
how a qp-trie works

5 cool ideas and 3 revelations



trees are slow

• 🐌 linked list


• 🐢 binary tree


• 🚴 radix tree  🧠  


• 🏎 hash table


• 🚀 array

indirect memory accesses

unpredictable addresses



trees in dns servers

• longest match


• find enclosing zone


• find predecessor


• nsec proof of nonexistence


• find successor 


• when adding an nsec record

why we can’t use a hash table



kinds of trees

• comparison tree


• binary tree: red-black / splay / avl 


• b-tree


• radix tree


• same sort order as memcmp()


• trie = information reTRIEval

comparison trees can be based on an arbitrary user defined key ordering


radix trees must order keys bytewise lexicographically


“trie” is a pompous way to write “tree” while hinting it is some kind of radix tree



not a textbook radix tree

• 📖  path compression


• no! path omission


• Dan Bernstein crit-bit tree


• 📖  node compression


• popcount packed sparse vectors


• Phil Bagwell array-mapped trie

radix trees are known for using lots of memory


two cool ideas behind original qp-trie


a qp-trie can use as little memory as a red-black tree




crit-bit tree

path omission: the offset lets us skip parts of the keys in the tree that are the same


but the search key can differ in one of the parts we skipped, so we compare it with the leaf key at the end to find their common prefix


fancy searches (predecessor, successor, longest match) require a second pass
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crit-bit and qp invariants
• offset increases with tree depth


• all nodes in a sub tree share the same prefix


• equal from start to offset


• tree shape is determined by which keys are present


• no balancing heuristics


• no dependence on order of insertion


• offset can skip parts of key


• path omission


• key stored in leaf values not inside tree

a crit-bit tree is basically a one-bit qp-trie, so they share a lot of invariants




performance, in theory

• binary tree


• Ω ( k * log n )


• O ( k * n )


• radix tree


• Ω ( k + log n )


• O ( k + k )

so, how can i make a crit-bit tree faster?


Ω() lower bound

O() upper bound


k length of keys

n number of keys


left term is key comparison, right term is tree depth


hidden constant factor in the base of the logarithm


increase base of logarithm to go faster: wider, shallower tree



popcount packed sparse vector

fat pointer: pointer and bitmap instead of pointer and length


bitmap indicates which elements are present


works best when bitmap fits in a word, in a Bagwell tree, 32 or 64 bits



// size of vector


size = popcount(node->bitmap);


// bit position


bit =  1 << key[node->offset];


// is element present?


if (node->bitmap & bit) { … }


// position of element in packed vector


pos = popcount(node->bitmap & (bit - 1));


// step to child node


node = node->children + pos;

the p in qp stands for popcount, population count, Hamming weight, “sideways add” according to Knuth


gives us quick random access into packed array, very nice for radix tree node compression



qp-trie

rough idea of the original qp-trie node layout


2 words of 64 bits each


smuggle a one bit discriminant tag into a pointer


bitmap and children vector from Bagwell, key offset from Bernstein


qp-trie in knot dns uses a 16 wide bitmap



qp-trie

rough idea of the original qp-trie node layout


2 words of 64 bits each


smuggle a one bit discriminant tag into a pointer


bitmap and children vector from Bagwell, key offset from Bernstein 



brainwave!
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received wisdom is that prefetch is not much use for data structures with lots of indirection


but a qp-trie benefits from it a lot! old cpus benefit from a prefetch hint, new ones can work it out for themselves


helps keep both memory and cpu working concurrently 



code

because it fits on a slide


verbatim from NSD


the little helper functions typically compile down to a few ALU ops; the only hidden conditional is a bounds check on the length of the key



dns-trie key prep

• reverse order of labels


• force lower case


• make label separators sort before \0


• map key bytes to bit positions


• brainwave!


