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Abstract

It is an established trend to develop low-level code—embedded software, device
drivers, and operating systems—using high-level languages, especially functional
languages with advanced facilities to abstract and generate code. To be reliable and
secure, low-level code must correctly manage space, time, and other resources, so
special type systems and verification tools arose to regulate resource access statically.
However, a general-purpose functional language practical today can provide the same
static assurances, also without run-time overhead. We substantiate this claim and
promote the trend with two security kernels in the domain of device drivers:

1. one built around raw pointers, to track and arbitrate the size, alignment, write
permission, and other properties of memory areas across indexing and casting;

2. the other built around a device register, to enforce protocol and timing require-
ments while reading from the register.

Our style is convenient in Haskell thanks to custom kinds and predicates (as type
classes); type-level numbers, functions, and records (using functional dependencies);
and mixed type- and term-level programming (enabling partial type signatures).

1 INTRODUCTION

It is increasingly popular to use typed functional languages to interface with hard-
ware [5, 9, 27], to program special processors such as GPUs [12], and to design
and code operating systems [10, 14]. The advanced abstraction facilities offered
by these languages are useful even when the language implementations flout low-
level storage or timing requirements at run time, because a high-level program is
free to generate code to run later in a more constrained environment, and functional
languages express code generators easily [12, 31].

Low-level programming is especially error-prone due to hardware constraints
on control timing, data size, and pointer range, whose violation leads to immedi-
ate or imminent crash. Thus it is especially helpful to check at compile time for
correctness, safety, dependability, and integrity [3, 11, 14, 16, 19, 25? , 26]—such
as to assure that memory accesses are in bounds and properly aligned. Such ef-
forts to apply types and other high-level specifications to low-level constraints fall
under the broad rubric of resource-aware programming: “using static checking to

?Thanks to Ehud Lamm, Andrew Moss, Martin Sulzmann, and Lambda the Ultimate for helpful
discussions.
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ensure that computations intended for execution on resource-bounded platforms
are indeed resource-bounded” [31].

The constraints imposed by low-level applications go beyond what types typi-
cally check. For example, memory addresses must be aligned and sometimes fixed,
array indices must be in range, pointers must remain valid, and data properties such
as endianness and read-write permissions must be respected. These constraints
must be tracked across the pointer arithmetic and casting that abound in low-level
programming. Further, protocol and timing requirements arise in communication
with external devices, such as that some device register must be read in some order
or for some number of times through any execution path in a device driver.

The foreign-function interface usually found in functional languages lets one
write low-level code with pointers and registers, but does not account statically
for these complex constraints on data representation and control flow. The type
level seems to need arithmetic to reason about ranges and alignment, and records to
collect the often numerous properties of a resource such as permissions, placement,
and layout. For example, tracking the alignment of a pointer as byte offsets are
added to it requires computing the GCD of integers [11] and suggests the need for
the expressive power of dependent types.

This criticism against the type systems of mainstream functional languages has
motivated verification tools using code annotations [3, 14, 16, 19? ] and experi-
mental languages [11, 13, 25, 26]. In contrast, we show it practical and beneficial to
enforce these constraints statically in general-purpose functional languages today,
without a special tool or language. This claim is what we mean by “lightweight”.
Hence, long live the trend of low-level assurances in high-level languages!

1.1 Organization

In the rest of this section, we describe why we need expressive types and why we
already have them. Section 2 introduces our infrastructure for expressing numbers,
records, and capabilities in types. Much of our infrastructure is general-purpose;
we apply it in Section 3 to two applications that one might think require distinct,
specialized type systems: enforcing size and alignment constraints of raw memory
pointers, and enforcing protocol and timing constraints. We review related work in
Section 4 and conclude in Section 5.

We take many examples deliberately from the literature, especially Diatchki
and Jones’s work on strongly typed memory areas [11], but we implement them,
and more, in Haskell. Our complete code is online at http://pobox.com/
˜oleg/ftp/Computation/resource-aware-prog/

1.2 Sexy types on the down low

Memory access exemplifies how resource-aware programming calls for expressive
types. Suppose that we have a pointer p to an array of n words in memory, each
m bits wide. At a dynamically determined index i in this array, we want to write
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a dynamically determined number j. To maintain the integrity of the system, we
must have 0≤ i < n and 0≤ j < 2m. To assure these constraints statically, the type
of p must mention n and m, and we need a type for write_memory like

Ptr n m -> IntBounded n -> IntBounded (2ˆm) -> IO ()

where n and m are types of kind Nat, and IntBounded n is the type of natural
numbers less than n. Sheard [25, 26], Diatchki and Jones [11], and Taha [31] argue
that mainstream functional languages like Haskell cannot express this type, so they
develop their own experimental languages. Actually, we can write the Haskell type

Exp2 m k =>
Ptr n m -> IntBounded n -> IntBounded k -> IO ()

using the library described in this paper. The type-class constraint Exp2 m k is
explicit here, but other constraints such as Nat n and Nat m are inferred. This
example illustrates four points about our programming style that we explain below.

