
quired by the Bobrow-Wegbreit stack model [Bobrow and 
Wegbreit 19"/3]. The frames are divided into two components, 
the head-of-environment (headE) and the dump. In the pres- 
ence of state saving, a single headE may be referred to by two 
or more dumps. 

The headE contains the value cells for the variables bound in 
its frame, both the lexicals and the fluids. In addition, it con- 
taius a pointer to the end of the spatially preceding frame, and 
a count of the excess dumps referencing it (over the single 
dump in the case of simple LIFO control). 

The dump contains all the information required to resume ex- 
ecution of the function associated with the frame. This infor- 
mation may not be completely valid in the currently active 
frame, i.e. the frame of the function currently in control. All 
other frames contain the saved registers required to run the 
associated function, together with non-pointer data, the cur- 
rent state of the execution stack, a list of actions to be exe- 
cuted on returning from this frame, etc. 

A more flexible structure would result if various components 
of the stack frame were reallocated. In particular, the tail-E, 
display, and abstack should be moved to the headE. This 
would provide two improvements in the system, one semantic, 
the other pragmatic. 

On the semantic front, the move of the abstack area to the 
headE would promote the non-pointer data to the same status 
as the ordinary variables. While there is no means of using this 
data in pure Lisp, it is accessible via LAP or F ' C O D E .  It can 
be used to implement a form of unboxed numbers, as well as 
for efficiently allocated and released (not involving the gar- 
bage collector) storage for numbers or character strings. 
While one may argue against the sharing of value cells among 
multiple saved environments, it is clear that all value cells 
should be treated equivalently. 

The shift of the display and tall-E pointer to the headE would 
allow the creation of environment-only closures. As stated 
previously, the only form of closure supported in the 
Yorktown Lisp system captures the full environment and con- 
trol. As such, they affect the amount of stack space which can 
be released upon function return or by the garbage collector. 

The current stack design was the result of careful thought. The 
short comings were not at all obvious until the system had been 
in use for a number of years. We might hope to have more 
foresight, should we attempt a redesign, but we should pay 

particular attention to providing for further modifications in a 
less painful manner than having to recompile all existing 
source code. 
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