
Specification of the NE text editor

by

Philip Hazel

Copyright  2004 University of Cambridge Computing Service

New Museums Site
 Pembroke Street
 Cambridge CB2 3QH
 United Kingdom

Edition 2.0
March 2004

 Contents

1. Introduction 1

2. Terminology 2

3. Screen editing 3

3.1 Getting started 3
 3.2 The screen display 3
 3.3 Refreshing the screen 4
 3.4 Moving about the file 4
 3.5 Changing data on the screen 6
 3.6 Undeleting lines and characters 8
 3.7 Overstriking characters 8
 3.8 Editing wide lines 8
 3.9 Editing non-printing characters 9
 3.10 Multi-line editing 9
 3.11 Cutting, pasting and block deletion 11
 3.12 Text blocks 11
 3.13 Rectangular blocks 13
 3.14 Re-formatting paragraphs 14
 3.15 Help information 15
 3.16 Entering NE command lines 15
 3.17 Multi-buffer editing 17
 3.18 Leaving NE 18
 3.19 Summary 18

4. The NE command 19

4.1 Using NE as a filter 20
 4.2 Tab support 20
 4.3 Editing binary files 21

5. Lines of NE commands 23

5.1 Format of command lines 23
 5.2 Continuation of command lines 23
 5.3 Format of common arguments 23
 5.4 Obeying commands while screen editing 24
 5.5 Long command lines while screen editing 25
 5.6 Refreshing the screen 26
 5.7 Summary 26

6. Context matching 27

6.1 Qualified strings 27
 6.1.1 The B qualifier 27
 6.1.2 The E qualifier 27
 6.1.3 The H qualifier 27
 6.1.4 The L qualifier 28
 6.1.5 The N qualifier 28
 6.1.6 The P qualifier 28
 6.1.7 The R qualifier 28
 6.1.8 The S qualifier 28
 6.1.9 The U qualifier 28
 6.1.10 The V qualifier 28
 6.1.11 The W qualifier 28
 6.1.12 The X qualifier 29

Contents i

 6.1.13 The repeat qualifier 29
 6.1.14 The column qualifier 29
 6.1.15 Combining qualifiers 29
 6.1.16 Matched strings 29
 6.1.17 Examples of qualified strings 29
 6.2 Search expressions 29
 6.3 Regular expressions 30

7. Character string insertions 32

7.1 Wild replacements for regular expressions 32
 7.2 Hexadecimal insertion strings 32

8. Procedures 34

9. Single-character commands 35

9.1 The ? command 35
 9.2 The > and < commands 35
 9.3 The # command 35
 9.4 The $, % and ~ commands 36
 9.5 Single-character commands in line mode 36

10. Search commands 37

10.1 The F command 37
 10.2 The BF command 37
 10.3 The DF command 38
 10.4 Repeating search commands 38

11. Current point movement 39

11.1 The > and < commands 39
 11.2 The BACK command 39
 11.3 The M command 40
 11.4 The N command 40
 11.5 The P command 40
 11.6 The PA and PB commands 40
 11.7 The PLL and PLR commands 41
 11.8 The TOPLINE command 41

12. Changing the current line 42

12.1 The A, B and E commands 42
 12.2 The DTA and DTB commands 42
 12.3 The LCL and UCL commands 42

13. Inserting text into the file 43

13.1 The I command 43
 13.2 The ICURRENT command 43
 13.3 The ILINE command 43

14. Splitting and joining lines 44

14.1 The SA and SB commands 44
 14.2 The CL command 44

15. Deleting parts of the file 45

15.1 The DLINE command 45
 15.2 The DREST command 45

16. Restoring deleted text 46

ii Contents

17. Formatting commands 47

17.1 The CENTRE command 47
 17.2 The RMARGIN command 47
 17.3 The BEGINPAR and ENDPAR commands 47
 17.4 The FORMAT command 48

18. Global changes 50

18.1 The GA, GB, and GE commands 50
 18.2 Interactive global commands 50
 18.3 Non-interactive global commands 51
 18.4 Continuing after a match 52
 18.5 Null strings in global commands 52
 18.6 Globals with margins or long lines 52
 18.7 The global marker 52

19. Buffer handling 53

19.1 The TITLE command 53
 19.2 The RENUMBER command 53
 19.3 The DETRAIL command 53
 19.4 The NEWBUFFER or NE command 53
 19.5 The MAKEBUFFER command 54
 19.6 The BUFFER command 54
 19.7 The PBUFFER command 54
 19.8 The NAME command 54
 19.9 The DCUT command 54
 19.10 The DBUFFER command 54
 19.11 Copying between buffers 55

20. File operations 56

20.1 Loading a new file 56
 20.2 Inserting files 56
 20.3 Saving files 56
 20.4 The WRITE command 57
 20.5 The BACKUP command 57

21. Editing large files 58

22. Conditional commands 59

23. Looping commands 61

23.1 The WHILE and UNTIL commands 61
 23.2 The REPEAT command 61
 23.3 The LOOP and BREAK commands 61

24. Information displays 63

24.1 Which are ‘word’ characters? 63
 24.2 Switch settings 63
 24.3 Contents of a buffer 63
 24.4 Information about buffers 63
 24.5 Command information 64
 24.6 Keystroke information 64
 24.7 Control keystrokes 64
 24.8 Extra keystrokes 64
 24.9 Function keystrokes 65
 24.10 Keystroke actions 65
 24.11 Function keystrings 65

Contents iii

25. Keyboard interruptions 66

25.1 The effect of an interruption 66
 25.2 Interruptable commands 66
 25.3 The ATTN command 66

26. Leaving NE 68

27. Changing default operations 70

27.1 The AUTOALIGN command 70
 27.2 The CASEMATCH command 70
 27.3 The CUTSTYLE command 71
 27.4 The EIGHTBIT command 71
 27.5 The OVERSTRIKE command 71
 27.6 The PROMPT command 72
 27.7 The READONLY command 72
 27.8 The SET command 72
 27.9 The WARN command 72
 27.10 The WORD command 73

28. Keystroke commands 74

28.1 The MARK command 74
 28.2 The CSU and CSD commands 74
 28.3 The ALIGN command 74
 28.4 The CLOSEBACK and CLOSEUP commands 74
 28.5 The DLEFT and DRIGHT commands 74
 28.6 The DLINE command 74
 28.7 The DTWL and DTWR commands 75
 28.8 The CUT and COPY commands 75
 28.9 The PASTE command 75
 28.10 The DMARKED command 75
 28.11 The ISPACE command 75

29. Changing keystroke defaults 76

29.1 Function keystrings 76
 29.2 Keystroke binding 77

30. Calling other programs 80

31. Error handling 81

32. Line-by-line editing 82

32.1 Interactive line-by-line editing 82
 32.2 Non-interactive line-by-line editing 82
 32.3 Verification output 82
 32.4 Format of verification output 82
 32.5 The T and TL commands 83
 32.6 The COMMENT command 83
 32.7 The C command 83
 32.8 The CBUFFER and CDBUFFER commands 83

33. More details about the Unix interface 84

33.1 Running in screen mode 84
 33.2 Environment variables 84
 33.3 Exit codes 84
 33.4 Shell commands 84
 33.5 Interruptions 85
 33.6 Terminal types 85

iv Contents

 33.7 Terminal capabilities 85
 33.8 Keyboard interruptions 88
 33.9 xterm 88

34. Logical keystroke summary 90

35. Command summary 91

36. Argument format summary 94

36.1 String delimiters 94
 36.2 String qualifiers 94
 36.3 Regular expressions 94
 36.4 Regular expression replacements 94
 36.5 Hexadecimal insertions 94

Index 95

Contents v

 1. Introduction

NE is a text editor that was originally designed to run on a wide variety of machines, from large
servers to personal workstations. In the past it ran on a number of operating systems; however, the
current version supports only Unix-like systems.

The main use of NE is expected to be as an interactive screen editor. However, it can also function
as a line-by-line editor, and it is programmable, so it can be run non-interactively as a text
manipulation tool.

NE is a re-implementation of a previous editor that was called E, which in turn evolved from one
called Zed and a number of predecessors that ran on IBM mainframes. The lineage can be traced
back to some very early Cambridge text editors of the 1960s.

NE is a large program with many facilities. They are described in this document grouped by
function, but first there are definitions of some terminology and a description of the areas in which
there are differences between the various versions of the program. The chapter which follows
describes how to use the screen editing features of NE, while subsequent chapters cover the many
different commands available. Then there is detailed information for each different implementation,
and finally there are keystroke and command summaries.

In many places in the text there are cross-references to particular NE commands. These are given
simply as a command name in square brackets, for example [RMARGIN].

Experience with a number of other editors influenced the design of E and NE. Similar facilities are
frequently encountered, and it is difficult to trace the origins of many of them. The operations on
rectangles and some of the operations on single lines and groups of lines are taken from the Curlew
editor implemented by the University of Newcastle-Upon-Tyne in the mid-1980s. Members of the
Computer Laboratory and other computer users in Cambridge contributed many useful ideas and
criticism to the design process over a number of years, up to the mid 1990s, when further major
development ceased.

This edition of the manual was minimally revised in 2004 when the code was tidied up to make NE
more easy to build on Unix-like systems. The original document was designed as an A5 booklet.
This version is formatted for A4, and as a result, layout is not as nice as it could be, but time
constraints prevented more work being done.

Introduction 1

 2. Terminology

Several terms which are used with particular meanings in the rest of this document are defined in
this chapter. [March 2004: Some of these definitions seem ‘obvious’ now. Ten years ago, when this
document was written, they were not so widely known in the user community.]

A computer screen indicates the point at which the next character will be written by a mark known
as a cursor. This may be an underline-like shape or a vertical line, or it may be a solid blob. It may
flash or be constant in intensity.

When text is being edited on the screen, the cursor position marks the point in the text at which
changes are made. This is called the current point in the file. Any references in this document to
the cursor position or moving the cursor should be understood as also referring to the current point.
The term current line is also used to refer to the line of text containing the current point (that is,
the line on which the cursor is placed). When NE is obeying commands (as opposed to accepting
screen editing operations) the current point and the current line may change without reference to an
actual cursor.

The word scroll is used to describe NE’s action in moving text on the screen. Blocks of lines can
be scrolled upwards or downwards, and also to the left or to the right.

A buffer in NE is an area of main memory in which lines of text can be held for editing. A file
which is to be edited is read into a buffer to be modified; subsequently the buffer ’s contents may be
written back to a file. NE is capable of handling more than one buffer at once.

A keypress is the action required to generate a single character from a keyboard. In many cases it
involves pressing a single key – however, in some cases a second (and sometimes even a third) key
must be held down while a ‘primary’ key is pressed. When such a keypress is referred to, the
names of the keys are separated by a slash. For example, the keypress ctrl/a involves holding down
the key marked CTRL while pressing the key marked A.

The character engraved on the key top is normally used when referring to individual keys. In one
or two cases where this could be confusing (for example, backslash) the name of the character is
used instead. The four keys with arrows on them that appear on many keyboards are referred to as
up, down, left and right.

The word keystroke is used to refer to keyboard operations which are seen by NE as a single action
but which may on some terminals require more than one keypress. For example, on some key-
boards it is necessary to press the ESC key followed by the digit one (two keypresses) in order to
generate the keystroke function-1, whereas on other keyboards a single keypress of a function key
may generate this keystroke.

2 Terminology

 3. Screen editing

This chapter describes the screen editing facilities. They are sufficient for carrying out many simple
interactive editing jobs. New users of NE are recommended to try out these facilities and become
familiar with them before reading the rest of this document. It is assumed that all the default
options are being used.

Editing operations that are activated by pressing special keys are described in terms of logical
control keystrokes, whose names are shown in bold italic type, for example, scroll-up. The actual
keys used for these keystrokes may vary from keyboard to keyboard and operating system to
operating system. Examples of the relationships between logical control keystrokes and actual
keystrokes are often given in the main text of this manual, while complete lists are given in the
system-dependent and terminal-dependent chapters near the end.

It is possible for the user to change the relationship between actual and logical control keystrokes
in many cases [KEY]. The examples given in this manual assume the standard configuration.

As well as those logical keystrokes that have pre-determined functions, such as scroll-up, there are
60 logical keystrokes whose effect is to obey a string of NE commands that is stored in a function
keystring [FKEYSTRING]. These logical keystrokes have names of the form keystring-<n>, where <n>
is number between 1 and 60. When the keyboard contains function keys, these are usually bound to
the corresponding logical keystroke, but they do not have to be. Function keys can be bound to pre-
determined actions, and other control keys can be made to invoke function keystrings.

The common default actual keystroke is normally given with the first mention of each logical
keystroke. This is the keystroke that will normally be bound to the logical keystroke by default,
provided the keyboard supports it.

3.1 Getting started
To edit a file interactively using NE, enter the command

ne <file name>

The screen will be cleared and re-written with the first lines of the file, in the format described
below. Any error in the command, for example, the naming of a non-existent file, provokes a
system-dependent error message.

If the command name is not followed by a file name, NE is entered with no existing lines of text to
edit, and the text area of the screen is empty. New text can be created using the editing operations
described below, and when editing is complete, a file name can be given for the output (see the
section entitled Leaving NE below). This is one way of creating a new file using NE. Alternatively,
a new file can be created by using the -to keyword on the NE command line, without naming an
existing file for editing. For example:

ne -to <new file name>

3.2 The screen display
An example of a typical screen display on entry to NE is shown below. Because of limitations of
space on the page, it is shown as 40 columns wide and 10 lines deep, though screens (or windows)
are at least 80 columns wide and 24 lines deep. Characters that would appear in inverse video on
the screen are shown in boldface type.

Screen editing 3

 ----*----1----*----2----*----3----*----|
 This is the first line of the file.
 The second line of the file is a bit lon
 The second line of the file is longer
 than the width of the screen.
 This is the last line of the file.
 End of file

1 IRUA test ---2----*----3----*----|
 NE version 0.098/0.11 (22-Apr-1994)

The screen display consists of four sections. The top line is an inverse video line containing
indications of column numbers. Every tenth column contains a digit indicating the decade – column
30 contains the digit 3 for example. At the halfway point in each decade there is an asterisk, while
the rest of the positions are filled with minus signs. When NE is initialized, the last column in this
separator line contains a vertical bar character. This marks the position of the first character beyond
the right-hand margin about which more will be said later [RMARGIN].

Most of the rest of the screen is used to display lines from the file being edited. This is called the
text area. For lines that are wider than the screen, only the initial part is shown, with the last
character in inverse video to indicate that there are more characters in the line. The second text line
in the example above is such a line. At the end of the file the text ‘End of file’ is displayed in
inverse video, usually on a line by itself.

Below the data lines there is another inverse video separator line with column indicators, but also
containing additional information. At the extreme left a number is often displayed. This is the
number of the line on which the cursor is resting. Line numbers are counted from the start of the
file when it is read; they do not change when lines are deleted or inserted into the edited text.
Undisturbed lines retain their original number at all times, unless explicitly renumbered
[RENUMBER]. If the cursor is on a newly-inserted line, blanks are displayed at the beginning of the
lower separator line.

Three capital letters follow the line number – initially they are ‘IRU’. These indicate the state of
certain editing options, and are explained in detail later on. The first one indicates whether new
characters will inserted into the text (I) or will overstrike it (O) [OVERSTRIKE], the second indicates
whether portions of text that are cut out will replace what is in the cut buffer (R) or be appended to
it (A) [CUTSTYLE], and the third indicates whether text searches are to be independent of case (U) or
verbatim (V) [CASEMATCH]. A fourth letter (another ‘A’) is present if auto-alignment has been
enabled [AUTOALIGN].

Following the indicator letters a file name is usually displayed. This is the name of the file to which
the edited text will be written at the end of the editing session. In the simple case it is the name of
the file which is being edited.

The final line of the screen is used to display messages as editing proceeds, and also for command
input, as described later. Initially it contains an identification of the version of NE that is being
used.

3.3 Refreshing the screen
When using NE on a timeshared system, the screen may sometimes get overwritten by extraneous
messages, such as warnings from operators. When this happens, the keystroke refresh can be used
to cause NE to re-write the entire screen. By default, refresh is bound to ctrl/d.

3.4 Moving about the file
When NE is entered without any options, the cursor is positioned at the top left-hand corner of the
text being edited. It can be moved about the screen by pressing any of the four ‘arrow’ keys: up,
down, left and right. On keyboards containing real arrow keys these keystrokes do correspond to
the actual arrow keys up, down, left and right; on other keyboards CTRL keystrokes are normally
used.

4 Screen editing

Special actions take place if an attempt is made to move outside the text display area.

• Pressing up at the top of the area has no effect if the top line in the display is the first line of
 the file. Otherwise it causes NE to move backwards in the file by one or more lines [SET

 AUTOVSCROLL]; the text on the screen is scrolled down and new text is displayed at the top.
 The cursor is left on the line before the one it was previously on.

• Pressing down at the bottom of the display area causes NE to move forwards in the file by
 one or more lines [SET AUTOVSCROLL] unless the bottom line is the end-of-file line; the text on
 the screen is scrolled up and new text is displayed at the bottom. The cursor is left on the line
 following the one it was previously on.

• Pressing left at the left-hand edge of the screen causes the cursor to move to the end of the
 previous line, unless the screen has been scrolled right, in which case a leftwards scroll takes
 place. If this keystroke is used at the beginning of the top line on the screen, NE scrolls the
 screen to bring the new current line into view.

• Pressing right at the right-hand edge of the screen causes the screen to scroll to the right, that
 is, the lines are displayed starting from a character other than the first, enabling characters that
 were previously off the right-hand end to be displayed.

The arrows are not the only keystrokes for moving the current point around the file. The following
additional horizontal movements are provided:

• The word-left keystroke moves the cursor to the start of the current word if it is in the middle
 of a word, or to the start of the previous word otherwise. Non-word characters are passed
 over. This keystroke is not associated with an actual keystroke by default.

• The word-right keystroke moves the cursor to the start of the next word. Non-word characters
 are passed over. This keystroke is not associated with an actual keystroke by default.

• The tab keystroke moves the cursor to the next tab position to the right. If the keyboard
 contains a key labelled TAB, it is normally used for the tab keystroke. Otherwise ctrl/i is used.
 Tab positions are set at every eighth column. The tab keystroke does not cause the insertion
 of tab characters into the file. If the right-hand edge of the screen is reached, the action is the
 same as for the right keystroke.

• If the previous-tab key is pressed (default shift/tab or ctrl/tab) the cursor moves to the
 previous tab position. If the left-hand edge of the screen is reached, the action is as for the left
 keystroke.

• The keys first-char and last-char (default ctrl/left and ctrl/right) cause the cursor to move,
 within the current line, to the first printing character on the screen or to just past the last
 printing character, respectively. If the line contains no printing characters, both these
 keystrokes move the cursor to the left of the screen. If there is a printing character in the final
 column on the screen, last-char puts the cursor under it, as it cannot put it beyond it.

• If screen-left is pressed (default ctrl/backslash), the cursor is moved to the left-hand edge of
 the screen.

Note that there is no difference between first-char and screen-left unless the current line begins
with spaces. In this case first-char moves the cursor to just after the leading spaces, while screen-
left moves it to the left-hand edge of the screen.

Additional vertical movements, which in general cause the screen to be re-written, are also
provided. They are as follows:

• Scroll-up and scroll-down (defaults shift/up and shift/down or ctrl/j and ctrl/k) cause NE to
 move up or down the file by almost one screenful of lines. If the current point is near the start
 or end of the file the only effect may be to move the cursor to the first or last line, as
 appropriate. When one of these keystrokes occurs, if the cursor is on one of the lines that is
 still visible on the revised screen (that is, if it was originally near the bottom for scroll-down
 or near the top for scroll-up) then it remains on the same text line afterwards, but on a
 different screen line. Otherwise the cursor stays on the same screen line. This ensures that

Screen editing 5

 scrolling down a file and then back up again (or vice versa) brings the cursor to the same
 place. The horizontal position of the cursor always remains unchanged.

• Scroll-top and scroll-bottom (default ctrl/up and ctrl/down) can be used to move to the
 beginning or end of the file respectively. The cursor ends up either on the first line or on the
 end-of-file line, as appropriate. Its horizontal position is not changed.

• The keystroke keystring-8 has the same effect as scroll-bottom, except that the cursor is also
 moved to the beginning of the end-of-file line. Similarly, the keystroke keystring-18 moves
 the cursor to the start of the first line of the file.

• The keystroke keystring-58 (default ctrl/circumflex) causes the screen to be re-displayed with
 the current line as the first line on the screen. The current point in the file is not altered
 [TOPLINE].

• The keystroke keystring-59 (default ctrl/underline) causes NE to return to the region of the
 file where the last change was made. The 20 most recent areas of change are available via this
 keystroke. If the file has not been changed, this keystroke has no effect [BACK].

In addition to these keystrokes, there are a number of NE commands for moving about the file;
these are described later [>, <, BACK, BF, CSD, CSL, F, M, N, P, PA, PB, PLL, PLR, TOPLINE].

3.5 Changing data on the screen
Typing any of the normal printing characters (or space) causes the character to be inserted into the
line immediately before the cursor position. The remainder of the line is moved one position to the
right, and so is the cursor [OVERSTRIKE]. This may have the effect of pushing a character off the
right-hand edge of the screen, but though it is now invisible, it does not get lost. Note that, on most
keyboards, holding down a key causes multiple insertions to occur.

If any characters are inserted into the end-of-file line, it is converted into a data line, and a new
end-of-file line is created.

If a character is typed when the cursor is just beyond the right-hand margin, NE splits the current
line at the nearest previous space character in the line. The position of the first character beyond the
margin is indicated in the separator lines by a vertical bar. Characters after the splitting point are
placed on a new line, for which room is made by scrolling the screen. For example, suppose the
top of the screen is as follows, with the cursor at the end of the first line, immediately following
the letter ‘l’:

----*----1----*----2----*----3----*----|
 The quick brown foxes jumped over the l
 The slow red badgers hopped about.

The next character to be typed by the user is beyond the right-hand margin. Suppose the letter ‘a’ is
typed. The screen will then be changed to the following:

----*----1----*----2----*----3----*----|
 The quick brown foxes jumped over the
 la
 The slow red badgers hopped about.

with the cursor after the letter ‘a’ on the second text line. The user can therefore type text
continuously, leaving NE to split lines when they become full. This feature is known as power
typing.

Automatic line splitting happens only when a data character is typed immediately after the right-
hand margin. If, for example, right is used to move the cursor further past the margin to the right,
then subsequent data characters are simply added to the line in the normal way.

The split-line key is used to request that a line be split at the current cursor position. By default,
split-line is bound to the return key. Normally lines below the current one are scrolled down to
make room, but if the current line is near the bottom of the screen, lines above it are scrolled up
instead [SET SPLITSCROLLROW].

6 Screen editing

When a line is split, either as a result of the power typing feature, or because of an explicit use of
split-line, the second part of the line becomes a new line, starting in column one. It is possible to
arrange that such lines are automatically given the same indentation as the previous line. See the
description of the autoalign command in the section entitled Entering NE command lines below.

The delete-previous and delete-here keystrokes provide two complementary ways of deleting
individual characters. Delete-previous deletes the character immediately before the cursor and
moves the cursor one place to the left, while delete-here deletes the character at the cursor and
leaves the cursor position unchanged. In both cases the line is closed up to remove the space where
the character was. Holding down either of these keys causes multiple deletions.

Most keyboards have a key labelled DELETE or DEL which often generates character 127.
Unfortunately, conventions as to whether this key is used for delete-previous or delete-here vary
from system to system. The default keystroke assignment for character 127 is delete-previous.
However, in some environments, the DELETE key may generate a control sequence rather than the
single 127 value. For example, in some xterm windows, it generates the same code as shift/f1,
which is treated as ‘function key 21’ by NE.

If delete-previous is pressed when the cursor is at the beginning of a line, it causes that line to be
joined on to the end of the previous line. Pressing delete-previous at the beginning of a line is in
effect a different logical keystroke, and this is given its own name, concatenate, which can be
bound to a different keystroke if required.

When concatenation occurs, the screen is scrolled up one line and a new line is displayed at the
bottom. The cursor remains under the same character, in its new position. An erroneous concat-

enate can be cancelled by pressing split-line, and an erroneous split-line can be cancelled by
pressing concatenate. For most terminals this means that the normal keystroke for immediately
cancelling an erroneous data character also applies to the RETURN key, though cancellation may not
be exact if the auto-alignment facility is being used [AUTOALIGN].

If concatenate is pressed on the end-of-file line, the only effect is to move the cursor to the end of
the previous line.

The delete-left and delete-right keystokes (by default ctrl/x and ctrl/v) provide two complementary
ways of deleting many characters on a line. The former deletes from the character immediately
before the cursor to the start of the line, while the latter deletes from the character at the cursor to
the end of the line.

The delete-to-word-left and delete-to-word-right keystrokes, which are not associated with any
kepresses by default, provide other ways of deleting more than one character on a line.

The delete-to-word-left keystroke deletes characters to the left in the current line, starting at the
character preceding the cursor position, and ending with the character at which a word-left cursor-
moving operation would stop. In other words, it deletes back to the start of the previous word.

The delete-to-word-right keystroke deletes characters to the right in the current line, starting from
the character at the cursor, and ending at the last character before the next position in which a
word-right cursor-moving operation would stop. In other words, it deletes everthing from the
current position to the start of the next word.

