PostgreSQL
when it’s not your job.

Christophe Pettus

PostgreSQL Experts, Inc.
DjangoCon US 201]2

“Integration between development and
operations.”

“Cross-functional skill sharing.”

“Maximum automation of development and
deployment processes.”

“WVe're way too cheap to hire real
operations staff. Anyway: Cloud!”

® No experienced DBA on staff.

® Have you seen how much those people
cost, anyway!

® Development staff pressed into duty as
database administrators.

® Butit’s OK... it’s

Robust, feature-rich, fully-ACID compliant
database.

Very high performance, can handle
hundreds of terabytes or more.

Well-supported by Python, Django and
associated tools.

Open-source under a permissive license.

“It’s hard to configure.”
“It requires a lot of on-going maintenance.”

“It requires powerful hardware to get good
performance.”

“It's SQL... boring! Also: It’s not

9

“Elephants scare me.”

e
D [5

We’re AII Gomg T ' Die. =

je.-m i - =
s LR 5 AFHL Emcm‘!-!

It Can Be Like This.

PostgreSQL when it is not
your job.

® Basic configuration.

® FEasy performance boosts (and avoiding
pitfalls).

® On-going maintenance.

® Hardware selection-

PostgreSQL person since 1997.
Django person since 2008.

Consultant with PostgreSQL Experts, Inc.
since 2009.

... Slides available there.

on Iwitter.

It’s hard to seriously misconfigure
PostgreSQL.

Almost all performance problems are
application problems.

Don’t obsess about tuning.

A lot of material in a short talk, so...

No time to explain!

Just do this!

® Use packages.

® Distro packages are great, but usually
behind the times.

® Alternate repos available that are more
recent.

® Ubuntu: Martin Pitt

® Turn off the OOM Kkiller. (It’s a bug, not a
feature.)

® Use ext4 or XFS (ext3 is your father’s
filesystem).

® Be sure to set SHMMAX and SHMALL.

PostgreSQL configuration.

® | ogging.

® Resources.
® Checkpoints.
® Planner.

® You're done.

® No, really, youre done!

® Do logging first!

® Be generous with logging; it’s very low-
impact on the system.

® |t's your best source of information for
finding performance problemes.

® syslog — If you have a syslog infrastructure
you like already.

® standard format to files — If you are using
tools that need standard format.

® Otherwise, CSV format to files.

log_destination = 'csvlog'

log directory = 'pg_log'
logging_collector = on

log_filename = 'postgres-%Y-%m-%d_%H%M%S '
log_rotation_age = 1d

log_rotation_size = 1GB
log_min_duration_statement = 250ms
log_checkpoints = on

log_connections = on

log_disconnections
log_lock_waits = on
log_temp_files = 0

on

shared buffers = 25% of memory to 8GB.
work mem = (2*RAM)/max_connections.
maintenance_work mem = RAM/ |6.
effective cache size = RAM /2.

max_connections = no more than 400.

® A complete flush of dirty buffers to disk.
® Potentially a lot of I/O.

® Done when the first of two thresholds are
hit;

® A particular number of WAL segments
have been written.

® A timeout occurs.

Checkpoint settings, part |

wal buffers = 16MB
checkpoint_completion_target = 0.9
checkpoint_timeout = 10m-30m # Depends on restart time

checkpoint_segments = 32 # To start.

® |f checkpoints are happening more often
than checkpoint_timeout, increase
checkpoint_segments.

® |f checkpoints are swamping the I/O
subsystem, you need better hardware.

® cffective io concurrency — Set to the
number of I/O channels; otherwise, ighore
it.

® random_page cost — 3.0 for a typical
RAID IO array, 2.0 for a SAN, |.| for
Amazon EBS.

® And you're done with planner settings.

General system stuff.
Stupid database tricks.
SQL pathologies.

Indexes.

Tuning VACUUM.

® Do not run anything besides PostgreSQL
on the host.

® |f PostgreSQL is in aVM, remember all of
the other VMs on the same host.

Sessions in the database.
Constantly-updated accumulator records.
Task queues in the database.

Using the database as a filesystem.
Frequently-locked singleton records.

Very long-running transactions.

® Using INSERT instead of COPY for bulk-
loading data.

® psycopg?2 has a very good COPY
interface.

® Mixing transactional and data warehouse
queries on the same database.

® Gigantic IN clauses (a typical Django anti-
pattern).

® Unanchored text queries like ‘%this%’; use
the built-in full text search instead.

® Small, high-volume queries processed by
the application.

® What is a good index!
® A good index:

® ... has high selectivity on commonly-
performed queries.

® ... oris required to enforce a constraint.

® VWhat’s a bad index!

® Everything else.

® Non-selective / rarely used / expensive to
maintain.

® Only the first column of a multi-column
index can be used separately.

® Don’t go randomly creating indexes on a
hunch.

® That’s my job.

® pg stat user tables — Shows sequential
scans.

® pg stat user_indexes — Shows index
usage.

On-going maintenance.

® Monitoring.
® Backups.
® Disaster recovery.

Schema migrations.

® Always monitor PostgreSQL.
® At least disk space and system load.
® Memory and I/O utilization is very handy.
® | minute bins.

® check postgres.pl at bucardo.org.

Easiest PostgreSQL backup tool.

Very low impact on the database being
backed up.

Makes a copy of the database.

Becomes impractical as the database gets
big (in the tens of GB).

® Best solution for large databases.
® Fasy to set up.

® Maintains an exact logical copy of the
database on a different host.

® Make sure it really is a different host!

® Does not guard against application-level
failures, however.

® Replicas can be used for read-only queries.
® |f you are getting query cancellations...

® |ncrease max_standby streaming delay
to 200% of the longest query execution
time.

® You can pg_dump a streaming replica.

® Streaming replication is all-or-nothing.

® |f you need partial replication, you need
trigger-based replication (Slony, Bucardo).

® These are not part-time jobs!

Maintains a set of base backups and WAL
segments on a (remote) server.

Can be used for point-in-time recovery in
case of an application (or DBA) failure.

Slightly more complex to set up, but well
worth the security.

Can be used along side streaming
replication.

Encoding.

Schema migrations.

<IDLE IN TRANSACTION>
VACUUM FREEZE

® Character encoding is fixed in a database
when created.

® The defaults are probably not what you
want.

® Use UTF-8 encoding (with appropriate
locale).

® C Locale makes sense.

Add a column to a large table.

Push out to production using South or
something.

Watch production system fall over and go
boom as PostgreSQL appears to freeze!

I've... heard about that happening.

® All modifications to a table take an

exclusive lock on that table while the
modification is being done.

® |f you add a column with a default value, the
table will be rewritten.

® This can be very, very bad.

® Create columns as not NOT NULL.

® [hen add constraint later once field is
populated.

® TJakes a lock, but a faster lock.

® Create new table, copy values into it (old
table can be read but not written).

A session state when a transaction is in
progress, but the session isn’t doing
anything.

Be careful about your transaction model.

You should never see this state except
transiently.

Kill them! Kill them with fire!

® Once in a long while, PostgreSQL needs to
scan (and sometimes write) every table.

® This can be a big surprise.

® Once every few months, pick a (very) slack
period and do a VACUUM FREEZE.

WWW.repmgr.org
WAL-E from Heroku.

pgbadger (log analyzer).
pgbouncer (part of SkypeTools).

http://www.repmgr.org
http://www.repmgr.org

Additional reading.

® thebuild.com

® pgexperts.com

Questions!?

Thank you!

