Crypto Code

The 9 circles of testing

JP Aumasson, Kudelski Security

Everybody does if; it's just that nobody talks about if.

Why It's hard

You need to know crypto and software
Methodologies aren’'t documented

Tools aren't always available

Street cred

Wrote and reviewed some crypto code
Like code for millions unpatchable devices
Made many mistakes

Tested many tests

What do we want”?

Functional testing & security testing

BLASTING THE BUG

~unctional testing

Valid inputs give valid output
Invalid inputs trigger appropriate errors

Goal: test all execution paths

Security testing

Program can't be abused
Doesn't leak secrets

Overlaps with functional testing

What we're testing

Code against code or against specs

Usually C code, which doesn'’t help

Code against code

Easiest case

When porting to a new language/platform

You'll assume that the ref code is correct
(Though it's probably not)

Can generate all test vectors you want

Code against specs

Often occurs with standards (ex: SHA-3)
Only a handful of test vectors, it any
Specs can be incomplete or incorrect

Try to have 2 independent implementers

The 9 circles

From most basic to most sophisticated
You may not need all of those
The "what”™ more than the "how”

| probably missed important points

1. lest vectors

Unit-test ciphers, hashes, parsers, etc.

Maximize code coverage by varying
iInputs lengths and values

Make coherence tests, as in BRUTUS
https://github.com/mjosaarinen/brutus

To avolid storing thousands values, recorad
only a checksum (as in SUPERCOP)

https://github.com/mjosaarinen/brutus

1. lest vectors

Against specs, test vectors less useful

Bug in BLAKE ref code unnoticed for 7 years

/* compress remaining data filled with new bits */

- if(left && (((databitlen >> 3) & O0x3F) >= fill)) {

+ 1if(left && (((databitlen >> 3)) >= £ill)) {
memcpy((void *) (state->data32 + left),

(void *) data, fill);

Found by a careful user (thanks!)

/* key schedule */
if (block_key(e1, k1)) return "block _key returns nonzero";

for ((J =0; j < klen + 16; ++j)
if (k1[j] '= k2[j]) return "block _key writes to input";

for ((j = elen; j < elen + 16; ++j)
if (e1[j] '= e2[j]) return "block key writes after output";

if (block key(e2, k2)) return "block_key returns nonzero";
for (jJ =0; j <elen; ++j) if (e2[j] != e1[j]) return "block key produces different keys";

/* encrypt and check for errors */
if (block_enc(c1, m1, el)) return "block _enc returns nonzero";

for (J =0; j <mlen + 16; ++j) if (m2[j] !'= m1[j]) return "block enc writes to input";

for (j

mlen; j < mlen + 16; ++j) if (c2[j] !'= c1[j]) return "block _enc writes after output”;
for (j =0; j <elen + 16; ++j) if (e2[j] '= e1[j]) return "block enc writes to key";

if (block _enc(c2, m2, e2)) return "block _enc returns nonzero";

for (J =0; j<mlen; ++j) if (c2[j] !'= c1[j]) return "block enc produces different ciphertexts";

/* check enc overlap support */
if (block_enc(m2, m2, e2)) return "block _enc returns nonzero";

for (J =0; j <mlen; ++j) if (m2[j] != c1[j]) return "block _enc does not handle overlap";

/* check dec soundness and overlap support */
if (block _dec(m2, c1, e1)) return "block dec returns nonzero";

for (J =0; j<mlen; ++j) if (m2[j] !'= m1[j]) return "block _dec decrypts incorrectly"”;

for ((J =0; j <mlen + 16; ++j) if (c2[j] '= c1[j]) return "block _dec writes to input";

2. Basic software tests

Against memory corruption, leaks, etc.
Secure coding very basics

Static analyzers (Coverity, PREfast, etc.)
Valgrind, Clang sanitizers, etc.

Dumb fuzzing (afl-fuzz, etc.)

2. Basic software tests

Most frequent, can find high impact bugs
(Heartbleed, gotoftail)

Qualys Security Advisory

LibreSSL (CVE-2015-5333 and CVE-2015-5334)

Summary
Memory Leak (CVE-2015-5333)
Buffer Overflow (CVE-2015-5334)

http://www.openwall.com/lists/oss-security/2015/10/16/1

http://www.openwall.com/lists/oss-security/2015/10/16/1

3. Invalig use

Test that it triggers the expected error
Invalid values, malformed input, etc.

For length parameters, parsers

3. Invalig use

Argon2 omitted a parameter range check:

/* Validate memory cost */
if (ARGON2 MIN MEMORY > context->m cost) {
return ARGON2 MEMORY TOO LITTLE;

}

if (context->m cost < 8*context->lanes) ({
return ARGON2 MEMORY TOO LITTLE;

}

+ + + +

4. Optional features

Don't forget features buried under #itdefs

In OpenSSL's DES optional weak key check

Last Thursday it was reported to the openssl-dev mailing list by Ben Kaduk
that there was a defect in this optional code: it had a syntax error and
didn't even compile. It had a typo of "!!" instead of "||":

if (DES set key checked(&deskey[0], &data(ctx)->ksl)
!'! DES set key checked(&deskey[l], &data(ctx)->ks2))

The LibreSSL response? The #ifdefs and code in them have been deleted.