1. We can express custom kinds (such as Nat) and predicates (such as expo-
nentiation) as type classes. Kinds are types for compile-time data.

2. We can perform type-level arithmetic using functional dependencies (in fact,
even in familiar term-level notation).

3. We can specify part of a type signature (such as Exp2 m k above) but leave
the rest to be inferred (such as Nat n and Nat m above).

4. An abstract data type (such as IntBounded n) constitutes a static capa-
bility [32] certifying a safety property (that a number is in bounds), issued
by a user-defined security kernel (the implementation of IntBounded).

Our techniques are not restricted to pointers. We also outline how to generate code
for a GPU or other special processor while enforcing protocol and time constraints.

Experimental languages like Diatchki and Jones’s [11] provide syntactic sugar
for their domains, such as 4K for 4KB, that general-purpose languages do not.
The drawback of experimental languages is that they need new tools and libraries.
Diatchki and Jones’s language only looks like Haskell: it is strict and has type
improvement rules more general than functional dependencies. In contrast, Haskell
is in widespread use, and we find its general type system perfectly serviceable and
more flexible for tracking a wide variety of resources: space, time, and beyond.

2 TYPE-LEVEL INFRASTRUCTURE

In this section, we show how to compute with numbers and records in Haskell
types. Far from being unattainable or impractical in a general-purpose type system,
these features can be packaged in a user-defined library that needs no extended lan-
guage or extra tool. The accompanying source code contains the complete library.
This library then enables resource-aware programming, as we show in Section 3.
Code there also demonstrates term-level type programming and partial signatures.
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Our organizing principle is to express custom kinds (such as those of type-
level numbers and records) and predicates (such as numeric comparison and record
lookup) as classes of phantom types. We also rely on functional dependencies
to express type-level computations as multi-moded relations. We secure the con-
straints like any data-type invariant: keep types abstract and symbols unexported.

2.1 Numbers in types

We define binary digits at the type level and combine them to form binary numbers.
For example, the type U (U B1 B1) B0 represents 6. These types are phantom
in the sense that, at run time, they have no representation and use no space or
time—their only inhabitant is ⊥, which we never bother storing at run time. We
prohibit leading zeros in our representation of numbers.

data B0; data B1; data U x y

The type classes Nat0 and Nat encode the kinds of non-negative and positive
integers. The instances are trivial to define. The subclassing encodes subkinding.

class Nat0 a where toInt :: a -> Int
class Nat0 a => Nat a

We then define arithmetic operations: successor/predecessor, addition/subtraction,
multiplication/division, and exponentiation/logarithm. Each pair is a relation that
runs in all possible deterministic modes. For example, in the ternary relations
Add and Mul, any two arguments determine the third. In other words, we solve
arithmetic constraints such as 2n = 256 using the type-class system as a general
constraint solver [28] rather than using Diatchki and Jones’s specialized solver [11]
or Sheard’s narrowing [26]. (We omit below a few auxiliary class constraints.)

class (Nat0 x, Nat y) => Succ x y | x -> y, y -> x
class (Nat0 x, Nat0 y, Nat0 z)

=> Add x y z | x y -> z, z x -> y, z y -> x
class (Nat x, Nat y, Nat z)

=> Mul x y z | x y -> z, x z -> y, y z -> x
class (Nat0 x, Nat y) => Exp2 x y | x -> y, y -> x

We also implement comparisons between numbers. For convenience, we provide
special type classes for ≤ and <, alongside a general comparison predicate.

data BLT; data BEQ; data BGT
class (Nat0 x, Nat0 y) => NCompare x y r | x y -> r
class (Nat0 x, Nat0 y) => NLessEq x y
class (Nat0 x, Nat y) => NLess x y

Using the NCompare class above, we implement Euclid’s algorithm for GCD.

class (Nat0 x, Nat0 y, Nat0 z) => GCD x y z | x y -> z
gcd :: GCD x y z => x -> y -> z; gcd = undefined
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We define the term-level function gcd (analogously add, sub, and so on for the
other classes above) even though it is undefined and used only for its type.
Section 3 below illustrates the convenience of such term-level type programming.