Note that, unlike the word-left and word-right keystrokes, these operations never move to a
different current line. If issued at the start of end of a line (respectively), they have no effect. They
do, however, operate when NE is reading a line of commands in screen mode.

The delete-line keystroke (by default ctrl/u) deletes all the characters on the current line, both to
the left and to the right of the cursor, and in addition closes up the file vertically to remove the
resulting blank line. The screen is scrolled up one line and a new line displayed at the bottom.

Four final keystrokes for operating on individual lines perform more specialized actions. They are
of most use when operating on several lines at once (see Multi-line editing below, where examples
of their use are given), but are described here because in the simple case they act on a single line.

Screen editing 7

Align-line (default ctrl/a) has the effect of aligning the current line with the cursor – the line is
shifted to the right by inserting spaces at its start, or to the left by removing spaces at its start, until
the first non-space character in the line is at the cursor position.

Align-previous (default ctrl/z) has the effect of aligning the current line with the previous line –
the line is shifted to the right by inserting spaces at its start, or to the left by removing spaces at its
start, until the first non-space character is in the same column as the first non-space character of the
previous line. The cursor is moved to the alignment point.

Close-up (default ctrl/c) has the effect of closing up the line at the cursor position – if there are
one or more space characters starting at the cursor position, these are deleted, and the remainder of
the line is shifted left so that the first non-space following the cursor position is now at the cursor
position. Note that close-up is equivalent to align-line if the cursor is at the left-hand edge of the
screen.

Close-back (default shift/delete) has the effect of closing up the line leftwards, by deleting any
spaces immediately before the cursor position, and shifting the remainder of the line to the left. The
cursor remains on the same character as before, but moved to the left if any spaces were actually
deleted.

3.6 Undeleting lines and characters
When characters or lines are deleted, NE does not discard the data immediately. Up to 100 deleted
lines are remembered, in reverse order. Deleted characters are held in a packed form, and up to 64
consecutive ones can be held in one ‘line’ for this purpose.

The keystroke keystring-4 causes NE to insert the most recently deleted thing back into the file
[UNDELETE]. Undeleted characters are inserted back into the text at the current point, and NE
remembers whether they were deleted forwards or backwards so that a sequence of deletes
followed by a sequence of undeletes should put the text back as it was. Undeleted lines are treated
as text to be inserted at the current point. Note that this is not a general ‘undo’ feature.

Text deleted with commands such as e/a//b is also added to the undelete stack, as is text cut out
with the delete command (the ctrl/q keystroke). Text cut or copied to the cut buffer is not added to
the undelete stack.

3.7 Overstriking characters
In its default configuration, NE always inserts newly-typed characters into existing text, opening up
the line to make room for them. This is the safest mode of operation, because it lessens the
possibility of accidentally deleting characters. However, when the text that is being edited is in a
fixed format, it is sometimes more convenient to operate in overstrike mode, where newly-typed
characters overstrike (i.e. replace) existing characters on the screen.

NE can be switched from insert mode to overstrike mode, and vice versa, by pressing keystring-60.
This is normally bound to the keystroke ctrl/o by default. The first of the three capital letters in the
bottom separator line shows which of these two modes NE is in at any one time, displaying ‘I’ in
insert mode and ‘O’ in overstrike mode.

3.8 Editing wide lines
If the file being edited contains lines that are wider than the screen, there are some differences in
the behaviour of NE. When any such line is displayed, the last character on the screen is shown in
inverse video, to indicate that it is not in fact the last character of the line.

NE operates with a right-hand margin, which initially is set at one less than the screen width, and
the first position beyond it is indicated in the separator lines by a vertical bar character.

The margin controls where the power typing feature comes into effect, but it does not prevent
editing from taking place to the right of it.

8 Screen editing

To disable automatic line splitting, the keystroke keystring-10 is used. The vertical bar in the
separator lines changes to a backslash. This indicates that the margin, while still at the same
position, has been disabled. Pressing keystring-10 a second time re-enables the margin.

A number of keystrokes may cause changes of the horizontal position of the ‘window’ on the file.
When a line is split by the split-line keystroke, there is a movement back to column one if
necessary. When lines are concatenated by pressing concatenate (usually implemented as delete-
previous when the cursor is in column one), there may be a movement to the right if the previous
line is longer than the screen width.

Movement to the left or right can be explicitly requested by means of the keystrokes scroll-left and
scroll-right (default shift/left or ctrl/h and shift/right or ctrl/l). In these cases the cursor is left in
the same text column if it is still visible in the new window. For example, if the screen is showing
columns 1– 80 and the cursor is in column 53, after scroll-right it is still in column 53, though this
is now in column 48 of the screen. If the old text column is not visible in the new window, the
cursor is placed as near to it as possible.

The keystrokes first-char, last-char and screen-left operate only on the text that is displayed on the
screen, and never cause any movement of the viewing window. First-char moves to the first visible
non-space character of the current line, while screen-left moves to the left of the screen. Last-char
moves just past the last visible non-space character of the current line, unless there is a non-space
character at the right-most column on the screen, in which case it puts the cursor under it.

There are also two keystrokes which move the cursor to the true beginning or end of the line,
causing a horizontal scroll if necessary. These are start-line and end-line, defined by default to be
shift/ctrl/left and shift/ctrl/right. Not all keyboards support those keystrokes, so in addition two
function keystrings are defined to have the same effect. These are keystring-6 and keystring-16.
When the line is not wider than the screen, they are synonymous with first-char and last-char.

Movement up and down the file by means of the arrow keys, scroll-up, scroll-down, scroll-top, or
scroll-bottom does not affect the horizontal position of the window. However, when such move-
ment occurs as a result of a command [F, BF, M, N, P, BACK], there may be a change of window
position. The function keystrokes keystring-8 and keystring-18 (which move to the end and the
start of the file respectively) operate via the command mechanism, and move the cursor to the start
of the appropriate line.

The right-hand margin is also used by the format command. Its value may be changed by the
rmargin command. Details of these facilities are given later.

3.9 Editing non-printing characters
Files which contain non-printing characters can be processed by NE. On the screen, non-printing
character is displayed as a question mark [EIGHTBIT]. (See the ? command for a way of displaying
the hex codes of non-printing characters.) Some implementations of NE allow non-printing charac-
ters to be input directly from the keyboard during screen editing, while others may not. They can,
however, always be inserted into the file using the a, b, e, or iline commands which are described
later on.

3.10 Multi-line editing
Certain keystrokes for editing individual lines can be made to operate (independently) on each of a
sequence of lines. The following actions accomplish this:

(1) Place the cursor anywhere on either the first or the last line of the sequence and press the
 mark-line key (default ctrl/b). The message ‘Bulk line operation started’ appears in the
 message area at the bottom of the screen, and the character at the cursor position is displayed
 in inverse video [MARK LINE].

(2) Move the cursor to the line at the other end of the sequence. Then press one of the line-
 editing keys listed below. The operation is carried out on the current line, the line marked by
 mark-line, and all the lines in between.

Screen editing 9

The operations that can be performed on many lines at once in this way are as follows:

• Align-line (default ctrl/a): All the lines in the block are aligned horizontally with the position
 of the cursor when align-line is pressed. That is, spaces are added or deleted at the start of the
 lines as necessary, until the first non-space in each line is in the same column as the cursor
 [ALIGN].

• Align-previous (default ctrl/z): All the lines in the block are aligned horizontally with the line
 that precedes the block. The horizontal position of the cursor is not relevant; it gets set to the
 alignment position.

• Close-up (default ctrl/c): For each line in the block, if one or more spaces are present at the
 cursor column, they are removed and the line is closed up [CLOSEUP].

• Close-back (default shift/delete): For each line in the block, if one or more spaces precede
 the cursor column, they are removed, and the line is closed up [CLOSEBACK].

• Delete-line (default ctrl/u): All the lines in the block are deleted, and the file is closed up
 vertically [DLINE].

• Delete-right (default ctrl/v): For each line in the block, all characters at and to the right of the
 cursor position are deleted [DRIGHT].

• Delete-left (default ctrl/x or ctrl/delete or ctrl/backspace): For each line in the block, all
 characters before the cursor position are deleted, and the line is closed up. The cursor ends up
 in column 1 and there may be a movement of the viewing window to the left [DLEFT].

When one of these operations is performed, the ‘mark’ which was set by pressing mark-line is
automatically deleted.

Sometimes is is necessary to carry out a number of these functions on the same group of lines. In
this case, mark-line should be pressed twice before starting the operations. After the second press,
the word ‘operation’ in the message at the bottom of the screen changes to ‘operations’, and the
mark is no longer automatically deleted when any action is performed on the line group. When all
the operations are done, mark-line must be pressed a third time to remove the mark, except when
the final operation is ‘delete’ (delete-line), which always automatically removes the mark.

If mark-line is pressed in error, the bulk line operation can be abandoned by pressing mark-line
twice more.

As an example of the use of the multi-line editing facilities, suppose the screen contained the
following lines:

This is some messy unprocessed data
 which needs tidying up a bit. We only
 want to retain the second two
 columns, and we want them tidy.
 123.45 67.98 100.00 xyz
 999.00 45.87 456.78 pqr
 456.86 88.23 854.67 abc

To delete the four lines of text, press mark-line with the cursor on the first line, move to the fourth
line, and press delete-line.

If mark-line is now pressed with the cursor anywhere on the new first line, and then delete-left
(delete to left of cursor) is pressed after moving the cursor to just after ‘86’ on the last line, the
entire first column of figures is deleted and the lines look as follows:

67.98 100.00 xyz
 45.87 456.78 pqr
 88.23 854.67 abc

To align all the lines, press mark-line (the cursor being still on the last line), then move to column
5, say, on the top line and press align-line. The lines become:

10 Screen editing

 67.98 100.00 xyz
 45.87 456.78 pqr
 88.23 854.67 abc

To tidy up the messy second column, press mark-line (the cursor being now on the top line), then
move to the bottom line at the start of ‘854’ and press close-up. The lines are now:

67.98 100.00 xyz
 45.87 456.78 pqr
 88.23 854.67 abc

Finally, to remove everything except the columns of numbers, press mark-line, then move to the
top line just after ‘100.00’ and press delete-right. The result is:

67.98 100.00
 45.87 456.78
 88.23 854.67

Certain types of more complicated editing operation, such as the deletion of the second column of a
table, cannot be performed using the multi-line actions described in this section. For such oper-
ations rectangular blocks must be used (see below).

3.11 Cutting, pasting and block deletion
It is often necessary to move text from one position in a file to another, or to make a copy of some
text at a different point in the file. NE provides these facilities using a cut and paste model. Text is
identified in the file, and then either cut or copied from the file into the cut buffer. The cursor is
then moved to the point where insertion is to occur, and the text is pasted into the file. There is
only one cut buffer, and successive cut or copy operations destroy any text that was previously in it
[CUTSTYLE, DCUT].

The word ‘paste’ is perhaps a little misleading in this context because it has connotations of
overlaying existing text. In NE, a pasting operation inserts text into the file; it does not destroy any
existing text, even if NE is operating in overstrike mode, as this mode applies only to newly-typed
characters.

If an attempt is made to leave NE while there is text in the cut buffer that has never been pasted, a
warning is given, and the user is prompted for permission to proceed. A prompt is also issued if
text in the cut buffer that has never been pasted is about to be overwritten by new text.

The operation of deleting text from the file is provided in a similar manner to cutting or copying.
However, in this case, the portion of the file that has been marked is discarded [UNDELETE].

When marking text for cutting, copying, or deletion, NE regards the end of the text as being just
before the cursor position. Therefore, when indicating the beginning of a block, the cursor must be
placed on the first character, but when indicating the end of a block, it must be placed after the last
character.

Two different views of text are supported by the cut, paste and deletion operations. It can either be
considered as a stream of characters, with a notional ‘newline’ between lines, or it can be
considered as a rectangular array. These different approaches are described separately in the
following two sections.

3.12 Text blocks
A text block is a piece of text viewed as a stream of characters, with notional ‘newline’ characters
between lines. To cut, copy or delete such a block from the file being edited, the following actions
are required:

(1) Move the cursor to either:

(a) The first character of the block; or

Screen editing 11

 (b) Just beyond the last character of the block.

(2) Press mark-text (default ctrl/t). The message ‘Text block started’ appears in the message line
 at the bottom of the screen, and the character at the cursor position is displayed in inverse
 video. If mark-text is pressed in error, the text block operation can be abandoned by pressing
 mark-text again [MARK TEXT].

(3) Move the cursor to the other end of the block and press one of:

(a) Cut-delete (default ctrl/w) to cut the text out of the file and place it in the cut buffer
 [CUT];

(b) Cut-copy (default ctrl/e) to make a copy of the text from the file in the cut buffer
 [COPY];

(c) Delete-marked (default ctrl/q) to delete the text from the file [DMARKED].

While moving the cursor to the other end of the block, other editing operations may be
 carried out.

After a cut or copy operation (a copy of) the text is in the cut buffer, replacing whatever was there
previously, whether it was a text block or a rectangle [CUTSTYLE].

To insert the contents of the cut buffer into the file, move the cursor to just after the insertion
position and press paste (default ctrl/p) [PASTE]. The contents of the cut buffer are not destroyed by
this, and therefore the same text can be inserted many times.

As an example of how to use text blocks, consider the problem of moving a sentence about in a
paragraph of text. Suppose the top of the screen contained the following lines:

----*----1----*----2----*----3----*----|
 The successful candidate will be
 expected to reside in Cambridge and to
 undertake approximately twelve hours a
 week of teaching. Candidates should be
 under the age of thirty-three on 1
 October 1987. The salary will be

and that it is desired to reverse the order of the first two sentences by cutting out the second and
inserting it before the first. Placing the cursor under the first letter of ‘Candidates’ and pressing
mark-text begins the operation. The cursor is then moved after the space at the end of the sentence
(that is, to the start of ‘The’ at the start of the third sentence) and cut-delete is pressed. The screen
then looks as follows:

----*----1----*----2----*----3----*----|
 The successful candidate will be
 expected to reside in Cambridge and to
 undertake approximately twelve hours a
 week of teaching. The salary will be

Notice that the remainder of the sixth line has been joined to the remainder of the fourth line. This
is in accordance with the view of the text as a linear stream of characters containing ‘newlines’. To
insert (a copy of) the cut buffer, the cursor is now placed at the start of the text and paste is
pressed. The screen becomes

----*----1----*----2----*----3----*----|
 Candidates should be
 under the age of thirty-three on 1
 October 1987. The successful candidate w
 expected to reside in Cambridge and to
 undertake approximately twelve hours a
 week of teaching. The salary will be

12 Screen editing

The newline after ‘be’ is reproduced in the inserted text, but the insertion has caused the third line
to become wider than the screen. Since the cursor is left under the word ‘The’ it is a simple matter
to press split-line to split the line and obtain

----*----1----*----2----*----3----*----|
 Candidates should be
 under the age of thirty-three on 1
 October 1987.
 The successful candidate will be
 expected to reside in Cambridge and to
 undertake approximately twelve hours a
 week of teaching. The salary will be

Automatic tidying up of paragraphs after editing of this kind can be achieved using NE’s formatting
facilities, which are described in a later section [FORMAT].

The text block facility can of course be used to move, copy or delete complete lines of text. In this
case, the start of the block is the first character of the first line involved, while the end of the block
is the first character of the line after the last line involved. If the end of the last line is used instead,
the final ‘newline’ is not included in the block.

3.13 Rectangular blocks
For some operations it is convenient to regard a file of text as a rectangular array of characters. NE
provides cutting, copying and deletion facilities for rectangles, and the ability to insert a rectangle
of spaces into a file.

To cut or copy a rectangular block from the file being edited, the following actions are required:

(1) Move the cursor to any of the four corners of the rectangle. For left-hand corners the cursor
 should be on the first character inside the rectangle, while for right-hand corners it should be
 after the last character in the rectangle.

(2) Press mark-rectangle (default ctrl/r). The message ‘Rectangular block started’ appears in the
 message line at the bottom of the screen, and the character at the cursor position is displayed
 in inverse video. If mark-rectangle is pressed in error, the rectangular block operation can be
 abandoned by pressing mark-rectangle again [MARK RECTANGLE].

(3) Move the cursor to the opposite corner of the rectangle and press one of:

(a) Cut-delete to cut the rectangle out of the file and into the cut buffer [CUT];

(b) Cut-copy to make a copy of the rectangle in the cut buffer [COPY];

(c) Delete-marked to delete the rectangle from the file [DMARKED].

While moving the cursor to the other corner of the rectangle, other editing operations may be
 carried out.

When a rectangle is cut or deleted from a file, all the lines involved are closed up by an equal
amount. After a cut or copy operation (a copy of) the rectangle is in the cut buffer, replacing
whatever was there previously, whether it was a rectangle or a text block [CUTSTYLE].

To insert the contents of the cut buffer into the file, move the cursor to where the top left-hand
corner of the rectangle is to be positioned, and press paste. The contents of the cut buffer are not
destroyed by this, and therefore the same rectangle can be inserted many times.

The insertion of a rectangle affects the current line and a number of lines below it, depending on
the number of lines in the rectangular block. Each of the relevant lines is ‘opened up’ at the
insertion point by the width of the rectangle, and the appropriate line of the rectangle is then
inserted.

As an example of the use of rectangles, consider the problem of re-arranging the columns in a
table. Suppose the lines on the screen are:

Screen editing 13

 ----*----1----*----2----*----3----*----|
 First Second Third
 123.45 76.99 88.23
 999.00 8.4 45.06
 2.33 - -

To interchange the second and third columns, the cursor is placed on the ‘S’ of ‘Second’ and mark-
rectangle pressed. Then the cursor is moved to the start of ‘Third’ and down to the fourth line, and
cut-delete is pressed. The second column is cut out and the screen looks as follows:

----*----1----*----2----*----3----*----|
 First Third
 123.45 88.23
 999.00 45.06
 2.33 -

Now the cursor is moved to the top line, several columns past the word ‘Third’, and paste is
pressed. The result is:

----*----1----*----2----*----3----*----|
 First Third Second
 123.45 88.23 76.99
 999.00 45.06 8.4
 2.33 - -

Mark-rectangle may be followed by rectangle-spaces (default ctrl/s) instead of cut-delete, cut-
copy or delete-marked. This has the effect of inserting a rectangle of spaces into the file. The
operation is carried out by placing the cursor at one corner and pressing mark-rectangle, then
moving to the opposite corner and pressing rectangle-spaces. The effect is to insert the same
number of spaces into each line at the column marked by the left-hand side of the rectangle so that
the character that was previously in that column is now in the first column to the right of the
marked rectangle.

Suppose that the lines in the above example were to be indented by five characters. Align-line
cannot be used because it would mis-align the third line of numbers. The cursor is placed at the
start of the first line, and mark-rectangle is pressed. Then the cursor is moved to column six on the
last line and rectangle-spaces is pressed. The result is as follows:

----*----1----*----2----*----3----*----|
 First Third Second
 123.45 88.23 76.99
 999.00 45.06 8.4
 2.33 - -

3.14 Re-formatting paragraphs
When a paragraph of text is edited it often becomes untidy, in the sense that the lengths of the lines
are very variable, and some lines may have become longer than the screen width. Re-formatting, so
that each line contains the maximum number of words, is achieved by pressing keystring-20,
having previously placed the cursor on the first line to be affected. This need not necessarily be the
first line of the paragraph [FORMAT].

Effectively, the lines from the current line to the end of the paragraph are joined into one long line,
and the result is then split up so that no line exceeds the right-hand margin [RMARGIN]. Splitting
always takes place just after a space character, unless there are no preceding spaces in the line, in
which case the split happens exactly at the margin. Disabling the right-hand margin (keystring-10)
does not affect formatting; the same margin value is still used.

A blank line or a line beginning with a space marks the end of a paragraph and the cursor is left at
the beginning of the line following the paragraph that has been formatted. Thus keystring-20 can be
pressed several times in succession in order to format several paragraphs.

14 Screen editing

If the current line is empty when keystring-20 is pressed, the only effect is to move the cursor to
the start of the following line. Only non-empty lines are recognized as being part of a paragraph,
and so blank lines are preserved by the formatting process.

It is possible to change the rules for the recognition of the beginnings and ends of paragraphs
[BEGINPAR, ENDPAR]. This can be useful when editing text that contains, for example, control
statements for a text formatting program.

3.15 Help information
Some information about the various keystrokes used by NE is available from within an NE session.
Pressing keystring-9 (normally implemented as function key 9 on any keyboard that has function
keys) generates a display which lists the current actions of the keystrokes [SHOW KEYS]. The display
is in three parts:

(1) The ‘control’ keystrokes. These are those that are usually generated by holding down the CTRL

 key and pressing another key with it.

(2) The ‘extra’ keystrokes. These are those that are usually generated by dedicated keys on the
 keyboard, such as the DELETE key.

(3) The function keystrokes. These keystrokes are those that are normally generated by function
 keys on the keyboard, but in some cases are generated by pressing the ESC key followed by
 another key. Pressing keystring-19 generates a display which lists the actions of the various
 ‘function’ keystrokes only.

Control and function keystrokes that are unset are omitted from the displays. When either
 keystring-9 or keystring-19 is pressed, the bottom separator line is moved up, and the display
 appears at the bottom of the screen. For keystring-9, the total display is too long to fit on a
 typical screen. NE therefore pauses between parts and outputs the message:

Press RETURN to continue

The default actions of the function keystrokes are in fact to obey particular NE commands,
 that is, they are associated with appropriate function keystrings. The use of commands is
 described later, but many of the operations shown (such as ‘format’) should be understandable
 by someone who has read only this far.

At the end of the display there is a line containing

NE>

This is a command prompt from NE – the use of commands is covered in the next section.
Pressing enter at this point causes the information display to disappear and the previous contents of
the screen to be restored. On all current versions, enter is implemented as the RETURN key.

3.16 Entering NE command lines
The keystroke read-command (default ctrl/g) is a request to enter a line of NE commands. The
character at the cursor position is re-written in inverse video, and the cursor moves out of the text
display area and into the command entry line at the bottom of the screen, where the prompt ‘NE>’
is shown.

The user must now type a line of commands, terminated by enter (normally the RETURN key). If the
line is empty, NE simply reverts to screen editing. If mistakes are made while entering commands,
the line can be edited using the cursor keys, delete-previous, delete-here, delete-left, delete-right,
delete-line, delete-to-word-left, delete-to-word-right, word-left, and word-right before pressing
enter to cause it to be obeyed. If a mistake is detected by NE, an error message is given and
another prompt is issued. The previous line of commands can be recalled for editing by means of
the scroll-up key.

The following subset of commands may prove useful to users who are just starting to learn how to
use NE. For more details, and for a fuller description of the complete set of commands, see the
chapters which follow. Note that the case of letters in command names is not significant.

Screen editing 15

 • F /<string>/ causes NE to search forwards through the file from the current position until it
 finds the given character string, which should not contain the character ‘/’. If the string
 contains any letters, it does not matter whether they are in upper or lower case (capital or
 small); NE treats different versions of the same letter as identical in simple searches such as
 this. Once an f command has been obeyed, the same search can be repeated simply by
 pressing the keystring-7 key. NE can be made to search backwards by using the bf command
 instead of f; this is repeated by means of the keystring-17 key. If NE fails to find the string it
 is searching for, the current position is unchanged.

• Ge /<string1>/ /<string2>/ is a request to globally exchange the first string for the second. NE
 searches forwards in the file until it finds the string, exactly as for the f command. When it
 finds an occurrence, it updates the screen to show the text which was found, in inverse video,
 and outputs the prompt

Change, Skip, Once, Last, All, Finish, Quit
 or Error?

The user must type the initial letter of one of the displayed words, followed by enter. ‘C’
 (change) causes NE to make the change, then move on to the next occurrence of the string,
 while ‘S’ (skip) causes it not to make the change, but still to move on to the next occurrence.
 ‘O’ (once) and ‘L’ (last) both make the change, then terminate the command; the difference
 between them is that ’O’ restores the current point to where it was at the start of the
 command, while ’L’ leaves it after the final change. ‘A’ (all) makes the change, and then
 continues through the file, changing all occurrences without further prompting.

‘F’ (finish), ‘Q’ (quit) and ‘E’ (error) all terminate the command without making the change.
 The difference between them is that ‘E’ forces an error, which causes NE to abandon any
 further commands and prompt for a new command line, while after ‘F’ or ‘E’, the current
 point is restored to where it was at the start of the command, but after ‘Q’ it remains at the
 point of last match.

A number of successive replies to the prompt can be given all at once as a string of letters.
 For example, a reply of

ccsccc

specifies that the current and next occurence of the sought-for string are to be changed, then
 one occurrence is to be skipped, and then the next three are to be changed. Digits can be used
 within the string to save typing. The following is an equivalent reply:

2cs3c

In addition to the ge command, which exchanges one string for another, there are also
 commands called ga and gb which operate in the same way, but which cause the second string
 to be inserted after or before occurrences of the first string, respectively.

NE contains facilities for more complicated kinds of change, including the use of ‘wild card’
 characters in strings. The chapters entitled Context matching, Character string insertions, and
 Global changes contain further details.

• Load <file name> causes NE to load a new file for editing. If the old file has been changed
 but not saved (see below), the following is output:

The contents of buffer 0 have not been saved.
 Continue with LOAD (Y/N)?

A reply of y or yes causes the current editing text to be lost; a reply of n or no indicates that
 a mistake has been made. In this case, NE issues a further command prompt.

