IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 4, AUGUST 2007

775

NIRA: A New Inter-Domain Routing Architecture

Xiaowei Yang, Member, IEEE, David Clark, Fellow, IEEE, and Arthur W. Berger

Abstract—In today’s Internet, users can choose their local
Internet service providers (ISPs), but once their packets have
entered the network, they have little control over the overall routes
their packets take. Giving a user the ability to choose between
provider-level routes has the potential of fostering ISP competition
to offer enhanced service and improving end-to-end performance
and reliability. This paper presents the design and evaluation
of a new Internet routing architecture (NIRA) that gives a user
the ability to choose the sequence of providers his packets take.
NIRA addresses a broad range of issues, including practical
provider compensation, scalable route discovery, efficient route
representation, fast route fail-over, and security. NIRA supports
user choice without running a global link-state routing protocol. It
breaks an end-to-end route into a sender part and a receiver part
and uses address assignment to represent each part. A user can
specify a route with only a source and a destination address, and
switch routes by switching addresses. We evaluate NIRA using a
combination of network measurement, simulation, and analysis.
Our evaluation shows that NIRA supports user choice with low
overhead.

Index Terms—Inter-domain routing, Internet architecture,
routing, source routing, user-controlled routing.

1. INTRODUCTION

HIS paper is concerned with the question of how Internet
T traffic is routed at the domain level [at the level of the au-
tonomous system (AS)]! as it travels from source to destina-
tion. Today, users can pick their own Internet service providers
(ISPs), but once their packets have entered the network, the
users have no control over the overall routes their packets take.
ISPs make business decisions to interconnect, and technically
the BGP routing protocol [48] is used to select the specific route
a packet follows. Each domain makes local decisions that deter-
mine what the next hop (at the domain level) will be, but the
user cannot exercise any control at this level. In this context, a
user could be a human user, or a program.

In [12], Clark et al. argued that a better alternative would
be to give the user more control over routing at the domain
level. User-controlled routes are a key factor in maintaining the
competitiveness of the ISP marketplace [12]. An analogy can
be seen in the telephone system, which allows the user to pick
his long-distance provider separately from his (usually monopo-
list) local provider. Allowing the user to select his long-distance
provider has created the market for competitive long-distance

Manuscript received October 24, 2005; revised April 4, 2006; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor O. Bonaventure.

X. Yang is with the University of California at Irvine, Irvine, CA 92697 USA
(e-mail: xwy @uci.edu).

D. Clark is with MIT CSAIL, Cambridge, MA 02139 USA.

A. W.Bergeris with MIT CSAIL and Akamai Technologies, Cambridge, MA
02139 USA.

Digital Object Identifier 10.1109/TNET.2007.893888

IIn this paper, an AS is also referred to as a domain. An AS that provides
transit service is sometimes called a provider.

service, and driven the price to a small fraction of its pre-compe-
tition starting point. For the consumer, especially the residential
broadband consumer, there is likely to be a very small number
of competitive local ISPs offering service [8], [12], [15].2 With
cable competing only with DSL, the market is a duopoly at best
(at the facilities level) and often a monopoly in practice. If users
cannot choose their backbone ISPs separately from their local
ISPs, local providers can then control the selection of backbone
providers and capture the market power of consumers. This will
reduce the competitive pressures on the backbone providers and
lead to a vertically integrated ISP market. The recent merger of
SBC and AT&T (to use the old names) [5], and Verizon and MCI
[63] only add to this concern. In the worst case, SBC sends all
its traffic to the AT&T backbone, and Verizon sends its traffic to
MCI. We have the re-emergence of market power in the back-
bone market. Conversely, when users can control the sequence
of providers his packets take, the power of user choice fosters
competition. In a competitive market, ISPs that are more effi-
cient attract more users, which creates a positive loop for them
to further advance technologies and to improve efficiency. In
the long term, competition disciplines the market, drives inno-
vation, and lowers the costs to provide services [12], [66].

Moreover, recent studies on overlay networks and multi-
homing show that letting the user choose routes also brings
technical benefits. The default routing path chosen by BGP
[48] may not be the best in terms of performance, reliability,
or cost. End hosts on an overlay network often find alternative
Internet paths with lower latencies, lower losses, or higher
reliability than the default routes chosen by BGP [3], [27],
[51]. For instance, Detour found that for almost 80% of the
default paths, an alternative route offers a lower loss rate [51].
Similarly, recent studies also show that multihomed sites can
improve path quality and reduce monetary cost by intelligently
choosing their upstream providers [2], [25].

The prevalence of these alternative paths suggests that giving
the user the ability to choose routes can lead to improved perfor-
mance, reliability, or user satisfaction. Only users know whether
a path works for their applications or not. A user may choose a
path that has a high throughput and a low latency for playing
online games, even if the path may cost more. In contrast, a
user may prefer a low cost path for peer-to-peer file downloads.
Furthermore, letting the user choose routes also improves relia-
bility. A user can use multipath routing to improve the reliability
for mission-critical applications, such as 911 calls, or quickly
switch to an alternative route if the default routing path fails.

2Although the Telecommunications Act of 1996 requires that incumbent local
exchange carriers (iLEC, the local phone companies that own the wires) to pro-
vide open access of their networks to competitors at reasonable costs, the im-
plementation of the Act has been difficult [15]. The iLECs have disincentives
to open up the local market. To block market entries, they may create obstacles
such as significant nonrecurring costs in the leasing of their network elements.
As a result, the DSL market shares of the competitive local exchange carriers
keep decreasing [8]. In the mean time, facility-level competition has not taken
place widely, due to the high capital requirements for market entry [8], [15].

1063-6692/$25.00 © 2007 IEEE

776

As a starting point, this paper presents the design and eval-
uation of a new Internet routing architecture (NIRA), an ar-
chitecture that gives a user the ability to choose domain-level
routes. A domain-level route refers to the sequence of domains
a packet traverses, as opposed to a router-level route. We focus
on domain-level rather than router-level routes because choice
at this level fosters competition [12], and because providing
choice at this level is more tractable than providing choice at
the router level. Our design leaves it as an option to a domain to
decide whether to offer router-level choice to users. In the rest
of our paper, without explicit explanation, a route refers to a do-
main-level route.

A key contribution of our work is that it addresses a broad
range of problems that arise from supporting user choice,
including practical provider compensation, scalable route dis-
covery, efficient route representation, fast route fail-over, and
security. To the best of our knowledge, our work is the first to
address all of those issues.

Our design shows that it is technically feasible to support
user choice in the Internet. NIRA allows each individual user
to choose its provider-level routes and allows practical ISP pay-
ment schemes: a user is restricted to choose from the set of
providers that he pays for directly or indirectly. NIRA supports
user choice without expanding packet headers with a source
routing option in the common case. We break an end-to-end
route into three parts: a sender part, a receiver part, and a Core
part (Section II-H), and use an address to represent a sender part
or a receiver part. NIRA provides mechanisms for a user to dis-
cover his part of a route. A user may use a NRLS to discover
a destination’s part of a route. The user can then use a source
and a destination address to represent an end-to-end route, and
switch routes by switching addresses.

We evaluate our design using a combination of measurement,
simulation, and analysis. We implemented in ns-2 [42] a proto-
type of NIRA and used domain-level topologies inferred from
BGP tables for simulation. We use both simulation and an an-
alytical model to evaluate how well NIRA scales and how well
NIRA works under various route failure conditions. Our evalu-
ation shows that NIRA supports user choice with low overhead.

We note that this paper focuses on addressing the technical
problems to support user choice. The companion business or
technical issues that are caused by user choice are outside the
scope of this paper. There is a question on whether ISPs would
permit user choice. But this is a separate policy issue. If in the
future ISPs decide to support user choice, or regulators man-
date them to do so, our design will be a viable technical solution.
We are also aware that letting users choose routes independently
may lead to performance problems such as temporary route os-
cillation [35] or suboptimal routes [49]. Despite these potential
problems, recent research suggests that in the Internet environ-
ment, user-selected routes are close to optimal [45] and route
oscillations happen under rare conditions and can be quickly
stopped by user backing off [35]. It is our future work to look
into these performance problems, and we are optimistic that they
can be mitigated.

The rest of the paper is organized as follows. Section II dis-
cusses the design rational of NIRA. In Sections III and IV, we
describe the key design components of NIRA in detail. We eval-
uate our design in Section V, and compare our work with related
work in Section VII. Section VIII concludes our work.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 4, AUGUST 2007

II. DESIGN OVERVIEW

In this section, we motivate the key components of NIRA.
The overall goal of NIRA is to support user choice. To achieve
this goal, the design of NIRA must satisfy several implied
requirements.

First, to be practical, we require that NIRA must recognize
the need for payment and allow practical payment schemes. In
a commercialized Internet that involves multiple parties, an ar-
chitecture design must respect users’ economic interests as well
as those of ISPs. A technical design will not be feasible if there
is no practical mechanism for users to pay ISPs for their ser-
vice. So in our design, we do not require new payment schemes
such as micro-payments. Second, we require that our design
be highly efficient and scale well. A future Internet must sup-
port a wide range of devices, ranging from resource-constrained
sensor nodes to super computers, and a wide range of communi-
cation technologies, ranging from low bandwidth wireless con-
nections to fiber optics. An efficient and scalable design would
accommodate this variety and allow resource-constrained end
systems to take advantage of the design without additional in-
frastructure support. Third, we require that our design be able
to accommodate future evolution and enhancement. With the
advance of technologies and the evolution of the society, the de-
sign assumptions of today may well change. For example, today
we assume small devices such as sensor nodes have limited re-
sources. In another ten years, they may have as abundant re-
sources as today’s desktop computers. Our design must allow
for future evolution and enhancement. Finally, the design must
be incrementally deployable.

A. Design Rationale

To support user-controlled routes, our design must address
the following questions. 1) How does a user discover a failure-
free route? 2) How is a route encoded in a packet header? 3) How
do users pay for ISPs’ service?

