
A Very Modal Model
of a Modern, Major, General Type System

Andrew W. Appel ∗

Princeton University
INRIA Rocquencourt
appel@princeton.edu

Paul-André Melliès
CNRS

Université Paris 7
mellies@pps.jussieu.fr

Christopher D. Richards∗

Princeton University

richards@cs.princeton.edu

Jérôme Vouillon
CNRS

Université Paris 7
vouillon@pps.jussieu.fr

Abstract
We present a model of recursive and impredicatively quan-
tified types with mutable references. We interpret in this
model all of the type constructors needed for typed inter-
mediate languages and typed assembly languages used for
object-oriented and functional languages. We establish in
this purely semantic fashion a soundness proof of the typing
systems underlying these TILs and TALs—ensuring that ev-
ery well-typed program is safe. The technique is generic, and
applies to any small-step semantics including λ-calculus, la-
beled transition systems, and von Neumann machines. It is
also simple, and reduces mainly to defining a Kripke seman-
tics of the Gödel-Löb logic of provability. We have mechan-
ically verified in Coq the soundness of our type system as
applied to a von Neumann machine.
Categories and Subject Descriptors F.3.3 [Logics and
Meanings of Programs]: Studies of Program Constructs—
Type structure; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs—Mechanical verification; F.4.1
[Mathematical Logic and Formal Languages]: Mathemat-
ical Logic—Modal logic
General Terms Languages, Theory

Keywords Recursive types, impredicative polymorphism,
mutable references, Kripke models

1. Introduction
We wish to compile languages such as ML and Java into
typed intermediate languages and typed assembly languages.
These TILs and TALs are particularly difficult to design,
∗ Supported in part by NSF grants CCF-0540914 and CNS-0627650.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
To appear in POPL’07, January 17–19, 2007, Nice, France.
Copyright c© 2007 ACM.

because in order to describe the program transformations
applied in the course of compilation, they require a very rich
and expressive type system, including
• intersection and union types;
• types for address arithmetic;
• types for mutable references, since the source languages

have mutable references (or object fields);
• recursive types, in order to describe data structures

loaded in memory such as lists and trees;
• type quantification, which is used to describe object and

function-closure representations.

Not only that: type quantification should be impredica-
tive, because the types which may be abstracted (i.e., put in
private fields of objects or in function-closure environments)
can be themselves object or function-closure (i.e., quanti-
fied) types. In particular, it is not possible to stratify the type
system into levels k such that a quantification ∀kα.τ is al-
ways instantiated at level < k.

Putting all these type ingredients together in a low-level
language is an intricate exercise. A formal proof of sound-
ness—any well-typed program does not go wrong—is thus
recommended for any type system for such TILs and TALs.

Contributions. In this paper we will establish the sound-
ness of a type system including all the ingredients mentioned
earlier, and more. Our semantics of impredicative references
is an improvement over previous work because it removes a
cumbersome restriction from the typing rules for quantifiers
(see Section 13.1). Our approach is also novel in that we
have decomposed the semantic types in such a way that the
principles of safety, induction over the future, type preserva-
tion, and so on are each identifiable as a specific operator of
the type system. Standard concepts such as (function) code
pointers, subtyping, contractiveness, mutable and immutable
references are constructed from these new primitives.

Overview. Although our type system could be proved
sound syntactically—using progress and preservation—we
will not use progress and preservation. Hence we do not
need to formally list all our type constructors and typing
rules—because we never do induction over them—but the

1 2006/10/27

reader may examine Tables 1 and 2 and Figures 4–7. We
will proceed in a purely semantic fashion, for two reasons at
least. First, we find intuition easier to come by in this way:
once types are interpreted in a relevant and felicitous way, it
becomes much easier to combine or decompose them than
if they remained ciphers rendered meaningful only by the
typing rules.

Second, we enjoy the modularity and genericity of the
semantic methods. We demonstrate this in the paper, with a
nicely modularized proof of soundness which is applicable
in principle to any calculus with a small-step semantics. We
discuss here von Neumann machines and the call-by-value
λ-calculus with references; our methods should also work
well for labeled transition systems used in the intermediate
representations of compilers.