The OpenSSL response? The code... that in 1l years had never been used...
for a deprecated cipher... was *fixed* on Saturday, retaining the #ifdefs

http://marc.info/?l=o0penbsd-tech&m=144472550016118

http://marc.info/?l=openbsd-tech&m=144472550016118

5. Randomness

Hard to catch bugs
Statistical tests are a bare minimum
Ensure distinct outputs across reboots

And across devices (see mining p's & g’s)

5. Randomness

A classic: Debian’'s PRNG bug (2008)

/* DO NOT REMOVE THE FOLLOWING CALL TO MD Update()! */
if (!MD Update(m, buf, 3j))

goto err;
/ *
We know that line may cause programs such as purify and valgrind
to complain about use of uninitialized data. The problem is not,
it's with the caller. Removing that line will make sure you get
really bad randomness and thereby other problems such as very
insecure keys.

* ok ok ok F

OpenSSH keys ended up with 15-bit entropy

o. [iIming leaks

When execution time depends on secrets
Avoid branchings, beware memcmp, etc.
Check the assembly, not just C source

Lan 9 ley’s CtgQ rINd https://github.com/agl/ctgrind

https://github.com/veorg/misc/blob/master/ctgrind valgrind-3.11.0.patch

See also openssl/include/internal/constant_time_locl.h

https://github.com/agl/ctgrind
https://github.com/veorq/misc/blob/master/ctgrind_valgrind-3.11.0.patch

/. Fuzzl

Dumb fuzzing for explorir
space, parsed formats, b

Y

g parameters’
gnum arithmetic

CVE-2015-3193 in OpenSsSl’'s BN_mod_exp

CVE-2016-1938 in NSS’ mp_div/_exptmod

Integer overtlow in Argon?2

https://github.com/P-H-C/phc-winner

-argon2/issues/s

https://github.com/P-H-C/phc-winner-argon2/issues/5

/. Fuzzing

Smart fuzzing, designed for specific APIls

What Cryptosense is doing for PKCS#11

More for high-level protocols than algorithms

8. Verification

Mathematically proven correctness

Cryptol \anguage http://cryptol.net/ http://galois.com/
+ SAW to extract models from LLVM, Java

INRIA’s verified TLS https://mitls.org/

Verified security: LangSec?

http://cryptol.net/
http://galois.com/
https://mitls.org/

9. Pnysical testing

Test for side channels, fault resilience

As applied to smart cards or game consoles

Conclusions

WE CAN ONLY IF WE DONT FIX

AFFORD TO FIX THE 1002 OF THE BUGS, SO OUR
HIGH-PRIORITY THE SOFTWARE WILL PLAN IS
BE 1002 USELESS. TO FAIL?
MORE
) SLOWILY.

62209 ©2009Scott Adams, Inc./Dist. by UFS, Inc.

www.dilbert.com scottadams®aol.com

Conclusions

Pareto: test vectors will spot most bugs

But bugs on the (fat) tail can be critical

§ $38¢E

Conclusions

I wrote a vulnerability

scanner that abstracts He wrote a dumb ass
all the predicates in a fuzzer and found 5
binary, traverses the vulns in 1 day.

callgraph and generates
phormulaes to run then
with a SMT solver.
I found 1 vuln in
3 days with this tool.

Good thing I'm
not a n00b like
that guy.

Conclusions

IP address 62.159.96.78
nsl.ernw.net Lastscan 2016-03-08 21:06:34 UTC

SSH (port 22)
Rules applicable 9

CAA’ C D
2 1 2 4 0

SSH (port 22)

Show scan details

C

Diffie-Hellman group security

The server supports the "diffie-hellman-group1-shal" algorithm.

The "diffie-hellman-group1-shal" key exchange algorithm uses the commonly-shared
and 1024-bit Oakley Group 2 (RFC 4253).

For security, a 2048-bit group is reasonable although ENISA recommends a group size
of at least 3072 bits (ENISA 2014 report). The use of commonly-shared 1024-bit

groups such as Oakley group 2 is especially discouraged because of possible
precomputation attacks (weakdh.org).

Diffie-Hellman is mainly used so that two machines can compute a shared secret and
so benefit from forward secrecy.

hitps://discovery.cryptosense.com/analyze/troopers.de/d4c 7579

https://discovery.cryptosense.com/analyze/troopers.de/d4c7579

Conclusions

First do basic automated tests

Machine don't replace human review though
Few capable people/companies for crypto
Make your code/APls test/review-friendly

See coding rules on https://cryptocoding.net

https://cryptocoding.net