Observe that the design problems we face have little depen-
dency between each other. In our design, we make them into
separate design modules. This reduces the amount of architec-
tural constraints to minimal, and makes the design readily adapt
to future evolution and enhancement. For each design module,
we analyze whether a global consistent mechanism is needed
to implement that module, or multiple mechanisms can be de-
veloped and deployed locally. We design mechanisms to im-
plement the basic functionality of each module, and make it
clear whether the functionality can be enhanced by other local
mechanisms.

We constrain users to choose from the set of providers they
agree to pay for by contractual agreements to allow for practical
payment schemes. Our design assumes bilateral contracts, as
used in the present Internet [30], [31], but we assume ISPs may
use different pricing models [67]. Bilateral contracts are proven
to work and are much simpler than establishing contracts over an
exponentially large set of groups of ISPs. In a bilateral contract,
two ISPs negotiate business relationships to interconnect. The
common business relationships include customer-provider and
peer-to-peer relationships. In a customer-provider relationship,
a customer pays a provider, and the provider provides transit
service between the customer and its neighbors; in a peer-to-
peer relationship, a peer provides transit service between the

YANG et al.: NIRA: ANEW INTER-DOMAIN ROUTING ARCHITECTURE

Cmdy
N10 (N9) (N®)]\7
L

a &

’ 1<x\, (R7 R(w

.ﬂL OI LQ

-n.;ﬁ

(N1D>

@Alicc

L=

-

Fig. 1. Dark lines draw the user Bob’s up-graph. In this and all other figures,
an arrowed line represents a provider-customer connection, with the arrow ends
at the provider. A dashed line represents a peering connection.

other peer and its customers. Our design also works with other
contractual relationships (Section VI). Next, we describe each
design module in more detail.

B. Route Discovery

Before we describe how a user discovers a failure-free route,
we first define a few terms. We refer to a provider that does
not purchase transit service from other providers as a tier-1
provider. We define the region of the Internet where tier-1
providers interconnect as the Core of the Internet. We discuss a
more general definition about the Core in Section II-H.

To formulate a valid route, a user needs to know which routes
he can use and whether they are failure free. Our design provides
a basic mechanism for users to discover routes and route fail-
ures, and allows users to use any general mechanism to enhance
the basic mechanisms. To allow practical payment schemes, our
design exposes to a user the region of the network that consists
of his providers, his providers’ providers, and so on until the
providers in the Core. In addition, the region also includes the
peering connections of the providers outside the Core. This re-
gion of the network is the user’s “access network”™ to the rest
of the Internet. We refer to this region as a user’s “up-graph.”
Fig. 1 shows a sample network, where the dark lines depict the
user Bob’s up-graph. In this paper, we abstract each domain as
having one router and the multiple links between two domains
as one domain-level link. Without specific mentioning, the term
link in this paper refers to a domain-level link. More realistic
situations are considered in [67].

We design a topology information propagation protocol
(TTIPP) to let a user discover his up-graph. TIPP has two
components: a path-vector component to distribute the set of
provider-level routes in a user’s up-graph, and a policy-based
link state component to inform a user of the dynamic network
conditions. The path-vector component informs a user of his
direct and indirect providers and the transit routes formed
by those providers. A tier-1 provider advertises itself to its
customers, and the customers append themselves and fur-
ther advertise the routes to their customers. Different from
a path-vector routing protocol such as BGP, the path-vector
component of TIPP does not select paths. In the example of
Fig. 1, a user Bob learns from TIPP that he can use two routes
to reach the Core : N7 — Ry — By and Ny — Ry — Bj.
Each domain on the route is his direct or indirect provider. The

777

link-state component of TIPP informs a user of the dynamics of
the network. Unlike a global link-state routing protocol, TIPP’s
link-state messages can be configured to propagate within a
provider hierarchy, instead of globally. A domain can control
the scope within which a link state message is propagated
(scope enforcement) as well as to which neighbor to expose
an adjacent domain-level link (information hiding). With this
policy, a user Bob only learns the domain-level links on his
up-graph, which includes Ny — Rj;, Ny — R, Ry — Bi,
Ry — B, and R» — Rj. This flexibility allows the design
to be efficient and to be readily used by resource-constrained
devices such as PDAs or aged PCs. However, if in the future,
efficiency (memory, bandwidth, and computation power) is
not a concern even for small or low-end devices, the link-state
component of TIPP can be configured to propagate link-state
messages globally. A user with a more complete network
topology can avoid more dynamic failures in the network. We
describe TIPP in more detail in Section III.

In NIRA, a sender can obtain an end-to-end route to a destina-
tion by combining routes in his up-graph and those in the desti-
nation’s up-graph in reverse order. A typical domain-level route
is said to be “valley-free” [24]. That is, a route has an “uphill”
segment consisting of a sequence of the sender’s providers, and
a “downhill” segment consisting of a sequence of the receiver’s
providers. A sender’s up-graph contains the uphill segment of
a route, and the destination’s up-graph contains the downbhill
part. A sender learns an uphill segment from TIPP, and may ob-
tain the destination half of a route from a lookup service, the
name-to-route lookup service (NRLS), which we describe in
Section II-D.

C. Efficient Route Representation

Once a sender formulates an end-to-end route, he needs to
encode it in a packet header. We expect that a source route
will be encoded with a uniform global format. This is to ensure
global communication. There are several candidates for route
encoding. For instance, one encoding scheme is to use a se-
quence of addresses or domain identifiers such as AS numbers.
The advantage of this scheme is its flexibility. It can express any
route. The drawback is the variable-length header overhead.

In NIRA, we use a provider-rooted hierarchical address to
encode a route segment that connects a user to a Core provider.
This scheme has a number of advantages. First, it is efficient
in the common case. With this scheme, a user can use a source
and a destination address to compactly represent a valley-free
route, and switch routes by switching addresses. Meanwhile,
with this representation scheme, both the source address and
the destination address are used for forwarding. This effectively
limits source address spoofing, because a router may not find a
forwarding entry for a packet with an arbitrary source address,
and will instead drop the packet.

In the provider-rooted hierarchical addressing scheme, a
provider in the Core obtains a globally unique address prefix.
The provider then allocates nonoverlapping subdivisions of
the address prefix to each of its customers. Each customer will
recursively allocate nonoverlapping subdivisions of the address
prefix to any customer it might have.

The hierarchical addressing scheme requires that an address
be long enough to encode the provider hierarchy. This require-
ment could be met either with a fixed-length address with a large

778

Cindyg
(N N8 (N7 ==
N1Q N SN
~ NN .
R8) (R7 R6
P : (N6
X £ Core # %
N1D> o
RO > . B4 . RS
, 4::/16 N4
p 7 { - <
N12 i e T NG
(-

(NI3 132 lm .
L1148 \ N) \ UM ® \ ;
1:2:1::/48 FFFF:1::/32 2/

FFFF:1:1::/48 @ 1:2:2::/48 B B o
Bob_ FEFE:1:2::/48 ‘\I:37:I:leti8‘}-l-l-l-:2:lzz/48
g{ 1000 2:1:1::2000 g ¢
- 1000 1:3:1::2000 =

FFFF:1:1::1000 FFFF:2:1::2000

Fig. 2. Example of the strict provider-rooted hierarchical addressing. For
clarity, we only show address allocation for the dark region.

address space, or with a variable length address. For the sake of
concreteness, we use IPv6 address [14], which is 128-bit long.
Using IPv6 addresses has the benefit that NIRA’s packet header
could be the same as the IPv6 header. We use the first 96-bit
of an address as an inter-domain address prefix that is hierar-
chically allocated from a provider to a customer; the remaining
32-bit is an intra-domain address that identifies a network loca-
tion inside a domain. If allocated prudently, 96 bits could ad-
dress up to 2%6 domains. In any foreseeable future, the number
of domains in the Internet is unlikely to be anywhere close to
that number. So we think that an IPv6 address is a reasonable
choice. This design choice also allows NIRA to reuse the de-
ployment effort of IPv6.

We note that the choice of route encoding is independent of
other design modules of NIRA. Alternatively, we could use a
sequence of IPv4 addresses to represent a domain-level route.
This will make NIRA compatible with the current IPv4 archi-
tecture. We chose to use IPv6 addresses because we consider it
advantageous to use a source and a destination address to repre-
sent a common type of route. Even if IPv6 does not completely
replace IPv4 in the future, NIRA can be adapted to use a se-
quence of IPv4 addresses to represent the routes in the part of
the network that uses IPv4 addresses. Users can still learn those
routes from TIPP.

Fig. 2 shows an example of NIRA’s address scheme. In this
and all other examples, we represent an address and an address
prefix using the IPv6 notation as described in [14], where “::”
represents a variable number of contiguous zeros, and “:” is a
separator that separates every 16-bit piece. An address prefix is
represented in the format address/prefix length. In this example,
the tier-1 providers B; obtains a globally unique address prefix
1::/16. Non-overlapping subdivisions of the prefix are allocated
downwards the provider-tree rooted at B1. B1’s customer R,
Ry, and R3 each gets a subdivision of 1::/16: 1:1::/32, 1:2::/32,
1:3::/32, and recursively allocate the subdivisions of the prefixes
to their customers: Ny, N2, and N3. A user in N7, Bob, gets
two hierarchical addresses allocated from the tier-1 providers:
1:1:1::1000 and 1:2:1::1000.

We further extend the provider-rooted hierarchical address al-
location mechanism and assign a noncore-visible address space
to a domain-level peering link outside the Core. Each peer ob-
tains an address prefix from the noncore-visible address space.
A provider that has a peering address prefix will also recursively

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 4, AUGUST 2007

allocate the subdivisions of the address prefix to its customers.
The peering address is noncore-visible in the sense that they are
not propagated into the Core.

For instance, in Fig. 2, a noncore-visible peering prefix
FFFF::/16 is allocated to the peering link between R, and
R3. Ry gets the address prefix FFFF:1::/32, and R3 gets the
address prefix FFFF:2::/32. Recursively, R2 and R3 allocate
subdivisions of the address prefixes to their customers Vi,
N>, and N3. Domain N gets a prefix FFFF:1:1::/48, and the
user Bob in domain [V; gets a noncore-visible peering address
FFFF:1:1::1000.