To establish our soundness result, we construct a model
of recursive and impredicatively quantified types with mu-
table references. We start from the idea of approximation
which pervades all the semantic research in the area. If we
type-check v : τ in order to guarantee safety of just the
next k computation steps, we need only a k-approximation
of the typing-judgment v : τ . We express this idea here us-
ing a Kripke semantics whose possible-worlds accessibility
relation R is well-founded: every path from a world w into
the future must terminate. In this work, worlds characterize
abstract computation states, giving an upper bound on the
number of future computations steps and constraining the
contents of memory. (We define the set of worlds precisely
in Section 6.) We write

w
 v : τ

to mean that the value v has type τ in world w. This leads us
to investigate a modal logic adapted to this Kripke semantics
(Section 2). A judgment σ ` τ in this logic means that every
value v of type σ at any world w has also type τ at that
world w. Then (Section 4) a modal operator B (pronounced
“later”) quantifies over all worlds (all times) strictly in the
future. The strictness of B turns out to be a key technical
insight, if we compare it to previous work [Ahm04] which
used instead a construction analogous to the modal operator
necessity � quantifying over worlds now and in the future.
Indeed, the combination of a well-founded R with a strict
modal operator B provides a clean induction principle to the
logic, called the Löb rule,

B τ ` τ
` τ

,

where ` τ can be read as asserting the safety of the program
described by τ . (Equation 16 gives a precise definition.)

The resulting Gödel-Löb logic is ideal for computations
that can’t go on forever, and where information gets less and
less precise as the computation goes on. Suppose that we
want to type-check a program written for a von Neumann
machine with arbitrary control flow (Section 11). Let τ give

the types of all the labels appearing in the program. We want
to show that τ is an induction hypothesis for the safety of
the program, at least as far as the end of the worlds. We first
assume B τ ; that is, to a weaker, or “later” approximation,
the type τ holds for any exit label to which we might jump
in (at least) one step. Then we analyze each basic block in
the program to show that the type τ (that is, the stronger
approximation, without B) describes each entry label. From
this we would like to conclude by induction that τ absolutely
describes the program, with no hypothesis; this is precisely
what the Löb rule enables.

Of course, some computations should go on forever. But
the proof scheme above works for any finite prefix of the
computation—so the program is safe for an arbitrary number
of steps. We obtain in this way (Section 12) a proof of
soundness of the type system for a von Neumann machine—
of which we have machine-checked proofs1 in Coq, using a
straightforward shallow embedding of our model.

Related work. Our model unifies and generalizes several
previous threads of research: the indexed model [AM01,
AAV02, Ahm04], the orthogonality model [MV05], and the
approximation modality [Nak01]. We will discuss some of
these in Section 13.

2. Kripke semantics
Kripke models [Kri63] originated as models of modal log-
ics; subsequently they have been shown useful for giving the
semantics of type systems [MM91]. The main idea behind
Kripke models is that truth (respectively, membership in a
type) is not absolute but relative to some appropriate notion
of world, or state, and that these states can be related pre-
cisely to each other.

In this section we will interpret worlds as characterizing
abstract properties of the current state of computation. In
particular, in a system with mutable references, each world
contains a memory typing (Section 6); but the model can
be more general than that, so we will start with an abstract
characterization.

Models. A model is a triple (W, R,
), where W is a
nonempty set of worlds w; an accessibility relation R ⊂
W × W describes when it is possible to move from one
world to another; and
 assigns truth values to typing judg-
ments with respect to a given world, that is,

w
 v : τ. (1)

Here w ∈ W is a world, v ∈ V is a value of our operational
calculus, and τ ∈ Type is a type.