• M <number> causes NE to make the line with the given number the current line (m is an
 abbreviation of ‘move’). For example,

m1234

makes line 1234 the current line. Remember that lines are counted as they are read from the
 original file, and the numbers do not change as lines are edited [RENUMBER]. If the specified

16 Screen editing

 line has been deleted, an error occurs and the current line does not change. A line number of
 zero is taken to mean the start of the file, and an asterisk may be given instead of a line
 number to move to the end of the file.

• <Number> n causes NE to advance through the file by the given number of lines (n stands for
 ‘next’). For example, after obeying

300N

the current line is 300 lines further into the file than before.

• <Number> p causes NE to move backwards through the file by the given number of lines (p
 stands for ‘previous’).

• Rmargin <n> specifies a new right-hand margin value. For example, if text is being input and
 the maximum line length that is wanted is 60 characters, then

rmargin 60

is appropriate. After this command has been obeyed, the separator lines show a vertical bar in
 column 61, and any character typed in this column causes the power typing feature to come
 into effect. In addition, the formatting keystroke (keystring-20) now makes paragraphs whose
 maximum width is 60 characters.

• Save causes the current text that is being edited to be written back to the disc file. Before
 actually writing to the file, NE outputs the prompt

Write to <buffer title> (Y/N/TO filename)?

to ask for confirmation. A reply of y or yes allows the writing to go ahead; a reply of n or no
 indicates that a mistake has been made, and NE issues a new command prompt. A reply
 consisting of the word ‘to’ followed by further text is taken as supplying an alternative file
 name. When a new name is given, it becomes the default name for future save operations and
 for writing the file at the end of editing.

If the reply is not in one of the above forms, NE outputs an error message and displays the
 prompting line again.

Save is one way of taking safety copies of a file during a long editing session. It can also be
 used in conjunction with load to finish editing one file and start on another without leav-
 ing NE.

• Show wordcount causes NE to display information about the text it is editing. The numbers
 of lines, words, and characters are displayed; words in this context are sequences of characters
 separated by spaces or the ends of lines. The information is displayed at the bottom of the
 screen, which scrolls up to accommodate it, and a further command prompt is then given.
 Pressing the RETURN key at this point returns to screen editing.

• Show commands causes NE to display a list of all its command words.

• Stop causes NE to cease processing immediately, and exit. Any changes to the file being
 edited are lost. An error code is passed to the operating system.

If a command line (other than one containing stop) is successfully obeyed, NE returns immediately
to screen editing without any further action from the user. If, on the other hand, an error message is
output, NE issues a prompt for a further line of commands.

3.17 Multi-buffer editing

It is possible in NE to edit more than one file at once, switching between two or more buffers as
necessary. Details of this facility is given in the chapter entitled Buffer Handling.

Screen editing 17

3.18 Leaving NE
When editing of the file is complete, keystring-3 should be pressed [W].

The first thing that NE does when preparing to end an editing session is to check whether any text
has been cut into the cut buffer, but never actually pasted into the file. If this is the case then the
prompt

The contents of the cut buffer have not been pasted.
 Continue with W command (Y/N)?

is output as a warning. (The reference to the w command occurs because the keystring-3 key works
by issuing that command.) If the user replies y or yes then NE proceeds, and the contents of the cut
buffer are lost. If the reply is n or no then NE stops what it is doing and issues its standard
command line prompt, ‘NE>’. Pressing enter at this point returns NE to screen editing.

Next, NE considers the file that has been edited. If no changes have been made to it, NE outputs
the message

No changes made to <buffer title>

and exits. Otherwise, it outputs the prompt line

Write to <buffer title>? (Y/N/TO filename/Discard/STOP)

The user must give one of the five possible replies – a null or erroneous reply causes an error
message to be output, followed by a repeat of the prompt. The effects of the replies are as follows:

• A reply of y or yes causes NE to write the edited text to the file whose name is shown, and
 then to exit.

• A reply of n or no indicates that the user has made a mistake. NE outputs its prompt line
 (‘NE>’) so that the user can tell it what to do next. Some possible responses to this are
 described below.

• A reply of the form to <filename> is a request to write the contents of the buffer to an
 alternative file. NE attempts to open this file and write the text to it instead of to the file
 named in the prompt.

• A reply of d or discard causes NE not to write the text to the file, but to carry on as if it had.
 In the simple case of editing only one file, it exits without error.

• A reply of stop (no abbreviation) causes NE to stop processing immediately, without doing
 anything further. It exits with an error code.

If there is an error while attempting to open or write to the file, or if the user replies n to the
prompt, NE does not exit, but prompts for a line of user commands. Full details of NE’s commands
are given in later chapters, but a short list of possible responses is given here for the benefit of new
users of NE. The command line should be terminated by enter.

• To exit from NE (with an error code), type the command stop. The edited text which NE is
 holding in main memory is then abandoned.

• To attempt to output the edited text again (for example, if a file name was mis-spelled
 previously, causing an error to occur), type the command w (windup). NE then issues the
 ‘Write to’ prompt again.

• Entering an empty command line causes NE to restart screen editing.

3.19 Summary
This chapter has described the screen editing facilities of NE, and a subset of the more common
commands, using all the default option settings. The facilities covered are sufficient for many
straightforward editing jobs. The chapters which follow cover NE’s command system in detail. This
extends the power of the editor for more complicated situations. Note that there is a summary of
the logical keystrokes near the end of this document, and that details of the correspondences
between logical control keystrokes and actual keypresses are given in the device-specific chapters.

18 Screen editing

 4. The NE command

The NE command takes the following form:

ne [<options>] [<file names>]

Without any options or file names, NE starts up with an empty buffer and no pre-set output file. Up
to 50 file names can be given; each is read into a separate buffer. The keyword -from can
optionally precede the list of file names, and the file names, provided none of them starts with a
hyphen, can precede the options. Thus, for example:

ne /some/file -opt m1234

is a valid NE command line. A filename that begins with a hyphen must immediately follow the
keyword -from.

If any of the input files does not exist, NE generates an error message and exits. It does not create a
new file under these circumstances. To create a new file, a command such as

ne -to <filename>

can be used. Alternatively, the ne command can be given with no file names at all. This enters NE
and sets up an empty editing buffer; a file name can be supplied when the buffer is to be
written out.

The command line options are as follows:

-binary or -b invokes the special facility for editing binary files which is described in section 4.3
below.

-from may optionally precede the list of input files.

-help or -h requests a display of the syntax of the ne command. The main part of NE is not
entered.

-id requests a display of the current version number of NE. The main part of NE is not entered.

-line requests that NE operate in line-by-line mode (as opposed to screen mode).

-noinit suppresses the use of any initializing commands. Normally, NE looks for a file whose name
is specified in the NERC environment variable. If this is not set, it looks for a file called .nerc in
the caller ’s home directory. The file contains NE commands that are obeyed at the start of every
run. If NE is started with the -noinit option, the initializing action is bypassed.

-notabs disables any special handling of tab characters, and causes them to be treated as data
characters. See section 4.2 for further details.

The -opt keyword on the ne command line is used to supply one or more commands to be obeyed
at the start of editing. This can be useful, for example, for moving to a particular point in the file
before displaying a screenful of data over a slow communications line. It can also be used to
supply a short ‘script’ of non-interactive editing commands without using file to store them in.

-readonly or -r causes the first file that is being edited to be loaded into a read-only buffer
[READONLY]. Any attempt to alter the contents is faulted.

The -stream option is concerned with the editing of files that are too large to fit into main memory,
and its use is described in chapter 21 (Editing large files).

-tabs, -tabin, and -tabout control the handling of tab characters in files that are being edited.
Details are given in section 4.2.

If only a single input file name is given, that file is edited and written back to a file of the same
name. If a file name is given following the -to keyword, the result of editing the first file is written
to the -to file at the end of editing. (These are defaults; the file name can be changed from within
NE by appropriate commands.)

The NE command 19

Up to fifty input file names may be given; each is loaded into a separate editing buffer. See chapter
19 (Buffer handling) for further details of multiple buffers. The -to option, if present, applies to the
first named input file only. The default for the other files is to update them in place.

The -ver keyword can be used to direct verification and error messages to a specific file. If it is not
specified, such messages are sent to the standard output (except when filtering, when the standard
error is used).

The -with keyword can be used to specify the input file containing editing commands. If it is not
specified, commands are read from the standard input (except when filtering – when the standard
input contains the text to be edited.).

NE is initialized in interactive mode, unless the -with or -ver keywords are given or NE is being
run as a filter. In interactive mode, if the terminal is suitable for screen editing, screen mode is also
selected, unless -line is present. Otherwise interactive line-by-line mode is selected.

It is possible to specify a single hyphen as the file name for the -with and -ver command line
options, as well as for -from and -to. The effect of a hyphen with -with is to cause editing
commands to be read from the standard input (which is the default), but in line-by-line mode. The
effect of a hyphen with -ver is likewise to cause verification output to be written to the standard
output. (This is also the default – the syntax is really provided just for consistency.)

The preferred method of calling NE from within a Unix shell script to edit a file non-interactively
using inline editing commands is:

ne somefile -with - <<End
 <editing commands>
 End

NE diagnoses an error if both -from and -with are specified (explicitly or implicitly) as the
standard input. This also happens if -to and -ver are both specified explicitly as the standard output.
If only -to is specified as the standard output, the default for -ver is changed to the standard error
stream.

In non-interactive mode, NE stops if any error occurs, with a non-zero return code. When NE is
run interactively, it issues a non-zero return code only when the stop or abandon command is
obeyed. Normal termination always results in a return code of zero, even if there have been errors
in the run.

4.1 Using NE as a filter
NE can be run as a filter under by specifying the input file as ‘–’ (a single minus sign). The text to
be edited is then read from the standard input and written by default to the standard output. The
default command input is switched to the null file, and the default verification output to the
standard error stream, but these can be changed by means of the -with and -ver keywords if
necessary. Commands may also be specified using the -opt keyword, of course, as in this example:

ls | ne - -opt "rmargin 40; format" | more

The -to keyword can be used to direct the output to a different destination when the input is being
read from the standard input, and, conversely, a minus sign can be used with -to to direct output to
the standard output when input is not from the standard input.

4.2 Tab support
NE’s treatment of tab characters in text files is unusual.

By default, tab characters are expanded when input lines are read, assuming tab stops every eight
characters. Lines in which tabs have been expanded are marked as such, and when they are output,
NE puts back as many tabs as it can, except that it does not use a tab where a single space will do.
Note that this does not guarantee that unchanged output lines will be identical to the input lines.

20 The NE command

The default action can be changed by an option on the command line, or by setting the environ-
ment variable NETABS. The command line option overrides the environment variable. The possible
settings are:

• Option -notabs or NETABS setting ‘notabs’: tab characters are not treated specially. They will
 normally be displayed as question marks. Option -tabs or NETABS setting ‘tabs’: this restores
 the default action.

• Option -tabin or NETABS setting ‘tabin’: Tabs are expanded on input, but no action is taken
 when lines are output.

• Option -tabout or NETABS setting ‘tabout’: No action on input; all lines have as many tabs
 as possible inserted when they are output.

• Both options -tabin and -tabout or NETABS setting ‘tabinout’: Tabs are expanded on input,
 and all lines have as many tabs as possible inserted when they are output.

4.3 Editing binary files
Many personal computers have a ‘dump’ command or similar which displays files in hexadecimal
and characters in the following sort of layout:

00A0 68 74 20 28 ... 55 6E 69 76 65 * ht (c) Unive *
 00AC 72 73 69 74 ... 66 20 43 61 6D * rsity of Cam *

Some have programs which allow the user to scroll around such a display, and possibly change its
contents. These facilities are useful when working with files containing binary data.

NE contains some simple facilities that allow it to provide a similar function. It works as follows:

If the keyword -binary (abbreviation -b) is present on the NE command line, NE operates in
‘binary mode’. For example,

ne prog.o -b

This applies to the whole NE session and to all buffers. It is not possible to have some buffers in
binary mode and some in text mode. If NE is entered in binary mode and it is also running in
screen mode, screen handling is initialized in overstrike rather than replace mode.

When NE is in binary mode, it reads input files 16 bytes at a time. Each group of 16 bytes is
converted into a textual input line in the following format:

aaaaaa dd dd dd dd ... dd dd * cccccccccccccccc *

where aaaaaa is the hexadecimal address within the file of the first byte of the 16, the dd’s are the
hexadecimal representations of the characters, and the cccc’s are the character representations, with
non-printing characters shown as full stops. The final ‘line’ of a file may represent fewer than 16
bytes.

The majority of the code of NE has no knowledge of binary mode, and it processes these
constructed lines as if they were ordinary text lines. The lines may be modified by using any of
NE’s repertoire of commands or screen editing facilities. There is some special knowledge in the
screen driver such that, if the hexadecimal data in a line is changed, the character portion of the
line is changed to match, and vice versa.

If the file is to be written out again successfully, the format must be preserved sufficiently to satisfy
the following algorithm:

Whenever NE is required to output a line in binary mode, it ignores all characters before the first
space and also the first asterisk and all characters that follow it. The remainder of the line must
consist of pairs of hexadecimal digits, optionally separated by spaces. Each pair of hexadecimal
digits is converted into a single byte, which is then written to the file.

Note that the spaces, if present, must fall between pairs of digits, not between the first and second
digit of a pair. There may be more or less than 16 pairs, and the letters may be in upper or lower
case.

The NE command 21

If the format of any line is incorrect, an error message is output which shows the line at error. The
data written to the file for that line will contain some bytes of rubbish. A number of error messages
may be produced from a single writing operation. If the writing is the result of a W command, and
there have been errors, NE does not exit.

22 The NE command

 5. Lines of NE commands

Lines of NE commands can be obeyed while screen editing as well as when editing line by line.
An initial line of NE commands can be included in the system command line that invokes NE, and
there is a way of specifying default commands to be obeyed automatically every time that NE is
entered (the .nerc file). Before describing the individual commands in detail, some general dis-
cussion of the syntax is given.

5.1 Format of command lines
An NE command line consists of any number of NE commands, separated by semicolons except in
one special circumstance (see below). Each command consists of a command name, possibly
followed by additional data known as arguments. Command names are either a sequence of letters
(for example, rmargin) or they consist of a single special character (for example, #). In the latter
case there are never any arguments, and the commands are self-terminating, that is, a semicolon is
not needed after such commands. The letters in a command name can be entered in either upper or
lower case.

When a command whose name consists of letters is followed by an argument, a space is necessary
following the command name if the argument begins with a letter. In other cases, spaces between
the command name and the first argument are optional.

A command may be repeated by preceding it by a decimal number. It does not always make sense
to repeat commands, but NE does not forbid it. An example of a sensible repetition is

132n

which has the effect of obeying the n command 132 times. A group of one or more commands may
be repeated by enclosing it in round brackets and preceding it by a decimal number, for example

3(f/abc/; n)

Such command groups may be nested up to about 150 deep. They are used in other contexts as
well as for repetition.

If two successive backslash characters are encountered in a command line, other than inside a
delimited string or a file name, they signifies that the rest of the line is a comment which is to be
ignored. NE behaves as if the line ends immediately before the backslash characters. The maximum
length of a command line is 512 characters.

5.2 Continuation of command lines
Command lines may be continued onto as many input lines as necessary, provided that the line
breaks occur inside brackets and at the end of a command. For example,

(ge/s//t/;
 ga/a//b/)

Brackets can be used solely for the purpose of introducing line breaks; they need not be preceded
by a repetition count.

If NE is running interactively when a command line is continued, it prompts with the text ‘NE+’
for the second and subsequent lines, instead of the normal ‘NE>’.

5.3 Format of common arguments
There are several common kinds of argument that are used in more than one command. They are as
follows:

• A decimal number, often simply called a number, is a sequence of decimal digits. It is
 terminated by the first non-digit encountered.

Lines of NE commands 23

 • A word is a sequence of letters, terminated by the first non-letter. Upper and lower case letters
 are synonymous in words.

• A string is a sequence of characters enclosed in delimiter characters. For any particular string,
 the delimiter character may not itself appear in the string. Only certain characters may be used
 as delimiters; they are

’ " ! . , : + - * /

These are the standard English punctuation characters (with the exception of semicolon and
 question mark) together with the characters normally associated with the four arithmetic
 operators in programming languages. Some examples of strings follow:

/elephant/ .rhinoceros.
 :3.14159: "The quick brown fox"
 !mighty atom! +e = mc**2+

When a string is the very last thing on a command line, the final delimiter may be omitted.

• A qualified string is a string preceded by certain qualifier characters. Details are given in the
 next chapter.

• A search expression is either a single qualified string, or several such strings connected by
 boolean operators. Details are given in the next chapter.

• Provided that the file name does not contain any semicolon characters or start with two
 backslash characters, it can be entered straightforwardly. If one or more semicolons are
 present, or if the first two characters are backslashes, the file name must be quoted using
 either single or double quote characters.

If a file name begins with a tilde character, it is interpreted in the same way as the shell would
interpret it:

• If the name is of the form ~/<path> the contents of the environment variable HOME are used
 in place of the tilde.

• If the name is of the form ~<user>/<path> the entry in the password file for the given user is
 looked up, and the contents of its home directory field replaces ~<user> in the file name.

While typing a file name as part of a line of commands while screen editing, the tab character can
be used, as it is in some shells, to perform file name completion. However, NE provides only a
very simple form of this facility, and only for screen editing.

5.4 Obeying commands while screen editing
There are two ways in which commands can be obeyed while screen editing. The keystroke read-
command is a request to enter a line of commands from the keyboard. The cursor is moved to the
last line of the screen, and the prompt ‘NE>’ is output. The current position in the text being edited
(that is, where the cursor was when read-command was pressed) is displayed in inverse video.

A line of commands can now be constructed by typing in the normal way. If an error is noticed, the
arrow keys can be used to move the cursor back along the line, and correction can be carried out
using the normal screen editing facilities. When the command line is complete, pressing enter
causes NE to analyse it and, if there are no syntax errors, to obey it. If a syntax error is found,
none of the commands are obeyed.

The second way of causing commands to be obeyed is to execute a keystroke which has been
bound to one of the logical keystrokes keystring-1 to keystring-60. These cause the appropriate
function keystring to be obeyed as a line of commands, just as if it had been typed by the user in
response to the ‘NE>’ prompt.

If a keyboard has function keys, these are normally set up by default to cause the keystrings of the
same numbers to be obeyed. In addition, other keys are often bound to function keystrings, for
example ctrl/circumflex and ctrl/underline are bound by default to keystring-58 and keystring-59.

The contents of all the non-empty function keystrings can be seen by obeying the command

24 Lines of NE commands

 show keystrings

and the relationships between actual keystrokes and keystrings can be seen by obeying

show keys

which shows the current bindings of the ‘control-type’, ‘extra’, and ‘function-type’ keystrokes
[SHOW].

Keystrokes that execute function keystrings can also be used when the command prompt (‘NE>’),
or indeed any other prompt, has been output during screen editing. Any characters typed by the
user before pressing the key which activates a function keystring are ignored. For example, if a
context search in the forward direction fails, causing an error message to be output and leaving NE
waiting for a new line of commands, pressing keystring-17 causes a bf command to be obeyed; this
searches backwards for the same context.

The user can alter the function keystrings [FKEYSTRING]. It is also possible to change the relationship
between keystrokes and keystrings [KEY]. ‘Function-type’ keys can be set up to perform built-in
operations (for example, to delete a line) and ‘control-type’ keys can be associated with function
keystrings. That is why there are more function keystrings available than ‘function-type’
keystrokes.

When a line of commands is obeyed as a result of pressing a key that activates a function
keystring, it is displayed at the bottom of the screen exactly as if it had been typed interactively by
the user. If the command line executes successfully, this line is deleted. If, however, there is an
error, the area at the bottom of the screen expands, leaving the command line still visible.

NE keeps a stack of up to one hundred previous command lines. A command line is added to the
stack only if it is different to the previous command line. Lines on the stack can be recalled (one
by one) by pressing cursor-up or cursor-down when the command prompt is displayed. Cursor-
down cycles through the lines in historical order, starting from the oldest one on the stack, while
cursor-up cycles through them in the reverse order, starting from the most recently obeyed line.

A recalled line can be edited in the usual way before pressing enter to cause it to be analysed and
obeyed. At the start of an editing session the stack contains the text passed to NE via any automatic
initialization and the -opt argument.

After obeying a command line that produces no output, NE reverts immediately to screen editing.

NE arranges that any output generated as a result of analysing or obeying a command line (of
which error messages are a special case) is not wiped off the screen before the user has a chance to
read it. If the output is an error message, or if it was caused by the last command on the line, NE
outputs a further command prompt. This has the effect of keeping the cursor in the expanded area
at the bottom of the screen. Simply pressing enter causes NE to revert to screen editing and to re-
write the screen.

If non-error output is generated by a command which is not the last on a line, NE pauses after this
command is finished, and outputs the message

Press RETURN to continue

When enter is pressed, processing of the command line proceeds. Any characters that the user may
have typed before enter are ignored.

5.5 Long command lines while screen editing
If, while screen editing, a command line is entered that is too long to fit on the screen, NE scrolls
the command input area to the left as necessary. When a command line has been scrolled
horizontally, the scroll-left and scroll-right keystrokes can be used to view different parts of it, and
further scrolling to the left or right happens automatically if an attempt is made to move the cursor
past the edge of the screen.

The enter keystroke which terminates command entry can be typed at any time, wherever the
cursor is placed. It does not have to be at the end of the line.

Lines of NE commands 25

When a previous long command line is recalled for re-use, the last portion is displayed, with the
cursor at the end of the line. It can be scrolled for editing in the normal way.

5.6 Refreshing the screen
NE does not normally update the screen display while a line of commands is being obeyed. Once
the commands are finished, it inspects the current contents of the buffer and updates the screen as
necessary. (An exception to this rule occurs during the processing of interactive global commands,
when the screen is automatically updated if the user is to be prompted.)

Sometimes it is necessary to be able to force NE to make the screen display up-to-date in the
middle of a line of commands. The command

refresh

has this effect. (It is ignored if screen editing is not in operation.) Refresh does not cause NE to re-
draw the screen completely. It simply causes the updating that would have occurred had there been
no further commands on the line.

5.7 Summary
Command lines are available while screen editing as well as while editing line by line. They can be
entered from the keyboard or stored in function keystrings and obeyed by a single keystroke. Many
commands can be entered on one line, separated (in general) by semicolons. Commands may be
grouped, and both groups and individual commands may be preceded by a repeat count.

26 Lines of NE commands

 6. Context matching

Searching a file for a particular context is a very common operation when editing. NE provides the
means for performing very complicated kinds of search based on search expressions and qualified
strings. These are used in a number of different commands, so they are described separately in this
chapter.

The searching mechanism is based on the concept of matching a search argument against a line of
text. The result of a matching operation is either a failure to match, or two character positions
defining the start and the end of that part of the line which has matched the search argument.

6.1 Qualified strings
The simplest kind of search argument is a qualified string, and the simplest kind of qualified string
is just a sequence of characters enclosed in delimiters. When such an argument is matched against a
line, the match succeeds if the line contains the given sequence of characters. However, if any of
the characters involved are letters, the upper and lower case forms are treated as synonymous.
Thus, for example, if the search string is

/Milton Keynes/

then all the following lines match it:

The town of Milton Keynes is
 the town of milton keynes is
 THE TOWN OF MILTON KEYNES IS
 tHe tOWn Of MiLToN keYnes is

The automatic equating of the upper and lower case forms of the same letter can be disabled, either
by a qualifier, for a single qualified string (see below), or by a command [CASEMATCH] which
changes the default.

Frequently it is useful to apply additional constraints to search arguments. For example, occur-
rences of the string at the beginning of a line may be the only ones of interest. Such constraints are
specified by means of qualifiers which precede the string. Most of the available qualifiers take the
form of single letters (in either upper or lower case); one qualifier is a number, and one is a number
pair. No spaces are necessary between individual qualifiers if more than one is present on a single
string. They may be given in any order. Examples of qualified strings are given after the descrip-
tions of all the qualifiers.

6.1.1 The B qualifier
The b qualifier specifies that the string is to be matched at the beginning of the line only.
Occurrences of the string other than at the beginning of the line do not match. If a column qualifier
(see below) is also present, it changes the effect of the b qualifier so that the string matches only at
the beginning of the specified column, rather than at the beginning of the whole line.

6.1.2 The E qualifier
The e qualifier specifies that the string is to be matched at the end of the line only. Occurrences of
the string other than at the end of the line do not match. If a column qualifier (see below) is also
present, it changes the effect of the e qualifier so that the string matches only at the end of the
specified column, rather than at the end of the whole line.

6.1.3 The H qualifier
The h qualifier specifies that the string is to be matched at the current cursor position (‘here’) only.
This facility is intended mainly for use with conditional commands such as if and while. H can be
combined with p in order to test the rest of the line from the current cursor position (see below).

Context matching 27

6.1.4 The L qualifier
The l qualifier specifies that the search for the string in the line is to proceed in the reverse
direction to normal, that is, from right to left instead of left to right. This means that, if a match
occurs, it is the last occurrence on the line that is found. If a column qualifier (see below) is also
present, it changes the effect of the l qualifier so that, if a match occurs, it is the last occurrence in
the column, rather than the line, which is found.

6.1.5 The N qualifier
The n qualifier negates the result of the string match. If, taking into account all the other qualifiers,
the result of the match is a failure (that is, the line does not contain the string) then the n qualifier
converts it into a success, yielding the beginning and end of the line as pointers to a string that
does not contain the one searched for. If, on the other hand, the string is found in the line, the n
qualifier converts the result into a failure.