With this addressing scheme, a user can use a source and
a destination address to represent a valley-free route. The se-
quence of the providers that allocate the source address maps to
the uphill route segment; similarly, the sequence of the providers
that allocate the destination address maps to the downhill seg-
ment. A user Bob may use the source address 1:1:1::1000 and
the destination address 1:3:1::2000 to represent the route N; —
R1—>B1—)R3—>N3.

With the hierarchical address allocation scheme, one can infer
the provider-customer relationship from the address prefixes a
domain has. We do not think it will become a deployment ob-
stacle because this relationship can be largely inferred today
[24], [57].

D. Bootstrap a Communication

To bootstrap a communication, a user also needs to know
what routes a destination is allowed to use. Similar to bootstrap-
ping a communication in today’s Internet, in which a user ob-
tains the IP address of a destination, a user can obtain this in-
formation via multiple approaches, e.g., a directory lookup, a
web search, or out of band communication. In our design, we
propose an infrastructure service, the NRLS to map the name
of a destination to the route segments the destination is allowed
to use. NRLS is a separate design module. Our design does not
constrain the form of the name space or the implementation of
the NRLS service. The namespace can be hierarchical like the
domain name service (DNS) [39], or flat as proposed in [7], or
take any other form that is used in the future Internet. Similarly,
the implementation can either be hierarchical, or flat [13], or a
mixture [28].

If an end system wants to be reached by other hosts, it stores
its route segments together with its preference at an NRLS
server. With the encoding scheme described in Section II-C, the
routes a destination can use are encoded as addresses. When a
user intends to communicate with a destination, the user queries
the NRLS to retrieve the route information of the destination,
similar to querying a DNS server in today’s Internet. Com-
bining his route information with that of the destination, a user
is able to choose a source and a destination address to reach
the destination. Two users may exchange subsequent packets
to negotiate a better route.

If the domain-level topology changes, a user’s provider-level
routes may change. TIPP will notify a user of these changes.
When a server’s provider-level routes or its route preference
changes, it needs to update its NRLS record. This process is
similar to dynamic DNS [64] updates or other directory ser-
vice updates. NRLS can use any mechanism that secures DN'S
updates (or other directory service updates) [29], [65] to pro-
vide security to NRLS updates. We do not think NRLS updates

YANG et al.: NIRA: ANEW INTER-DOMAIN ROUTING ARCHITECTURE

would cause any scaling problem for two reasons. First, the
Internet topology (at the domain level) changes at a low fre-
quency [10]. Only those changes would affect a user’s route
segments. Second, static topology changes (excluding tempo-
rary failures) are caused by the changes in business relation-
ships. These changes happen in a controlled manner. Network
administrators and users can deploy creative scheduling algo-
rithms to reduce the service disruption and the NRLS server up-
date overhead. A grace period may be granted before a provider
terminates its service so that a user has sufficient time to update
his route information. Randomized algorithms may be used to
prevent users from simultaneously updating their route infor-
mation, and standard load-balancing techniques can be used to
shed load from one NRLS server to multiple machines.

Like DNS or any other directory service, an NRLS resolver
needs to be hard-coded with the route segments of the root
NRLS servers. When the route segments of the root servers
change, the hard-coded information need to be updated. The
process of updating root server information can be inconve-
nient. One approach to alleviate this problem is to place the root
NRLS servers at the tier-1 providers. A server inside a tier-1
provider only has one route segment that consists of the tier-1
provider. The likelihood that the route would change is signifi-
cantly reduced.

E. Handling Route Failures

The route a user chooses to use may suffer dynamic failures.
The basic mechanism we provide for route failure discovery is a
combination of proactive and reactive notification. TIPP proac-
tively notifies a user of the working conditions of routes in the
user’s up-graph. As TIPP messages may not propagate globally,
auser in general does not know the working conditions of routes
on a destination’s up-graph. A user relies on reactive mecha-
nisms, such as a timeout or a router feedback, to discover route
failures.

Our design requires that if a router detects that a route spec-
ified in a packet header is unavailable, the router try its best to
send a rate-limited ICMP message to inform the original sender.
Such an ICMP message may include reasons why the route is
unusable. In cases where a router is unable to send a failure no-
tification, e.g., a router is overloaded, users should use timeout
to detect route failures. When a user receives a reactive notifica-
tion, as he knows his addresses, his up-graph, and the addresses
of the destination, he could switch to an alternative route. The
fail-over time is on the order of a round trip time in the case of a
router feedback, and depends on the timeout parameters in the
case of a timeout.

The combination of proactive and reactive notification re-
duces the amount of dynamic routing information a user needs
to maintain. However, reactive notification may increase the
connection setup time when user selected routes suffer from fail-
ures. Users should cache recently used routes and avoid using
unavailable routes for a new connection. We expect that the
amortized connection set up time will be reduced with such
caching. Section V provides an analytic model to estimate the
average connection set up time in the presence of failures.

In our design, failures that trigger reactive notifications are
those that result in inter-domain disconnections. Intra-domain
failures should always be recovered using local repair mecha-
nisms for rapid fail-over [52], [62]. For inter-domain failures,

779

AN

\> N
2:1:/32(N4)
1:3:/32

% FFFF:1::/32

) A
(ND) €D

Bob =4 _
g{km::mm o Alice

@=me 1:2:1::1000 =
FFEFF:1:1::1000

FFFF:2::/32

Fig. 3. What Bob learns from TIPP is shown in dark lines.

it is best for the user to decide on an alternative route, because
a user has expressed his domain-level route choice in a packet
header, and a router does not know the user’s route preference.
The dynamics of route selection may not be high since the do-
main-level routes may not be so fragile to single link failures.

In addition to the combination of TIPP messages, router noti-
fications, and timeouts, users may use any general mechanism to
discover route failures. For instance, a local provider may offer
a route monitoring service to its users. The provider may run
a server that actively probes the dynamic attributes of popular
routes and provides timely information on route conditions to its
customers. In addition, popular servers may choose to include
dynamic topology information in their NRLS records and up-
date the information at a rate they could afford. When a user re-
trieves a server’s route information, he may already know which
addresses of the server are unreachable, thereby saving the con-
nection setup time.

FE How Users May Choose Routes

After a user is equipped with the ability to discover routes and
to handle route failures, he is able to choose routes. We present
a concrete example to illustrate how a user may choose routes.
Suppose a user Bob in Fig. 2 wants to communicate with Alice.
The following steps may happen.

1) Bob learns his addresses: 1:1:1::1000, 1:2:1::1000,
FFFF:1:1::1000, his up-graph, and the dynamic failure
information on his up-graph from TIPP, as shown in Fig. 3.
Note that the up-graph tells Bob the provider-level routes
his addresses map to.

2) Bob queries NRLS servers to obtain Alice’s addresses:
2:1:1::2000, 1:3:1::2000, and FFFF:2:1::2000, and Alice’s
preference over these addresses.

3) Combining his addresses and Alice’s addresses, Bob
knows that he has five routes to reach Alice. Four of them
come from the combination of his global addresses and
Alice’s global addresses. One of them comes from the
combination of the noncore-visible peering addresses.

4) Suppose Alice prefers the peering address FFFF:2:1::2000
to other global addresses. From his up-graph, Bob knows
that he has an address FFFF:1:1::1000 allocated from the
same peering link, and the route segment in his up-graph
N; — Ry — Rs is in good condition. Bob then sends a
packet to Alice using a source address FFFF:1:1::1000 and
a destination address FFFF:2:1::2000.

780

5) After the packet reaches Alice, Bob, and Alice may ex-
change subsequent packets to negotiate a better route.
If Bob detects a failure from a router feedback or a
timeout, he can switch to an alternative route by switching
addresses.

The default usage model of NIRA is that a software agent
running on a user’s computer selects routes based on the user’s
preference. The agent can either learn a user’s preference from
static configured policies, or from an adaptive learning approach
by observing a user’s behavior, as described in [17], [37]. For
instance, if an ISP offers a voice over IP expedited forwarding
service, a user may configure the agent to choose the ISP when
he runs voice over IP applications.

In addition, NIRA supports multiple usage models. Choice is
not restricted to be made only by end users. In situations where
a domain does not want to give route choice to its users, for
instance, a company network might not want its employees to
select routes according to their preferences, the domain does not
need to propagate TIPP messages to those users. Instead, the
domain could have a route server to select routes for its users. If
a domain uses a NAT [54] box to isolate hosts in the domain
from the rest of the Internet, the NAT box will select routes
on behalf of the hosts in the domain. Alternatively, a domain
could have its border routers act as name-to-route translation
boxes, as described in the IPNL [23] architecture. A user sends
all his packets with the destination’s domain name. A border
router selects routes on behalf of users. When a border router
receives the first packet to a destination from a user, the router
does an NRLS query, caches the results, selects a route for the
user, attaches the route representation to the packet, and sends
the packet. For subsequent packets, the router can translate the
destination name into a previously selected route representation
using cached results.

G. Forwarding

In NIRA, a packet is first forwarded along the sequence of
domains that allocate the source address, and then forwarded
along the sequence of domains that allocate the destination ad-
dress. The path the packet takes from the top-level provider that
allocates the source address to the one that allocates the destina-
tion address is chosen by the top-level providers inside the Core.

For instance, in Fig. 2, if a user Bob chooses a source address
1:1:1::1000 (allocated from B1 — R{ — N7) and a destination
address 2:1:1::2000 (allocated from By — R3 — N3) to send
a packet, the packet will be forwarded along the route Ny —
Ry — B; ~ By — R3 — N3, where the symbol ~~ denotes
that the top-level providers in the Core decide how to forward
the packet from B; to Bs.

Routers must have correct forwarding state in order to for-
ward packets along the specified routes. In NIRA, domains run
TIPP to establish the forwarding state within a provider hier-
archy, and top-level providers may run an inter-domain routing
protocol such as BGP to determine the forwarding state inside
the Core. For instance, TIPP informs a router in /N7 that the ad-
dress prefix 1:1:1::/48 is allocated from R;. Thus, packets with a
source address 1:1:1::1000 will be forwarded to ;. Section IV
discusses packet forwarding in detail.