We apply our Kripke models to small-step operational
semantics with a memory or store indexed by locations Loc;
but there are still many flavors of such semantics:

1 Available at http://www.pps.jussieu.fr/~vouillon/smot/

2 2006/10/27

http://www.pps.jussieu.fr/~vouillon/smot/

Notation Eqn. Description
top 2 Top type
bot 3 Bottom type

τ ∧ σ 4 Intersection type
τ ∨ σ 5 Untagged union type

τ ⇒ σ 6 Implication type
∀x:A.τ 7 Universal type
∃x:A.τ 8 Existential type

!τ 9 Configs where all values have τ
?τ 10 Configs where some value has τ

just u 13 Singleton type
slot(j, τ) 15 Von Neumann vector element type

B τ 18 “Later” modality
rec F 24 Recursive type
l 7→ τ 26 Configs where Ψ(l) = τ

plus(i, j, k) 57 Asserts i + j = k
greater(i, j) 58 Asserts i > j

safemem(m) 65 Type of configs safe for memory m
unit 70 Unit type

Figure 1. Primitive types, operators

• In λ-calculus with mutable references, a state is a pair
(e, m) where e is an expression and m is a store, a
mapping from Loc to V . States evolve by a small-step
relation (e, m) � (e′, m′); if there is no such (e′, m′)
then either e is a value v or (e, m) is stuck. A world w
characterizes the store m.

• On a von Neumann machine, the state is a pair (v, m),
where v ∈ V is a vector of Loc representing pointers in
registers, including the program counter. The memory m
is a mapping from Loc to Loc containing program and
data. The small-step relation is (v, m) � (v′, m′). A
world w characterizes the contents of memory.

• In a labeled transition system such as is used in flow
analysis, w characterizes the store and v contains both
the local variables and the control-flow state.

Clearly, the same value v may or may not have type τ
depending on the world w, that is, depending on the data
structures in memory that v points to. Accordingly, we call
a pair (w, v) a configuration (abbreviated “config”):

Config = W × V,

and define a type τ ∈ Type as a set of configurations. Then,

(w, v) ∈ τ and w
 v : τ

are two alternative notations expressing the same fact. We
will show how our semantics connects the relation R be-
tween worlds and the relation � between states.

3. Primitive type constructors
Our approach to the modeling of a type system is to define
a few primitive type constructors—a type is just any set of

Notation Eqn. Description
τ ⇐⇒ σ 11 Type of configs in τ iff in σ
teq(τ, σ) 12 Asserts τ equal to σ

u ◦
◦ τ 14 Asserts u has τ in current world

� τ 19 Necessity modality
validmem(m) 27 Asserts m valid

ref τ 32 Mutable reference type
offset(n, τ) 59 Pointer arithmetic type

pair(σ, τ) 60 Pair type
list τ 61 List type
iref τ 62 Immutable reference type
safe 66 Type of safe configs

τ → σ 71 Function type
codeptr(τ) 72 Code pointer (continuation) type

∆p 75 Program code type
Γp 79 Program invariants type

boundary l 88 Asserts memory > l unallocated

Figure 2. Synthesized types, operators

configurations—and then use these primitives to synthesize
all the constructors needed for type-checking programs.

We can start with intersection types, union types, and
their identities, as well as an implication type:

top
prim
= {(w, v) | True} (2)

bot
prim
= {} (3)

τ ∧ σ
prim
= τ ∩ σ (4)

τ ∨ σ
prim
= τ ∪ σ (5)

σ ⇒ τ
prim
= {(w, v) | (w, v) ∈ σ ⇒ (w, v) ∈ τ} (6)

We write c(τ)
prim
= . . . τ . . . to indicate that the primitive

type-constructor c is defined by the mathematical expres-
sion λτ. . . . τ . . . in the underlying logic. For our machine-
checked proofs in Coq [B+98], the underlying logic is the
Calculus of Inductive Constructions [PM93].