To illustrate these classes in practice, we write a Haskell function max that
computes the maximum of two type-level numbers.

max :: (NCompare x y b, NMax x y b r) => x -> y -> r
max = undefined
class NMax x y b r | x y b -> r
instance NMax x y BLT y
instance NMax x y BEQ y
instance NMax x y BGT x

This module exports all these types but few of the classes, to keep other mod-
ules from compromising the classes’ assurances by adding instances. For example,
the module does not export Nat, so that another module cannot define an “exotic
natural number”. We do, however, want to let other modules specify constraints
using classes like Nat and Add. Two strategies achieve this latter end. First, we
can export a subclass ExportNat of Nat, with just one instance.

class Nat a => ExportNat a; instance Nat a => ExportNat a

Any other instance of ExportNat that another module might define would over-
lap with our instance above without relaxing the Nat constraint. Second, we can
export not a class but a term whose type mentions the class. For example, we export
toInt but not Nat0 above. This strategy calls for partial signatures (Section 3).

We use no overlapping instances, and our algorithms always terminate when
supplied with ground numerals as input. (If the needed inputs as specified by
functional dependencies are not ground, as in the constraint Add n B0 n, then
Haskell should just propagate the constraints without reducing them, thus avoid-
ing the impossible task of deciding universally quantified arithmetic statements.)
However, many of our proofs that constraint reduction terminates rely on a global
ordering over type classes. For example, we define just one instance for the Add
class, which invokes an auxiliary Add’ class:

class (Nat0 x, Nat0 y, Nat0 z)
=> Add’ x y z | x y -> z, z x -> y

class (Add’ x y z, Add’ y x z)
=> Add x y z | x y -> z, z x -> y, z y -> x

instance (Add’ x y z, Add’ y x z) => Add x y z

To deduce that the Add constraint always terminates, we note that no instance for
Add’ invokes Add. The ExportNat instance above terminates for the same
reason. Such a lack of cycles cannot be established by considering each instance
separately. Because GHC checks each instance separately for termination, we have
to resort to enabling undecidable instances in GHC. If only GHC would let us spec-
ify a partial order among classes that prohibits all Add’ instances from invoking
Add, then we might convince it.
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2.2 Records in types

Like Diatchki and Jones [11], we want to annotate resources like memory areas
with compile-time properties to indicate where they are (for example, at a fixed
address) and how to access them (for example, read only). An extensible facility for
such annotations amounts to records at the type level. Diatchki and Jones [11] wish
for type records as a desirable feature not supported by their language. This wish
they leave for future work is however attainable in Haskell: we can express type-
level records in Haskell as another user-defined library, following the footsteps of
heterogeneous lists at the term level [20].

We define a type class Property to mean that a resource label has a named
property p with some value v. Each area property (AP) is a phantom type.

class Property label p v | label p -> v
data APReadOnly; data APFixedAddr; data APInHeap

To express Boolean property values, we define the types HTrue and HFalse.

data HTrue; data HFalse

Any primitive memory operation that requires write permission can then impose a
constraint of the form Property label APReadOnly HFalse. For exam-
ple, to extend a record l with a read-only property, we define a new type construc-
tor ROTrait. We need to “lift” other properties through ROTrait, which tempts
us to indulge in an overlapping instance, but we do not.

data ROTrait l
instance Property (ROTrait l) APReadOnly HTrue
instance Property l APARef value

=> Property (ROTrait l) APARef value
instance Property l APInHeap value

=> Property (ROTrait l) APInHeap value -- etc.

Our type records subsume Diatchki and Jones’s distinction between a byte ar-
ray, which we can treat as an array of another type, and an array of higher-level
data, which we must not. This distinction prevents overwriting an array of in-
bound indices (which we support) with arbitrary bytes. We introduce a Boolean
property APOverlayOK to let the programmer authorize coercing a (part of a)
memory area to a different type. Coercion imposes a constraint Property area
APOverlayOK HTrue, meaning that only so authorized areas may be coerced.
The subarea produced by coercion inherits any properties (such as being read-only)
of the coerced area. (The coercion operation also statically checks the size of the
subarea and computes its alignment using the type-level arithmetic described in
Section 2.1.)