We made the design choice that the path a packet takes within
the Core is chosen by providers in the Core for two practical

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 4, AUGUST 2007

reasons. First, this will facilitate the deployment of NIRA, be-
cause in the present Internet, routes are chosen by ISPs run-
ning BGP, instead of by users. We expect that the migration
from the present routing architecture to NIRA gradually hap-
pens from the edge towards the center. Local providers and re-
gional providers can incrementally deploy NIRA to let users
choose the backbone providers. Second, letting a user choose
routes in the Core may not bring much flexibility in choice,
but will expose to the user the dense topology of the Core.
For instance, tier-1 ISPs of the Internet form a clique, with any
tier-1 provider having a peering agreement with all other tier-1
providers, but only the direct peering connection is the policy-al-
lowed route between any two tier-1 providers. Thus, we made
the design choice not to let users choose routes inside the Core.

We note that the strict provider-rooted hierarchical address al-
location scheme makes the Core a scalable routing region. With
this addressing scheme, inside the Core, a provider in the Core
only needs to announce one aggregated address prefix to other
providers in the Core. The number of routing table entries in the
Core scales with the number of providers in the Core. Because
the ISP market is a high-barrier market, financial factors will
limit the market entries. Therefore, routing in the Core is un-
likely to run into the scaling problems faced by today’s Internet.

H. Definition of the Core

The concept of the Core in NIRA is more general than in
today’s Internet. At the minimum, the Core in NIRA will include
the tier-1 providers that do not purchase transit service from
other providers. A nontier-1 ISP can decide whether to join the
Core or not. To join the Core, it needs to obtain a globally unique
address prefix, connect to those providers with globally unique
address prefixes, and convince those providers to announce its
own prefix into the Core. To not join the Core, the ISP accepts
address allocations from the providers it connects to.

We expect that the Core will be a dynamic structure that is
shaped by the market force as NIRA deploys. If users welcome
route choice, then a nontier-1 provider has the incentive to stay
outside the Core and to let users choose among the providers
it connects to. Otherwise, the provider may choose to stay in-
side the Core. For instance, in Fig. 2, if users welcome choice,
then the provider R3 may decide to stay outside the Core, let-
ting users choose between B; and Bs. ISPs could make their
decisions based on the cost to obtain a globally unique address
prefix, the cost to get that prefix announced to other providers
in the Core, and the benefits and drawbacks of doing so. It is
worth noting that even in the worse case, where every provider
has decided to join the Core, with NIRA, a multihomed edge do-
main will not poke a hole in the global routing tables. Thus, the
growth of the global routing state is still limited by the growth
of the Core, instead of the growth of the Internet. We think this
rate of growth will scale well.

In the next two sections, we describe two of the key compo-
nents of NIRA: TIPP and the forwarding algorithm in detail.

III. TOPOLOGY INFORMATION
PROPAGATION PrROTOCOL (TIPP)

TIPP is an inter-domain protocol that runs between border
routers of domains. It operates outside the Core of the Internet,
and has three functionalities.

YANG et al.: NIRA: ANEW INTER-DOMAIN ROUTING ARCHITECTURE

1) TIPP automatically propagates the mapping between ad-
dresses and the provider-level routes in users’ up-graphs
to users.

2) TIPP propagates up-graphs to users.

3) TIPP helps routers to establish inter-domain forwarding
entries. (We describe this in the next section.)

Fig. 3 depicts what a user, Bob, learns from TIPP. Bob learns
the address prefixes allocated to his domain Ny, his up-graph,
and the mapping between the address prefixes and the uphill
route segments on his up-graph.

We design TIPP to use separate protocol messages to propa-
gate address information and topology information. This design
choice minimizes the coupling between the two functionalities.
The part of TIPP that propagates address information is straight-
forward: if a domain receives an address prefix allocation (or
withdrawal) message from a provider, it sends a message to al-
locate (or withdraw) a subdivision of the prefix to a customer.
Each domain also appends its own domain identifier in the mes-
sage to provide the mapping between an address and a route
segment. This part is similar to a path-vector protocol.

The part of TIPP that distributes topology information is
a policy-controlled link-state protocol. A domain can control
what to distribute to a neighbor at the granularity of a link.
A domain has two types of control: scope enforcement and
information hiding. Scope enforcement ensures the scalability
of TIPP. A domain can choose not to propagate anything
heard from a customer to its neighbors so that a link-state
message will only be sent downward a provider hierarchy.
Information hiding supports policy routing. A domain may
only send a link-state message received from one neighbor to
another neighbor if it provides transit service between the two
neighbors. With this policy, the domain’s providers or other
peers will not receive the link-state messages regarding to a
private domain-level peering link the domain has with a peer.
Therefore, those providers or peers may not use the peering
connection.

For link-state protocols to work correctly, link state messages
must be broadcasted reliably. This is not a trivial task [44]. Link-
state messages that travel along different paths may be lost or
arrive out of order. A link-state protocol needs to ensure that
each router update the topology using the correct sequence of
messages.

We made two design choices that significantly simplified
TIPP. First, TIPP uses an improved version of the Shortest
Path Topology Algorithm (SPTA) developed by Spinelli and
Gallager [53] as its topology update algorithm. Unlike OSPF
[40] or IS-IS [43], SPTA solves the link state consistency
problem without using sequence numbers, periodic link-state
refreshments, or link-state flooding. Second, TIPP messages
between adjacent routers are sent over a reliable transport con-
nection. Unlike OSPF and IS-IS, TIPP does not need built-in
mechanisms to handle in-order and reliable message delivery.

The main idea of TIPP’s topology update algorithm is that a
node updates its topology database using messages heard from
its neighbors, and resolves inconsistent update messages from
different neighbors by “believing” the neighbor that is on the
shortest failure-free path to the link that triggers the update
messages. Messages sent along the same failure-free path are
in-order and reliable, because messages sent between adjacent
nodes are in-order and reliable. Therefore, the sequence of mes-

781

sages coming from the neighbor on the shortest failure-free path
reflect the sequential status change of that link. A failure-free
shortest path can be recursively computed, because a node
knows whether its adjacent link to a neighbor is failure-free,
and the neighbors in turn know which of their adjacent links are
failure-free. Recursively, the node can determine a failure-free
path to a link at any distance.

The tradeoff for simplicity is that SPTA has a per-message
processing overhead linear to the number of domain-level links
in a user’s up-graph. But we do not think that the computation
overhead will become a performance issue, because a user’s
up-graph is a small region of the Internet, consisting of only a
user’s direct and indirect providers, and their peering links.

The primary improvement we made to SPTA is the transit
policy support. Topology information in TIPP is represented
by a set of link records. A link record describes the reachable
address prefixes for packets coming from each direction of the
link. These reachable address prefixes encode the transit policy
of a domain. For instance, let P denote a provider domain, and C'
denote a customer domain. In the link record (P, C'), the reach-
able address prefixes from C' to P is a wildcard, meaning that
packets coming from a customer domain C' to a provider domain
P can reach all neighbors of P; the reachable address prefixes
from P to C is just C’s address prefixes, meaning that packets
coming from a provider domain P to a customer C' can only
reach C and C’s customers. Pseudocode of TIPP’s topology up-
date algorithm is shown in Pseudocode 1. TIPP specification can
be found in [67].

Pseudocode 1 : Topology update algorithm

Ty: Input topology database from a neighbor M
ey the adjacent link record for M
1: foreach neighbor M do

2 if the connection to M is up then
3 ey.parent = Ty.
4: set ey’s attributes using the record in Ty,
5: push ey into queue.
6 else
7 clear ey,’s attributes
8 set the link status in e, to be down
9 end if
10: end for
11: while queue is not empty do
12: [fLink = queue.pop()
13: if fLink is processed before then
14: continue
15: end if
16: foreach adjacent e of fLink’s end domain do
17: if fLink can reach e && fLink is up then
18: e.parent = fLink.parent
19: set e’s attributes using the record in e.parent
20: if ¢ is up then
21: push e into queue
22: end if
23: end if
24: end for
25: end while

26: send changes to neighbors

IV. PACKET FORWARDING

In this section, we discuss how a router forwards a packet
with a source and a destination address along a valley-free route.
NIRA also supports nonvalley-free forwarding, which we de-
scribe in Section VI.

A router obtains its forwarding entries from TIPP. As de-
scribed in Section III, TIPP messages include address alloca-

782

R2’s downhill table

1:2::/96 self
1:2::/32 blackhole
1:2:1::/48 N1
1:2:2::/48 No
FFFF:1::/96 sel f
FFFF:1::/32 blackhole
FFFF:1:1::/48 N1
FFFF:1:2::/48 N

R>’s uphill table
1:2::/32 B
FFFF:1::/32 | bridge

R>’s bridge table
[FFFF:2:/32 | Rs |

Fig. 4. Contents of R.’s forwarding tables.

tion information and reachable address prefixes via a domain.
A router uses these messages to establish forwarding entries.

The key issue a router’s forwarding algorithm needs to re-
solve is to choose the correct address to determine the next hop.
That is, on the uphill part of a route, a router should use the
source address to determine the next hop, and similarly, on the
downhill part, a router should use the destination address. In
our design, a router divides the forwarding entries it learns from
TIPP into multiple forwarding tables, and uses the lookup re-
sults from different tables to determine at which part of a route
a packet is, and thus chooses the corresponding address to de-
termine the next hop.

A. Forwarding Tables

A router at a domain groups its forwarding entries learned
from TIPP into three tables: an uphill table, a downhill table,
and a bridge table. A domain’s uphill forwarding table has en-
tries for address prefixes allocated from the domain’s providers.
The next hop of each address prefix points to the provider that
allocates the address prefix. Similarly, the downhill forwarding
table has entries for address prefixes allocated to the domain’s
customers and the domain’s own address prefixes. The bridge
table contains the private addresses of the domain’s neighbors
with whom the domain has a peering relationship.

If a router also participates in a separate routing protocol, e.g.,
a Core router in domain B; in Fig. 2 may speak BGP with other
Core routers, the router keeps forwarding entries learned from
the routing protocol in a routing forwarding table. Routing for-
warding tables and TIPP forwarding tables are kept separately
to minimize the interaction between the routing protocol and
TIPP.