Quantification. Quantification over types is needed for
polymorphism, data abstraction, and representation of clo-
sures. Besides, we are interested here in a λ-calculus or von
Neumann machine equipped with a store (memory) of mu-
table references with address arithmetic. To reason about
dataflow and addressability in such programs, our type sys-
tem should also be able to quantify over locations l ∈ Loc
and memories m ∈ Mem. Our quantifiers are thus,

∀x:A.τ
prim
=

⋂

a∈A

τ [a/x] (7)

∃x:A.τ
prim
=

⋃

a∈A

τ [a/x] (8)

where A is either Type, Loc, or Mem.

3 2006/10/27

Quantification over values in a world. Another kind of
quantification is over values in the current2 world:

!τ
prim
= {(w, v) | ∀v′. (w, v′) ∈ τ} (9)

?τ
prim
= {(w, v) | ∃v′. (w, v′) ∈ τ} (10)

The type !τ (“everywhere τ”) means that every value in the
current world has type τ ; and ?τ (“somewhere τ”) means
that some value in the current world has type τ .

One strength of our approach is that we can define just
a few primitive type constructors, and from those we can
synthesize many more constructors of interest. We will use
the notation c(τ)

syn
= . . . τ . . . to mean that the constructor

c is synthesized from a combination . . . τ . . . of our type
constructors, without dipping into the underlying logic.

τ ⇐⇒ σ
syn
= τ ⇒ σ ∧ σ ⇒ τ (11)

teq(τ, σ)
syn
= !(τ ⇐⇒ σ) (12)

The judgment w
 v : τ ⇐⇒ σ means that (in world w)
v has type τ iff it has type σ. In contrast, w
 v : teq(τ, σ)
means that every value in world w has type τ iff it has type
σ; that is, teq is our notion of type equality. In each world,
the type teq(τ, σ) is equal to either top or bot; we call such
types world types because they depend only on the world,
not on the value. Henceforth if τ is a world type we will
write w
 τ to mean w
 v : τ for an arbitrary v.
Vector values. As we have said, our type system applies
to several computational models (e.g., λ-calculus, von Neu-
mann) and in some of these we need to type several kinds of
values. We have locations l : Loc that index a mutable store
m; storable values u : SV that are the range of m (contents
of memory cells); and values v : V . We assume Loc ⊂ SV .

On a von Neumann machine, SV = Loc and v is a
vector of locations—one could think of a register-bank—
indexed by a natural number j. That is, if v is a value
then v(j) is a Loc. In order to type locations, we choose
an injective function −→· from storable values to values, for
instance−→u def

= λj.u. This way the same set of types can be
used for all kinds of values.

In λ-calculus, SV = V is the usual set of values in λ-
calculus, we have Loc (SV by syntactic inclusion, and we
take −→u def

= u.
Singletons and slots. The singleton type just u is the type
of the single storable value u. Since Loc ⊂ SV we can also
write just l for a location l.

just u
prim
= {(w, v) | v = −→u } (13)

The construction !(just u ⇒ τ) asserts that the storable-
value u has type τ in the current world, which we write u ◦

◦ τ .

u ◦
◦ τ

syn
= !(just u⇒ τ) (14)

2 In the context of a definition that depends on a formal parameter w ∈ W ,
we refer to w as the “current” world.

We can define “∃l:Loc. just l ∧ τ(l)”, the type of locations l
which satisfy some property τ(l) (where τ(l) is a world
type).

The type slot(j, τ) characterizes values v such that (in-
formally) the jth slot has type τ .

slot(j, τ)
prim
= {(w, v) | w
 v(j) ◦

◦ τ} (15)

To say that register 2 has the value 3 we write slot(2, just 3).

4. Necessity and the modal operator B

In this section we will explain an operator that encapsulates
the notion of induction; then we will demonstrate its appli-
cation to recursive types (Section 5), recursive data struc-
tures (Sections 6, 8) and recursive functions and control-flow
(Section 11).

Judgments. We introduce a notion of judgment and its
semantic interpretation. Given two types σ and τ , we write

σ ` τ (16)

when the type σ is a subset of the type τ , or equivalently,
when for every world w and for every value v,

w
 v : σ implies w
 v : τ.

