
PHREEBIRD SUITE 1.0:
INTRODUCING THE
DOMAIN KEY INFRASTRUCTURE

Dan Kaminsky

The Vagaries Of Talking
Defense
§ Security Conferences are normally about

discussing offense
ú Necessary: We spent the 90’s thinking all security

could be accomplished with Crypto™ and Java™could be accomplished with Crypto™ and Java™
ú Understanding the full scope of vulnerabilities is

critical if we’re to fix anything
ú However…

We actually need to fix
things every once in a while
§ We’re finding lots and lots of new bugs
§ The old bugs aren’t actually going away
§ We have a choice

ú Either keep finding the same problems for the
next ten years

ú Change the ground rules

My New Rule

§ It’s not enough to make security better
§ We have to make security cheaper

ú Security needs to drop in cost by two orders of
magnitude (100x)

ú That’s OK – security needs to increase in effectiveness ú That’s OK – security needs to increase in effectiveness
by five orders of magnitude (10,000x)
� We’re building our economies on this foundation
� It doesn’t feel particularly solid, does it?

ú Hard Truth: We are competing with insecure systems
� They’re (sometimes/appear) cheaper than getting owned
� But they’re not exactly cheap right now
� We can do a better job if we care to!

A Very Common Scene

[That’s A Strange Username…]

[Heh Wait, That Worked?]

[What’s that in
authorized_keys2?!]

Redefining The Possible

§ We’ve been trying to authenticate (federate)
from one domain to another for years
ú DNSSEC makes it easy.
ú This is the power of the Domain Key Infrastructureú This is the power of the Domain Key Infrastructure

§ We can’t do this if DNSSEC is hard to deploy
ú So is it possible to make DNSSEC easy?
ú Yes.

What I’m Releasing

§ Phreebird Suite 1.0
ú Demonstration Toolkit for DNSSEC
ú Phreebird: Zero Configuration DNSSEC Server
ú Phreeload: Automatic DNSSEC Integration ú Phreeload: Automatic DNSSEC Integration

Engine
ú Sample Code for End-To-End DNSSEC Integration

� Including the Phreeshell Federated Identity Code

ú BSD Licensed – Lets get working on apps

§ Why?

Introduction

§ While we continue to fight the war against
implementation flaws…

§ …authentication continues to haunt us
ú Verizon Business: Majority of compromises linked to

credential failurecredential failure
§ Authentication, by in large, remains synonymous

with one technology:
PASSWORDS
ú No passwords
ú Default passwords
ú Shared passwords
ú Stolen passwords

Why?

§ They work.
ú More importantly, they work cross

organizationally
ú “Anyone who thinks a large company is one ú “Anyone who thinks a large company is one

organization, has never worked at a large
company”

ú Passwords are based on strings of text – we’ve
figured out how to make them cross boundaries

The Problem

§ From Workgroups, to Domains, to Forests,
the model is based on an internal hierarchy,
where authentication for outsiders is a special
casecase
ú Workgroups beget Domains (up)
ú Domains beget Forests (up)
ú Forests beget manually established Federations /

Cross Forest Trusts (out)
§ However, authenticating outsiders is not

actually a special case

Reality

§ Groups Outside Your Hierarchy
ú Clients
ú Customers
ú Vendors
ú Partners
ú Contractors
ú Outsourcers
ú Governments (and not necessarily your own)

§ A lot of people still need to be authenticated
ú Couldn’t there be a hierarchy that sits above all of

them?

The Three (Bad) Choices

§ M-to-1: “Everybody Trust Me!”
ú Keeps getting tried
ú Almost always leads to the guy in charge seeking rents
ú Always leads to guys not in charge trying to get in charge,

so they can seek rents
§ M-to-Any: “Everybody Trust The Cabal”

ú Basis of X.509 CAs
ú Always leads to too many people in the Cabal for any

serious trust
§ M-to-N: “Everybody, Figure Out Who You Trust”

ú Every new major group has to be manually brought into the
Federation

ú Doesn’t scale

The One Good Choice

§ DNS (newly enhanced with DNSSEC)
ú Starts out a M-to-1 system, but…

� Politically limited – massive governance on ICANN
� It’s so hard to get even legitimate content into the root, that

imagine getting bad content in
Technically limited� Technically limited
� The root hosts such a small subset of the final data, that it’s

a weak point to attack anyway
ú Huge install base

� All customers, vendors, partners, contractors, etc are
already in it – they’re receiving emails, aren’t they?