Figs. 4 and 5 show the sample forwarding tables of domain
Ry and domain B in Fig. 2. The tier-1 provider B; has a routing
table that has entries for other tier-1 providers in the Core. The
next hop self indicates that the destination is within the current
domain; we’ll soon explain the other special next hops: routing,
bridge, and blackhole.

B. Forwarding Algorithm

The basic operation of the forwarding algorithm involves two
steps. A router first uses the longest prefix match to look up
the destination address of a packet in its downhill table. If a
match is found, it indicates that the domain has allocated the
destination address. So the packet is already on the downhill
part of its route, and should be forwarded to the customer to

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 4, AUGUST 2007

B1’s downhill table

1::/96 self
1::/16 blackhole
1:1::/32 R
1:2::/32 Ro>
1:3::/32 R3
Bj’s routing table
Bj1’s uphill table 2:/16 | Ba
[0:/1 T routing | 3:/16 | Bs
4::/16 By

Fig. 5. Forwarding tables of B; in Fig. 2.

which the destination address is allocated. If no match is found,
the router looks up the source address of the packet in its uphill
table, and forwards the packet to the provider that allocates the
source address.

A packet does not always go “up” or “down.” It may cross the
Core or a peering link. To indicate a “turn,” we add special en-
tries with the next hops pointing to either routing or bridge in the
uphill table of a router. If the source address of a packet matches
a special entry, it indicates that the packet has reached the “root”
of its source address, and cannot be pushed up any more. The
packet will be forwarded across the Core or a peering link. The
next hop of a special entry specifies which forwarding table the
router should use to determine the next hop. For a router in the
Core, it has a special entry that matches all routeable addresses
(0::/1 in our example) in the Core with the next hop pointing to
its routing table. For a router with a peering link, it has a special
entry that matches the private peering address with the next hop
pointing to its bridge table.

We show one forwarding example. Suppose Bob in Fig. 2
sends a packet to Alice with a source address 1:1:1::1000 and a
destination address 2:1:1::2000. The router at Ny will not find
a match for the destination address 2:1:1::2000 in its downhill
table, as Ny does not allocate that address. The router will find
a match for the source address in its uphill table, as R; allo-
cates the address prefix 1:1:1::/48 to N7. The packet will be for-
warded to R, . Similarly, at R, the packet will be forwarded to
Bj. At By, the destination address will not match any entry in
B;’s downhill table, but the source address will match the spe-
cial entry 0::/1 with the next hop pointing to the routing table
of B;. The router will then look up the destination address in
B;’s routing table and find a match for the destination address
with the next hop pointing to Bs. The packet will be forwarded
across the Core to Bs, and then be forwarded along the path
Bs — R3 — Nj3. The pseudocode of our forwarding algorithm
is shown in Pseudocode 2 (shown on the next page).

C. Correctness

Using induction, we show in [67] that our forwarding algo-
rithm has the following properties: if a user specifies a route
using our route representation scheme, then i) the packet will
be forwarded along the route to reach its destination if the route
is failure free; ii) if at a router, the next hop to forward a packet
is unreachable due to failures, the packet will be dropped at that
router instead of looping around in the network; iii) if at domain
N, the packet is forwarded to a neighbor domain M, then at do-
main M, a packet with the reverse route representation will be
forwarded to N.

The special entry with the next hop pointing to blackhole in a
router’s downhill table is added to ensure the second property.

YANG et al.: NIRA: ANEW INTER-DOMAIN ROUTING ARCHITECTURE

Pseudocode 2 : Next-hop lookup

Down: downhill forwarding table;

U p: uphill forwarding table;

Bridge: bridge forwarding table;

sel f: the current router;

src: source address;

dst: destination address;

Lookup(a, T): longest prefix match for address a in table T.

1: nextHop = Lookup(dst, Down).

2: if nextHop == sel f then

3: return sel f

4: end if

5: if nextHop == blackhole then

6: goto Drop

7: else if nextHop # noMatch then

8: return nextHop

9: else

10: nextHop = Lookup(src, U p)

11: if nextHop == noMatch then
12: got Drop

13: else if nextHop == bridge then
14: nextHop = Lookup(dst, Bridge)
15: else if nextHop == routing then
16: nextHop = Lookup(dst, Routing)
17: else

18: return nextHop

19: end if
20: if nextHop # noMatch then
21: return nextHop
22: else
23: goto Drop
24: end if
25: end if
26: Drop:

27: drop p; send an ICMP error notification
28: return noMatch

A domain adds a blackhole entry for every address prefix it has.
When the domain is disconnected from a customer due to fail-
ures, the domain may not have an entry for the customer in its
downbhill table. A packet destined to the customer will match the
blackhole entry, and will be dropped. The third property ensures
that a route representation for a reply packet or an ICMP packet
can be generated from a packet header without invoking a route
discovery process.

D. Computational Cost Analysis

NIRA’s route encoding scheme is able to represent a valley-
free route with only two addresses, regardless of how many do-
mains the route consists of.

As a tradeoff, the forwarding algorithm needs to inspect not
only the destination address of a packet, but sometimes the
source address of a packet. Suppose the computational cost
for a longest prefix match is L. For a packet with a valley-free
route representation, in the best case, our forwarding algorithm
finds the next hop to forward the packet with one lookup (L)
in a router’s downhill table; in the worst case, our forwarding
algorithm will find the next hop with three lookups (3L): one
lookup in a router’s downhill table, one lookup in a router’s
uphill table, and one lookup in a router’s bridge or routing
table. The cost for finding the next hop to forward a packet
with a source and a destination address ranges from L to
3L. In contrast, the current Internet uses a destination-based
forwarding scheme. The forwarding cost is one lookup L’ for
a 32-bit address.

We do not expect this computational cost will become a per-
formance problem. Advanced hardware technology such as par-
allel lookup on the destination address field and the source ad-
dress field may speed up the lookup latency. In addition, for-
warding tables of a NIRA router only contain entries for its own

783

address prefixes and those of its neighbors, and therefore are ex-
pected to be much smaller than BGP tables. A small table size
may also help to reduce the longest prefix lookup latency.

V. EVALUATION

Our overall goal is to design a routing system that practically
supports user choice. In this section, we evaluate the technical
aspects of NIRA that impacts its feasibility: scalability and effi-
ciency. How our design satisfies other practical constraints such
as provider compensation and incremental deployment are dis-
cussed in Section II. We evaluate the scalability of NIRA’s route
discovery mechanism. The evaluation includes the amount of
state a user obtains from TIPP, the overhead to maintain the
state, and the convergence speed of TIPP. We have discussed
why NRLS will not become a scaling bottleneck in Section II-D,
and will not discuss it in this section.

Our evaluation on efficiency focuses on the connection setup
latency incurred by the reactive failure detection mechanism.
This setup latency affects the performance of interactive appli-
cations and short transfers. We have discussed the header over-
head and the forwarding cost of NIRA in Section I'V.

We evaluate our design using a combination of network mea-
surement, simulation, and analysis. Our evaluation shows that
NIRA is scalable; TIPP has low overhead and converges fast;
and the setup latency is negligible.

A. Amount of State a User Obtains From TIPP

A user in NIRA maintains a number of hierarchical addresses
and an up-graph. Theoretically, the number of addresses a user
has or the size of the up-graph might grow exponentially with
the level of provider hierarchy. However, in practice, we ex-
pect that financial factors will limit the provider hierarchy to
be shallow, and the number of providers to which a domain is
connected to be small. Therefore, the number of addresses or
the size of the up-graph a user has should be small.

Verifying this intuition requires knowledge of domain
topology and domain relationships. Unfortunately, such infor-
mation is not publicly available. The best current practice is
to infer domain topology and relationships by analyzing BGP
tables. There are two well-known inference algorithms: degree
based [24] and ranking based [57]. We have compared the
two algorithms and found their results are mostly consistent
(differing by about 10%).

The results we show here are based on the inference results
from the ranking based approach. The results obtained using the
degree-based approach are similar. We have downloaded four
representative data sets between year 2001 to year 2004 [1],
one for each year. Each data set summarizes the domain-level
topology and domain relationships using BGP table dumps from
multiple vantage points. The inference results categorize three
types of core domains: the dense core, the transit core, and the
outer core. In our evaluation, we approximate the Core structure
in NIRA by including all domains in the dense core and the
transit core into the Core. Fig. 6 summarizes the data sets. Each
domain-level link is unidirectional.

‘We have built a simulator to simulate the case in which NIRA
is deployed on the inferred domain-level topologies. We collect
data to measure the number of addresses and the number of link
records a domain (or a user in a domain) obtained from TIPP.

784

Date # domain # link # core

2001/04/18 10915 47514 150

2002/04/06 13155 56634 141

2003/01/09 14695 61630 140

2004/01/13 16809 74368 167
Fig. 6. Domain-level topologies.
w w
5 X100
£ B s 90%
S “ s mean —&—
5 @ median e
S 5 10 ° /'/3//.\ i
g L
= 2001/04/18 — ks
? 2002/04/06 5
2 2003/01/09 -g
=] 2004/01/13 S 1
£ 0 | A . Z 2001/04 2002/04 2003/01 2004/01
a 10 10 17 10 10

Date

Number of address prefixes

Fig. 7. Number of hierarchically allocated prefixes of each domain as a cumu-
lative distribution, and the mean, median, and the 90th percentile.

2 £ 100 9po s

g 1 e 8 mean —a—

Q 9] median e 4

2 o8 - e - .
u— . x A e
° e | — -
5 06 5 10

° ®

£ 04 2001/04/18 — £

o 2002/04/06 — S

£ 02 2003/01/09 z

E 0 2004/01/13 2001/04 2002/04 2003/01 2004/01
3 10° 10" 12 100 10t Date

Number of link records

Fig. 8. Number of link records in a domain’s main topology database as a cu-
mulative distribution, and the mean, median, and the 90th percentile.

We also measure the number of forwarding entries a TIPP router
has.