2.3 Lightweight static capabilities

The types introduced so far are all phantom. To regulate resources, we encapsulate
the resources in abstract data types parameterized by the phantom types. We view

XXVII–6



such an encapsulated resource as a capability [22, 32] that permits an operation
and certifies a property [21]. These capabilities are static in that type checking
takes place at compile time and does not affect the representation of resources or
performance of operations at run time.

One example of a static capability is the IntBounded type from Section 1.2.
The run-time representation of IntBounded n is just an ordinary machine in-
teger, not a linked list of bits, a unary number, or a tuple of numbers. However,
the public, ‘smart’ constructor of IntBounded n checks that the integer is non-
negative and less than the natural number n represented by the phantom type n.
Such an integer can then be used to index into an n-element array, stored in dlog2 ne
bits of memory, or both, with neither the risk of overflow nor the run-time overhead
of any further bounds check.

Although the public ‘smart’ constructor for IntBounded n checks its argu-
ment against both a lower bound and an upper bound, we can skip many bound
checks when computing with IntBounded values already constructed. For ex-
ample, averaging bounded values always yields a bounded value, so an algorithm
such as binary search can use an exported averaging function of the type

IntBounded n -> IntBounded n -> IntBounded n

to avoid any bound check. To take another example, incrementing a bounded value
always yields a lower-bounded value. The upper-bound check that we must per-
form after incrementing a bounded value to keep the bounds the same is often a
loop termination test that the algorithm calls for anyway. Thus incrementing a
bounded value is an operation of the type

IntBounded n -> Maybe (IntBounded n)

that skips the lower-bound check while doubling as a loop termination test. The
implementation of forEachIx in Section 3 gives one example; we give more
complex examples elsewhere [21]. We have expressed even generally recursive
algorithms with no bound checks other than index comparisons in the algorithm.

Another example of a static capability is a reference to a memory area. At
run time, the reference is simply represented by a raw pointer, but its type permits
the reference holder to (say) store an array of 2000 16-bit words there. Just as
static bounds on indices and pointers eliminate unnecessary comparisons, static
alignment information eliminates unnecessary alignment checks.

We thus divide the program into two parts: a security kernel that we trust to
produce and consume capabilities responsibly, and its client, the sandbox, which
acquires and propagates capabilities with abandon. Our general approach of light-
weight static capabilities is to separate these parts by type abstraction. We express
the kernel explicitly as a user-defined library rather than a language extension with
syntactic sugar [11, 25, 26, 31]. Like Diatchki and Jones, we expect the program-
mer to use the primitives provided by our kernel to build higher-level abstractions
that encapsulate domain-specific constraints such as absolute memory addresses
and hardware specifications. Of course, the programmer coding these abstractions
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could misread the hardware specification and misuse an absolute address. Such a
mistake would go undetected by our kernel and render the system unsafe. We strive
to enable and ease the encapsulation process, not to supplant domain knowledge.

3 TWO APPLICATIONS OF STATIC RESOURCES

Using numbers and records at compile time, we show two applications of statically
tracking resources and assuring their proper access by device drivers. The device
driver in both applications may be a typed functional program or generated by one.

3.1 Space: Memory areas

Diatchki and Jones’s seminal paper [11] introduces a language for manipulating
data in raw memory. These memory areas include page tables, kernel data, and
firmware and memory-based IO structures. Their location, size, alignment, rep-
resentation, and byte layout are usually rigidly defined, and some of them are
read-only or carry other access-pattern restrictions. To assure proper access, the
language tracks some of these constraints in types across indexing, casting, and
other operations.

Following their language’s features, we implement a Haskell library of memory
areas containing signed and unsigned, big- and little-endian integers of various
sizes and alignments, as well as pairs and statically sized arrays of them. We first
show how the library implements array indexing, then use it to access video RAM.