ú Already trusted
� DNS is how they’re receiving emails

DNS is actually pretty
simple
§ DNS:

ú Ask a question, get an answer
ú Ask a question, get a referral

� Alice: Jenny’s number? Ask Travis.� Alice: Jenny’s number? Ask Travis.
� Travis: Jenny’s number? Ask Charlie.
� Charlie: Jenny’s number? 876-5309

DNSSEC CHANGES EVERYTHING
(No, it’s simple too)
§ DNSSEC

ú Ask a question, get an answer and a signature
ú Ask a question, get a referral and a signature

� Alice: Jenny’s number? Ask Travis™� Alice: Jenny’s number? Ask Travis™
� Travis: Jenny’s number? Ask Charlie™
� Charlie: Jenny’s number? 867-5309™

§ Yes, that’s mostly it.
ú A lot of the complexity came from optional magic

The General Idea

§ DNSSEC lets DNS store trusted data
ú Use this data to bootstrap trust in various

protocols, as per a globally shared namespace

§ Open Questions§ Open Questions
ú Can DNSSEC be deployed easily?
ú Will it function end to end?
ú Does it actually help real world applications?

§ Lets see some working code…
ú First: Can DNSSEC be deployed easily?

A Simple Bind9 Install With A
Handful Of Small Zones

Step 1: Change The Port To
50053

Step 2: Launch Phreebird

Step 3: There is no step 3

OK, you have to tell your
registrar… (GoDaddy for now)

It wants a DS record…

Where can we get these
values?

Just Run Dig…

§ # dig +short @127.0.0.1 remote-support.org
ds
12839 7 1
619EB6EB0521605393FA603536607949AE58619EB6EB0521605393FA603536607949AE58
EDD6

Just paste ‘em in…

And, that’s it!

DNSSEC is deployed. DONE.
(dnsviz.net)

Welcome to Phreebird,
Released Today!
§ Phreebird: A realtime DNSSEC proxy that sits in

front of any DNS server, supplementing its
responses with signed answers
ú Most of DNSSEC’s problems have come from the

requirement to be able to operate offline
ú DNSSEC can also be done online, like TLS, IPSec, Kerberos, ú DNSSEC can also be done online, like TLS, IPSec, Kerberos,

and SSH
§ Phreebird can be deployed in minutes

ú No key generation phase
ú No zone signing phase

� Doesn’t care how many zones you have
ú No configuration
ú It Just Works™

Phreebird Efficiency

§ Signatures are cached as they’re generated
ú Answers are sacred – whatever answer happens to be

delivered, based on time/geo/load/mood, will still get
delivered

§ Nonexistence records are dynamically generated
“White Lies”, only for NSEC3 instead of NSECú “White Lies”, only for NSEC3 instead of NSEC

ú In NSEC3, names are turned into numbers
ú “There are no names between 1 and 3”

§ Under heavy load or attack, server prioritizes
positive replies over NSEC3 sigs
ú Under overload conditions, SERVFAIL is returned
ú NSEC3 does not actually stop SERVFAIL – but servers don’t

cache it

Isn’t Online Keysigning
Dangerous?
§ Many protocols use online keysigning

ú SSL
ú SSH
ú IPSec

§ DNSSEC needed to be able to support offline
keys
ú The root should not have the keys online
ú Massive TLDs shouldn’t need to have key material in

every location/jurisdiction they have hosting
§ But supporting online keys != requiring online

keys

The Cost Of Offline
Operation
§ PGP/GPG

� What happens when you receive mail from someone
not on your keyring?

� What happens when you have to send mail to � What happens when you have to send mail to
someone not on your keyring?

� What happens when a key expires?
� What happens when a key is lost?
� What happens when a key is stolen?

If you can’t handle
failures, you can’t succeed
§ Offline key management is unable to handle

special cases well
ú In DNSSEC, you can quickly publish new data, and

client can quickly retrieve it. The special cases get client can quickly retrieve it. The special cases get
first class support.

ú Revocation stops being an exceptions. Keys
expire all the time, get over it!

Is There Other Magic?

§ There is a lot of obscura in the DNSSEC realm
that we’ve been filtering through
ú How do we tunnel trusted records to registries when

the registrars in front of them don’t implement
DNSSEC?DNSSEC?

ú How do we manage rollover and expiration?
ú How do we keep clocks in sync, especially given the

chicken-and-egg relationship between NTP and
DNSSEC?

§ If you’re interested – ask me after this talk. Right
now, I want to focus on applications.

What App Developers Need

§ App developers don’t want to be crypto
developers!
ú They don’t have to be masters of distributed

databases, but they get to benefit from one every day databases, but they get to benefit from one every day
when they resolve DNS names

§ App developers need to be able to easily
authenticate entities outside their organization
ú It’s no drama to look up a user’s mail server.
ú It’s epic drama to recognize a user’s smartcard
ú Can DNSSEC fix this?