6.1.6 The P qualifier
If the p qualifier is present, the string match succeeds if the line contains precisely the given string,
that is, the line consists only of the string, with no other characters before or after it.

If a column qualifier (see below) is also present, it changes the effect of the p qualifier so that it is
the characters within the column which must match the given string precisely.

P can be used with a null string to match blank lines, or with a null string and a column qualifier to
search for lines longer than a particular length. It can also be used with the h qualifier to cause the
given string to be compared with the rest of the line, starting from the current cursor position. This
facility can be used to check whether the cursor is at the end of a line by specifying a null string.

6.1.7 The R qualifier
The r qualifier specifies that the characters in the string are not to be used for a literal match
against the line, but instead are to be interpreted as a regular expression. Regular expressions are a
powerful way of expressing complicated matching conditions; they are described in section 6.3.

6.1.8 The S qualifier
The s qualifier causes NE to ignore leading and trailing spaces when matching strings at the
beginnings or ends of lines. The letter ‘s’ is an abbrevation for ‘significant’. This qualifier is
normally used in conjunction with the b, e, or p qualifiers.

6.1.9 The U qualifier
The u qualifier causes NE to match letters in an un-cased manner – that is, upper and lower case
versions of the same letter are treated as the same letter. This is, of course, the default action of
NE. However, the default can be changed [CASEMATCH], and this qualifier is provided to override the
alternative default.

6.1.10 The V qualifier
The v qualifier causes NE to match letters in a verbatim manner – that is, upper and lower case
versions of the same letter are not treated as the same letter.

6.1.11 The W qualifier
The w qualifier causes NE to match the string as a word, in the following sense: if the string is
found in the line, the preceding and following characters are examined, if there are any. If either
character exists and is found to belong to the set of characters that are permitted in words, then the
match at that point in the line is cancelled, and NE carries on searching for another occurrence of
the string. The default set of characters for words is the set of letters and digits; this can be
changed by means of the word command (see Changing default operations).

28 Context matching

6.1.12 The X qualifier
If the x qualifier is present, the string is interpreted as a sequence of pairs of hexadecimal digits
representing the characters to be searched for. The characters specified by the hex pairs are always
matched in a verbatim manner, independent of the presence of the u qualifier or the setting of the
case matching default.

6.1.13 The repeat qualifier
A decimal number may appear as a qualifier. It specifies the number of times the string must be
found in a line for the match to succeed. For example,

3/elephant/

matches a line containing at least three occurrences of the string ‘elephant’, and yields pointers to
the third occurrence.

6.1.14 The column qualifier
The search for the string can be restricted to certain column positions in the line. The columns in a
line are numbered from one. Two numbers, giving the inclusive starting and ending columns, may
be given in square brackets, the numbers being separated by a comma. Either number may be
omitted. If only one number is given, only a single column is searched. If one number followed by
a comma is present, the search continues to the end of the line. If the first number is omitted but
the comma is present, the starting column is the beginning of the line. The presence of this qualifier
affects the behaviour of the b, e, l, and p qualifiers.

6.1.15 Combining qualifiers
Qualifiers may be combined in any sensible combination; nonsensical combinations are forbidden
and provoke an error message, as do repeated occurrences of the same qualifier. Only one of b, e, l
or p may appear on any one qualified string.

6.1.16 Matched strings
When a qualified string matches a line, it normally identifies a portion of the line which matches
the string. However, if the n qualifier is present, it is the whole line which is considered to have
been matched.

6.1.17 Examples of qualified strings
Some examples of qualified strings are shown below, together with a description of the character-
istics of lines that they match:

/abcd/ contains ‘abcd’
 3/abcd/ contains 3 occurrences of ‘abcd’
 [4,20]/abcd/ contains ‘abcd’ in columns 4– 20
 b/abcd/ begins with ‘abcd’
 e/xyz/ ends with ‘xyz’
 n/spqr/ does not contain ‘spqr ’
 nb/spqr/ does not begin with ‘spqr ’
 n3/spqr/ contains fewer than 3 occurrences of ‘spqr ’
 p// is an empty line
 [73,]np// contains characters after column 72
 sb/abcd/ begins with optional spaces, then ‘abcd’
 v/Milton/ contains ‘Milton’, as capitalized
 w/cat/ contains the word ‘cat’
 x/7E4D/ contains the two characters specified in hex

6.2 Search expressions
The simplest kind of search expression is a single qualified string, but more complicated search
expressions can be formed by combining qualified strings using the boolean operators ‘and’ and
‘or ’. Such a search expression is always enclosed in round brackets, and if it succeeds, it is the
whole line which is considered to have been matched.

Context matching 29

Within the brackets there are a number of search expressions, separated by one of the characters ‘&’
or ‘|’, meaning ‘and’ and ‘or’ respectively. For example,

(/cat/ & /dog/)

matches a line that contains both the strings ‘cat’ and ‘dog’. Note that the order of the strings
inside the brackets does not imply that the strings in the line are in the same order. The ‘or ’
operation is inclusive, so that

(/mouse/ | /elephant/)

matches a line that contains either or both of the strings ‘mouse’ or ’elephant’.

It is also permitted to have just a single qualified string inside brackets, and this behaves differently
from the unbracketed case. The results of matching /xxx/ and (/xxx/) (for example) are not
the same. The first matches part of a line; the second matches a whole line.

Because the items inside the brackets are search expressions in their own right, they can themselves
be enclosed in brackets. Brackets are often necessary when both operators are used, to specify the
order of combining the expressions. By default, the ‘and’ operator is more strongly binding that the
‘or ’ operator, so that an expression such as

(/abcd/ & /spqr/ | /xyz/)

is equivalent to

((/abcd/ & /spqr/) | /xyz/)

and it matches a line that either contains both ‘abcd’ and ‘spqr’ or contains ‘xyz’ (or all three, since
the ‘or’ operation is not exclusive).

Some of the qualifiers used in qualified strings can also be applied to complete search expressions
by placing them immediately before the opening bracket. The qualifiers that are permitted in this
position are:

N negation of match result
 U un-cased matching
 V verbatim matching
 W word matching

When used in this way the u and v qualifiers apply to any enclosed qualified strings that do not
themselves have a u or v qualifier. The following examples show equivalent search expressions:

n(/cat/ & /dog/) = (n/cat/ | n/dog/)
 uw(/cat/ | v/dog/) = (uw/cat/ | vw/dog/)

Search expressions permit quite complicated matching conditions to be expressed, but because they
impose no order on the different items in the line, there are certain kinds of search for which they
cannot be used.

6.3 Regular expressions
Regular expressions permit the expression of complicated kinds of matching condition which are
not possible with search expressions using ordinary qualified strings. A regular expression is
essentially a pattern or template which is matched to the line. Since a regular expression is itself a
kind of qualified string, it can form a component of a search expression if necessary.

The mechanisms for dealing with regular expressions are fairly complicated, because of the
generality that is possible. For this reason, regular expressions should only be used when necessary;
if the required matching condition can be expressed without their use, fewer resources will be
consumed by NE.

When a regular expression is used in a command which searches for a string and replaces it or
inserts another string alongside it (for example, the ge command), the replacement string can also
be subject to special interpretation. Details are given in the next chapter.

30 Context matching

The r qualifier, when present on a qualified string, causes NE to interpret the given string as a
pattern for a regular expression instead of an ordinary text string. Other qualifiers may also be
present, and have their usual effect. Within the pattern, certain characters take on a special
meaning, and these are called meta-characters.

If there are no meta-characters in the string, the effect is as though the r qualifier were not present
– except that NE consumes more resources. When matching a regular expression to a line, NE
always tries to find the longest matching portion of the line that it can.

The current version of NE supports only Perl-like regular expressions, by means of the PCRE
library. (Earlier versions supported a private syntax which was compatible with earlier Cambridge
editors E and Zed. Now that regular expressions syntax is fairly well standardized, the old format
has been dropped.)

The PCRE library must be installed in order to compile NE. A description of the regular
expressions that it supports can be found in its documentation.

Context matching 31

 7. Character string insertions

A number of NE commands cause the insertion of a character string into a line. Such an insertion
may replace an existing part of the line, or it may spread the line out to make room for the new
material. When part of a line is being replaced, there is no requirement for the new material to
contain the same number of characters. Replacement by a null string is one way of removing
characters from a line.

In most cases, the characters of the insertion string are not interpreted in any way. However, there
are three circumstances where this is not so. In all cases the special treatment of the string must be
explicitly requested by means of a string qualifier.

7.1 Wild replacements for regular expressions
When a string insertion forms part of a command that first matches a search expression against the
line (for example, the e or ge commands), and the search expression consists of a single regular
expression, the appearance of the qualifier r on the insertion string causes it not to be taken as a
literal string, but instead to be interpreted specially.

The character ‘$’ is a meta-character in the insertion string. It is the only such character. The
character following ‘$’ is treated specially, as follows:

• If the character following ‘$’ is the digit ‘0’, the entire matched string is copied into the
 insertion string at that point, replacing ‘%0’.

• If the character following ‘$’ is any other digit, the <n>th ‘captured substring’ is copied into
 the insertion string at that point.

• If the character following ‘$’ is not a digit, the ‘$’ is removed from the insertion string, and
 the following character is not interpreted. In particular, the string ‘$$’ is replaced by ‘$’.

Here are some examples to show what can be done using this facility.

ge r/0\d*/ r/($0)/

This command encloses in brackets any sequence of digits beginning with zero. Thus 0223 would
become (0223) and 081 would become (081).

ge r/\[(.)(.)(.)\]/ r/[$3$2$1]/

This command reverses the order of any three characters that appear in square brackets.

ge r/proc\s*([^(]+)\(([^)]*)\)/ r/proc $1($2,ierror)/

This command adds an extra argument, ‘ierror’, to simple procedure definitions (in some
programming language) that have only one argument (and no nested parentheses).

The r qualifier may be given on any insertion string. However, if the matching search expression
does not consist of a single regular expression, then only the meta-sequence ‘$0’ is useful. It is
replaced by the portion of the line which was matched, as described in the previous section. For
example,

e/expression/ r/($0)/

has the effect of enclosing the word ‘expression’ in brackets. If a digit greater than zero follows a
dollar sign, nothing is substituted into the string.

7.2 Hexadecimal insertion strings
An insertion string is interpreted as a sequence of pairs of hexadecimal digits if it is preceded by
the qualifier x. Such strings must contain an even number of characters. For example, the command

b// x/4c5d68/

32 Character string insertions

inserts at the current position the three characters whose hexadecimal codes are 4C, 5D and 68
respectively.

Both the x and the r qualifiers may appear simultaneously on an insertion string. In this case the
string can consist of a mixture of hexadecimal pairs and meta-sequences beginning with dollar
signs.

Character string insertions 33

 8. Procedures

When a sequence of NE commands is to be used repeatedly, it is often convenient to define it as a
named procedure. The name of a procedure can be any sequence of letters and digits, preceded by
a full stop. The following are valid procedure names:

.proc1 .x .special .r2d2

In the current version of NE, procedures are not permitted to have arguments.

A procedure is defined by means of the proc command:

proc <name> is <command or bracketed command sequence>

For example,

proc .moan is comment /There’s a problem here!/
 proc .next is (f/something/; 5<; 5#; b// /body/)
 proc .uc is until h/ / do %

The syntax for calling a procedure is simply to type its name. For example,

unless /moon/ do .moan
 5.next
 bf/capital/; .uc

Procedures may be called recursively; that is, a procedure may call itself, or a number of pro-
cedures may be mutually recursive. A nesting limit of 150 is imposed, to catch runaway cases.

A procedure definition can be cancelled by obeying the command

cproc <name>

This is necessary before the procedure name can be re-used.

34 Procedures

 9. Single-character commands

This chapter contains descriptions of all those NE commands which consist of a single special
character. With one exception (the ‘?’ command) they are all concerned with operating on the
character at the current point.

9.1 The ? command

The ? command is a request to NE to verify the current line. Two lines of output are always
generated; a third and fourth may be present if the cursor is not at the start of the line, and if the
line contains non-printing characters.

The first line of output contains the line’s number. If it has no number because it is an inserted line,
four asterisks are output.

The second line of output contains the text of the line. If the line contains only printing characters,
it is output in the normal way. If, however, there are any non-printing characters in the line, then
two lines of output are generated. The first contains any printing characters, together with the first
hexadecimal digits of the codes of any non-printing characters. The second line contains spaces in
the positions of printing characters, and the second hexadecimal digits of the codes of any non-
printing character.

If the cursor is not at the start of the line, an additional line of output is produced, containing the
character ‘>’ in the position before the cursor. Thus, in the following example,

451.
 first 0 second 1 third
 5 F
 >

The current line is number 451, and it contains two non-printing characters whose codes are 05 and
1F in hexadecimal. The cursor is positioned at the second of these characters.

Although the ? command is mostly used when operating in line-by-line mode with automatic
verification suppressed [VERIFY], it can be useful in screen mode for displaying the hexadecimal
values of any non-printing characters that a line may contain.

9.2 The > and < commands

These two commands move the current position one character to the right or left in the current line
respectively. They never cause another line to become current. If < is obeyed at the start of a line,
it has no effect. If > is obeyed at the end of a line it has the effect of moving the current point
beyond the end of the line. Neither of these commands is affected by the margin value. They are
both faulted if obeyed when the end-of-file pseudo-line is current.

9.3 The # command

The # command has the effect of deleting the character at the cursor position and closing up the
rest of the line by moving the remaining characters one place to the left. The cursor position is not
moved. A second # command therefore deletes the next character. If a known number of characters
are to be deleted, the standard repetition count mechanism can be used, for example

25#

Such repetition is optimised and is more efficient than obeying the equivalent number of successive
commands.

Single-character commands 35

9.4 The $, % and ~ commands
These commands operate on the case of the character at the cursor position, provided that it is a
letter. (Note that the case of whole lines can be forced by the ucl and lcl commands.) The single-
character commands act as follows:

$ force lower case (small letter) – Dollar for Down
 % force upper case (capital letter) – Percent for uP
 ~ change to the opposite case

If the current character is not a letter, no change is made to it. The cursor is always moved one
character position to the right after each of these commands, whether or not the current character
was a letter; a second occurrence therefore affects the following character. If a known number of
characters are to have their case changed, the standard repetition count mechanism can be used, for
example

25$

Such repetition is optimised and is more efficient than obeying the equivalent number of successive
$, % or ~ commands.

9.5 Single-character commands in line mode
When NE is being used as a line-by-line editor, the single-character commands can conveniently be
placed under the verification of the line they are to affect. The following example shows a line’s
verification followed by a line of single-character commands, and then the verification of the
changed line.

99.
 the quoick BROWN ffox
 ~>>>>>#>>>>$$$$$>#
 99.
 The quick brown fox
 >

The cursor is left immediately following the ‘>’ character, so subsequent single character com-
mands may be entered immediately. It is in order to make this kind of editing possible that NE does
not output its normal ‘NE>’ prompt in addition to line verification when operating line-by-line.

36 Single-character commands

 10. Search commands

Two commands are provided for searching forwards and backwards in the file. The command
names are f and bf, and they take a single search expression as an argument. A third command, df,
acts like f, but deletes the lines between the starting point and the found line. For example,

f/mousetrap/
 f bs/subroutine/
 bf (/if/ | /unless/ | /while/ | /until/)
 bf (rv/A#$dZ/ | p//)
 df/endproc/

10.1 The F command
For the f command, the search begins at the current point (including the character at the cursor
position) unless one of the following conditions holds:

• The cursor is past the last character in the line.

• The cursor is not at the start of a line and the search expression is a qualified string containing
 the b or p qualifiers.

• The cursor is not at the start of a line and the search is a line search. A line search is one
 which, if successful, results in the identification of a complete line, rather than a string within
 a line. If the argument to the f command is a search expression in brackets or a qualified
 string containing the n qualifier, the search is a line search.

In all of these cases, the search begins at the first character of the line which follows the current
line.

If the search expression is a qualified string containing the h qualifier, the search begins at the
cursor position. If the initial match fails, subsequent tests are applied at the start of each successive
line only. In other words, the h qualifier has the same effect as the b qualifier except on the first
line that is searched.

If the end of the file is reached without a match being found, an error message is generated and the
current point is not altered.

When a match is found, the current point is moved to just beyond the string or line which has been
identified. For a line search, therefore, the current point ends up just past the end of the line, while
for a string search (one that finds a string within a line) it is left just after the string. For example,
suppose the file contains the following line:

The quick brown fox jumps over the lazy dog.

Then the command

f /fox/

leaves the cursor on the space character after ‘fox’, but if the command

f n/kangaroo/

matches this line (because previous lines do contain ‘kangaroo’) then the cursor is left after the
final full stop.

10.2 The BF command
The bf command operates exactly as the f command, but in the opposite direction. That is, it
searches backwards from the current point. The search begins at the character preceding the current
point unless one of the following conditions holds:

Search commands 37

 • The cursor is at the first character in the line.

• The cursor is not past the end of a line and the search is a line search.

In both of these cases, the search begins at the last character of the line before the current line.

If the start of the file is reached without a match being found, an error message is generated and the
current point is not altered.

When a match is found, the current point is moved to the start of the string or line which has been
identified. For a line search, therefore, the current point ends up at the beginning of the line, while
for a string search it is left on the first character of the string. For example, suppose the file
contains the following line:

The quick brown fox jumps over the lazy dog.

Then the command

bf /fox/

leaves the cursor on the first character of ‘fox’, but if the command

bf n/kangaroo/

matches this line then the cursor is left at the beginning of the line.

10.3 The DF command
The df command operates exactly like the f command, except that all lines from the starting line
(inclusive) until the line before the new current line are deleted. If df fails to match, then no lines
are deleted.

10.4 Repeating search commands
An f, bf, or a df command can be given without an argument, in which case it repeats the most
recent search (which may have been an f, bf, or a df command) in the appropriate direction. When
screen editing, the keystring-7 and keystring-17 keystrokes (in their default settings) cause such an
f or bf command to be obeyed, respectively. If a successful f command is immediately followed by
bf without an argument (or vice versa) the effect is to move the current point to the other end of
the string or line which has just been found.

The general command repetition facility can also usefully be used with the f and bf commands. A
command such as

4f/white rabbits/

finds the fourth occurrence of the string ‘white rabbits’, starting from the current position.

38 Search commands

 11. Current point movement

There are, in addition to the search commands, a number of other commands which move the
current point about the file, and they are described in this chapter.

11.1 The > and < commands

These single-character commands for moving the current point within the current line have already
been described in chapter 9.

11.2 The BACK command

NE keeps a record of the twenty most recent regions of each buffer where modifications have taken
place. Roughly speaking, a ‘region’ corresponds to a screenful of lines. The command back returns
to the most recent region. By default, the keystroke keystring-59 (default ctrl/underline) obeys a
back command.

The following actions cause NE to start a new region:

• Any of the keystrokes scroll-up, scroll-down, scroll-top, or scroll-bottom.

• Scrolling caused by moving the cursor off the top or bottom of the screen;

• Obeying any of the commands f, bf, df, i, m, n, or p.

If a new region is selected, but no changes are then made to the file, then that region is not
remembered. In this state, obeying back once returns to the most recently changed region, and
pressing it a second time returns to the region before that. A succession of back commands (with
no intervening changes to the file) then cycles round the twenty most recently changed regions.

Once changes have been made in a region, it becomes eligible for remembering. If back is obeyed
in this state, the current region is remembered, and the cursor is moved to the previous region.
Obeying back a second time returns to the region where it was first pressed. A succession of back
commands (with no intervening changes to the file) then cycles round the changed regions.

Special action occurs when the i command is obeyed, either to insert a file or to insert lines directly
from the command input. Both the top and bottom of the inserted material are remembered as
separate regions. The cursor is left at the bottom of the inserted material; obeying back moves it to
the top of the inserted material. A second back moves to the bottom again, and subsequent back
commands then move to previously remembered regions.

Special action also occurs after a global command (ga, gb or ge), when back has the effect of
moving to the last position in the file that was altered by the global command. Previously altered
positions are not remembered.

The following types of use are envisaged for back:

• While making changes at one point in a file, other parts of the file are often consulted. A
 single keystroke brings the cursor back to the original area of editing.

• While editing a file, if scroll-top or scroll-bottom is pressed accidentally (which is quite easy
 to do on some keyboards) simply pressing keystring-59 is enough to return to the point of
 editing.

• A part of a file can be cut out, moved elsewhere, and then editing resumed at the cutting
 point.

• While writing a program, it is easy to switch between the head of a procedure (for declar-
 ations) and its body.

Current point movement 39

11.3 The M command
The m command is used to move to a particular line by reference to its line number. When the file
that is to be edited is read, the lines are counted, and each line is allocated the appropriate line
number. Lines retain these numbers for the duration of the editing session, unless the renumber
command is obeyed. Deleting a line does not result in a re-numbering of the subsequent lines, as
happens in some other editors.

New lines that are inserted into the file are un-numbered, and cannot become current via the m
command (unless the whole set of lines is subsequently renumbered with the renumber command).
Lines which are moved about in the file by cut-and-paste operations lose their numbers and behave
as inserted lines.

A single argument is required for the m command. It is either a string of decimal digits, or the
single character *, which is used conventionally to refer to the end of the file. There need not be a
space between the command and its argument. For example,

m1234
 m9
 m*
 m0

The lines in the file are numbered starting from one. However, the number zero is permitted as an
argument to the m command. It causes NE to move to the first line in the buffer, without regard to
its line number.

If an m command succeeds, the current position is moved to the first character of the appropriate
line; if it fails, the current position is not changed.

When screen editing, the keystrokes keystring-8 and keystring-18 are set up to obey the commands
m* and m0 respectively. The keystrokes scroll-bottom and scroll-top perform the same functions,
except that they do not alter the horizontal position of the current point. However, not all keyboards
have dedicated keys that can be bound to these functions.

11.4 The N command
The n command moves the current position to the first character of the next line in the file. It can
be used with a repeat count to move forwards by a given number of lines, for example

150n

If it is obeyed when the current line is the last in the file, the current point is moved to the start of
the end-of-file pseudo-line. This line becomes a real line only if characters are inserted into it (at
which point it ceases to be the end-of-file line). If n is obeyed while the end-of-file line is current,
an error is caused.

11.5 The P command
The p command moves the current position to the first character of the previous line in the file. It
can be used with a repeat count to move backwards by a given number of lines, for example

150p

If it is obeyed when the current line is the first in the file, an error is caused.

11.6 The PA and PB commands
The pa and pb commands move the cursor by context within the current line. The names of the
commands are abbreviations for ‘point before’ and ‘point after ’. Each takes a search expression as
an argument. The current line, starting from the current point, is matched against the search
expression. If there is no match, an error occurs. Otherwise the current point is moved to the first
character that matched (pb) or just after the last character that matched (pa). For example, if the
current line is

40 Current point movement

 Scherzo in G Op. 6

then the command

pa/zo/

places the cursor just after the word ‘Scherzo’.

11.7 The PLL and PLR commands
These two commands, which take no arguments, move the cursor to the extreme left or extreme
right of the current line, respectively. The command names are abbreviations for ‘pointer to line
left’ and ‘pointer to line right’, respectively. The keystrokes keystring-6 and keystring-16 are set up
by default to obey pll and plr.

When the current line is not wider than the screen, these commands are synonymous with the first-
char and last-char keystrokes respectively. When editing long lines, however, they move to the true
beginning and end of the line respectively, causing a horizontal scroll if necessary.

11.8 The TOPLINE command
The topline command has no effect unless NE is in screen editing mode. When this is the case,
topline causes the screen to be re-displayed with the current line at the top. The position of the
current point is not altered.

The keystroke keystring-58 (default ctrl/circumflex) is set up to call topline by default. Placing the
cursor on a particular line and pressing keystring-58 therefore has the effect of moving the line
where the cursor is to the top of the screen. Topline can also be useful in command lines such as

F/procedure/;topline

If topline appears in the middle of a command line, and subsequent commands on the same line
change which line is current, then the effect of topline may be lost. What happens when topline is
obeyed is that NE remembers the line which is current at that time. When the screen is subse-
quently re-drawn, if the current line (which might have been changed as the result of other
commands) will be visible with the remembered line at the top of the screen, then the screen is
written like that. Otherwise, the information saved by topline is ignored. Thus, the following two
command lines are not equivalent:

m23; topline; p
 m23; p; topline

For this reason, topline should normally be the last command in a line.

Current point movement 41

 12. Changing the current line

This chapter describes a number of commands for making changes to the current line. In addition,
there are a number of single-character commands which affect the contents of the current line.
These are described in chapter 9.

12.1 The A, B and E commands
These three commands make contextual changes to the current line. Each takes two arguments: a
search expression that defines which part of the current line is to be altered, and an insertion string
to be put into the line. The difference between the commands is that

• The a command inserts the string after the text which matches the search expression;

• The b command inserts the string before the text which matches the search expression;

• The e command exchanges the text which matches the search expression for the insertion
 string.

The search for the given context in the current line starts at the cursor position. After the command
is obeyed, the cursor is moved so that it follows the last affected character in the line. For example,
if the current line is

In describing the experiences of the

with the cursor at the start of the line, then after obeying the command

a/describing/ / briefly/

the line becomes

In describing briefly the experiences of the

and the cursor is left following the word ‘briefly’. If the commands

b/experiences/ /novel /; e/the/ /a/

are now obeyed, the line becomes

In describing briefly the novel experiences of a

Note that is is the second occurrence of the word ‘the’ which is changed, because the cursor is left
after ‘experiences’ by the b command.