More generally, we write σ1, · · · , σn ` τ to mean
σ1 ∧ · · · ∧ σn ` τ. We write ` τ to mean top ` τ .

It is possible to reason about these judgments using a rich
set of inference rules. This rules can be used to derive a
larger number of type properties without having to expand
the definition of type constructors and reason in the underly-
ing logic. Some of these rules are given in Figures 4–7.

The “later” operator B. In any model (W, R,
) we re-
quire the accessibility relation R to be transitive and well-
founded:

R well-founded def
=

from any world w
there is no infinite path w R w′ R w′′ R . . .

(17)

Intuitively, w R w′ means that the world w′ comes at a
strictly later stage than the world w. This leads us to de-
fine the “later” operator:

B τ
prim
= {(w, v) | ∀w′. wRw′ ⇒ (w′, v) ∈ τ} (18)

That is, w
 v : B τ precisely when w′
 v : τ for any
world w′ coming strictly later than the world w.

The following properties follow easily.
Lemma 4.1.

1. B is monotone: if σ ` τ , then B σ ` B τ .
2. B distributes over intersection: B

∧

τi =
∧

B τi.

4 2006/10/27

The necessity operator �. There is a related operator �,
pronounced “necessarily”, which means “now and later” and
is defined just that way:

� τ
syn
= τ ∧B τ (19)

The next proposition shows that the operator � is a closure
operator on types, or what is called a comonad in category
theory3—although in this paper we will not use the toolkit
of category theory.

Lemma 4.2.

1. � is monotone: if σ ` τ , then � σ ` � τ .
2. For any type τ , � τ ` τ .
3. If � σ ` τ , then �σ ` � τ .
4. � distributes over intersection: �

∧

τi =
∧

� τi.

Necessary types. We are interested in types τ such that,
once a value v has type τ in some world w, it has type τ in
every future world. Such types are called necessary types:

τ necessary
def
= τ ` B τ (20)

Not all of our types are necessary. In particular, since the
mutable store evolves from one world to the next, it will be
possible to construct types (sets of configurations) such that
τ ` B τ does not hold. In practice, our datatypes (types for
references, code pointers, ...), are necessary. However, some
logical constructions on types do not preserve necessity: for
instance, the fact that two types τ and τ ′ are necessary does
not imply that the type τ ⇒ τ ′ is necessary.

Since necessary types are much easier to reason about, we
want a convenient way to construct them. This is precisely
what the modal operators B and � achieve for us: they
transform arbitrary types into necessary types. Let us state
formally a few properties relating necessity to these two
modal operators:

Lemma 4.3.

1. For every type τ , the types � τ and B τ are necessary,
2. A type τ is necessary iff τ = � τ , that is, ` teq(τ, � τ).
3. The intersection of necessary types is necessary.

The Löb rule. Our hypothesis that the accessibility rela-
tion R is well-founded is reflected in our modal logic by the
following induction principle:

Theorem 4.4 (Löb Rule). For every type τ ,

B τ ` τ

` τ
(21)

3 In fact, the � operator is the free comonad of the B operator, both
understood as functors in the category of types ordered by inclusion. This
fact may be proved directly, or deduced from our definition 20 of necessary
types, and Section 9.4 of Barr and Wells [BW83].

Proof. As R is well-founded, it satisfies the following induc-
tion principle:

∀P.(∀w.(∀w′ . wRw′ ⇒ P (w′))⇒ P (w))⇒ ∀w.P (w).

By taking P (w) = (w, v) ∈ τ , we get:

∀v.(∀w.(∀w′ . wRw′ ⇒ (w′, v) ∈ τ)⇒ (w, v) ∈ τ)⇒
∀w.(w, v) ∈ τ.

Finally, by distributing the quantification over v, we have:

(∀w. v.(∀w′ . wRw′ ⇒ (w′, v) ∈ τ)⇒ (w, v) ∈ τ)⇒
∀w. v.(w, v) ∈ τ.

This is exactly what the rule 21 means.