We implement our array-indexing operator @@ as follows.

aref_sig :: INDEXABLE arr count base totalsize =>
ARef al arr -> Ix count -> ARef al’ base

aref_sig = undefined
r @@ i | False = aref_sig r i
r@(ARef p) @@ Ix i

= cast_aref (p ‘plusPtr‘ (i * toInt base_size)) al base
where al = gcd (aref_al r) base_size

base = arr_base (aref_area r)
base_size = size_of base

The type of @@ combines constraints from two sources. First, the undefined
function aref_sig contributes an INDEXABLE constraint, so the explicit type
specified for aref_sig above is a partial signature for @@. Second, the term
definition of @@ invokes undefined term-level functions solely for their types.
Besides gcd from Section 2.1, the accessor functions below are also undefined.

aref_area :: ARef al area -> area; aref_area = undefined
aref_al :: ARef al area -> al; aref_al = undefined
size_of :: SizeOf area n => area -> n; size_of = undefined

Hence the terms defined in the where clause are all undefined. We care only
for the resulting phantom types. They are passed—again as terms—to the unex-
ported internal function cast_aref, which uses them to brand a raw pointer.
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cast_aref :: Ptr Word8 -> align -> area -> ARef align area
cast_aref p _ _ = ARef p

GHC collects the constraints from the partial signature and the term-level type
functions to infer a type for @@ that is quite close to Diatchki and Jones’s for @:

(INDEXABLE arr count base totalsize, GCD al n z,
SizeOf base n) => ARef al arr -> Ix count -> ARef z base

Some constraints below and in our code online are much more involved and thus
much messier to specify directly. Partial signatures and term-level type program-
ming make these examples practical to type. Whereas type programming feels like
logic programming when expressed at the type level, it feels like functional pro-
gramming when expressed at the term level—even though both ways specify the
same static, compile-time, type-level computation, erased at run time.

We now turn to Diatchki and Jones’s running example, a text-mode terminal
driver for a generic PC. The hardware can be controlled simply by writing in a
piece of memory videoRAM located at a dedicated address. We show functions
to write a character and to clear the screen. We provide in Haskell the same static
assurances as Diatchki and Jones do: only write in-range characters and attributes
to in-range rows and columns, without confusing character bytes with attribute
bytes, and without the overhead of unnecessary run-time checking or conversion.

The videoRAM memory area represents a PC screen by a 2D array of 25 rows
of 80 columns of pairs of bytes. Each byte pair describes the attribute (background
and foreground colors) and character at one screen location. We express this layout
using the area constructors Array, Pair, and AWord8.

type ScreenT = Array N25 (Array N80 (Pair AWord8 AWord8))

This notation is almost Diatchki and Jones’s, except N25 and N80 are synonyms
for type-level numbers in Section 2.1. Using the type-level records in Section 2.2,
we define videoRAM to refer to a new memory area ScreenAbs, an 8-byte-
aligned read-write screen buffer at the fixed address 0xb8000 rather than the heap.

data ScreenAbs = ScreenAbs
instance Property ScreenAbs APARef (ARef N8 ScreenT)
instance Property ScreenAbs APReadOnly HFalse
instance Property ScreenAbs APFixedAddr HTrue
instance Property ScreenAbs APInHeap HFalse
videoRAM = area_at ScreenAbs (nullPtr ‘plusPtr‘ 0xb8000)

If we neglect to set APFixedAddr to HTrue, area_at will report a type error.
To index into videoRAM for a particular attribute or character, we define

charAt i j = asnd (videoRAM @@ i @@ j)

where asnd selects the second component of a pair area. Haskell infers the type

Ix N25 -> Ix N80 -> ARef B1 (AtArea ScreenAbs AWord8)
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including the GCD alignment B1 and the static index bounds N25 and N80.
To clear the screen (fill videoRAM with blanks), we define a helper iterator

forEachIx proc = loop minBound where
loop ix = do proc ix

maybe (return ()) loop
(ixSucc ix <<= maxBound ‘asTypeOf‘ ix)

This iterator invokes proc on every index in range. The only run-time range
check it incurs is the loop termination test <<=. The way we implement bounded
indices [21] is quite different from Diatchki and Jones’s. For example, we avoid
introducing unintuitive “n− k patterns” to specify index computations.

Our code online shows how to use forEachIx to iterate over the rows and
columns of videoRAM, writing blank characters and attributes. It is more efficient
though to coerce (overlay) videoRAM to a 1D array of 2-byte big-endian integers.

cls = forEachIx (\i -> write_area (vr @@ i) blank) where
vr = as_area videoRAM

(mk_array_t size (undefined::BEA_Int16)) nat0
size = size_of (aref_area videoRAM) ‘div‘ nat2

blank :: Int16; blank = 0x7020 -- space on white background

The size of the overlay vr is expressed as a term but computed statically. If we
forget the division by two or choose a wrong offset (nat1 rather than nat0), the
type system will complain that vr is too big or misaligned. These static computa-
tions are more involved than above and nice to be able to specify in terms.