If an a, b or e command has a first argument which specifies a line search, that is, it contains the n
qualifier or is enclosed in brackets, then the current position must be at the start of a line. If this is
not the case, an error occurs.

The a, b and e commands can be given without any arguments, in which case they operate by re-
using the arguments for the most recent such command.

12.2 The DTA and DTB commands
These two commands delete characters from the line, starting at the cursor position, and ending
either after or before a matched qualified string, respectively. For example,

dta w/foxes/

There is an error if the qualified string does not match on the current line.

12.3 The LCL and UCL commands
These two commands have the effect of converting any letters in the current line at and following
the cursor position to lower case or upper case respectively. The cursor is moved to just beyond the
end of the line, unless it was already further to the right.

42 Changing the current line

 13. Inserting text into the file

There are a number of ways of inserting text into a file. The cut and paste facilities are described in
the chapter on screen editing, and the equivalent commands are described in the chapter entitled
Keystroke commands. The use of the i command for inserting whole files is described in the chapter
entitled File operations. The remaining commands are described here.

13.1 The I command
The i command can be used to insert a whole file into the text, and this is described in the chapter
on file operations. It can also be used to insert lines of text from the command stream. If i is
obeyed with no argument, it causes successive lines of command input to be inserted into the edited
file before the current line, until a line containing only the letter ‘z’ (in upper or lower case) is
encountered. This line serves to terminate the insertion; it is not itself inserted into the file. For
example, to insert some lines before line 345:

m345; i
 Here are some inserted lines
 to go before line 345.
 z

The cursor position is not changed by the i command. This form of the i command is normally
used when editing line-by-line, but it can be used while screen editing, in which case the input
takes place in the command area at the bottom of the screen.

If NE is running interactively, it prompts for each successive line of insertion only if screen editing
is in progress. The prompt text is the string ‘NE<’ instead of the normal command prompt ‘NE>’.
No prompts are given in line-by-line mode.

13.2 The ICURRENT command
The icurrent command has no arguments. It has the effect of inserting a copy of the current line
immediately before the current line. The cursor position is not changed. The command repetition
facility can be used with icurrent to replicate a line any number of times.

13.3 The ILINE command
The iline command can be used to insert a single line of text before the current line. It takes a
delimited string as an argument – this is the text of the line to be inserted. The cursor position is
not changed. The argument of iline may be given with the x qualifier, in order to specify a new line
as a string of hexadecimal pairs representing the characters of the line.

Inserting text into the file 43

 14. Splitting and joining lines

When screen editing, lines can be split and joined using the split-line and concatenate keystrokes,
as described in chapter 3 above. There are also the following commands for performing these
operations.

14.1 The SA and SB commands
These commands split the current line after or before a given context, respectively. They take a
single search expression as an argument. For example, if the current line is

The cow jumped over the moon

then the command

sa/jumped/

turns it into the following two lines:

The cow jumped
 over the moon

The search for the given context takes place in the current line only, starting from the cursor
position.

By default, the second part of a split line is made into a new line with its first character in column
one. It is, however, possible to arrange that this line is given the same indent as the previous one,
by using the autoalign command to set autoalign mode. For details, see the chapter entitled
Changing default operations below.

14.2 The CL command
The cl command concatenates the current line with the following line. It may be followed by an
optional string argument, which defines a string of characters to be inserted between the two lines.
The cursor is left at the start of what was the second line. If the cursor is beyond the end of a line
when cl is obeyed, spaces are added to the line to lengthen it to the cursor position before the
second line is joined on.

The cl command can take a hexadecimal string as its (optional) argument, for example:

cl x/0d/

44 Splitting and joining lines

 15. Deleting parts of the file

Several ways of deleting text exist. The dmarked command is an exact analogue of the screen
editing keystroke delete-marked, and is described in the chapter entitled Keystroke commands. The
df command is described in the section 10.3.

15.1 The DLINE command
The dline command, which takes no arguments, deletes the current line from the file and moves the
cursor to the first character of the following line. The normal command repetition facilities can be
used to delete a number of lines. For example

23dline

deletes twenty-three lines, starting from the current line.

15.2 The DREST command
The drest command, which takes no arguments, deletes the current line and the remainder of the
file which follows it. The use of drest speeds up NE’s processing, because it does not need to read
from the disc those lines which it has not yet got in main memory.

Deleting parts of the file 45

 16. Restoring deleted text

The undelete command, which by default is bound to keystring-4, retrieves deleted characters and
lines. Up to 100 deleted lines are remembered, in reverse order. Deleted characters are held in a
packed form, and up to 64 consecutive characters can be held in one ‘line’ for this purpose.

Undeleted characters are inserted back into the text at the current point, and NE remembers
whether they were deleted forwards or backwards, so that a sequence of character deletes followed
by a sequence of undeletes should put the text back as it was. Undeleted lines are treated as text to
be inserted at the current point.

Text deleted with commands such as e/a//b is also added to the undelete stack, as is text cut out
with the delete command (the ctrl/q keystroke). Text cut or copied to the cut buffer is not added to
the undelete stack.

Note that this does not provide a general ‘undo’ facility.

46 Restoring deleted text

 17. Formatting commands

When new text is being entered into the file while screen editing, the position of the right-hand
margin controls the maximum width of line that can be entered without special action. The user can
type input continuously, without ever pressing the split-line (i.e. return) key – this is known as
power typing. When the right-hand margin is passed, the line is automatically split at the previous
space character, which is itself deleted from the text. If there is no previous space character on the
line, it is split immediately after the character in the right-hand margin position, leaving a line that
is full right up to the margin.

The second half of a split line is made into a new line with its first character in column one. It is
possible, however, to arrange for it to have the same indent as the previous line, by using the
autoalign command. For details, see the chapter entitled Changing default operations below.

17.1 The CENTRE command
The centre command centres the current line, ignoring leading spaces, within the current margin
value.

17.2 The RMARGIN command
The default margin value is one less than the width of the screen (typically 79). If NE is being run
from a window-based terminal emulator such as xterm, then the width of the window is used. The
margin can be altered by means of the rmargin command, which takes three forms:

• If given without an argument, it disables the margin without forgetting its position or, if the
 margin is already disabled, it enables it at the previously-remembered position. This form of
 the rmargin command is used by the keystring-10 keystroke. On the screen display, the
 position of the first character beyond the maximum line width is shown by a vertical bar or a
 backslash in the separator lines, depending on whether the margin is enabled or disabled.
 When the margin is disabled, no automatic line splitting takes place.

• Rmargin can also be followed by one of the words on or off which have the effect of
 enabling or disabling the margin, respectively, without changing its position.

• If rmargin is followed by a number, it sets the margin position and enables the margin,
 whatever its previous state. The margin position need not coincide with the edge of the screen.
 The number specifies the maximum line width required.

The margin value affects only two features of NE:

(1) It always controls the width of lines produced by the format command, whether it is enabled
 or not.

(2) When it is enabled, it defines the column at which a data character causes automatic line
 splitting (the ‘power typing’ column).

Characters typed beyond the margin do not cause line splitting.

17.3 The BEGINPAR and ENDPAR commands
The beginpar command is used to specify an alternative definition of the beginning of a paragraph
for use by the format command. It takes a single search expression as its argument; lines which
match the search expression are valid paragraph beginnings. The default state is equivalent to

beginpar nps//

That is, a line must contain a character other than a space to be recognized as the start of a
paragraph, unless beginpar has been used to specify otherwise.

Similarly, the definition of the end of a paragraph can be specified by the user by means of the
endpar command. Any lines that match the search expression are taken by format as being ‘end of

Formatting commands 47

paragraph’ lines; the preceding paragraph is terminated when such a line is reached. The default
state is equivalent to the command

endpar (p// | b/ /)

That is, a completely empty line or a line beginning with a space terminates a paragraph unless
endpar has been used to specify otherwise.

As an example of the use of beginpar and endpar, consider the editing of a file that is input to the
SGCAL formatting program. Changes to the text may result in lines that contain only a few words,
or lines that are longer than the width of the screen, and it is often convenient to reformat
paragraphs while editing, even though this is not strictly necessary. However, lines which begin
with a full stop are not part of the text, and should never be re-formatted. The commands

beginpar (nps// & nb/./); endpar (p// | b/ / | b/./)

are therefore appropriate in these circumstances.

17.4 The FORMAT command
As well as controlling the length of input lines on the screen, the right-hand margin interacts with
the format command. This command, which has no arguments, causes the rest of the current
paragraph of text to be reformatted so that its lines are of maximum length within the current
margin. (The keystring-20 keystroke issues a format command.) Disabling the right-hand margin
does not affect the operation of the format command; it still uses the current margin setting.

If the current line is the end-of-file line when format is obeyed, no action is taken. Otherwise the
current line is checked to see whether it is valid as the start of a paragraph. By default, any line
that is not completely empty starts a paragraph.

If format is obeyed when the current line does not match the beginning of paragraph search
expression, the only action taken is to move the cursor to the start of the following line.

When the current line does match, the re-formatting operation begins with the current line, and
ends with the line preceding the next ‘end of paragraph’ line (which is defined below). The effect is
as if the entire paragraph is made into one long line and then split up again so as to fit the
maximum number of words into each resulting line, none of which can be longer than the margin
value. A word, in this context, is any sequence of characters not including a space.

When two lines are joined together, a single space is inserted between them, unless there is already
a space at the end of the first line or the beginning of the second, or unless either line is empty.
When lines are split, space characters at the splitting position are removed. Apart from this, no
changes are made to the paragraph. Sequences of multiple spaces, for example, remain. After
format has been obeyed, the current point is left at the start of the line following the re-formatted
paragraph.

The format command works automatically on paragraphs that start with a tag on each line, for
example, paragraphs like:

This paragraph
 # has a # at the start
 # of each line.

A tag is recognized if it consists of 10 or fewer characters from the following set: # % * + = | ~ <
> and space. If a paragraph consists of only one line (before formatting), such a tag is always
recognized. If there is more than one line, the first two must start with identical tags, and the
paragraph will end at a non-matching line.

If a tag begins with a space, which is the case with indented paragraphs, this feature does not work
with the default settings of beginpar and endpar because an indented line is treated as ending the
paragraph. However, this can be changed, and if you want this to be the default, you can put
appropriate settings in your .nerc file.

You have to set endpar not to treat line starting with a space as a paragraph end. Also, you must
use the h instead of the b qualifier for both commands if you want to be able to detect paragraph

48 Formatting commands

starts and ends among a sequence of flagged lines (for instance, while replying to an email and
wanting to format quoted paragraphs). For example you could use:

beginpar(nphs//); endpar(phs//)

Because format leaves the current point on the line following the paragraph, a number of para-
graphs can be formatted at once by a command such as

10format

or by pressing keystring-20 a number of times in succession while screen editing. Note that the
count must allow for any blank lines between paragraphs.

Formatting commands 49

 18. Global changes

It is often necessary to make systematic changes in a file, for example to change the spelling or
capitalization of a particular word. Three commands which operate in a similar way are provided
for this purpose.

18.1 The GA, GB, and GE commands
Each command takes two arguments, a search expression and an insertion string. The only differ-
ence between the commands is the way in which each change is made:

• The ga command inserts the string after each occurrence of text which matches the search
 expression;

• The gb command inserts the string before each occurrence of text which matches the search
 expression;

• The ge command exchanges the text which matches the search expression for the insertion
 string.

For example, to change the word ‘bit’ to the word ‘piece’ throughout a file, the command

ge w/bit/ /piece/

would be used. The qualifier ‘w’ (word) ensures that words such as ‘bite’ do not get changed to
‘piecee’.

If a search expression enclosed in brackets is used as the first argument, it is a complete line which
is matched. The command

ga (np// & n/ /) / **/

adds two asterisks to any line that is not empty, but contains no spaces.

If a regular expression is used as the first argument, then the second argument (the insertion string)
can be interpreted specially, by use of the r qualifier. In this case the character ‘%’ is used to trigger
the insertion of wild strings encountered during the matching process. The insertion string may also
be given in hexadecimal, if the x qualifier is used. Details of both these facilities are given in
chapter 7.

A global command can be given with no arguments, in which case it re-uses the arguments of the
most recent global command.

A global command searches forwards in the file from the current point until the end of the file or
the global marker (see below) is reached. The search is carried out in exactly the same way as for
the f command. When a global command finishes normally, the current point is restored to what it
was at the start. Therefore, a repeated global command or a number of global commands on the
same command line all act from the same point in the file.

If no match is found, an error occurs if editing is interactive. When NE is running non-interactively,
the absence of any matches is not an error. The file is unchanged and the current position unaltered.

When a match is found, the subsequent action depends on whether NE is running interactively
or not.

18.2 Interactive global commands
When NE is running interactively, the global commands interact with the user, making it possible to
change some of the matched strings and not others. When a match is found, NE behaves as
follows:

If screen editing is taking place, the screen is updated to show the new current position, with the
characters which matched shown in inverse video. When it is necessary to re-draw the screen to do

50 Global changes

this, the line containing the matched characters is placed near the top, in an attempt to minimize the
amount of screen updating during the global command. In line-by-line mode the line which
matched is verified. Then the prompt

Change, Skip, Once, Last, All, Finish, Quit or Error?

is displayed, and NE waits for the user to reply. The reply must be the first letter of one of the
words in the prompt string, followed by enter; the possible actions are as follows:

• Change: the line is changed, and NE searches for the next match, starting from the character
 following the matched or inserted text, whichever is the rightmost in the line.

• Skip: the line is not changed; NE searches for the next occurrence of the search expression
 starting from the character following the matched text.

• Once: the line is changed, and the global command then terminates. The current point is put
 back to where it was at the start of the command.

• Last: the line is changed, and the global command then terminates. The current point remains
 immediately after the last change.

• All: the line is changed, and NE searches for the next match. All subsequent matching strings
 are changed without prompting. When the end of file (or global marker – see below) is
 reached, the command terminates and the current point is put back to where it was at the start.

• Finish: the line is not changed, but the global command terminates. The current point is put
 back to where it was at the start.

• Quit: the line is not changed, but the global command terminates. The current point is not put
 back to where it was at the start.

• Error: the line is not changed, but the global command terminates abnormally (though no error
 message is given). This means that any further commands that were given on the same
 command line are not obeyed, and NE awaits a new line of commands. The current point is
 put back to where it was at the start of the global command.

It is possible to give several responses in a single reply to a global interaction prompt. For
example,

cccssc

means ‘change three occurrences, skip two, then change one more’. Furthermore, repeat counts can
be embedded in the string. The following response has the same meaning:

3c2sc

Spaces are allowed in the reply string and are ignored. If the response string contains anything
other than spaces, digits, or the allowed response letters, it is rejected before any action is taken,
and the prompt is re-issued.

After one prompt has been given, reaching the end of the file or the global marker is no longer an
error. If it happens, the message ‘no more’ is output, and the command terminates.

At the end of an interactive global command, NE displays the number of matches and the number
of changes made at the bottom of the screen, and the cursor is reset to where it was before the
command began executing, except when either the ‘q’ or ‘l’ response was used to terminate it.
This happens whether or not the command was successful.

18.3 Non-interactive global commands

When NE is running non-interactively, a global command always affects all occurences of any text
which matches the search expression, between the current point and the end of the file or the global
marker. If no occurrence is found, however, no error occurs. At the end of the command the cursor
is reset to where it was before the command began executing.

Global changes 51

If a ga, gb or ge command is obeyed from inside a command file called by the c, cbuffer, or
cdbuffer commands, it behaves in non-interactive fashion, and does not prompt for confirmation
before making changes.

18.4 Continuing after a match
When a global command resumes searching the file after a match, it starts at the first character
beyond the string that it has just matched. This avoids any problems with accidental recursion.
However, it can sometimes lead to unexpected results. For example, the following command might
be expected to replace all occurrences of a double space between words by a single space:

ge r/$l $l/ r/%1 %2/

However, if a word consisting of only one letter has double spaces on either side of it, this
command changes only the first pair of spaces. If it is required, as in this example, to re-scan
previous text, then combinations of other NE commands must be used instead of a global
command.

18.5 Null strings in global commands
The use of a null string as the first argument in a global command is forbidden, unless one of the
qualifiers b, e or p appears. For example,

gb b// /*/
 ga e// / !!/

When such a global is obeyed in screen mode, and a prompt is issued, a single character is
displayed in inverse video to indicate the position of the null string. It is the character following the
string’s position.

18.6 Globals with margins or long lines
The right-hand margin setting does not affect the operation of the global commands; the entire text
of each line is searched, as for the f command. The margin is automatically disabled for the
duration of each global command.

Automatic scrolling of the window to left or right occurs as necessary to show the matched text.
For a ga command the window is adjusted so as to show the end of the text; for the other
commands it is the beginning of the text which is always shown.

18.7 The global marker
Global commands normally operate from the current point to the end of the file.

However, an endpoint can be set earlier in the file. This takes the form of a marker similar to those
used for block and multi-line operations. It is set and unset when screen editing by the keystroke
mark-global, (default ctrl/n) exactly like the other marks, and the message

Global limit set

appears at the bottom of the screen when it is set [MARK]. Only one kind of mark can be set at one
time.

The global limit marks the end of the search for a match when a global command is being obeyed.
If the current point is past the global mark when the search is started, the limit has no effect.
Global commands always work forwards through the file.

52 Global changes

 19. Buffer handling

An NE buffer is a separate area of memory which can hold text for editing. As well as its contents
(lines of text), a buffer has an associated file name, a title, and a right-hand margin. The title is by
default the same as the file name, and is displayed in the bottom separator line when screen editing.
Each buffer has a number, starting from zero. Buffer zero is automatically created when NE is
entered. Other buffers may also be created during initialization if more than one input file name is
given on the command line.

As well as the numbered buffers, there is one special buffer known as the cut buffer which is used
for holding text which has been cut or copied from the file. Its use is described in section 3.11
(Cutting, pasting and block deletion).

The description of NE so far has assumed that a single file is being edited at any one time. In fact,
NE makes it possible to edit more than one file at once, and to move material between files as
necessary.

19.1 The TITLE command
The title command can be used to change a buffer ’s title string. The title is the string which is used
in all displays and prompts to identify the buffer. By default it is the same as the name of the file
associated with the buffer; the makebuffer, newbuffer, load, and name commands, which set up
new file names, also set the title to be the same as the file name. The save command does the same
when it changes a buffer ’s file name.

The argument to title is in the same format as a file name, that is, it can be an undelimited string,
terminated only by end of line or semicolon. However, the standard file name delimiters can be
used if required, and are necessary if the string contains a semicolon or begins with a backslash.

19.2 The RENUMBER command
The renumber command causes all the lines in the current buffer to be renumbered, starting from
one. Whichever line is current remains current after the renumbering, though its number may be
changed.

19.3 The DETRAIL command
NE normally takes no special action over trailing spaces in text lines. They are treated like any
other character. However, the detrail command is provided to vary this action. It can be used in
two ways:

• If detrail appears with no arguments, it causes all trailing spaces in the current buffer to be
 deleted.

• If detrail appears followed by the word ‘output’, then trailing spaces are removed from each
 line when it is output.

19.4 The NEWBUFFER or NE command
The newbuffer command is used to create additional buffers. The ne command is a synonym for
newbuffer. There is no limit to the number of buffers that may exist, other than that imposed by
the amount of available memory. If newbuffer is obeyed without an argument, it creates an empty
buffer, with no associated file name. If the command name is followed by a file name, that name
becomes associated with the new buffer and the contents of the file are read into the new buffer for
editing. The title of the new buffer is set to the file name. If the name of a non-existent file is
given, some operating systems may create an empty file (possibly only if an appropriate option is
given); others may force an error. The right-hand margin is copied from the current buffer for
newly-created buffers.

Buffer handling 53

If the current buffer is marked read-only, then the newly-created buffer is also so marked.

When a newbuffer command is successfully obeyed, NE automatically selects the new buffer as
the current editing buffer. In the screen display, an additional item appears in the bottom separator
line when more than one buffer exists. It is the number of the displayed buffer, enclosed in square
brackets, following the file name. Any commands which follow newbuffer on the same line are
applied to the new buffer; for example

newbuffer another.file; f/something/

creates a new buffer, reads the file another.file into it, and searches for the word ‘something’
in the new file.

19.5 The MAKEBUFFER command
This command operates like newbuffer, but allows (indeed, requires) the user to specify the
number of the buffer which is being created, for example:

makebuffer 19 somefile

If a buffer of that number already exists, an error occurs. The newly-created buffer is not made the
current buffer, in contrast to the behaviour of newbuffer. This command is useful in NE command
files where the number of the buffer is needed for use in other commands.

19.6 The BUFFER command
The buffer command is used to switch between existing buffers. If given without an argument, it
cycles round the buffers in reverse order of creation. However, an explicit buffer number can be
given as an argument if required. The keystring-1 keystroke is set up by default to obey a buffer
command with no argument.

19.7 The PBUFFER command
The pbuffer command (‘previous buffer ’) operates like buffer, but cycles through the buffers in
the opposite order. By default, keystring-11 is set up to obey pbuffer.

19.8 The NAME command
The name command is used to change the file name associated with a buffer (or to give a name to
a buffer that was created without one); it takes a file name as an argument. This command also sets
the title of the buffer to the new file name. Changing the file name of a buffer has the effect of
marking the buffer ‘changed’, so that when the NE run ends normally, the contents of the buffer are
written to the named file (subject to user confirmation if interactive).

19.9 The DCUT command
The dcut command deletes the contents of the cut buffer. This command is only necessary when
the cutting style is set to ‘append’ [CUTSTYLE], as otherwise each cutting operation overwrites what
is already in the buffer. The dcut command does not prompt if the cut buffer has not been pasted;
it can therefore sometimes be of use in command sequences as a means of suppressing this prompt.

19.10 The DBUFFER command
The dbuffer command deletes all the lines in a buffer, closes any associated files, and then deletes
the buffer itself, unless it is the only buffer. Dbuffer can take a buffer number as an argument, or
can be given on its own, in which case it refers to the current buffer.

If the object of dbuffer is the current buffer and there are no other buffers, then the effect is simply
to delete all the lines in the buffer and close any associated files. If there are other buffers, then the
effect is as if a buffer command had been obeyed first (i.e. the previous buffer is selected), and
then the object buffer is completely destroyed.

54 Buffer handling

If the contents of the object buffer have not been saved, NE prompts and asks for confirmation
before proceeding with a dbuffer command when running interactively, unless prompting has been
suppressed by means of the prompt or warn commands.

19.11 Copying between buffers
Copying or moving data between buffers can be carried out using the standard cut-and-paste
operations. There is only one cut buffer, so the process is as follows when editing on the screen:

• The source buffer is selected, and the text or rectangle is cut or copied to the cut buffer
 in the usual way, using the keystrokes mark-text, mark-rectangle, cut-copy and cut-delete as
 appropriate.

• The destination buffer is selected, the cursor is moved to the insertion position, and the text or
 rectangle pasted in using the keystroke paste.

When using one buffer solely as a source of text for insertion in another, it is better to use the cut-
copy keystroke rather than cut-delete because this avoids marking the source buffer as ‘changed’.

An alternative way of inserting a complete file is to use the i command, which is described in the
next chapter.

Buffer handling 55

 20. File operations

This chapter contains descriptions of those NE commands that operate on whole files. The format
of file names is system-dependent, and details are given in the chapters describing each system’s
interface.

20.1 Loading a new file
The load command takes a file name as an argument. It causes all the lines in the current buffer to
be deleted and any associated files to be closed. The named file is then opened for input, and its
contents read into the current buffer. The title of the buffer is set to the file name.

If the contents of the current buffer have not been saved, NE prompts and asks for confirmation
before proceeding with a load command when running interactively, unless prompting has been
disabled by means of the prompt or warn commands.

20.2 Inserting files
To insert the entire contents of a file into the text which is being edited, the i command is used,
taking as its argument the name of the file to be inserted. The i command can be used in another
form for inserting in-line material; this is described in chapter 13 above. An example of the use of i
for inserting a whole file is

i myfile

The lines of the file are inserted immediately prior to the current line. The actual position of the
current point in the current line is not relevant, but it is not altered.

If a back command is obeyed immediately after an i command, it moves the current point to the
top of the inserted material.

The newly inserted lines do not have line numbers, as they are not part of the original file which is
being edited. It is therefore not possible to move around in the new text by means of the m
command, unless all the lines in the buffer are renumbered [RENUMBER].

An alternative way of merging files is to use a second editing buffer and cut-and-paste operations.
In this case it is possible to use the m command to move around the second file.

20.3 Saving files
The save command is used to cause the contents of the current buffer to be written to a file,
without leaving NE. The command can be given with or without a file name as an argument.

If save is given without an argument, the file name associated with the current buffer is used by
default. (The name command can be used to change the file name associated with the current
buffer.) If NE is running interactively when save is obeyed without an argument, it issues the
prompt

Write to <buffer title>? (Y/N/TO filename)

unless there is no name associated with the buffer, in which case the prompt is

Write? (N/TO filename)

If prompting for the buffer has been disabled by means of the prompt command, then a prompt is
issued only when there is no associated file name.