Corollary 4.5 (Generalized Löb Rule).

σ, B τ ` τ σ necessary

σ ` τ

Proof. By a short logical derivation:
σ, B τ ` τ

σ, B(σ ∧ (σ ⇒ τ)) ` τ

σ, (B σ) ∧B(σ ⇒ τ) ` τ

σ ∧B σ, B(σ ⇒ τ) ` τ
σ necessary

σ, B(σ ⇒ τ) ` τ

B(σ ⇒ τ) ` σ ⇒ τ
Theorem 4.4

` σ ⇒ τ
σ ` τ

5. Recursive types
Given a type operator F ∈ Type → Type, we can con-
struct the recursive type rec F . As in most models of recur-
sive types, if F is contractive then rec F is a fixed point of
F . Informally, a contractive function is one such that if τ is
approximately equal to σ, then Fτ is more accurately equal
to Fσ. We can express contractiveness using the primitives
of our type system— in fact, contractiveness and nonexpan-
siveness4 have very concise, intuitive definitions.

F contractive
def
= B teq(τ, σ) ` teq(Fτ, Fσ) (22)

F nonexpansive
def
= � teq(τ, σ) ` teq(Fτ, Fσ) (23)

The hypothesis B teq(τ, σ) means that (in the current world)
τ is perhaps not yet equal to σ, but in every future world it
will be. What is it about the future worlds that makes them
accept τ = σ? The answer is that the world-accessibility
relation R is well founded, which informally means that in
the current world there is a finite number k of computation
4 In a way now standard in type theory [MPS86], nonexpansive type con-
structors may be composed with contractive constructors to make contrac-
tive constructors.

5 2006/10/27

steps remaining. Perhaps we can call a function that, given
an argument of type τ would get stuck on the kth step, but
given an argument of type σ executes safely for k steps; in
this case w 6
 v : teq(τ, σ). But (by the well-foundedness of
R), the next world has < k steps of computation remaining
to it, so it is less able to distinguish τ from σ. So F con-
tractive means that if τ is indistinguishable from σ in every
future world, then F (τ) is indistinguishable from F (σ) in
this world.

On the other hand, F nonexpansive means that if τ is in-
distinguishable from σ in this world and every future world,
then F (τ) is indistinguishable from F (σ) in this world. For
example, we will later introduce the constructor ref which is
contractive, and offset which is nonexpansive.

Given a type operator F , we define by induction on
worlds the fixpoint candidate rec F .

rec F
prim
= the unique set σ such that

(w, v) ∈ σ iff
(w, v) ∈ F ({(w′, v) | wRw′ ∧ (w′, v) ∈ σ}).

(24)

By the well-foundedness of R, this is defined for all type
operators F—in order to find out whether (w, v) ∈ rec F
one only needs to consider configurations (w′, v′) ∈ rec F
where wRw′. This fixpoint candidate is easily defined as a
structural Fixpoint function in Coq.
Lemma 5.1. When F is contractive, the type rec F is a
fixpoint of F , that is,

• rec F ` F (rec F) (unfolding)
• F (rec F) ` rec F (folding)

These two properties can also be phrased as a single asser-
tion: ` teq(rec F, F (rec F)).
Lemma 5.2. The fixpoint of a contractive operator F
is unique: if ` teq(τ, F (τ)) and ` teq(σ, F (σ)), then
` teq(τ, σ).

6. A Kripke semantics of stores
One advantage of our semantic approach is that we did not
need to fully specify our Kripke model in order to interpret
the logical part of our typing system (intersection and union
types, quantification, necessity, recursive types). But since
we are particularly interested here in languages with mutable
references—we would like to include a notion of reference
type in our system—this requires us to explain what Kripke
model of worlds w and accessibility relation wRw′ suitable
for mutable references we have in mind.

