
SPRITZ—A SPONGY RC4-LIKE STREAM

CIPHER AND HASH FUNCTION

Ronald L. Rivest1 Jacob C. N. Schuldt2

1Vannevar Bush Professor of EECS
MIT CSAIL

Cambridge, MA 02139
rivest@mit.edu

2Information Security Group
Royal Holloway, University of London
jacob.schuldt@rhul.ac.uk

CRYPTO rump session
August 19, 2014



RC4

I Stream cipher RC4 designed by Rivest (1987).
I Widely used (50% of all TLS connections).
I Simple, fast.
I

(Wikipedia)



RC4 attacks

RC4 has numerous vulnerabilities and “soft spots” [see
paper for citations]:

I Key-dependent biases of initial output
I Key collisions (producing same internal state)
I Key recovery possible from known internal state
I Related-key attacks (WEP)
I State recovery from known output (feasible?)
I Output biases; distinguishers



SPRITZ

I We started design after CRYPTO 2013.
I Principles:

I Drop-in replacement for RC4
I Retain “RC4 style” (e.g. state is a few registers plus a

permutation S of {0,1, . . . ,N − 1})
I Minimize statistical vulnerabilities
I Redo key-setup entirely

I Automatically examined many thousands of
candidates; filtered by syntactic, statistical, and
cryptographic criteria. Approximately 5 “core-months”
of CPU time used!



Code comparison (Output routines)

Winner is #4933 (postfix for i , j , k , z):

i1+, kjiS+S+, ikjS++, jikz+S+S+S

RC4()

1 i = i + 1
2 j = j + S[i]

3 SWAP(S[i],S[j])
4 z = S[S[i] + S[j]]
5 return z

SPRITZ()

1 i = i + 1
2 j = k + S[j + S[i]]
3 k = i + k + S[j]
4 SWAP(S[i],S[j])
5 z = S[j + S[i + S[z + k ]]]
6 return z

I About 50% longer
I Uses new register k as well RC4 registers i , j ; output

register z also used in feedback.



Much better statistics!

I Spritz statistical biases are much fainter than for RC4.
I We estimate the biases for N = 256 by extrapolating

from Spritz with N = 16,24,32.
I For N = 256:

I Can distinguish RC4-256 from random with 241 samples.
I Our tests suggest that 281 samples are required

to distinguish SPRITZ-256 from random.



But wait, there’s more! SPRITZ is spongy!

I SPRITZ is also a (modified) sponge function, and
usable as a hash function:

1 INITIALIZESTATE(N)
2 ABSORB(“abc”) – ACCEPT INPUT PIECEMEAL.
3 ABSORB(“def”)
4 SQUEEZE(32) – OUTPUT 32 BYTE HASH.

5 ABSORB(“ghi”) – KEEP GOING...
6 SQUEEZE(1000)

I Large state space (like KECCAK), but also has built-in
protection against inference of key from knowledge of
internal state (which KECCAK does not).

I (But very much slower than Keccak...)



More...

Our paper on SPRITZ can be found on my web site:

people.csail.mit.edu/rivest/pubs.html#RS14

More security review needed; comments and analysis
appreciated!