When a prompt is issued, if the reply is y or yes, the contents of the current buffer are written to
the file whose name is displayed. The buffer is marked ‘not changed’ so that if no further changes
are made to the contents, NE will not attempt to write them again when it is finishing. The y
response is only valid for the first form of the prompt.

56 File operations

If the reply is n or no it is assumed that a mistake has been made; NE abandons the current line of
commands and issues its standard prompt for another command line.

A reply of the form to <filename> is a request to write the contents of the buffer to an alternative
file. NE attempts to open this file and write the text to it instead of to the file named in the prompt.
Provided the file is successfully opened, the buffer is marked ‘not changed’ and its name and title
are changed to the new file name.

If the save command is given with a file name as an argument there is no prompting; the effect the
same as when a new file name is given in response to the prompt.

20.4 The WRITE command
The write command is used to write the contents of the current buffer to a file, without changing
the name of the buffer (cf save). It is always followed by a file name as an argument.

If a line mark has been set (by means of mark-line on the screen, or via the mark command) then
only those lines between the marked line and the current line, inclusive, are written to the file.
Otherwise the entire contents of the current buffer are written.

The mark may precede, follow, or be on the current line. It is automatically removed by the write
command unless it has been ‘held’ by pressing mark-line twice.

20.5 The BACKUP command
NE does not at present contain any facilities for automatically backup up the state of the editing
session.

However, there is a fairly widely established convention for renaming files that are about to be
over-written. If the command

backup files on

is obeyed, then, when an output file is to be opened for the first time in an editing session, any
existing file of that name is renamed by inserting a tilde at the start of its name.

The word ‘on’ can be replaced by ‘off ’ to turn this facility off during an editing session. If the
command is given with neither ‘on’ nor ‘off ’, then the state of the option is inverted.

File operations 57

 21. Editing large files

Normally, NE loads complete files into main memory for editing, making it possible to move to
any point in the file at will. On some systems the amount of main memory is limited, and so large
files cannot be edited in this manner.

NE contains some simple support for handling such files. A buffer can be marked as a stream
buffer, in which case it is permitted to contain no more than a certain number of lines. When the
number of lines exceeds the maximum, earlier lines are written to the output file. There is no
support for rewinding; this is a one-pass scheme.

A command of the form

ne <input-file> -to <output-file> -stream [<n>]

is used to edit a file in stream mode. The -to option is mandatory if -stream is given. The number
after -stream is the maximum number of lines to be held in the buffer at any one time. If omitted,
it defaults to 1000. The minimum permitted value is 500.

From within NE, an existing non-stream buffer can be converted to a stream buffer by the
command

stream <output-file>

This sets up the output file for the stream, and writes out any initial lines if the buffer is already
over the limit. A stream buffer cannot be turned back into a normal buffer.

The streammax command can be used to change the line number limit on an existing stream
buffer. It also sets the limit for any buffers that are subsequently made into stream buffers.

The show buffers command outputs ‘stream’ instead of giving a line count for stream buffers.

A number of commands are not permitted in stream buffers (for example, renmumber). The save
command is permitted with no argument; it writes the rest of the file to the output, and then deletes
the buffer. This makes it possible to load and process files in stream mode without exiting
from NE.

When the -stream option is used on the command line, the output file is opened early, before any
commands have been obeyed. Therefore the use of the backup command in an initialization string
or the -opt option does not affect it. If it is desired to apply the backup files option to a stream
output file, the stream command should be used instead of the -stream option.

58 Editing large files

 22. Conditional commands

The commands if and unless can be used to control whether other commands are obeyed according
to the result of certain tests. The syntax is

if <condition> then <command> [[;] else <command>]
 unless <condition> do <command> [[;] else <command>]

where <command> is either a single NE command or a group of commands enclosed in round
brackets. The command or command group may be empty. The else part of these commands is
optional, and may optionally be preceded by a semicolon. The keywords then and do are synony-
mous, and can be used interchangeably.

The conditional commands can be continued over several lines of input, provided that the line
breaks occur within round brackets, and between commands. If the entire command is enclosed in
round brackets, or if it is being read from a non-interactive source of input, then a line break
immediately before else is also permitted.

The <condition> can take one of the following forms:

• If <condition> is a search expression, then this is tested against the current line. If it matches,
 then <condition> is ‘true’; otherwise it is ‘false’.

• If <condition> is the word eof then <condition> is ‘true’ if the current line is the end-of-file
 line.

• If <condition> is the word sof then <condition> is ‘true’ if the current line is the first line of
 the file, and the cursor is at its start.

• If <condition> is the word sol then <condition> is ‘true’ if the cursor is at the start of the
 current line.

• If <condition> is the word eol then <condition> is ‘true’ if the cursor is at the end of the
 current line.

• If <condition> is the word mark then <condition> is ‘true’ if the current line is marked by the
 line (mark-line) mark.

• If <condition> is of the form

prompt <delimited string>

and NE is running interactively, the user is prompted with the given string, and must reply
 with yes, y, no or n. If the answer is affirmative, then <condition> is ‘true’; otherwise it is
 ‘false’. If NE is not running interactively, <condition> is always ‘true’.

When <condition> is ‘true’ the then part of an if command is obeyed; when it is ‘false’ the else
part, if any, is obeyed. For an unless command, the opposite occurs.

Here are some examples of conditional commands:

if mark then break;

if eof then (comment/Reached EOF/; stop)

if /cat/ then (
 comment/It’s a cat/
) else (
 comment/It’s not a cat/
)

unless (/pig/ & n/brown/) do dline

(if prompt/Shall I?/ then e/something//other thing/
 else comment/OK, I haven’t/)

Conditional commands 59

The brackets surrounding the final example would be needed only if it were typed in interactively,
to prevent the entire if comment being terminated by the line break before else. In non-interactive
input, these brackets could be omitted, because NE looks ahead to check for else before terminating
an if command at the end of a line.

Note that if more than one command is to be conditionally obeyed, they must be enclosed in round
brackets. If the brackets were omitted in the second example above, then the stop command would
always be obeyed as it would not be part of the if command.

60 Conditional commands

 23. Looping commands

NE contains several commands which can be used to generate loops and change the flow of control
within them.

23.1 The WHILE and UNTIL commands
These two commands set up a loop which is obeyed while or until a given condition is true,
respectively. Their syntax is

while <condition> do <command>
 until <condition> do <command>

where <condition> and <command> take exactly the same form as for the conditional commands
are described in the previous chapter, except that <command> may not be empty.

Because it is such a common case, the pseudo-command uteof is provided as an abbreviation for

until eof do

Thus the following two commands are equivalent:

until eof do (f/cat/; b///tle/)
 uteof (f/cat/; b///tle)

When a loop has eof as its ending condition, the loop ends when the current line is the end-of-file
line at the testing point (that is, when control is at the first or only command), or when an attempt
is made to move beyond the end-of-file line by means of the f, df, n or cl commands, or if one of
the commands <, >, #, $, %, ~, a, b, or e is attempted on the end-of-file line. In the examples
immediately above, for instance, the end of file is reached during the processing of the f command.
When this happens, the loop terminates normally, without error.

23.2 The REPEAT command
The repeat command takes a single command or a command group as its argument. This is
repeatedly obeyed until an error occurs or the loop is explicitly terminated by a loop or break
command.

23.3 The LOOP and BREAK commands
The loop command causes a jump to the repeat point of the textually enclosing looping command.
The break command causes a jump to just beyond the end of the textually enclosing looping
command. For example,

repeat (n;
 if /last/ then break;
 if /skip/ then loop;
 t1)

when applied to a file containing the lines

The quick brown fox
 of literary repute
 was skipping
 over the trees
 when last seen.

causes the following output to be generated:

of literary repute
 over the trees

Looping commands 61

Both the loop and the break commands can be followed by a numerical argument which specifies
the number of nested loops to be considered. Thus

break 2

jumps out of two nested loops, for example, while

loop 3

resumes execution at the repeat point of the third textually enclosing loop. Supplying no argument
to either of these commands is equivalent to supplying the argument 1.

62 Looping commands

 24. Information displays

The show command in NE is provided for the purpose of displaying information about the current
state of the editor. It must be followed by a word indicating the information required. During screen
editing, the output appears in the expanded message area at the bottom of the screen. In order to
give the user time to read it, NE does not immediately return to screen editing, but outputs either a
command prompt, if the command was the last on a command line, or the prompt

Press RETURN to continue

otherwise. In the latter case, pressing enter causes NE to proceed to the next command on the line.

24.1 Which are ‘word’ characters?
The command

show wordchars

causes NE to display the list of characters that are set as being ‘word’ characters.

24.2 Switch settings
The command

show settings

causes NE to display the state of a number of option settings, such as the eightbit character display
option. The values for the readonly and prompt options apply to the current buffer only.

24.3 Contents of a buffer
The command

show wordcount

displays a line count, word count, and character count for the current buffer. A word in this context
is any sequence of characters delimited by one or more spaces or the end of a line. The character
count does not include the line separator characters (carriage return and/or linefeed) which are used
on some systems to separate lines in files. The same file should produce the same output on all
implementations.

24.4 Information about buffers
The command

show buffers

causes a summary of the current contents of NE’s editing buffers to be output. For each non-stream
buffer a line of the form

Buffer <n> <m> lines [(modified)] <title>

is output, where <n> is the buffer number, <m> is the number of lines in the buffer, and <title> is
the title attached to the buffer, which defaults to the file name. The text ‘(modified)’ is included if
the contents of the buffer have been changed since it was last saved. Otherwise spaces appear in
this position. If there is no name attached to the buffer, the text ‘<unnamed>’ is output in the title
position.

If the number of lines is followed by a plus sign, as for example in

Buffer 0 22+ lines (modified) &t

it means that not all of the file has yet been read into main storage. The number given is the
number of lines read so far.

Information displays 63

For stream buffers, the information given is

Buffer <n> stream [(modified)] <title>

since the total number of lines is not known because only part of the file is held in main memory at
any time.

If the cut buffer is not empty, a line of information about it is also output in the format

Cut buffer <n> lines [(pasted)] <type>

where <n> is the number of lines and <type> is one of the strings ‘<text>’ or ‘<rectangle>’. The
text ‘(pasted)’ is included if the cut buffer has been pasted at least once. Otherwise blanks appear
in this field.

24.5 Command information

The command

show commands

causes a multi-column list of NE’s command names to be output.

24.6 Keystroke information

The command

show keys

which is obeyed when keystring-9 is pressed, causes NE to display the definitions of three sets of
keystrokes: control keys, extra keys, and function keys. It is equivalent to the three commands

show ckeys
 show xkeys
 show fkeys

which are described below. Because the amount of information is typically too great to fit on the
screen, NE pauses between each set and outputs the message

Press RETURN to continue

to give the user a chance to read the output.

24.7 Control keystrokes

The command

show ckeys

causes NE to display the definitions of all the ‘control-type’ keystrokes that have any effect. (See
Changing keystroke defaults for how to change the definitions of certain keystrokes.) These are the
keystrokes that are implemented by means of the CTRL key in many cases. In the default state, a
short phrase describing the action of each keystroke is given.

24.8 Extra keystrokes

The command

show xkeys

causes NE to display details of usable keystrokes that are neither ‘control-type’ nor ‘function-type’.
Some of these (for example, the DELETE keystroke) may be configurable by the user, while others
may be fixed in meaning, depending on the particular implementation of NE.

64 Information displays

24.9 Function keystrokes
The command

show fkeys

which is obeyed when keystring-19 is pressed, causes NE to display the definitions of all the
‘function-type’ keystrokes that have any effect. These are the keystrokes that are implemented by
function keys in many cases. In the default state, each function keystroke with a number no greater
than 20 causes the corresponding function keystring to be obeyed as a line of commands. These
strings are shown in double-quote marks in the output of this command.

24.10 Keystroke actions
The command

show keyactions

causes NE to display a list of action abbreviations which can be bound to keystrokes by means of
the key command. A short description is given with each one.

24.11 Function keystrings
The command

show keystrings

causes NE to display the definitions of all the function keystrings that are set. Function keystrings
should not be confused with ‘function-type’ keystrokes – they are explained in detail in the chapter
entitled Changing keystroke defaults.

Information displays 65

 25. Keyboard interruptions

NE can normally be interrupted from the keyboard during its operation by the conventional ctrl/c
keystroke. The logical keystroke name interrupt is used as a general name for whatever is needed
to generate an interruption.

25.1 The effect of an interruption
If NE is running non-interactively, a keyboard interruption causes the NE run to be abandoned with
an error return code.

If NE is accepting screen-editing keystrokes the interruption has no effect.

If NE is in the middle of reading a logical line of interactive commands which consists of several
lines of input (using round brackets to indicate a continuation), a keyboard interruption can be used
to abandon the entire logical line, once the first actual line has been read. Before the first line is
complete, the usual keystrokes for cancelling an input line can be used to abandon it.

If NE is obeying a line of commands, it interrupts its processing at the end of the current command
and outputs the message

** Keyboard interrupt

It then waits for a new line of commands to be typed in.

25.2 Interruptable commands
Normally, NE completes the current command before checking for a keyboard interruption.
However, there are some commands that can be interrupted in the middle of their processing.
They are

f bf df ga gb ge i repeat t tl until while

Keyboard interrupts are also recognized while scanning through large files as a result of the scroll-
bottom keystroke, and also while obeying the command M* on a partially-read input file.

The looping commands stop as soon as one of the commands in the argument group is halted by an
interruption. The others stop after a complete cycle of their action. For an interactive i command, a
keyboard interruption is equivalent to a terminator line. After an interrupted f, df, or bf command,
the current point in the file is unchanged.

The behaviour of NE in regard to keyboard interruptions when it is running another program as a
result of a command line beginning with * is system-dependent. However, it is normally the case
that unless the called program deals with the interruption itself, it is aborted, and control returns
to NE.

25.3 The ATTN command
When setting up procedures or sequences of commands to be obeyed in an NE session it is
sometimes desirable to inhibit the taking of interruptions throughout a particular group of com-
mands. For example, if there is a command sequence which updates two files, it may not be
desirable for it to be aborted when only one file has been updated.

The NE command attn off suppresses NE’s checks for keyboard interruptions until cancelled by
the command attn on. (‘Attn’ is an abbreviation for ‘attention’.) If an interruption occurs in the
disabled state it is not forgotten, and will be taken immediately the next attn on command is
obeyed. Thus, ‘critical sections’ of NE commands should be bracketed with attn commands:

attn off
 <update first file>
 <update second file>
 attn on

66 Keyboard interruptions

However, to give a means of escape from erroneous command sequences, NE always notices a
second interruption, even when attn off has been obeyed.

Keyboard interruptions 67

 26. Leaving NE

The stop command causes an immediate abandonment of the NE session. No files are written, and
the contents of all the editing buffers are lost. A return code indicating an error exit is passed back
to the operating system.

It is easy to forget that you are editing more than one thing at once, and using stop to give up on
one file can have the effect of losing data from another. For this reason, when stop is obeyed
interactively, a check is made to see if any buffers other than the current one have been modified
but not saved. If one such buffer is found, a message of the form

Buffer <n> (<title>) has been modified but not saved.

is output, while if more than one is found, the message is

Some buffers have been modified but not saved.

This is followed by the prompt

Continue with STOP command (Y/N)?

This check is disabled if the warn command has been used to disable warnings. In addition, there
is a second command, abandon, which acts like stop, but which bypasses the checks and never
prompts.

The w (windup) command is the normal way to terminate NE. (The keystring-3 keystroke causes a
w command to be obeyed.) It causes NE to scan through the editing buffers in turn, checking for
any that are marked ‘changed’. Each such buffer is a candidate for being written back to its
associated file. However, if NE is running interactively, a prompt is output and the user is given an
opportunity to prevent this writing back, or to specify an alternate file name.

Before scanning the buffers, NE checks to see whether there is text in the cut buffer that has never
been pasted. If such unpasted text is found, the message

The contents of the cut buffer have not been pasted.

is output, followed by up to three lines from the start of the cut buffer. If NE is running
interactively, this is followed by the prompt

Continue with W command (Y/N)?

If the user ’s reply is y or yes, the w command proceeds and the contents of the cut buffer are lost.
If the reply is n or no, the w command is abandoned, and NE issues a new command prompt.

When NE is running non-interactively, the warning message is output, but of course there is no
opportunity of saving the contents of the cut buffer.

The current buffer is considered first. If it has been changed (since the last save command) and NE
is running interactively, the prompt

Write [buffer <n>] to <buffer title>?
 (Y/N/TO filename/Discard/STOP)

is output, where <buffer title> is the title associated with the buffer (defaulting to the file name).
The text ‘buffer <n>’ is omitted if only one buffer exists and its number is zero (the very simplest
case).

If there is no file name associated with the buffer, the prompt takes the form

Write [buffer <n>]? (N/TO filename/Discard/STOP)

The user must give one of the five possible replies, terminated by enter. If an empty or erroneous
line is entered, an error message is output, and the prompt is repeated.

If the reply is y or yes then the contents of the buffer are written to the named file. This reply is
only valid for the first form of the prompt.

68 Leaving NE

If the reply is n or no, a mistake is assumed to have occurred. NE abandons the w command at this
point, and issues a prompt for a new line of commands.

A reply of the form to <filename> is a request to write the contents of the buffer to an alternative
file. NE attempts to open this file and write the contents of the buffer to it instead of to the file
named in the prompt. If the file is successfully opened, it becomes the associated file for the buffer.
This is only relevant, of course, if there is a subsequent error that prevents the w command from
completing.

If the reply is d or discard then the contents of the buffer are not written, but no error occurs. NE
proceeds normally to consider the next buffer, if any.

If the reply is stop NE does not write the current buffer. It abandons the w command, and obeys a
stop command instead (see the description of stop above).

The prompting sequence that has just been described can be suppressed by obeying the command
prompt off while the buffer is current. In this case, provided there is a file name associated with
the buffer, its contents are always written out without comment (assuming they have changed, of
course). However, if the buffer has no file name, prompting always takes place.

If the current buffer is not marked ‘changed’, then one of the following messages is output, as
appropriate:

No changes made to <buffer title>
 No changes made to <buffer title> since last SAVE

If the buffer has no title, then the text ‘buffer <number>’ is used instead. NE then considers all the
other editing buffers, in turn. For any that are marked ‘changed’, the prompt

Write buffer <n>
 to <buffer title>? (Y/N/TO filename/Discard/STOP)

is output, and the responses are as described above. If there is no file name associated with the
buffer, the prompt is changed in the same manner as for the current buffer. No output is produced
for any buffers that are not marked ‘changed’.

If NE completes its scan of all the editing buffers without any error or negative responses to the
prompts, it returns control to the operating system with a return code indicating a successful run.

If there is an error while attempting to open or write to a file, or if the user replies no to any
prompt, NE does not exit, but prompts for a line of user commands. At this point, the buffer which
was being considered at the time of the error has become the current buffer. Any NE commands
can be entered; in particular, if the error was due to a mis-spelled file name, the w command can be
retried. Prompting restarts with the new current buffer; any buffers that were successfully written
out before the error are no longer marked ‘changed’ and so do not appear in this second prompt
sequence.

Leaving NE 69

 27. Changing default operations

A number of commands are provided for changing the way in which NE performs certain
operations.

27.1 The AUTOALIGN command

The autoalign command is used to specify how split lines are to be aligned.

autoalign on

specifies that whenever a line is split (whether by means of the sa or sb commands, or by the split-

line keystroke, or as a result of power typing), the newly created line must be aligned with the
previous line. For example, if the line

pack my box with five dozen liquor jugs

is split after the word ‘five’, the result is

pack my box with five
 dozen liquor jugs

In the default state, which can be restored by the command

autoalign off

the result of such a splitting would be

pack my box with five
 dozen liquor jugs

Autoalign may also appear without an argument, in which case NE switches to the opposite state
to that which is current. When automatic alignment is enabled, the letter ‘A’ is added to the three
mode letters that are displayed in the lower separator line on the screen.

27.2 The CASEMATCH command

By default NE performs character comparison operations in a case-independent manner when
matching a qualified string to a line. That is, upper-case (capital) letters are considered to be equal
to their lower-case (small) equivalents. This action can be overridden by the use of the v (verbatim)
qualifier on an individual qualified string, but it is also possible to change the default by means of
the casematch command.

casematch on

specifies that the cases of letters must be identical for a match to take place, while

casematch off

restores the initial situation. The current state of the case matching switch is displayed in the lower
separator line on an NE screen, as one of the letters ‘U’ or ‘V’. Casematch without an argument
switches to the other state from whatever state is current.

When case matching has been selected, it is possible to overrule it for an individual qualified string
by the use of the u (uncased) qualifier. The v or u qualifier can always be used to specify exactly
what is wanted for a particular matching operation, overriding whichever default is selected by
casematch.

Neither the case matching default, nor the v or u qualifiers have any effect on characters that are
specified in hexadecimal, whether by means of the x qualifier or by the use of $h in a regular
expression.

70 Changing default operations

27.3 The CUTSTYLE command

When a portion of text or a rectangle is cut or copied to the cut buffer (see Cutting and pasting) it
normally replaces any previous data in the buffer. Sometimes it is convenient to arrange for the
new data to be added to the end of the cut buffer instead. This is specified by the command

cutstyle append

When this option is in effect, there is no warning when additional material is added to an unpasted
cut buffer. The default action can be restored by the command

cutstyle replace

Cutstyle without an argument selects the opposite action from whatever is currently selected. The
current state of this switch is displayed in the lower separator line on an NE screen, as one of the
letters ‘A’ or ‘R’.

When new data is being appended, an explicit command, dcut, must be obeyed in order to empty
the cut buffer. This command can also be obeyed in the replacement state, though it is not normally
necessary.

If several rectangles are joined together by cutting them when in the appending state, they are
placed one below the other, and the resulting rectangle has the width of the widest of its constitu-
ents. Its depth is the sum of the depths of the constituents.

When text blocks and rectangles are joined together, the type of the result is the type of the last
item cut or copied. If, for example, a rectangle is appended to a text block, any subsequent paste
operation pastes the data as though it were a rectangle. The width is the greater of the width of the
rectangle and the longest line in the text.

27.4 The EIGHTBIT command

By default, NE is very conservative in choosing which characters it is prepared to display in screen
mode. It has stuck to the printable ASCII characters with codes in the range 32–126, and displayed
any other data characters as question marks. In some environments, however, so-called ‘top-bit-set’
or ‘eightbit’ characters with codes in the range 160–255 are meaningful, and are used for additional
graphics.

The eightbit command controls whether NE displays these additional characters or not. It can be
called with either of the argument words ON or OFF; if called with no argument, it changes to the
opposite state. The default setting is OFF.

27.5 The OVERSTRIKE command

NE normally operates in ‘insert mode’ when screen editing is taking place. This means that any
character typed by the user is inserted into the current line at the cursor position, and the remainder
of the characters in the line are moved to the right by one position for each character so inserted.

Occasionally it is useful to be able to operate in ‘overstrike mode’, where characters typed by the
user replace whatever is already in the line at the cursor position. The overstrike command is used
to select this state; its argument can be one of the words on or off, or it can be given without an
argument, in which case it changes to the opposite state. The current state is displayed in the
separator line at the bottom of the screen as one of the letters ‘I’ (for insert) or ‘O’ (for overstrike).

The keystroke ctrl/o is by default set up to obey the overstrike command, via function keystring
60, in most implementations of NE. Pressing this key has the effect of swapping between insert and
overstrike modes.

When operating in overstrike mode, all control keystrokes have their usual effects – split-line still
splits the line, delete-here still closes up the line, and so on.

Changing default operations 71

27.6 The PROMPT command
The prompt command sets and resets a flag in the current buffer which causes the prompting that
normally happens when a dbuffer, load, save or w command is obeyed to be suppressed. It takes
as its argument one of the words ‘on’ or ‘off ’. When prompting is switched off, the buffer is
always written out as if an affirmative reply to the prompt had been given.

In the case of the save and w commands, if the current buffer does not have an associated file
name then prompting is not suppressed, even if prompt off has been obeyed.

This facility is useful when constructing command procedures which use NE as a data input
mechanism. It is tedious for the user to have to reply to NE’s request to write to some temporary
file (used internally by the procedure, and therefore not of significance to the user) as well as to the
command procedure’s own prompt.

If there is any error while attempting to write the buffer to a file (non-existent file, overlong lines,
etc.) then the prompting flag is automatically turned on so that prompting will occur if an attempt is
made to write the file again.

27.7 The READONLY command
The readonly command sets and resets a flag in the current buffer which prevents any updating of
the buffer. It takes as its argument one of the words ‘on’ or ‘off ’; if called without an argument the
state of the flag is inverted. Any new buffer that is created when a read-only buffer is current is
also marked read-only. The -readonly command line option can be used to set the read-only flag
for the first buffer.

When NE is operating as a screen editor, the first status letter in the lower separator line is set to
‘R’ for read-only buffers (as opposed to ‘I’ for insert mode or ‘O’ for overstrike mode).

27.8 The SET command
The set command is used to change the values of parameters that control the way NE behaves. The
following are available:

Set autovscroll <n> sets the number of lines of vertical scrolling that occur when the cursor hits
the top or bottom of the screen. The default value is system-dependent, but is normally one.

Set splitscrollrow <n> controls NE’s behaviour when splitting lines on the screen. When a line is
split as a result of user input, there is a choice between scrolling the upper part of the screen
upwards, or the lower part downwards. By default, NE always scrolls downwards except when the
cursor is within five lines of the bottom of the screen. The argument <n> is a number which
specifies the number of lines from the bottom of the screen at which the change of scrolling is to
take place. The default is equivalent to

set splitscrollrow 5

The argument cannot be less than one, and it if is greater than the number of lines on the screen,
the change takes place on the second row.