Fig. 7 shows the number of address prefixes allocated to each
domain as a cumulative distribution, and the mean, median and
the 90th percentile of the distribution. It can seen that 90% of
the domains will have less than 20 prefixes, and the number
of prefixes a domain has does not grow with the size of the
Internet. However, the largest number is more than a thousand.
Hand-debugging a few examples suggest that the tail part of the
distribution may be caused by inference errors, e.g., a peering
relationship is mistaken into a provider-customer relationship.

Fig. 8 shows the cumulative distribution of the number of
link records propagated by TIPP to a domain. The mean, me-
dian, and 90th percentile of the distribution are also shown in
the figure. Again, 90% of the domains will maintain less than
30 link records.

Fig. 9 shows the cumulative distribution of the number of
forwarding entries in a domain’s uphill, downhill, and bridge
forwarding tables, together with the mean, median, and 90th
percentile of the distribution. About 90% of the domains have
less than 100 forwarding entries.

These results suggest that NIRA would have been practical if
deployed in today’s Internet. With NIRA, the Internet topology
may change. But we expect that the same financial constraints
will still apply in the future. When two domains interconnect,
there is cost involved for laying fibers, renting circuits, buying
switches etc. A provider will always need to balance the cost

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 4, AUGUST 2007

w w
£ @
o ; S £ 100 e
g 1 p T S . /,// -
S 08¢ ¢ 2 —

i kel
c S
o 06 f IS}
g / s
£ 047 [2001/04/18 — b 00% -t
2 2002/04/06 — o e
£ 02} r 2003/01/09 3 an —=—
g 0 / 2004/01/13 £ . __median —e—
§ 100 101 102 103 104 105 2 2001/04 2002/04 2003/01 2004/01
© Date

Number of forwarding entries

Fig. 9. Number of forwarding entries in a TIPP router’s three logical for-
warding tables as a cumulative distribution, and the mean, median, and the
90th percentile.

w Maximum —e—
~ 1 Avgerage @
[0)
£ -—
8
g a J— =3 —— o
0.1 - - ’ ’
E) o
[
>
c
o
(@]
0.01
2001/04 2002/04 2003/01 2004/01
Date

Fig. 10. Average and maximum time elapsed between the time a failure is de-
tected and the time the last topology message triggered by the failure is received.

to interconnect with another domain and the profit that inter-
connection would bring. Therefore, we believe that NIRA will
remain practical in the future.

B. Message Overhead and Convergence Speed of TIPP

We evaluate the convergence property and the message
overhead of TIPP using measurement-based simulations. We
implemented TIPP in the ns-2 simulator [42], and ran TIPP
simulations on Internet-like topologies. We made a detailed
implementation of TIPP: we built a socket layer into ns-2,
and implemented the full TIPP state machine and message
processing operations on top of the socket layer. This detailed
implementation helps us evaluate the design complexity, but
limits the scale of our simulation. Fortunately, because TIPP
messages do not propagate globally, when collecting statistics
such as how fast TIPP propagates a link state message to a
user or the number of TIPP messages a user receives, one does
not need to include the part of the network from which a user
does not receive TIPP messages. Therefore, we use sampled
topologies for our simulations. We randomly select a number of
edge domains from each inferred Internet topology, and include
the edge domains’ up-graphs to generate a simulation topology.
For our particular simulations, each sampled topology includes
twenty edge domains’ up-graphs.

We first look at the convergence time of TIPP. In a simulation
for a sampled topology, we randomly select bidirectional links
and let them sequentially fail and recover. We record the period
between the time when a failure is detected and the time when
the last topology message triggered by the failure is received for
each sequential failure event. In the simulation, the propagation
delay of a link is randomly distributed between 10 and 110 ms.
Fig. 10 shows the average and the maximum convergence time
over ten simulation runs. It can be seen that the average conver-
gence time of TIPP is on the order of a link’s propagation delay.

YANG et al.: NIRA: ANEW INTER-DOMAIN ROUTING ARCHITECTURE

3 Maximum (10% down time) —-x-
o 10 Avgerage (10% down time) —+—
@ Maximum (5% down time) —&
§ Avgerage (5% down tiTFe) *
£ Ll 5
w“
o
_ 0.1
o
£
S oot
z

001

2001/04 2002/04 2003/01 2004/01

Date

Fig. 11. Average and maximum number of messages sent per failure per link
when each link randomly fails and recovers.

This convergence time indicates that TIPP has the fast conver-
gence property of a link-state routing protocol: the convergence
time is proportional to the message propagation delay.

Next, we look at the message overhead of TIPP. In our simu-
lation, we let a bidirectional link randomly fail and recover. Link
failures may happen concurrently. Link failure and recovery is
modelled as a sequence of on/off events. Each on/off event lasts
for a uniform randomly distributed time. The percentage of the
off period is the link failure rate. We count the total number of
messages and bytes triggered by the failures and average them
over the number of failures and the number of links. We also
record the maximum number seen on a link, and average it over
the number of failures. Fig. 11 shows the message overhead
when there are multiple link failures. The link failure rates are
5% and 10%, respectively. As can be seen, the average message
overhead per link is very low, demonstrating that TIPP messages
are propagated in controlled scopes. If a message is propagated
globally, a failure and a recovery event will generate four mes-
sages (two for each direction of a connection) on a link. In our
simulations, the largest average number of messages received by
a link over multiple failures is less than 2, indicating that there
is no message churning.

C. Setup Latency Incurred by Reactive Failure Detection

The basic mechanism we provide for route availability dis-
covery is a combination of proactive and reactive notification.
We analyze how connection setup latency is affected by the
reactive failure notification scheme. Our analysis assumes a con-
servative approach for failure detection and handling: a user de-
pends on the basic proactive and reactive notification mecha-
nisms to detect route failures, and will re-send a packet along a
different route if he discovers the original route is unavailable.
This conservative assumption gives us an upper bound on the
connection setup latency.

Intuitively, if routes are highly available, then most likely a
packet will reach its destination the first time when a user sends
it. So reactive notifications will not significantly affect connec-
tion setup latency. We use a simple analytic model to test the
above hypothesis. Assuming failures on different routes are in-
dependent and identically distributed, the process of success-
fully sending a packet may involve a random number of failed
trials, and one success at the end. The failed trial may end with
a router notification or a timeout. This process can be modeled
as a negative multinomial distribution [19]. The analytic model
can be found in a longer version of this paper [67].

We can numerically compute the distribution of the connec-
tion set up latency I. This latency includes the NRLS query la-
tency, the failure detection and retry latency, and finally the la-

785

1,
0.8 —f

06

10% notification, 90% timeout -~
50% notification, 50% timeout —

01 90% notification, 10% timeout —

0.01
0.001
1e-04
1e-05
1e-06
1e-07
1e-08

04 90% notification, 10% timeout —
50% notification, 50% timeout —
10% notification, 90% timeout -

Cumulative Prob.

02 ¢

Complementary Cumulative Prob.

Second

Fig. 12. Cumulative distribution (P{I < x}) and the complementary cumula-
tive distribution (P{I > x}) of the connection set up latency I, with 1% route
failure probability, 80% NRLS cache hit rate, 100 ms round trip delay, 3 seconds
timeout value, and 3-level of NRLS name hierarchy. The fraction that a failure
is detected by router notification is varied from 90%, to 50%, and to 10%. The
rest of failures are detected via a timeout.

tency to send a connection setup packet such as a TCP SYN.
Fig. 12 shows the cumulative distribution and the complemen-
tary cumulative distribution (P{I > x}) of the connection set
up latency, with 1% route failure probability, 80% NRLS cache
hit rate, 100-ms round trip delay, 3-s timeout value, and 3-level
of NRLS name hierarchy. We vary the fraction that a failure is
detected by a router notification from 90%, to 50%, and to 10%.
The rest of failures are detected via timeout. The NRLS cache
hit rate is set according to the study that shows the DNS cache hit
rate exceeds 80% with a time-to-live field as short as 15 minutes
[34]. The failure rate is set according to the studies that show
the route failure rate in the present Internet is less than 1% [18],
[38]. With a 1% route failure rate, the connection setup time is
mostly affected by the NRLS cache hit rate. Nearly 80% of the
connections that have a NRLS cache hit can send their packets
successfully within a round trip time, and nearly 99% of them
can send their first packets successfully within three round trip
time.

VI. PoLICY EXCEPTIONS

Our design is optimized for the common case that a do-
main-level route is valley-free, but it also works when there
are nonvalley-free transit policies. Non-valley-free routes are
represented by a sequence of addresses. A nonvalley-free route
can be broken into shorter route segments, with each route
segment being valley-free. For instance, in Fig. 2, if the domain
Ry is willing to provide transit service between its provider
By and its peer R3, then the route between Bob and Alice
N, - Ry - By — Rs — R3z — Nj is a policy-allowed
nonvalley-free route. It can be broken into two valley-free
segments: Ny — R; — B; — Rs and Ry — R3 — Nj. Each
valley-free route segment can be represented by two addresses.
The nonvalley-free route can be represented by concatenating
the encodings of the two valley-free segments. For instance,
the route segment from Bob to Ry Ny — Ry — By — Ry can
be represented by 1:1:1::1000 and 1:2::/32; the route segment
from Ry to Alice Ry — R3s — N3 can be represented by
FFFF:1::/32 and FFFF:2::1::2000. The nonvalley-free route
Ny, - Ry —- By — Ry — Rs — N3 can be represented
by a routing header with a total of four addresses: 1:1:1::1000,
1:2::/32, FFFF:1::/32, and FFFF:2::1::2000. The first two ad-
dresses will be placed in the source and the destination address
field. When a packet with the routing header arrives at Ro,

786

the next two addresses will be shifted to the source and the
destination address field.

The advantage of this representation scheme is that only do-
mains that have special nonvalley-free transit policies need to
turn on the source routing option. Routers in other domains can
ignore the option, and forward packets using only the source
and the destination address in a packet header. More details on
the nonvalley-free route representation and forwarding schemes
can be found in [67].