Instead of checking the size of vr, the type system can also compute it for us.
We conveniently specify by a dummy term that the overlay vr is as big as the base
area videoRAM. The type system, in the spirit of logic programming, then solves
the equation 2×size = 25×80 by division. Misalignment still triggers a type error.

cls = forEachIx (\i -> write_area (vr @@ i) blank) where
vr = as_area videoRAM

(mk_array_t undefined (undefined::BEA_Int16)) nat0
_ = size_of (aref_area videoRAM) ‘asTypeOf‘

size_of (aref_area vr)

In the accompanying source code, AreaTests.hs shows how to store and
retrieve array indices in memory as bounded integers, preserving their static upper
bound and thus obviating run-time bound checks. We define a memory area whose
first byte is an index into the array beginning at the second byte.

type ARIT = Pair (IntBounded N4 AWord8) (Array N4 AInt8)

The array has four signed byte (AInt8) elements, so we make the type of stored
offsets be that of a bounded integer less than 4. The compiler checks that an
AWord8 can represent such an integer. Reading the first part of ARIT gives a
value of the type Ix N4: the static bound propagates to the type of the index.
When we use that value to index into the array in the second part of ARIT, the
compiler checks that the index’s static bound matches the static size of the array.
Because the size of the array is N4 as well, the operation type-checks.
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3.2 Time: Processing ticks

Effect types let us extend our approach from data resources such as space to control
resources such as time. When generating device-driver code in Haskell, even loops,
we can check that it adheres to a protocol or stops within a worst-case time limit.
We show just two examples: first, assuring that the driver reads a register the same
number of times in any execution path; second, tracking the maximum number of
times the register is read. More examples are online in RealTime.hs.

It is useful to track the number of times a hardware register is read, when each
read yields the next byte in a protocol frame. To save space and time, some drivers
read a frame byte by byte, not all at once. Each byte read affects how the driver
deals with the rest of the frame. To obey the protocol, the driver must read exactly
all of one frame before moving to the next.

To guarantee statically that a part of the driver always reads the same number of
bytes, we define a parameterized monad [2] VST m si so, which transforms a
base monad m to track a counter whose initial value is si and final value is so. We
write >== and +>> for the analogues of >>= (bind) and >> in VST. Haskell thus
infers the type VST IO N0 (U (U B1 B0) B1) Int for the code below,
meaning that it reads the register 5 times no matter which control path it takes.

read_frame = tread_byte >== \b1 ->
if b1 > 10 then branch1 b1
else branch2 b1 +>> tread_byte +>> tread_byte

where
branch1 b = tread_byte >== \b2 ->

if b2 > 10 then tread_byte +>> branch2 b2
else branch3 b2

branch2 b = tread_byte +>> tread_byte
branch3 b = tread_byte +>> glift (putStrLn "branch3")

+>> tread_byte +>> tread_byte

This code receives a frame of data from a device. The first byte identifies the
frame, so we read a byte b1 and branch upon its value. In branch1, we read
another byte and branch again. Some branches perform dummy reads to match the
reads in other branches. If we miss those, the compiler complains. Unlike in the
parameterized monad of type-changing state, the types si and so are phantom, so
the static counting does not affect run-time performance.

Suppose we replace each conditional if test then thb else elb in
read_frame by gif test thb elb, where gif has the (inferred) type

gif :: (Monad m, NCompare sthen selse b,
BinaryNumber.NMax sthen selse b so) =>

Bool -> VST m si sthen v ->
VST m si selse v -> VST m si so v

Then each control path can increase the counter differently, but the type checker
still accumulates the maximum increase among paths so as to statically determine
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the worst ‘time complexity’ of the code. When using this technique in a code gen-
erator (such as Elliott’s [12]), we associate a counter with a generated instruction
and the generating expression. This lets us statically bound the time complexity of
our computation and determine if it will finish quickly enough.