End-to-End Security for
DNSSEC
§ Problem: DNSSEC was originally envisioned

to allow name servers (not desktops) to be
able to verify data
ú Desktops would just get a “bit” declaring ú Desktops would just get a “bit” declaring

everything safe
ú Reality: I like Starbucks, but I’m not trusting their

name server to tell me anything is safe

§ Is it possible to efficiently determine a trust
chain via DNSSEC, at the desktop?

Yes, in about 10 lines of code
using LDNS

Approaches for End-To-End
Trust (All Implemented Here)
§ Chase (via ldns)

ú Given the signature for www.foo.com, discover the
signature up from foo.com, then com, then the root.

§ Trace (via libunbound)
ú Given the signature for the root, discover the signature ú Given the signature for the root, discover the signature

down from the root, then com, then foo.com.
ú Basically, just embed a recursive DNS resolver in client

� Load issues!

§ Wrap (via Phreebird-modified ldns)
ú Encapsulate DNS in an HTTP request to a compliant server
ú Useful when behind inclement firewalls (common!)

§ Pack…

X.509 Packing

§ Inspired by Brett Watson’s quote
ú “You have to be willing to separate the content of DNS

from the transport of DNS”

§ X.509 as a chain delivery mechanism is pretty § X.509 as a chain delivery mechanism is pretty
broken (see 2009 Black Ops of X.509 for details)

§ X.509 as a way to transfer arbitrary payloads as
part of a chain bound to a TLS session…is pretty
solid
ú Why not tunnel DNSSEC data re: a TLS endpoint

through DNSSEC?

So Adam Langley at Google sent
me a private unofficial build
of Chrome…

That certificate was self
signed……with a DNSSEC chain
embedded.

An Interesting Variant

§ Host DNSSEC chains over HTTP, at well
known addresses
ú http://www.foo.com/.well_known/dns-http

� This is actually RFC compliant� This is actually RFC compliant

ú Can even host over HTTPS, letting the endpoint
self-authenticate via the chain for www.foo.com

So, do we add ldns/libunbound
to each package, one by one?
§ Eventually, possibly

ú Works very well for PhreeShell, the Federated
OpenSSH Demo at the start of the talk

ú Sample code for this also part of Phreebird Suiteú Sample code for this also part of Phreebird Suite

§ But in the short term? To prove value?
§ On Linux/Unix, SSL is handled via OpenSSL

ú Specifically, X509_verify_cert
ú A nice and self contained library call…hmm…

PhreeLoad: Integrating DNSSEC
into OpenSSL via LD_PRELOAD
§ Prior Work: libval_shim from Russ Mundy @

Sparta
ú Great work!
ú Two major differentiators

� 1) Written before the root was signed, so no provisions
for chasing a signature down to the root

� 2) Validated the results of a DNS query – which might just
be an IP address, attackable via other means

§ PhreeLoad operates at a different layer
ú Given software that’s attempting to achieve end-to-

end security, replace/augment the auth layer with
DNSSEC

The final sentence is hard to understand when structured like that.

CURL to a self signed
certificate
§ # curl https://www.hospital-link.org

curl: (60) SSL certificate problem, verify that
the CA cert is OK. Details:
error:14090086:SSL
routines:SSL3_GET_SERVER_CERTIFICATE:c
error:14090086:SSL
routines:SSL3_GET_SERVER_CERTIFICATE:c
ertificate verify failed
…
If you'd like to turn off curl's verification of
the certificate, use the -k (or --insecure)
option.

After Loading Phreeload

§ # phreeload curl https://www.hospital-
link.org

§ <pre>
Now this is a storyNow this is a story
all about how my life
got twisted upside down
and id like to take a minute
just sit right there
ill tell you how i became the prince
of a town called Bel-Air

Enabling Debug

§ # phreeload curl https://www.hospital-link.org
§ Resolving www.hospital-link.org

Secure result recieved.
§ V:1 Hash Algorithm:sha1

Hash:5e0905b0eafd35d59f1b178727d4eaadd06c415d
STS:0. Secure Reneg:0 Livehash:0 Hash Range:(null)STS:0. Secure Reneg:0 Livehash:0 Hash Range:(null)
Hash detected: sha1
5e0905b0eafd35d59f1b178727d4eaadd06c415d
Hash Validated
DNSSEC validated
<pre>
Now this is a story
all about how my life
got twisted upside down

What Are We Actually Putting
Into DNS?
§ www.hospital-link.org IN TXT "v=key1

ha=sha1 h=5e0905b0eafd35d5…“
ú v=KEY1

Version is KEY1Version is KEY1
ú ha=sha1

Hash Algorithm is SHA-1
ú h=5e0905b0eafd35d5…

Hash of certificate is h=5e0905b0eafd35d5…

Alternate Key Retrievals

§ lh=[0|1]: LiveHash
ú Whether, upon a failed resolution for

www.foo.com, a second lookup to _tlshash-
f1d2d2f924e986ac86fdf7b36c94bcdf32beec15.ww
w.foo.com should be attempted. (Not done by w.foo.com should be attempted. (Not done by
default due to performance implications.)