Set oldcommentstyle causes NE to recognize a single backslash character as introducing comments
in command lines, as did its prececessor, the E editor. Set newcommentstyle restores the default,
which requires two successive backslashes. Changing the style does not take effect until the
following line of commands is read.

27.9 The WARN command
The warn command disables and enables various NE warning messages. It can be followed by one
of the words on or off; if it appears with no argument it causes NE to change to the opposite state.

By default, warnings are enabled. Warn off suppresses warnings that are otherwise given in the
following circumstances:

72 Changing default operations

 • When a cut operation is attempted and there is unpasted material in the cut buffer.

• When termination of NE is attempted and there is unpasted material in the cut buffer.

• When a load command is obeyed and the contents of the current buffer have been changed
 and not yet saved.

• When a dbuffer command is obeyed and the contents of the current buffer have been changed
 and not yet saved.

With respect to buffers, warn off acts as a global prompt off command. Wherever NE would have
prompted for confirmation (e.g. before saving a file or before obeying stop with some unsaved
buffers), it behaves as if an affirmative response to the prompt has been given.

27.10 The WORD command
The word command allows the user to change the definition of what constitutes a ‘word’, as used
in qualified strings via the w qualifier and by the word-left and word-right keystrokes. It takes a
single string as an argument. The string contains those characters that are to be considered as
forming ‘words’. Ranges of letters or digits can be specified by using the hyphen character. If a
hyphen itself is required in a word, then the character must be preceded by a double quote
character in the string. This rule also applies to the double quote character itself. The default state
is equivalent to

word /a-zA-Z0-9/

Note that it is necessary to specify upper and lower case letters explicitly.

Changing default operations 73

 28. Keystroke commands

There are a number of commands which perform the same actions as the keystrokes that are
available when screen editing. The commands are provided for use when editing non-interactively,
or for building up complicated sequences in function keystrings or procedures. Full details of the
actions of the associated keystrokes are given in chapter 3, and are not repeated here.

28.1 The MARK command
The mark command must be followed by one of the words limit, line (or lines), text, rectangle or
unset. It has the effect of setting the appropriate mark (limit sets the ‘global mark’) at the current
position, or unsetting it if unset is given. However, if a mark of any sort is already set, an error
occurs.

After mark line the word hold can appear. This sets the line mark in such a way that it is not
automatically deleted after being used in a bulk line operation other than ‘delete line’. It is
equivalent to pressing mark-line twice while screen editing.

28.2 The CSU and CSD commands
These commands have the effect of moving the current point (cursor) up or down one line,
respectively, without changing its horizontal position in the line.

28.3 The ALIGN command
This command operates on the current line, and has exactly the same effect as the equivalent
keystroke; it aligns the line so that the first printing character is at the position of the current point.
If a line mark is set, the command operates on the sequence of lines delimited by the mark and the
current line, inclusive.

28.4 The CLOSEBACK and CLOSEUP commands
These commands operate on the current line, and have exactly the same effect as the equivalent
keystrokes:

• Closeback closes up the line by removing spaces immediately prior to the current point.

• Closeup closes up the line by removing spaces at the current point.

If a line mark is set, these commands operate on the sequence of lines delimited by the mark and
the current line, inclusive.

28.5 The DLEFT and DRIGHT commands
These commands operate on the current line, and have exactly the same effect as the equivalent
keystrokes:

• Dleft deletes all characters in the line to the left of the current point.

• Dright deletes the character at the current point and all those to the right of it in the current
 line.

If a line mark is set, these commands operate on the sequence of lines delimited by the mark and
the current line, inclusive.

28.6 The DLINE command
This command deletes the current line, or a sequence of lines from the line mark to the current line.
The current point is left at the start of the line following the last deleted line. In this respect it
differs from the delete-line keystroke.

74 Keystroke commands

28.7 The DTWL and DTWR commands
The dtwl command deletes characters to the left in the current line, starting at the character
preceding the cursor position, and ending with the character at which a word-left cursor-moving
operation would stop. In other words, it deletes back to the start of the previous word.

The dtwr command deletes characters to the right in the current line, starting from the character at
the cursor, and ending at the last character before the next position in which a word-right cursor-
moving operation would stop. In other words, it deletes everthing from the current position to the
start of the next word.

Note that, unlike the word-left and word-right keystrokes, these operations never move to a
different current line. If issued at the start of end of a line (respectively), they have no effect.

28.8 The CUT and COPY commands
These commands perform the same operations as the equivalent keystrokes.

28.9 The PASTE command
When given without an argument, this command performs the same operation as the paste
keystroke, that is, the contents of the cut buffer are pasted into the current buffer at the cursor
position. However, paste may optionally be followed by a buffer number, in which case the
insertion of the data takes place in the buffer of that number instead of the current buffer.

28.10 The DMARKED command
This command deletes the text or rectangle delimited by the text or rectangular block marker and
the current point.

28.11 The ISPACE command
This command inserts a rectangle of spaces into the text. The rectangle is defined by the rectangu-
lar mark and the current point.

Keystroke commands 75

 29. Changing keystroke defaults

The screen editing operations of NE have been described in terms of logical keystrokes such as
delete-previous and scroll-bottom. The relationship between these keystrokes and actual
keypresses is a two-stage one.

The main part of NE, which is independent of any particular terminal or operating system, relates
the logical keystrokes to idealized ‘actual control keystrokes’. These are divided into three groups:

(1) ‘Control-type’ keystrokes are those that are commonly produced with the aid of the CTRL key;
 there are 31 of these, named control-a to control-z, control-[, control-\, control-], control-^,
 and control-_.

(2) ‘Function-type’ keystrokes are those that are commonly produced with the aid of function
 keys.

(3) The remaining ‘actual control keystrokes’ are produced by dedicated keys or are artifacts of
 the terminal handlers. (An example of the latter is a ‘keystroke’ that is manufactured if a
 character is typed at the right-hand margin.)

The relationship between ‘actual control keystrokes’ and keypresses on the terminal’s keyboard is a
function of the particular terminal driver which is being used. The terminal-specific chapters of this
document give details for the many different cases.

The relationships between ‘actual control keystrokes’ and logical keystrokes are not all fixed within
NE, and most of them can be changed by the user to taste. Two different kinds of action can be
specified for an individual ‘actual control keystroke’.

• A single, primitive editing action, which is built into NE, may be performed. Examples are
 moving the cursor to the left of the screen, or deleting a line. This occurs when the ‘actual
 control keystroke’ is bound to a logical keystroke other than keystring-1 – keystring-60.

• An arbitrary line of NE commands may be obeyed. This is achieved by binding to one of
 keystring-1 – keystring-60, and thereby associating the ‘actual control keystroke’ with one of
 sixty function keystrings that are stored by NE.

29.1 Function keystrings
The contents of any of the function keystrings strings can be changed by the command

fkeystring <n> <string>

where <n> is a number between 1 and 60 inclusive. Because this command is frequently used in
initialization sequences for NE, which are limited in length by some operating systems, the
abbreviation fks is provided. For example, to set up keystring 15 to create a new editing buffer, the
command

fkeystring 15 "newbuffer"

could be used. If no text string is supplied, the keystring becomes unset. The default contents of the
function keystrings are shown in the following table. Those that are not listed are empty.

1 "buffer" 16 "plr"
 3 "w" 17 "bf"
 4 "undelete" 18 "m0"
 6 "pll" 19 "show fkeys"
 7 "f" 20 "format"
 8 "m*" 58 "topline"
 9 "show keys" 59 "back"
 10 "rmargin" 60 "overstrike"

The command

76 Changing keystroke defaults

 show keystrings

can be used to display the contents of those function keystrings that are set. The line of commands
for each keystring is displayed inside quotes.

29.2 Keystroke binding
The key command is used to specify keystroke bindings, that is, to determine the relationship
between ‘actual control keystrokes’ and logical control keystrokes.

The command is followed by one or more definitions, separated by commas. Each definition
consists of a key identification and a key definition, separated by an equals sign. The key
identification is either

(1) A number in the range 1– 30, signifying one of the function-type keystrokes.

(2) A single letter or one of the characters ‘^’, ‘\’, ’]’ or ’_’, signifying one of the control-type
 keystrokes.

(3) One of the following names, signifying the corresponding special keystroke:

up up arrow key
 down down arrow key
 left left arrow key
 right right arrow key
 delete delete (or del) key
 del delete (or del) key
 backspace backspace key
 bsp backspace key
 return return key
 ret return key
 tab tab key
 insert insert key
 ins insert key
 home home key
 pageup page up key
 pup page up key
 pagedown page down key
 pdown page down key
 end end key
 copy copy key

(4) One of the above names preceded by either or both of ‘s/’ (signifying ‘shift’) or ‘c/’
 (signifying ‘ctrl’), for example

s/up up arrow key with SHIFT

 s/c/ins insert key with SHIFT and CTRL

Only a subset of the special key names is available in any given implementation of NE, depending
on the terminal driver which is being used. In particular, some systems do not recognize the use of
SHIFT and CTRL in conjunction with the arrow keys.

These key names refer to keys that are available in addition to the keys on the keyboard used with
CTRL. In some versions of NE, for example, return cannot be distinguished from ctrl/m, and in
these cases the key names ‘ret’ and ‘return’ are not available.

Changing the meaning of the return key, either as a synonym of ctrl/m or as a separate key,
applies only while editing the main text window on the screen. When a line of NE commands is
being entered, return always terminates it, that is, it acts as the logical enter key.

The second part of each definition, which defines which logical keystroke is to be bound, is either

(1) A number in the range 1– 60, signifying the corresponding keystring-n logical keystroke; or

Changing keystroke defaults 77

(2) One of the following mnemonics, signifying the corresponding logical keystroke.

mnemonic logical key action

al align-line align with cursor
 alp align-previous align with previous line
 cat concatenate concatenate with previous line
 cl close-up close up to the right
 clb close-back close up to the left
 co cut-copy copy to cut buffer
 csd cursor-down cursor down
 csl cursor-left cursor left
 csle end-line cursor to true line end
 csls start-line cursor to true line start
 csnl newline cursor to next line (start)
 csr cursor-right cursor right
 cssbr bottom-right cursor to screen bottom right
 cssl screen-left cursor to screen left
 csstl top-left cursor to screen top left
 csptb previous-tab cursor to previous tab stop
 cstb next-tab cursor to next tab stop
 cstl first-char cursor to text left on screen
 cstr last-char cursor to text right on screen
 csu cursor-up cursor up
 cswl word-left cursor move left by a word
 cswr word-right cursor move right by a word
 cu cut-delete cut to cut buffer
 dal delete-left delete all chars to left
 dar delete-right delete all chars to right
 dc delete-here delete character
 de delete-marked delete marked text
 dl delete-line delete line
 dp delete-previous delete previous character
 dtwl delete-to-word-left delete to word left
 dtwr delete-to-word-right delete to word right
 gm mark-global global mark
 lb mark-line line(s) begin (mark lines)
 pa paste paste
 rb mark-rectangle rectangle begin
 rc read-command read command line
 rf refresh refresh screen
 rs rectangle-spaces rectangle space insert
 sb scroll-bottom scroll to bottom of file
 sd scroll-down scroll down
 sl scroll-left scroll left
 sp split-line split line
 sr scroll-right scroll right
 st scroll-top scroll to top of file
 su scroll-up scroll up
 tb mark-text text begin (mark text)

The cswl and cswr actions (move left or right by one word) make use of the user-settable definition
of a ‘word’ [WORD].

The ‘concatenate’ action causes the current line to be joined on to the previous line, and places the
cursor at the first character after the join. This action is not normally bound to anything, since the
same action is obtained by pressing delete-previous when the cursor is at the start of a line.

Some examples of changing keystroke functions are now given. The command

key a=dl,c=dc,p=cssl

78 Changing keystroke defaults

sets up control-a as delete-line, control-c as delete-here, and control-p as screen-left. The previous
actions of these keystrokes become unavailable. However, if any other keystroke was set up with
one of these actions, it retains its setting. That is, it is possible to have the same action performed
by more than one keystroke. The next example,

key f=7,g=17

causes the keystrokes control-f and control-g to result in NE’s obeying the function keystrings 7
and 17 respectively, so with the default setting for these, control-f would perform the ‘find next’
operation and control-g the ‘find previous’ operation.

Some users prefer to use the return key to move to the start of the next line instead of splitting the
current line, and others are used to systems where the delete key deletes the character at the cursor,
instead of the one before it. The next example shows how these requirements can be accomodated:

key m=csnl,del=dc,h=dp,4=sp

sets control-m (equivalent to return on many terminals) to newline, the delete key to delete-here,
control-h (backspace on many terminals) to delete-previous, and function key 4 to split-line.

The current definitions of the control-type keystrokes, any ‘extra’ keystrokes, and the function-type
keystrokes can be displayed by the commands

show ckeys
 show xkeys
 show fkeys

There is also a composite command

show keys

which is equivalent to obeying each of the previous three in turn. Primitive actions are displayed as
short descriptive phrases, while lines of NE commands are displayed in double quotes. When a
control-type key is bound to a function keystring, or when a function-type key is bound to a
function keystring of a different number, the number of the keystring is shown in brackets before
its contents.

Changing keystroke defaults 79

 30. Calling other programs

When NE is running interactively, it is possible to call other programs without leaving NE. A
command line beginning with an asterisk indicates that the remainder of the line is to be handed to
a shell for interpretation as an operating system command where possible.

If screen editing is in progress, NE exits from its screen-handling mode, the command line is
reflected, and line-by-line mode is temporarily selected while the command is being obeyed. This
means that, when reading a subsequent line of NE commands afterwards, the normal line-by-line
input conventions are in force instead of those used when in screen mode, and NE’s command line
history mechanism is not available. To indicate this, the prompt that is given in these circumstances
is NE: instead of NE>.

When control returns to NE, a command prompt is output if editing is interactive and automatic
verification is not on. Otherwise the current line is verified in the normal way. Any line of NE
commands, or a further system command line (beginning with an asterisk) may now be entered. An
empty line causes NE to revert to normal running, and to re-display the screen if screen editing was
in progress before the first system command line was entered.

However, if NE is in the middle of obeying a command file as a result of obeying a c, cbuffer, or
cdbuffer command when the system command is encountered, the prompt

Press RETURN to continue

is issued instead of a command prompt. Pressing RETURN causes execution of the command file to
continue.

When screen editing is in progress, a command line consisting of an asterisk only (that is, a null
system command) has the effect of putting NE temporarily into line-by-line mode, but without any
program to run, so it just issues a command prompt. In environments where a ‘scrolling screen’ is
preserved over a screen-editing session, this is an easy way of referring back to the scrolling
screen. Pressing RETURN returns NE to screen editing.

80 Calling other programs

 31. Error handling

Most errors are detected while NE is interpreting or obeying a command. Typical examples are a
mis-spelt command name or the failure to find a match for a search command.

NE reads an entire command line and converts it into an internal format before obeying it.
Therefore, if there is a syntax error in any command in the line, none of its commands are obeyed.
When diagnosing a syntax error, NE indicates the point it has reached in scanning the line by
printing a > character underneath the line of commands.

If an error in a command line is detected during screen editing, the error message appears in the
message area at the bottom of the screen, which expands to accommodate it, thus leaving the
command line still visible. After outputting the message, NE displays its standard prompt for
reading a new line of commands. This has the effect of keeping the message lines on the screen for
the user to read. The user can either

• Press enter (i.e. enter a null command line) to revert to screen editing;

• Enter a new line of commands;

• Press cursor-up to recall the previous command line into the input area, edit it, and then press
 enter to obey the revised line.

A few errors are so serious that NE cannot continue processing. These include a number of internal
consistency failures and any kind of system-detected crash. In these circumstances, NE attempts to
save the data from the editing session by writing the contents of all buffers that are marked
‘changed’ to an emergency file, whose name is NEcrash. The message

** Attempting to write data to <file name>

is output, followed by one of the following messages for each buffer:

** <n> lines written from the cut buffer
 ** <n> lines written from buffer <n> (<buffer title>)
 ** No changes made to buffer <n> (<buffer title>)

The contents of the cut buffer are written out only if it has not been pasted. The text ‘from buffer
<n>...’ is omitted if there is only one buffer in existence, and the phrase ‘since last save’ may be
added to the last message if relevant. The data is written to the emergency file with no separators
between the lines of the various buffers.

NE also writes error messages to a log file called NEcrashlog when it crashes, to help in tracking
down the cause of the crash.

Error handling 81

 32. Line-by-line editing

NE can be run as a line-by-line editor, both interactively and non-interactively. The majority of this
document assumes that screen editing is used when NE is run interactively. However, interactive
line-by-line editing is necessary if, for example, the terminal being used does not support full-
screen handling. In this circumstance, NE should automatically start up in line-by-line mode. The
arrangements for this are dependent on the operating system.

32.1 Interactive line-by-line editing

To force NE to operate line-by-line, the option -line can be given on the NE command line.

When operating interactively line-by-line, NE normally verifies the current line before reading the
next line of commands, and does not output any prompt string. This makes it easy to use the single
character commands, as each single character typed in the command line is exactly below the
character of the current line which it will affect. More details are given in chapter 9 above.

32.2 Non-interactive line-by-line editing

Non-interactive use of NE is always in line-by-line mode. In this case, verification of the current
line before each line of commands is not the default. A non-interactive run is normally initiated by
specifying a -with item on the NE command line, giving the name of a file of NE commands to be
obeyed. For example,

ne myfile -with myedits

When there is no interactive input, the default right-hand margin is 79 – this affects the format
command only. Reaching the end of the command file is equivalent to obeying a w command in
NE. It causes any modified buffers to be output, and NE to exit normally.

If any error occurs when NE is running non-interactively, an error message is output to the
verification file and the run is abandoned with an error return code.

32.3 Verification output
Verification output and error messages are normally sent to the terminal (even in non-interactive
runs). A -ver keyword is available on the command line to direct this output elsewhere, for
example,

ne myfile -with myedits -ver verification

NE contains a switch which determines whether the current line is to be verified on the verification
file before each new line of commands is read. The initial state of this switch is ‘on’ for interactive
runs, and ‘off ’ for non-interactive runs. It can be changed at any time by means of the verify
command, which is followed by one of the words ‘on’ or ’off ’. If verify is given without an
argument, then the verification switch is changed to the opposite state from the one it is in.

There is also a command to cause verification of the current line only. This is the single-character
command consisting of a question mark. It may be used at any time, and is described in detail in
chapter 9.

32.4 Format of verification output

The format of the output produced by the ? command and by the automatic verification facility is
described with the full description of ? (see chapter 9). When NE is running interactively and
automatic verification is on, it does not output a command prompt in addition to the verification.
This is to make it easy to make use of the single-character editing commands.

82 Line-by-line editing

32.5 The T and TL commands
Automatic verification and the ? command show only a single line at a time (the current line). The
t and tl commands enable a number of lines to be output at once. Each takes a single number for
an argument, or an asterisk character. If a number is given, it is the number of lines which are to be
verified; an asterisk means ‘type until the end of the file’.

The output begins with the current line and continues for the number of lines specified, or until the
end of file is reached. The t command simply outputs the data in each line, while the tl command
outputs line numbers at the left-hand side as well. The data is output in the same format as is used
for automatic verification and the ? command – a single line if there are no non-printing characters,
two lines otherwise.

The current point is not altered by the t and tl commands. After obeying one of them in an
interactive line-by-line session with automatic verification on, the current line is verified before the
next line of commands is read.

These commands can occasionally be useful in screen mode, for showing lines containing non-
printing characters. The message

Press RETURN to continue

is output afterwards to enable the user to read what has been output before returning to screen
editing.

32.6 The COMMENT command
The comment command takes a string as an argument, and its only effect is to output the string to
the verification file.

32.7 The C command
The c command takes a file name as an argument. The file is opened for input, and NE reads and
obeys lines of commands from it until it is exhausted, or until an error occurs. C commands may
be nested.

If a file of NE commands is obeyed via a c command from an interactive run of NE, any global
commands (ga, gb or ge) in it are obeyed in non-interactive fashion, that is, no prompting takes
place. However, if it contains any if commands with the prompt option, prompting still takes place.

If any command in a file obeyed via c generates verification output (for example, comment, show),
and the c command was issued from a screen editing run of NE, then after such output has
appeared in the message area at the bottom of the screen, NE pauses and outputs the message

Press RETURN to continue

Pressing enter causes NE to continue with the next command. At the end of the command file,
verification output is lost as screen editing resumes.

32.8 The CBUFFER and CDBUFFER commands
These two commands take a buffer number as an argument, and they cause NE to obey the contents
of the buffer as a command file. Cbuffer leaves the buffer intact, marking it ‘not changed’, so that
it can subsequently be overwritten without complaint, while cdbuffer deletes the buffer after the
commands have been obeyed.

See the makebuffer and paste commands for details of how to create a buffer with a given number
and paste material into it.

Line-by-line editing 83

 33. More details about the Unix interface

This chapter contains nitty-gritty that is probably not of interest to most users.

33.1 Running in screen mode

For NE to work in screen mode, it requires a terminal with sufficient functionality for screen
editing to be defined via the terminfo or termcap mechanism (which of these is used is a compile-
time option).

When NE is run in a windowing system under a version of Unix that supports the SIGWINCH
signal (most modern systems do) it notices immediately if the size of its window is altered, and
adjusts its display accordingly.

33.2 Environment variables

When it starts up, unless the command argument -noinit is present, NE searches its environment
for a variable with the name NERC (in capital letters). The contents of the variable are taken to be
the name of a file of NE commands which are obeyed before the -opt string. If NERC is not
defined, NE looks for the file .nerc in the directory defined by the environment variable HOME.

The environment variable HOME is also used in the interpretation of file names that begin with a
tilde character.

The environment variable TERM is used in determining the terminal type. Details are given in the
section on terminal types below.

The environment variable NETABS can be used to set up default tab handling options, as described
in section 4.2 above.

33.3 Exit codes

The following exit codes are used by NE:

0 normal exit
 4 warning
 8 errors detected, or stop obeyed
 12 NE ran out of memory
 16 an internal error was detected
 24 NE crashed

The only time the warning exit occurs is when a non-interactive run of NE terminates with an
unpasted cut buffer in existence.

When NE is run interactively, exit code 8 is generated only as a result of the stop command, and
exit code 4 is never given.

33.4 Shell commands

The NE ‘*’ mechanism can be used to cause shell commands to be executed from within NE. It is
a Unix convention that an empty shell escape starts a new interactive shell. However, it is an NE
convention that an empty ‘*’ command puts NE temporarily into line mode. This is particularly
useful on terminals that re-display the scrolling screen when returning to line mode. Therefore a
command line such as

*/bin/bash

is necessary in order to create a new interactive shell.

84 More details about the Unix interface

33.5 Interruptions
In line editing mode, special keystrokes such as the interrupt, suspend and quit characters are
handled by Unix, so they have their normal effects.

In screen editing mode, NE traps the interrupt signal generated by the user ’s interrupt character
(typically ctrl/c) while obeying NE commands, so this keystroke can be used to interrupt loops or
long searches, etc. It also terminates an interactive i (insert) command.

During screen editing itself, the keystroke is available as a normal editing keystroke, except when
entering lines of commands following read-command, when it can be used to abandon command
entry (useful for multi-line commands). This means that, if NE’s keystrokes are reconfigured so that
the interrupt character is bound to one of the editing functions that is recognized during command
entry (e.g. delete-here) then this function is not available during command entry. The default
assignment, to close-up, is not used during command entry.

If NE is interrupted in a loop producing output, quite a lot of output can be buffered up and this is
not thrown away on receipt of an interruption, so it sometimes takes a while before NE appears to
notice an interruption.

33.6 Terminal types
NE supports terminals described in the Unix terminfo or termcap databases. Which one of these is
used is controlled by a compile-time parameter.

If the -line keyword is not present on the NE command line, and neither -with nor -ver is present,
NE attempts to start up in screen editing mode. To do this it needs to know what kind of terminal
is being used.

• NE interrogates the Unix terminfo or termcap database to find out the characteristics of the
 terminal described by the string in the environment variable TERM. If the terminal is capable
 of sustaining a screen editing session, NE initializes its terminfo/termcap driver.

• Otherwise a message is output, and NE enters line editing mode.

The configuration required for the terminal or terminal emulator may depend on the communi-
cations route being used.

33.7 Terminal capabilities
The following minimum capabilities are required of a terminal in order to support screen editing
using NE. These are listed with both their termcap and terminfo names.

cm cup move to (x,y) on screen
 kd kcud1 cursor down
 kl kcub1 cursor left
 kr kcuf1 cursor right
 ku kcuu1 cursor up

If the ‘cm’ or ‘cup’ string contains ‘%.’ it means that binary values are used for cursor positioning.
It is not desirable to generate zero in these circumstances, since it is likely to get swallowed en
route to the terminal. NE avoids generating binary zeroes by requiring the availability of the ‘up’ or
‘cuu1’ control string (cursor up) and either a backspace or the ‘bc’ or ‘cub1’ string in this case.