To handle loops, we use the fact that the number of steps in each processing
cycle of the embedded system must be statically bounded. We ensure this fact by
using the bounded type Ix n for the loop counter, which also lets us bound the
latency of the loop. For example, the following program first reads a byte from the
register. If the read value is less than 10, we read twice that many more bytes.

read_frame’ = tread_byte >== \b1 ->
gmaybe tread_byte (loop b1) (toIxN nat10 b1)

where
loop b ix = foldTM branch1 b ix
branch1 b = tread_byte +>> tread_byte

The type checker infers the final state U (U (U (U B1 B0) B0) B1) B1,
that is, the register will be read at most 19 times. Here foldTM is a tick-counting
foldM combinator; its type is

(Monad m, ExportNat n, Succ n’ n, Add si diff so’,
Mul diff n’ grand_diff, Add si grand_diff so) =>

(v -> VST m si so’ v) -> v -> Ix n -> VST m si so v

Statically tracking tick counters in the VST monad assures that the monadic com-
putation terminates: within one run of the monadic computation (one cycle through
the device driver), the device register shall be accessed finitely many times.

4 RELATED WORK

Several authors [7, 8, 11] have reviewed the long history of space- and time-aware
functional programming. Unfortunately, most approaches that enforce assurances
at compile time (such as Hughes and Pareto’s [15]) severely restrict the language,
such as limiting it to first-order and requiring the programmer to specify memory
usage in detailed annotations.

As with all type systems, the language must be somewhat restricted because the
ability to impose constraints competes with the flexibility to express computations.
However, even in a device driver, we can separate the resource-sensitive part of the
program (the part that interfaces with hardware, where space and time constraints
are paramount) from the rest (relatively unconstrained “simplifications” [23]). We
can then write embedded software in a powerful, functional language with higher-
order functions, user-defined data structures, and polymorphism. This separation
is explicit if our program is a code generator (such as Elliott’s [12] for a GPU).

Such a separation, or staging, is the focus of resource-aware programming (see
Taha’s survey [31]). This separation is also present in Hume [7], which defines a
nested hierarchy of languages with a series of tradeoffs between expressiveness and
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decidability. Yet another example of separating resource-sensitive computations is
Timber [24], where only monadic actions have timing constraints. Timber is based
on reactive objects and designed for real-time embedded systems, not as a general-
purpose functional language.

To express hardware constraints statically, we need an advanced type system.
In fact, Taha [31] defines the latter as an attribute of resource-aware programming.
Often the advance is dependent types, in which the same terms manipulated at run
time encode constraints checked at compile time. For example, Brady and Ham-
mond [8] use dependent types to represent and infer size metrics of a program; they
have implemented several examples in Coq. In contrast, Diatchki and Jones [11],
Sheard [25], and us encode constraints using types rather than terms. This phase
distinction between types and terms nicely matches the stage separation discussed
above, but at the cost of proliferating representations. Nevertheless, our techniques
of term-level type programming and partial signatures make the notation of these
three approaches more uniform and closer to that of dependently typed systems
such as Coq [4] and Epigram [1].

Diatchki and Jones’s [11] and Sheard’s [25] experimental languages are like
Haskell but strict. They add built-in kinds such as Nat and can evaluate type
functions forwards and backwards [26]. The Cyclone language, although not func-
tional, also permits low-level programming with raw pointers and static assurances
such as memory references being valid. Inspired by these languages, we show here
that Haskell can already represent such numeric kinds and type-level functions,
albeit perhaps less prettily.

Unlike the experimental languages, our “lightweight” approach relies on the
type system only to propagate assurances (such as indices being in range) soundly
from the security kernel to the rest of the code [21], not to check that the kernel
itself is sound (such as arithmetic or hardware constraints being encoded correctly).
After all, our security kernel is just a library of types with no intrinsic interpretation
in Haskell. On the bright side, because our assurances are programmed in Haskell
rather than built into the language, the programmer can extend them. CiaoPP [? ]
also lets the programmer extend its language of assertions—at the term level rather
than our type level—but it generates not just static assurances but also dynamic
checks, and has many other applications as well.

All related approaches above are based on experimental language systems,
whose development is limited and user base is small. We aim for resource-aware
functional programming in a mature language as it is. Like ml-nlffigen [6],
we use types to refine a foreign-function interface, but our approach is more ex-
pressive and convenient because Haskell can compute with types.

5 CONCLUSIONS

Our examples show Haskell practical for high-assurance low-level programming.
Our type-system library statically assures hardware-imposed constraints on control
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and data when accessing raw memory and external devices. It can also be used for
arithmetic without overflow.

Type classes help, but we still wish for: a do-like notation for parameterized
monads; more informative type-error messages [29]; and defining a type synonym
for the inferred type of an expression.
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