§ hr=[cert|pubkey]: Hash Range
ú If set to "cert" (or unset), the hash validated is the

hash of the entire certificate. If set to "pubkey",
the hash validated is the hash of the public key in
the certificate.

Extensible Metadata Support

§ sts=[0|1]: Strict-Transport-Security:
ú Whether insecure (http) access to www.foo.com

should be allowed
ú This is how we address Firesheep!

� It’s too expensive / tricky right now to get certs for � It’s too expensive / tricky right now to get certs for
everything

� It’s too expensive / tricky right now to shut down insecure
channels after secure ones exist

� DNSSEC fixes things by making security cheaper.

§ sn=[0|1]: Secure Negotiation:
ú Whether secure renegotiation will be present at this

HTTPS endpoint

Why This Particular Schema?

§ Have to go live with something – this should not be seen as
canonical or consensus
ú However…

§ Last four protocols to try to do complex things in DNS went
TXT
ú DKIMú DKIM
ú SPF
ú HPA (in GPG)
ú IPSec

§ Don’t want a record compiler
§ Don’t want to require upgrading servers / web Uis
§ Really don’t want another binary protocol

ú If you notice, we’ve sort of abandoned ASN.1 for XML/JSON
ú For a reason

All OpenSSL apps means All
OpenSSL Apps
§ Postfix
§ Postgres
§ MySQL
§ Apache§ Apache

ú Want to start working on client certificates that
actually work? Much easier now that we have a signed
root

ú Welcome to DKI
§ But how do we get this working on browsers?

ú Most not running on Linux
ú Most not running with OpenSSL

Phoxie: Remote SSL
Validation For All Browsers

Browser Lock In IE

Also: A Neat Toy!
Self Certifying URLs
(Inspired by SFS)

It even works by IP!

Self Certification Modes:
Useful?
§ Possibly – it’d be nice if applications had a

clean way to directly declare the actual key
they wanted to use.
ú This approach adds the key to the domain being ú This approach adds the key to the domain being

connected to
ú Works well for HTTP-based APIs
ú Works poorly for OS sockets

§ Admittedly, those are ugly domain names
ú But they work for free

What About Windows?

§ Linux makes it very clean, to hook individual
functions inside of major APIs

§ Windows makes it harder, but not impossible
ú PhreeCAPI: A DLL Injector for CryptoAPIú PhreeCAPI: A DLL Injector for CryptoAPI
ú Target Application: Outlook 2007

� Problem: S/MIME certificates are free and
automatically issued. Not much confidence in them.

� Could we use DNSSEC to achieve exclusion, the
primary property that makes DNSSEC better than
X.509?

So, we have this signed email from
dan@the-bank.org
(Not exactly the most compelling image)

We just added the checker,
didn’t put any records into the
DKI

Well, there’s the fingerprint
of the canonical certificate…

So, lets put this (DELIBERATELY
OVERSIMPLISTIC) thing in the
DKI
§ dan._smpka.the-bank.org. IN TXT ‘v=KEY1

ha=sha1
h=460c1be3f86d39f537864700560f37aef6ce3h=460c1be3f86d39f537864700560f37aef6ce3
775'

Now we have mail from the bank,
signed by the only key in the
world that can sign it.

So…why not make it look even
better?

We’ve Been Promising Secure
Email For Over A Decade
§ DNSSEC is how we can deliver it
§ CAs remain useful – DNSSEC only says that this

is the-bank.org. It doesn’t say that this is “The
Bank.”
ú That is what EV is forú That is what EV is for
ú We can (and should) port EV to email

§ With added confidence in the source of email,
even cross organizationally, we could
reasonably implement meaningful UI around
message security
ú We are blocked from doing that today because we

have so little confidence in either success or failure

Conclusion

§ The Domain Key Infrastructure is real
ú Federated OpenSSH works
ú Browser locks work
ú Easy application integration worksú Easy application integration works
ú Email works
ú The CA’s still matter!

§ This is real, and this is a big deal
ú Phreebird Suite 1.0 is on blackhat.com’s website!

Enjoy!