The following optional capabilities are used if present:

al il1 add (i.e. insert) line
 ce ed clear to end of line
 cl clear clear screen
 cs csr set up scrolling region
 dc dch1 delete character – but not if in ‘delete mode’
 dl dl1 delete line
 F1-F9 kf11-kf19 function keys 11-19
 FA-FK kf20-kf30 function keys 20-30

More details about the Unix interface 85

 ic ich1 insert character – but not if in ‘insert mode’
 k0-k9 kf0-kf9 function keys 0-9
 k; kf10 function key 10
 ke rmkx end ‘keypad’ mode
 ks smkx start ‘keypad’ mode
 se rmso end standout mode
 sf ind scroll text up
 so smso begin standout mode
 sr ri scroll text down
 te rmcup end use of screen management
 ti smcup initiate use of screen management

As well as using the generalised terminal information in terminfo or termcap, NE contains built-in
code to make use of the special capabilities of certain terminals which cannot be described by the
terminfo/termcap mechanism. Descriptions of these features are given separately below for each
relevant terminal. The only relevant terminal that is now supported in this way is:

• An xterm session running under the X windowing system.

The terminfo/termcap driver for NE is designed to be usable with a minimal terminal containing
only the standard ASCII keys and four arrow keys. The default control keystrokes are set up as
shown in the following table.

ctrl/a align-line
 ctrl/b mark-line
 ctrl/c close-up
 ctrl/d refresh
 ctrl/e cut-copy
 ctrl/f <unset>
 ctrl/g read-command
 ctrl/h scroll-left
 ctrl/i next-tab
 ctrl/j scroll-down
 ctrl/k scroll-up
 ctrl/l scroll-right
 ctrl/m split-line
 ctrl/n mark-global
 ctrl/o keystring-60 i.e. "overstrike"
 ctrl/p paste
 ctrl/q delete-marked (but see below)
 ctrl/r mark-rectangle
 ctrl/s rectangle-spaces (but see below)
 ctrl/t mark-text
 ctrl/u delete-line
 ctrl/v delete-right
 ctrl/w cut-delete
 ctrl/x delete-left
 ctrl/y delete-here
 ctrl/z align-previous
 ctrl/[<escape>
 ctrl/\ screen-left
 ctrl/] unset
 ctrl/^ keystring-58 i.e. "top"
 ctrl/_ keystring-59 i.e. "back"

On some communications routes ctrl/s and ctrl/q are used for flow control and so cannot be passed
through to NE. A fudge using esc is implemented to get round this – see below.

The return key is synonymous with ctrl/m. Delete provides the delete-previous function and the
concatenate function when used at the start of a line. The cursor keys are used to move around the
screen.

86 More details about the Unix interface

If the terminal has function keys described by terminfo/termcap, then these are used by NE, with f0
corresponding to NE’s keystring-10. Not all terminals have function keys, and so this facility,
together with all other keyboard functions required by NE is also implemented using a keystroke
sequence beginning with esc.

Many terminals use character sequences starting with esc for their special keys, so there is in
principle some danger that these may clash with NE’s usage. It is hoped that the danger has been
minimised in the following choices. When NE receives a sequence of characters starting with esc it
first searches the list of terminal-specific strings for the functions in which it is interested. Only if
the sequence is not in this list does it test for its own built-in interpretations:

<esc>1– <esc>9 functions 1– 9
 <esc>0 function 10
 <esc><esc>1– <esc><esc>9 functions 11– 19
 <esc><esc>0 function 20
 <esc>delete ignored (a way to cancel esc)
 <esc>return repaint the screen
 <esc>tab previous-tab
 <esc><esc><ch> enter control char as data
 <esc>s simulate ctrl/s
 <esc>q simulate ctrl/q

If a sequence of two escapes is followed by del or a character whose code value is less than 32,
that character is interpreted as a data character. Otherwise, unless the character is a digit, the two
bits with values 32 and 64 are forced to zero, and the resulting character is handled as a data
character. Thus, for example, the data character with binary value one can be inserted into a file by
typing esc twice followed by ‘A’ or ‘a’.

A keystroke whose value is greater than 127 is always treaded as a data character. Such characters
are by default displayed as question marks, but if the eightbit command has been obeyed, they are
treated as ordinary characters and written to the screen unchanged.

The default assignments to NE’s logical keystrokes are shown in the following table. Not all the
keystrokes are available on every terminal, and not all of them are definable via the termcap or
terminfo mechanisms.

align-line ctrl/a
 align-previous ctrl/z
 bottom-right <unset>
 close-back shift/delete and shift/backspace
 close-up ctrl/c
 concatenate delete at start of line
 cursor-down down-arrow
 cursor-left left-arrow
 cursor-right right-arrow
 cursor-up up-arrow
 cut-copy ctrl/e
 cut-delete ctrl/w
 delete-here ctrl/y
 delete-left ctrl/x, ctrl/del, and ctrl/backspace
 delete-line ctrl/u
 delete-marked <esc>q or ctrl/q if not flow control
 delete-previous delete and backspace
 delete-right ctrl/v
 end-line shift/ctrl/right
 enter return
 first-char ctrl/left
 interrupt ctrl/c when obeying commands
 keystring-n <esc>1 – <esc>0 for 1– 10
 <esc><esc>1 – <esc><esc>0
 last-char ctrl/right

More details about the Unix interface 87

 mark-global ctrl/n
 mark-line ctrl/b
 mark-rectangle ctrl/r
 mark-text ctrl/t
 newline <unset>
 next-tab tab
 paste ctrl/p
 previous-tab <esc>tab and ctrl/tab
 read-command ctrl/g
 rectangle-spaces <esc>s or ctrl/s if not flow control
 refresh ctrl/d
 screen-left ctrl/\
 scroll-bottom ctrl/down
 scroll-down ctrl/j and shift/down
 scroll-left ctrl/h and shift/left
 scroll-right ctrl/l and shift/right
 scroll-top ctrl/up
 scroll-up ctrl/k and shift/up
 split-line return
 start-line shift/ctrl/left
 top-left <unset>
 word-left <unset>
 word-right <unset>

33.8 Keyboard interruptions
While screen editing is occurring, most keystrokes are taken over by NE and used for controlling
the editing process, as described above. The only exceptions are any flow control characters that
may be in use (typically ctrl/s and ctrl/q).

However, while NE is obeying a line of commands entered from screen mode, the interrupt
keystroke (typically ctrl/c) changes its meaning, and if pressed causes an interrupt to be sent to NE.
It can thus be used to interrupt a command loop or a long search command.

The many other special keystrokes (kill, literal-next, etc.) are never available during screen editing,
the relevant keystrokes retaining their NE meaning. If these facilities are wanted they can be
accessed by leaving screen mode, by obeying a command line containing only an asterisk. In the
line editing state NE runs with ‘cooked’ terminal input and so all the special keystrokes are
available.

33.9 xterm
NE has some built-in knowledge of the xterm terminal emulator which is part of the X windowing
system. When the value of the TERM variable is ‘xterm’, the internal tables in NE give access to
the following additional keystrokes over and above those defined by termcap or terminfo:

shift/left scroll-left
 shift/right scroll-right
 shift/up scroll-up
 shift/down scrown-down

In addition, the following are also available if the terminal emulator is configured appropriately:

shift/delete close-back
 ctrl/delete delete-left
 ctrl/left first-char
 ctrl/right last-char
 ctrl/up scroll-top
 ctrl/down scroll-bottom
 ctrl/tab previous-tab

88 More details about the Unix interface

The backspace key is distinguishable from ctrl/h, and it is initially defined to have the same effect
as the delete key.

The function keys correspond to NE’s function keystrokes, and SHIFT may be used with any of them
to add 10 to its value.

More details about the Unix interface 89

 34. Logical keystroke summary

This chapter lists the logical screen editing keystrokes recognized by NE, preceded by the
mnemonics used to specify them in the key command (where relevant), and followed by the
equivalent NE commands for performing the same operations.

al align-line align
 alp align-previous p; pb s//; csd; align
 cssbr bottom-right no equivalent
 clb close-back closeback
 cl close-up closeup
 co concatenate no direct equivalent;
 use cl on previous line
 csd cursor-down csd
 csl cursor-left <
 csr cursor-right >
 csu cursor-up csu
 co cut-copy copy
 cut cut-delete dcut
 dc delete-here #
 dal delete-left dleft
 dl delete-line dline
 de delete-marked dmarked
 dp delete-previous no direct equivalent; use <;#
 dar delete-right dright
 dtwl delete-to-word-left dtwl
 dtwr delete-to-word-right dtwr
 csle end-line plr
 enter not relevant
 cstl first-char no equivalent
 interrupt not relevant
 keystring-n no equivalent
 cstr last-char no equivalent
 gm mark-global mark global
 lb mark-line mark lines
 rb mark-rectangle mark rectangle
 tb mark-text mark text
 csnl newline n
 cstb next-tab no equivalent
 pa paste paste
 csptb previous-tab no equivalent
 rc read-command not relevant
 rs rectangle-spaces ispace
 rf refresh not relevant
 cssl screen-left not relevant
 sb scroll-bottom m*
sd scroll-down no direct equivalent; use n and m
 sl scroll-left not relevant
 sr scroll-right not relevant
 st scroll-top m0
 su scroll-up no direct equivalent; use p and m
 sl split-line sa or sb
 cstl start-line pll
 csstl top-left no equivalent
 cswl word-left no direct equivalent
 cswr word-right no direct equivalent

90 Logical keystroke summary

 35. Command summary

*<text> pass command line to operating system
 ? verify current line
 < move cursor one place left
 > move cursor one place right
 # delete character at cursor
 $ lowercase character at cursor
 % uppercase character at cursor
 ~ flip case of character at cursor
 a <se> <qstring> after <se> insert <qstring>
 align align line(s) with cursor
 attn on permit keyboard interruptions
 attn off suspend keyboard interruptions
 autoalign flip autoalignment on/off
 autoalign on enable autoalignment for split lines
 autoalign off disable autoalignment for split lines
 b <se> <qstring> before <se> insert <qstring>
 back move back to previous change place
 backup files flip output file renaming
 backup files on enable output file renaming
 backup files off disable output file renaming
 beginpar <se> define paragraph beginning
 bf <se> find backwards
 break [<n>] break out of loop
 buffer [<n>] select buffer [<n>]
 c <file name> obey commands from file
 casematch on match letter cases by default
 casematch off do not match letter cases by default
 casematch flip case matching state
 cbuffer <n> obey commands from buffer <n>
 cdbuffer <n> as cbuffer, then delete the buffer
 centre centre the current line
 cl [<string>] concatenate line with next
 closeback close up line(s) before cursor position
 closeup close up line(s) at cursor position
 comment <string> output comment text
 copy copy marked block to cut buffer
 cproc <proc> cancel procedure
 csd cursor down one line
 csu cursor up one line
 cut cut marked block to cut buffer
 cutstyle append append copied and cut data to cut buffer
 cutstyle replace replace data in cut buffer each cut or copy
 cutstyle flip append/replace state
 dbuffer [<n>] delete buffer [<n>]
 dcut delete contents of cut buffer
 detrail remove trailing spaces in current buffer
 detrail output remove trailing spaces on output
 df <se> delete lines forwards until <se> is found
 dleft delete to the left of the cursor
 dline delete current line
 dmarked delete marked text
 drest delete rest of file
 dright delete to the right of the cursor
 dta <qstring> delete till after <qstring>

Command summary 91

 dtb <qstring> delete till before <qstring>
 dtwl delete to word left
 dtwr delete to word right
 e <se> <qstring> exchange <se> for <qstring>
 eightbit control display of eight-bit characters
 else <cg> follows if or unless
 endpar <se> define paragraph end
 f <se> find forwards
 fkeystring <n> <string> set function keystring
 fks <n> <string> abbreviation for fkeystring
 format re-format rest of current paragraph
 ga <se> <qstring> globally after <se> insert <qstring>
 gb <se> <qstring> globally before <se> insert <qstring>
 ge <se> <qstring> globally exchange <se> for <qstring>
 i insert in-line text
 i <file name> insert named file
 icurrent insert copy of current line
 if <cond> then <cg> conditional command
 iline <string> insert single line before current
 ispace insert rectangle of spaces
 key <data> specify key binding(s)
 lcl lower case current line
 load <file name> load file to current buffer
 loop restart current command loop
 m <n> move to line n (zero means ‘start of file’)
 m* move to end of file
 makebuffer <n> [<file name>]
 create new buffer <n> [for <file name>]
 mark limit set global limit mark
 mark line set line block mark
 mark text set text block mark
 mark rectangle set rectangular block mark
 n move to next line
 name <string> set file name
 newbuffer [<file name>] create new buffer [for <file name>]
 overstrike on overstrike data characters
 overstrike off insert data characters (default)
 overstrike flip overstriking state
 p move to previous line
 pa <se> point after context in current line
 paste paste cut buffer in current buffer
 paste <n> paste cut buffer in buffer <n>
 pb <se> point before context in current line
 pbuffer select previous buffer
 pll point to line left
 plr point to line right
 proc <name> is <cg> define procedure
 prompt on enable prompting for current buffer
 prompt off disable prompting for current buffer
 readonly on make current buffer read-only
 readonly off make current buffer read-write
 readonly invert read-only state of current buffer
 refresh update current screen
 renumber renumber lines in current buffer
 repeat <cg> loop of indefinite duration
 rmargin flip right margin on/off
 rmargin on set right margin on
 rmargin off set right margin off

92 Command summary

 rmargin <n> set margin on, with new value
 sa <se> split current line after context
 save [<file name>] [rename and] write buffer
 sb <se> split current line before context
 set autovscroll <n> set automatic vertical scroll amount
 set newcommentstyle double backslash for comments
 set oldcommentstyle single backslash for comments
 set splitscrollrow <n> set up/down scroll boundary
 show ckeys display ctrl keystrokes
 show commands display command names
 show fkeys display function keystrokes
 show keyactions display key action mnemonics
 show keystrings display function keystrings
 show wordcount show line, word & char count
 stop stop immediately (error return code)
 stream <file name> convert to stream buffer
 streammax <n> set line limit for stream buffers
 t <n> type <n> lines
 title <string> set title for buffer
 tl <n> type <n> lines with line numbers
 topline current line to top of screen
 ucl uppercase current line
 undelete restore deleted character or line
 unixregexp interpret regular expressions using
 Unix syntax
 unless <cond> do <cg> conditional command control
 until <cond> do <cg> loop control
 uteof <cg> same as until eof do <cg>
 verify flip automatic verification state
 verify on enable automatic verification
 verify off disable automatic verification
 w windup (normal exit)
 warn flip warning state
 warn on enable warnings (default)
 warn off disable warnings
 while <cond> do <cg> loop control
 word <string> define ‘word’ for w qualifier
 write <file name> write buffer to <file name>

Command summary 93

 36. Argument format summary

This chapter contains summaries of the formats for the various different kinds of argument that are
used by NE commands.

36.1 String delimiters
The available delimiters for string arguments are

’ " ! . , : + - * /

For file names the delimiter set is a subset of the above, with those characters that are allowed in
file names removed. This varies according to the operating system.

36.2 String qualifiers
The following qualifiers are available for modifying the effect of string matching:

B match at the beginning of the line only
 C match the line’s control character (MVS only)
 E match at the end of the line only
 H match ‘here’ (at current cursor position) only
 L match leftwards in the line
 N negate the result of the match
 P match the line precisely
 R interpret the string as a regular expression
 S ignore leading and trailing spaces
 U match letters in an uncased manner
 V match letters verbatim
 W match the string as a word
 X the string is in hexadecimal
 <n> the string must match <n> times in the line
 [<n>,<m>] match between columns <n> and <m>, inclusive

36.3 Regular expressions
The characters of a qualified string are interpreted as a regular expression if the qualifier r is
present.

36.4 Regular expression replacements
When a text replacement command has a regular expression as its first argument, the insertion
string can be qualified with the r qualifier, in which case the character ‘$’ in the replacement string
is interpreted specially.

$0 inserts the entire matched string
 $<n> inserts wild string <n>
 $$ inserts a single percent character
 $<x> inserts the character <x>

Any number of wild strings can be matched by a regular expression, but only the first nine can be
inserted in this way.

36.5 Hexadecimal insertions
An insertion string can be specified in hexadecimal by qualifying it with the x qualifier. This can be
in addition to the r qualifier for regular expression replacements.

94 Argument format summary

 Index

? command 35
> command 35
< command 35
% command 36
? command 82
command 35
$ command 36
\ see backslash
~ command 36

a 42
‘actual’ control keystrokes 76
align 74
align-line 7, 10
alignment of lines 70
align-previous 8, 10
‘all’ prompt response 51
argument format summary 94
attention handling 66
attn 66
autoalign 7, 44, 47, 70
automatic alignment 70
automatic scrolling 72
autovscroll (set option) 72

b 42
back 39, 56
backslash in command lines 23
backslash in file name 24
backslash in separator line 9, 47
backup 57
beginpar 47
bf 37
-binary 19
binary files 21
block deletion 11
brackets, nesting limit 23
browsing files 72
buffer 54
buffer deletion 54
buffer handling 53
buffer information 63
built-in function mnemonics 78

c 83
calling other programs: 80
calling other programs 84
casematch 70
case-sensitive matching 70
cbuffer 83
cdbuffer 83
centre 47
centring lines 47

‘change’ prompt response 51
changing defaults: keystrokes 76
changing defaults: operations 70
changing the current line 42
character count 63
cl 44
close-back 8, 10
closeback 74
close-up 8, 10
closeup 74
column numbers 29
column qualifier 29
command arguments: 23
command arguments: format of 23
command for running NE: 3
command format 19
command group 23
command lines: 15
command lines: comments 23
command lines: continuation 23
command lines: format 23
command lines: maximum length 23
command lines: stack 25
command lines: wider than screen 25
command loops 61
command name 23
command output 25
command prompt 24
command repetition 23, 38, 49
command summary 91
commands: display of 64
commands while screen editing 24
comment 83
comment character 23
concatenate 7, 9
concatenating lines 7
conditional commands 59
context matching 27
control character input 87
control keystrokes 64
‘control-type’ keystrokes 76
copy 75
copying between buffers 55
count of lines & characters 63
count of words 17, 63
cproc 34
crashes: 81
creating new files: 3
creating new files 19
csd 74
csu 74
ctrl sequences 86
ctrl/o 8, 71
current line: alignment 8

 [95]

current line: changing 36, 42
current line: closing up 8
current line: definition 2
current line: deletion 7
current line: display 41
current line: selection 40
current line: splitting 6
current line: verification 35
current point 2
current point movement 39
cursor-down 25
cursor-up 25, 81
cut 75
cut buffer: 11, 68
cut buffer: appending text 71
cut buffer: deletion 54
cut-copy 12, 13
cut-delete 12, 13
cutstyle 71
cutting and pasting 11, 71

dbuffer 54, 72
dcut 54, 71
delete-here 7, 15, 71
delete-left 7, 10, 15
delete-line 7, 10, 15
delete-marked 12, 13
delete-previous 7, 15
delete-previous at screen edge 9
delete-right 7, 10, 15
delete-to-word-left 7
delete-to-word-right 7
deleting blocks 11
deleting buffers 54
deleting text 45
deleting the current line 7
delimiters 24
detrail 53
df 38
‘discard’ prompt response 69
discarding buffers 54
dleft 74
dline 45, 74
dmarked 75
down 5
drest 45
dright 74
dta 42
dtb 42

e 42
editing command lines 15
editing on the screen 6
emergency file 81
end of paragraph 14
end-line 9
end-of-file 6
endpar 47

enter 15, 24, 25, 51, 63, 81
environment variables 84
error handling 81
error message 25
‘error ’ prompt response 51
error while writing output 69
esc sequences 87
exit codes 84
extra keystrokes 64

f 16, 37
file names: 24, 69
file operations 56
files, large 58
filter, in Unix 20
‘finish’ prompt response 51
first-char 5, 9, 41
fkeystring 76
format 48
formatting commands 47
formatting paragraphs 14
-from 19
function keys 24
function keystrings: 24, 65, 76
function keystrings: default values 76
function keystrokes 65
‘function-type’ keystrokes 76

ga, gb and ge 16, 50
global commands: 50
global commands: acting on long lines 52
global commands: continuation of 52
global commands: interactive 50
global commands: margins 52
global commands: non-interactive 51
global commands: null strings 52
global commands: prompting 51
global marker 52

-help 19
help information 15
hexadecimal characters: in insertion strings
 32, 94
hexadecimal characters: in search string 29
hexadecimal characters: inserting whole lines 43

i 43, 56
icurrent 43
-id 19
if 59
iline 43
information displays 63
-init 84
inserting characters 32
inserting files 56
inserting single lines 43
inserting text 43
interactive global commands 50

 [96]

interruptable commands 66
interruptions: 66
interruptions 85, 88
inverse video 3, 4, 8, 9, 12, 13, 15, 16, 24, 50
ispace 75

joining lines 7, 44
joining rectangles 71

key 77
key actions 65
key definition 77
key identification 77
keyboard interruptions 66, 88
keystring-1 54
keystring-10 9, 14, 47
keystring-16 9
keystring-17 16, 38
keystring-18 9, 40
keystring-19 15, 65
keystring-20 14, 17, 48
keystring-3 18, 68
keystring-58 6
keystring-59 6
keystring-6 9
keystring-60 8
keystring-7 16, 38
keystring-8 9, 40
keystring-9 15, 64
keystrokes: binding command 77
keystrokes: display of 64
keystrokes: equivalent commands 74

large files 58
‘last’ prompt response 51
last-char 5, 9, 41
lcl 42
leaving NE 18, 68
left 5
-line 19, 82
line concatenation 7, 44
line count 63
line numbers 4, 35, 53
line search 37
line splitting 44
line-by-line editing 36, 82
load 16, 56, 72
long command lines on screen 25
loop 61
looping commands 61
lower case 27, 70

m 16, 40, 56
makebuffer 54
margin see right-hand margin
mark 74
mark-global 52
mark-line 9

mark-rectangle 13
mark-text 12
matched strings 29
mnemonics for built-in functions 78
moving about the file 4
moving between buffers 55
moving the current point 39
multi-line editing 9
multiple buffers 53

n 17, 40
name 54
NE command 19
NEcrash 81
NEcrashlog 81
nested brackets 23
newbuffer 53
newcommentstyle (set option) 72
-noinit 19, 84
non-interactive editing 82
non-printing characters 9, 35
-notabs 19, 21
null strings in globals 52
number as command argument 23

oldcommentstyle (set option) 72
‘once’ prompt response 51
-opt 19
overstrike 71
overstriking characters 8

p 17, 40
pa 40
paragraph formatting 14, 48
paste 12, 13
paste 75
pasting 11
pb 40
pbuffer 54
pll 41
plr 41
power typing: 6, 17, 47
previous-tab 5
proc 34
procedures 34
prompt 72
prompt: command line 24, 81
prompt: cut buffer 18, 68
prompt: global commands 16, 51
prompt: line mode 36
prompt: output file 18, 56, 68
prompt: pause 63
prompt: suppression of 54, 72

qualified insertion strings 32
qualified strings 27
qualifier combinations 29
qualifiers for search expressions 30

 [97]

‘quit’ prompt response 51

read-command 15, 24
-readonly 19
readonly 72
rectangle-spaces 14
rectangular blocks 13
refresh 26
refreshing the screen 4, 26
regular expressions: 28, 30
regular expressions: meta-characters 31
regular expressions: replacements 94
regular expressions: summary 94
regular expressions: wild replacement 32
renumber 53
repeat 61
repeat qualifier 29
repeating change commands 42
repeating search commands 38
replicating lines 43
restoring deleted text 46
return 6, 77
return codes: 84
right 5
right-hand margin 6, 8, 14, 47, 52
rmargin 17, 47

sa 44
save 17, 56, 72
saving files 56
sb 44
screen display 3
screen refresh 26
screen refreshing 4
screen-left 5, 9
scroll-bottom 6, 40
scroll-down 5
scrolling command line 25
scroll-left 9
scroll-right 9
scroll-top 6, 40
scroll-up 5
search commands 37
search expressions 29
search expressions, qualifiers for 30
search repetition 38
search type: line search 37
search type: string search 37
semicolon 23
separator lines 4, 8, 70, 71
set 72
shell commands 84
show: 63
show: ckeys 64
show: commands 17, 64
show: fkeys 65
show: keyactions 65
show: keys 64, 79

show: keystrings 65
show: wordcount 17, 63
show: xkeys 64
single-character commands 35
‘skip’ prompt response 51
spaces, trailing 53
special keystroke names 77
split-line 6, 9, 71
splitscrollrow (set option) 72
splitting lines 44
start-line 9
stop 17, 68
‘stop’ prompt response 69
store see memory
-stream 19
stream buffer 64
string as command argument 24
string delimiters 24
string qualifier summary 94
string qualifiers 27
string search 37
summaries: argument formats 94
summaries: commands 91
summaries: regular expressions 94
summaries: string delimiters 94
summaries: string qualifiers 94
switch settings 63

t 83
tab 5
-tabin 19, 21
-tabout 19, 21
-tabs 19
tabs 20
-tabs 21
termcap 85, 87
terminal types 85
terminfo 85
text blocks 11
tl 83
-to 19
‘to’ prompt response 69
topline 41
trailing spaces 53

ucl 42
undelete 46
undeleting 8
unless 59
until 61
up 5
upper case 27, 70
uteof 61

-ver 20
verification output 82
verify 82

 [98]

w 68, 72
warn 72
while 61
wide lines 8
wild replacements 32
-with 20
word 73
word as command argument 24
word character 73
word characters 63
word count 17, 63
word-left 5
word-right 5
write 57
writing part files 57

xterm 88

[99]