We do not provide separate mechanisms for users to discover
nonvalley-free routes. Domains such as R, may use TIPP to
propagate its special transit policies to its neighbors. Users may
also store nonvalley-free routes at their NRLS servers. We note
that TIPP and NRLS do not guarantee that users can discover
all possible routes, because TIPP messages do not propagate
globally. However, our design isolates route discovery as an in-
dividual module, and allows users to use general mechanisms
for route discovery. For instance, a provider that offers non-
valley-free transit service may advertise its service on its web
page. It is out of the scope of this paper to study those general
mechanisms.

VII. RELATED WORK

At a high level, related work falls into three categories: scal-
able routing schemes, routing architecture proposals, and cur-
rent route selection technologies.

A. Scalable Routing

Scalable routing schemes aim to reduce the amount of
routing state a router keeps. The well-known schemes include
the cluster-based hierarchical routing [36], the landmark hier-
archical routing system [60], geographical routing [20], and
hybrid routing [58]. However, the goals of these routing sys-
tems are fundamentally different from us. We aim to provide
a feasible and scalable approach to support user-controlled
routes, while they aim to reduce the size of routing tables, or
the number of routing updates, and do not necessarily support
user-selected routes.

Provider-rooted hierarchical addressing has long been pro-
posed to scale the Internet routing [14], [21], [22], [61]. Our de-
sign builds on the idea of hierarchical addressing, but we devel-
oped a complete routing system that supports user route choice.

B. Routing Architecture Proposals

Nimrod [9] proposes to use a map-distribution mechanism for
a source to discover network topology and to use virtual circuit
to set up routes. However, Nimrod does not address how to fit its
design into a policy-rich inter-domain routing environment. In
contrast, our design is optimized to fit into the Internet routing
environment, and preserves the packet-switched feature of the
Internet.

The inter-domain policy routing (IDPR) protocol [55] pro-
poses to use a domain-level link state routing protocol to dis-
tribute the domain-level topology to route servers of each do-
main. A source sends a route request to a route server to obtain
a domain-level route. Our work does not need a global link state

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 4, AUGUST 2007

routing protocol for a user to discover routes, and does not re-
quire the presence of a per-domain route server.

The scalable inter-domain routing architecture [16] proposes
to use a BGP router’s routing information base and to flood
a route request from a destination to a source to assist a user
to discover multiple routes from the destination to the source.
We design a new protocol TIPP to assist route discovery. TIPP
has less overhead than the flooding-based query approach, and
allows a user to discover more routes than what is present in a
router’s BGP table.

TRIAD [11], [26] is an Internet architecture that provides ex-
plicit support for content routing. Packets could be routed by
names, rather than by IP addresses. NIRA is designed to handle
IP layer routing and addressing issues. The design goal is fun-
damentally different. TRIAD includes a wide-area relaying pro-
tocol (WRAP) [47] that provides extended addressing and im-
proved loose-source routing. NIRA follows the good lead of
WRAP to use the path-based addressing scheme.

Feedback-based routing [68] proposes to use a domain-level
link-state routing protocol for edge routers to learn domain-level
topology. An edge router selects a route to reach a destination,
monitors the route condition, and switches to a different routes if
the route fails. In contrast, our work does not require global link-
state routing. We can leverage the route monitoring algorithm
described in this proposal for rapid route fail-over.

Platypus [46] is designed for the case that users have con-
tractual agreements with many ISPs. A user attaches a crypto-
graphic hash value in his packets as a proof that he has purchased
service from an ISP. NIRA assumes the bilateral contracts and
treats valley-free routes as the common case.

The HLP proposal [58] intends to improve the scalability of
BGP. HLP uses a mixture of a link-state routing protocol and a
path vector routing protocol to provide fast routing convergence.
The goal of NIRA is essentially different. NIRA aims to allow
users to choose provider-level routes, and includes a protocol
TIPP that distributes routes and topology information to users
for them to choose routes.

We note that NIRA and the IPv6 site multihoming proposal
[32], [41] share some similarity. The IPv6 proposal also gives
multiple addresses to a multihomed site. A key difference be-
tween NIRA and the IPv6 proposal is that NIRA considers the
address selection problem as a path selection problem. It pro-
vides necessary topology information for users to select a path.
The protocol TIPP propagates topology information associated
with addresses to users. This allows a user to map an address to
a provider-level route, and to choose an initial source address
that is failure-free. Moreover, NIRA uses both the source and
the destination address to forward a packet. This allows a user
to control the domain-level route, including both the part of the
route in the sender’s access network, and the part of the route in
the destination’s access network. In contrast, the IPv6 proposal
does not change the routing paradigm of the Internet. Routes
are chosen by routers, and forwarding is destination-based. As
a result, the source address of a packet influences the return
path a packet takes, but does not determine the outgoing path
the packet follows. An end host finds a working path by ex-
ploring address pairs [4], [6] without knowing the providers the

YANG et al.: NIRA: ANEW INTER-DOMAIN ROUTING ARCHITECTURE

addresses map to. Further, NIRA allows a user to choose beyond
the first hop provider.

C. Current Route Control Technologies

Both commercial route control products [33], [50] and
overlay networks [3], [51], [56], [59] offer route selection
service to some extent. Route control products are limited
to selecting the next hop provider for outbound traffic, and
cannot choose beyond the first hop provider. Moreover, they
are generally not affordable by individual users or small sites.
An overlay network has a limited scope. Only nodes on an
overlay network can control their paths by tunnelling traffic
through other nodes on the overlay network. Our work aims at
providing a long term solution to support user route selection.
We introduce changes at the network layer, and once deployed,
all Internet users are able to benefit from our design.

Consumers today can manually select providers in the cel-
lular phone and telephone markets. In contrast, NIRA provides
protocols to inform a user of the available routes so that provider
selections can be done by software at a fine granularity, such as
at the granularity of per connection or per application.

VIII. CONCLUSION

Giving a user the ability to choose domain-level routes has
the potential of fostering ISP competition to offer enhanced ser-
vice and improving end-to-end performance and reliability. We
present the design of NIRA, an inter-domain routing system
that practically supports user choice. The design of NIRA ad-
dresses a broad range of issues, including ISP compensation,
scalable route discovery, efficient route representation, fast route
fail-over, and security. NIRA supports user route choice without
running a global link-state routing protocol. Our design splits an
end-to-end route into a sender part and a receiver part, and uses
an address to represent each part. A user can choose routes by
choosing addresses. As both the source address and the desti-
nation address are used for forwarding, packets with arbitrary
spoofed source addresses will be dropped, and will not be for-
warded to their destinations. NIRA includes a protocol TIPP
that propagates to a user his addresses and the topology infor-
mation associated with his addresses. Our evaluation suggests
that NIRA is practical. It supports user route choice with low
overhead.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers and
Editor O. Bonaventure for their useful comments, which greatly
helped them in revising this paper.

REFERENCES

[1] S. Agarwal, Domain relationship inferrence data, Univ. California,
Berkeley, 2004 [Online]. Available: http://www.cs.berkeley.edu/
~sagarwal/research/BGP-hierarchy/data/

[2] A. Akella, B. Maggs, S. Seshan, A. Shaikh, and R. Sitaraman, “A mea-
surement-based analysis of multihoming,” in Proc. ACM SIGCOMM,
2003, pp. 353-364.

[3] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient
overlay networks,” in Proc. ACM Symp. Operating Syst. Principles,
2001, pp. 131-145.

[4] J. Arkko and I. Beijnum, Failure detection and locator pair exploration
protocol for IPv6 multihoming, IETF Internet draft, draft-ietf-shim6-
failure-detection-05.txt, 2006.

[5]
[6]

[7

—

[8]

[9

—

[10]

(11]

[12]

[13]

[14]

[15

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25

[26]

[27]

[28]

[29]

[30]
[31]

[32]

787

AT&T, SBC and AT&T Merger News, AT&T, San Antonio, TX, 2005
[Online]. Available: http://www.att.com/merger/

M. Bagnulo, Default locator-pair selection algorithm for the SHIM6
protocol, IETF Internet draft, draft-ietf-shim6-locator-pair-selec-
tion-00.txt, 2006.

H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I.
Stoica, and I. S. Walfish, “A layered naming architecture for the in-
ternet,” in Proc. ACM SIGCOMM, 2004, pp. 343-352.

Y. M. Braunstein, “Broadband industry structure: Policy, pricing
and penetration,” presented at the Pacific Telecommun. Conf.,
2003 [Online]. Available: htp:/www.ischool.berkeley.edu/~bigyale/
ptc2003_braunstein.pdf

I. Castineyra, N. Chiappa, and M. Steenstrup, The Nimrod Routing Ar-
chitecture, IETF Informational, RFC 1992, 1996.

Q. Chen, H. Chang, R. Govindan, S. Jamin, S. J. Shenker, and W. Will-
inger, “The origin of power laws in Internet topologies revisited,” in
Proc. IEEE INFOCOM, 2002, vol. 2, pp. 608-617.

D. R. Cheriton and M. Gritter, TRIAD: A new next-generation Internet
architecture. Stanford Univ., Stanford, CA, Tech. Rep., 2000.

D. Clark, J. Wroclawski, K. Sollins, and R. Braden, “Tussle in cy-
berspace: Defining tomorrow’s internet,” in Proc. ACM SIGCOMM,
2002, pp. 462-475.

R. Cox, A. Muthitacharoen, and R. Morris, “Serving DNS using
chord,” presented at the IPTPS’02, 2002 [Online]. Available:
http://www.cs.rice.edu/Conferences/IPTPS02/

S. Deering and R. Hinden, Internet protocol version 6 (IPv6) ad-
dressing architecture, IETF Proposed Standard, RFC 3513, 2003.

N. Economides, The Telecommunications Act of 1996 and its Impact,
NYU Center for Law and Business, New York, 1998.

D. Estrin, Y. Rekhter, and S. Hotz, “Scalable inter-domain routing ar-
chitecture,” in Proc. ACM SIGCOMM, 1992, pp. 40-52.

P. Faratin, J. Wroclawski, G. Lee, and S. Parsons, “Social agents for
dynamic access to wireless networks,” in Proc. AAAI Spring Symp.
Human Interaction with Autonomous Systems in Complex Environ-
ments, Stanford, CA, Mar. 2003.