• do this all in advance in one pass


• no need to extract bit fields in inner loop

dns-trie is a qp-trie specialized for domain names as keys


goal: one byte of name per indirection (instead of 4 or 5 bits in classic qp-trie)


domain names need to be massaged before they can be used as radix tree keys (first three points on the slide)


if we massage them more cleverly, we can make lookups faster and simpler!


if we try to use a byte at a time without cleverness, we would need a 256 wide bitmap, and our nodes would become bloated and slow


revelation from summer 2020



dns-trie key prep

instead we make use of the fact that almost all domain names follow host name syntax


so we only need a 40 wide bitmap to support the vast majority of bytes we will actually encounter: hyphen to 9, underscore to z, and the label separator


we use a few more bits for escape characters, so rare bytes in domain name turn into two bytes in our lookup key, eg 15, 7 for ‘@’


the escaping scheme preserves DNSSEC canonical sorting order



ideas so far
• use a radix tree


• faster in theory and practice 


• Bernstein’s path omission


• Bagwell’s popcount node compression


• smaller size


• my prefetch discovery


• sometimes you can predict the future


• use hostname syntax


• fewer faster steps to climb the tree



downsides

• single threaded


• writers block readers


• showstopper!


• every mutation needs a malloc


• slow!


• uses many jemalloc size classes

a write can be complicated: UPDATE or IXFR


size classes segregated in to different pages, greater TLB usage



custom allocator
• concurrency support


• multiple readers, single writer


• writer does not block readers


• fast bump allocation


• better locality


• bonus! 32 bit pointers


• smaller and faster

i was very wary of writing a custom allocator, as Bagwell suggested, because it seemed like over-engineering


but it deals with both major downsides, and gives us an extra bonus


the cost is about 1.75x the code size


(Bagwell’s allocator is very different from mine and does not address concurrency)


revelation: simpler than i expected, and much easier than my previous refcount-based cow implementation for knot dns



qp-trie 

summer 2021 version


12 bytes per node


much less than one branch node per leaf node, so about 20 bytes per element, plus space for names




threading

• cow - copy on write


• rcu - read copy update


• mvcc - multi-version concurrency control 


• wal - write ahead log


• gc - garbage collector

cow - general technique to allow readers to keep working while an update is in progress


WHY? because qp-trie nodes are too small for lock-based concurrency! (i guess it could use out-of-tree locks like rbtdb?)


rcu - cow in the linux kernel, with clever techniques allowing readers to be completely unlocked; commits just swap a pointer and unlike rwlock  do not block readers


mvcc - cow in databases; snapshot isolation; dbversion in bind


wal - a way to implement mvcc; closely related to bump allocators in programming language runtimes (better locality than jemalloc size classes)


gc - all of these need some kind of gc


rcu is nonblocking because it relies on being able to free unused memory later


postgres vacuum is a gc for its wal


gc does not have to be bad: compacting gc gives good locality; we can choose when it runs and combine with (eg) cache cleaning



rcu
// reader


rcu_read_lock()


rcu_dereference()


rcu_read_unlock()


// writer


mutex_lock()


// update


// optional defrag


rcu_assign_pointer()


rcu_synchronize()


// free empty pages


mutex_unlock()

reader is nonblocking


read locks are close to no-ops


synchronize is where writer waits for readers to exit critical sections


can use rwlock instead of rcu, but the rcu pattern is a helpful design guide



malloc on one slide

a bump allocator is very simple!


good locality, eg, when we need to cow we copy the path from the root to the new node, sequentially in memory (the parts that have not already been copied)


i have cheated by leaving out the slow path page allocator



gc on one slide

we know it is a tree (not a graph) and we know it can’t be pathologically deep, so a copying collector is easy


for a small tree (a small zone) this naturally compacts it into a small contiguous section of a page, which we can realloc() to fit perfectly, so no need for a large minimum 
memory usage


this algorithm is can keep fragmentation very low; i tried several alternatives; clever ones were worse!


i have cheated by leaving out page reclamation 




nsd lines of code

• 629 rbtree


• 1669 radtree


• 906 qp-trie


• 1546 qp + cow

apples to apples comparison except the last one


total count for .c and .h files that implement each data structure


the benchmark used the COW version (the non-COW version uses about 150 MiB)



nsd results

red black radix qp

memory 93.754 MiB 338.017 MiB 95.176 MiB

yxdomain 1.658 s 1.070 s 0.622 s

nxdomain 0.576 s 0.345 s 0.388 s

typo 1.371 s 0.913 s 0.795 s

memory usage competitive with red-black tree


usually fastest


1,000,000 queries, one thread


yxdomain = known to exist in tree


nxdomain = completely random


typo = small random change to known domain