N. Feamster, D. G. Andersen, H. Balakrishnan, and M. F. Kaashoek,
“Measuring the effects of internet path faults on reactive routing,” in
Proc. ACM SIGMETRICS, 2003, pp. 126-137.

W. Feller, “The binomial and Poisson distributions,” in An Introduction
to Probability Theory and Its Applications. New York: Wiley, 1968,
ch. VL.

G. Finn, Routing and addressing problems in large metropolitan-scale
Internetworks, University of Southern California, Los Angeles, ISI
Tech. Rep. ISI/RR-87-180, 1987.

P. Francis, “A near-term architecture for deploying Pip,” IEEE Net-
working, vol. 7, no. 3, pp. 30-37, May 1993.

P. Francis, “Comparison of geographical and provider-rooted internet
addressing,” Comput. Netw. ISDN Syst., vol. 27, no. 3, pp. 437-448,
1994.

P. Francis and R. Gummadi, “IPNL: A NAT-extended internet archi-
tecture,” in Proc. ACM SIGCOMM, 2001, pp. 69-80.

L. Gao, “On inferring autonomous system relationships in the Internet,”
IEEE/ACM Trans. Netw., vol. 9, no. 6, pp. 733-745, Dec. 2001.

D. Goldenberg, L. Qiu, H. Xie, Y. R. Yang, and Y. Zhang, “Optimizing
cost and performance for internet multihoming,” in Proc. ACM SIG-
COMM, 2004, pp. 79-92.

M. Gritter and D. R. Cheriton, “An architecture for content routing
support in the internet,” in Proc. USENIX Symp. Internet Technol. Syst.,
2001, pp. 37-48.

K. P. Gummadi, H. Madhyastha, S. D. Gribble, H. M. Levy, and D.
J. Wetherall, “Improving the reliability of internet paths with one-hop
source routing,” in Proc. OSDI, 2004, pp. 183-198.

M. Handley and A. Greenhalgh, “The case for pushing DNS,” pre-
sented at the Hotnets-IV, 2005 [Online]. Available: http://www.sig-
comm.org/HotNets-IV.

R. Harrison, Lightweight directory access protocol (LDAP): Authen-
tication methods and security mechanisms, IETF Proposed Standard,
RFC 4513, 2006.

G. Huston, “Interconnection, peering and settlements — Part 1,” Internet
Protocol J., vol. 2, no. 1, pp. 2-16, Mar. 1999.

G. Huston, “Interconnection, peering and settlements — Part II,” In-
ternet Protocol J., vol. 2, no. 2, pp. 2-23, Jun. 1999.

G. Huston, Architectural approaches to multi-homing for IPv6, IETF
Informational, RFC 4177, 2005.

[33] Internap Products and Services, Internap, Atlanta, GA, 2005 [Online].
Available: http://www.internap.com/products/route-optimization.htm

[34] J.Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS performance and
the effectiveness of caching,” IEEE/ACM Trans. Netw., vol. 10, no. 5,
pp. 589-603, Oct. 2002.

[35] R. Keralapura, C.-N. Chuah, N. Taft, and G. Iannaccone, “Can co-ex-
isting overlays inadvertently step on each other,” in Proc. IEEE ICNP,
2005, pp. 211-214.

[36] L. Kleinrock and F. Kamoun, “Hierarchical routing for large networks:
Performance evaluation and optimization,” Comput. Netw., vol. 1, no.
3, pp. 155-174, Jan. 1977.

[37] G. Lee, P. Faratin, S. Bauer, and J. Wroclawski, “A user-guided cog-
nitive agent for network service selection in pervasive computing en-
vironments,” in Proc. IEEE PerCom, Orlando, FL, Mar. 2004.

[38] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and
C. Diot, “Characterization of failures in an IP backbone,” in Proc. IEEE
INFOCOM, Mar. 7-11, 2004, vol. 4, pp. 2307-2317.

[39] P. Mockapetris and K. J. Dunlap, “Development of the domain name
system,” in Proc. ACM SIGCOMM, 1988, pp. 123-133.

[40] J. Moy, OSPF Version 2, IETF Standard, RFC 2328, 1998.

[41] E. Nordmark and M. Bagnulo, Level 3 multihoming shim protocol,
IETF Internet draft, draft-ietf-shim6-proto-05.txt, 2006.

[42] The Network Simulator—ns-2 2004 [Online]. Available: http:/www.isi.
edu/nsnam/ns/

[43] D. Oran, OSI IS-IS Intra-Domain Routing Protocol, IETF Informa-
tional, RFC 1142, 1990.

[44] R. Perlman, Interconnections: Bridges, Routers, Switches, and Inter-
networking Protocols. Reading, MA: Addison-Wesley, 2000.

[45] L. Qiu, Y. R. Yang, Y. Zhang, and S. Shenker, “On selfish routing
in internet-like environments,” in Proc. ACM SIGCOMM, 2003, pp.
151-162.

[46] B. Raghavan and A. C. Snoeren, “A system for authenticated policy-
compliant routing,” in Proc. ACM SIGCOMM, 2004, pp. 167-178.

[47] C.Raiand D. Cheriton, Wide-area relay addressing protocol (WRAP):
Packet relay in TRIAD, Stanford Univ., Stanford, CA [Online]. Avail-
able: http://www-dsg.stanford.edu/triad/wrap_spec.txt

[48] Y. Rekhter, T. Li, and S. Hares, A border gateway protocol 4 (BGP-4),
IETF Draft Standard, RFC 4271, 2006.

[49] T. Roughgarden, Selfish Routing and the Price of Anarchy. Cam-
bridge, MA: The MIT Press, 2005.

[50] Routescience’s pathcontrol, Networkworld, Southborough, MA,
2002 [Online]. Available: http://www.networkworld.com/re-
views/2002/0415rev.html

[51] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell, A.
Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and J. Zahorjan,
“Detour: Informed Internet routing and transport,” IEEE Micro, vol.
19, no. 1, pp. 50-59, Jan. 1999.

[52] M. Shand and S. Bryant, IP Fast Reroute Framework, IETF Internet
draft, draft-ietf-rtgwg-ipfrr-framework-05.tx, 2006.

[53] J. Spinelli and R. Gallager, “Event driven topology broadcast without
sequence numbers,” IEEE Trans. Commun., vol. 37,n0. 5, pp. 468474,
May 1989.

[54] P. Srisuresh and K. Egevang, Traditional IP network address translator
(Traditional NAT), IETF RFC 3022, 2001.

[55] M. Steenstrup, An Architecture for Inter-Domain Policy Routing, IETF
Proposed Standard, RFC 1478, 1993.

[56] 1. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “Internet
indirection infrastructure,” in Proc. ACM SIGCOMM, 2002, pp. 73-86.

[57] L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz, “Charac-
terizing the internet hierarchy from multiple vantage points,” in Proc.
IEEE INFOCOM, 2002, vol. 2, pp. 618-627.

[58] L. Subramanian, M. Caesar, C. T. Ee, M. Handley, M. Mao, S. Shenker,
and I. Stoica, “HLP: A next-generation interdomain routing protocol,”
in Proc. ACM SIGCOMM, 2005, pp. 13-24.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 4, AUGUST 2007

[59] J. Touch and S. Hotz, “The X-bone,” IEEE Global Internet, 1998.

[60] P. F. Tsuchiya, “Landmark Routing: Architecture, Algorithms, and
Issues,” The MITRE Corporation, Bedford, MA, Tech. Rep. MTR-
87W00174, 1988.

[61] P. F. Tsuchiya, “Efficient and robust policy routing using multiple hi-
erarchical addresses,” in Proc. ACM SIGCOMM, 1991, pp. 53-65.

[62] J.-P. Vasseur, M. Pickavet, and P. Demeester, Network Recovery: Pro-
tection and Restoration of Optical, SONET-SDH, IP, and MPLS. New
York: Morgan Kaufmann, 2004.

[63] Verizon and MCI Introduce Verizon Business, Verizon, Basking Ridge,
NJ [Online]. Available: http://www?22.verizon.com/merger/

[64] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound, Dynamic updates
in the domain name system (DNS UPDATE), Proposed Standard RFC
2136, 1997.

[65] B. Wellington, Secure domain name system (DNS) dynamic update,
IETF Proposed Standard RFC 3007, 2000.

[66] X. Yang, “NIRA: A new internet routing architecture,” in Proc. ACM
SIGCOMM FDNA Workshop, 2003, pp. 301-312.

[67] X. Yang, “The design and evaluation of a new Internet routing archi-
tecture (NIRA),” Ph.D. dissertation, M.I.T., Cambridge, MA, 2004.

[68] D.Zhu, M. Gritter, and D. R. Cheriton, “Feedback based routing,” ACM
SIGCOMM CCR, vol. 33, no. 1, pp. 71-76, 2003.

Xiaowei Yang (S’99-M’05) received the Ph.D. de-
gree in computer science from the Massachusetts In-
stitute of Technology (MIT), Cambridge, in 2004.

Currently, she is an Assistant Professor in the
Department of Computer Science at the University
of California, Irvine. Her research interests include
congestion control, quality of service, Internet
routing architecture, and network security.

David Clark (M’66-F’98) received the Ph.D. de-
gree from the Massachusetts Institute of Technology
(MIT), Cambridge, in 1973.

He has been a Research Scientist at the Computer
Science and Artificial Intelligence Laboratory, MIT ,
since 1973. Since 1975, he has been involved in the
design of the Internet. He has worked on Internet ar-
chitecture, QoS, economic and policy issues, broad-
band access, and security.

Arthur W. Berger received the Ph.D. degree in
applied mathematics from Harvard University,
Cambridge, MA, in 1983.

He then worked at Bell Labs (and subsequently
AT&T Labs). Currently he is a Senior Research
Scientist at Akamai Technologies, Cambridge, MA,
and a Research Associate at the Computer Science
and Artificial Intelligence Laboratory, Massachu-
setts Institute of Technology (MIT), Cambridge.
His research interests include: network architecture,
overlay routing, and measurement, modeling and

prediction of Internet performance.