Recall that, intuitively, the current world w shall be used
for two purposes: (1) to ensure that the accessibility rela-
tion R is well founded, and (2) to constrain what values
may be contained in memory locations. That is, a world
w = (n, Ψ) will be a pair of an index n ∈ N (which counts
down as time advances) and a store typing Ψ. As one should
expect, this store typing Ψ will be a partial function from

memory locations l ∈ Loc to types. However, we will have
to be extremely careful, and restrict ourselves to only some
of these functions. Indeed, the mutually recursive equations
in W and Type below have no solution (by a cardinality ar-
gument):

W = N× (Loc ⇀ Type)

Type = P (W × V) .
(25)

The significance of B. Let us carry on our analysis. Infor-
mally, a memory m ∈ Mem is well typed with respect to a
store typing Ψ if for all locations l in the domain of Ψ, the
value m(l) has type Ψ(l). Let us think ahead and imagine
that the set of worlds W is already constructed. One could
then define the world type l 7→ τ which characterizes the
worlds (n, Ψ) in which the memory-typing for l is type τ :

l 7→ τ
prim
= {((n, Ψ), v) | Ψ(l) = τ} (26)

Then, we may declare that a memory m is well-typed when
the following assertion holds:

validmem(m)
syn
=

∀l:Loc.∀τ :Type. l 7→ τ ⇒ B(m(l) ◦
◦ τ)

(27)

In this definition we write B(m(l) ◦
◦ τ). There is some value

u in memory at address l, and we guarantee to every future
world that u ◦

◦ τ . We don’t need to guarantee u ◦
◦ τ in the

current world because it takes one step just to dereference
m(l), and in that step we move to a future world.

This use of the B operator rather than the � operator is
crucial in order to solve the cardinality issue. Indeed, for a
configuration ((n, Ψ), v), only the configurations of index
strictly less than n are then relevant in the type Ψ(l).

The Kripke semantics. This informal discussion enables
us to stratify our definition of worlds and types, and to start
by defining “finitely stratified” worlds and types of rank n
by mutual induction:

Wn
def
= {n} × (Loc ⇀ Typen)

Typen

def
= P

(
⋃

k<n Wk × V
)

(28)

The set of worlds is then defined as the union of finitely
stratified worlds:

W
def
=

⋃

n∈N

Wn.

Finally, the set of types is defined5 according to the princi-
ples of Kripke semantics presented in Section 2:

Type
def
= P (W × V) .

5 Remark. The set Type is isomorphic to the set
Q

n∈N
P (Wn × V)

obtained as projective limit of the sequence of finitely stratified types
{Typen}n∈N , where Typen

∼=
Q

k<n
P (Wk × V) .

6 2006/10/27

We have the inclusions

Type0 ⊂ . . . ⊂ Typen ⊂ . . . ⊂ Type

and a family of approximation functions

b cn : Type→ Typen

defined thus:

bτcn
def
= {((k, Ψ), v) ∈ τ | k < n}. (29)

These approximation functions are lifted pointwise to store
typings Ψ such that

dombΨcn = dom Ψ,

bΨcn(l) = bΨ(l)cn.
(30)

Finally, the accessibility relation between worlds is defined
as follows:

(n, Ψ) R (n′, Ψ′)
def
=

n > n′ ∧ ∀l ∈ domΨ. Ψ′(l) = bΨ(l)cn′ .
(31)

Intuitively, when moving to a future world, at least one step
must be taken; the types of allocated locations must be ap-
proximately preserved; and new locations may be allocated.

This completes our definition of a Kripke model for mu-
table references. The two types l 7→ τ and validmem(m)
which were used for earlier discussion, are then defined as
in equations 26 and 27.

Reference types. We are ready now to define reference
types. Intuitively, a reference of type τ is a pointer to a
location l of type τ . Because of the inherent stratification
of store typing, this is actually too strong a requirement. We
need to replace it by the weaker but sufficient requirement
that the type τ ′ of the location l coincides with the type τ in
the future. Hence the following definition of reference types:

ref τ
syn
= ∃l:Loc. just l ∧ ∃τ ′:Type.(l 7→ τ ′ ∧B teq(τ, τ ′))

(32)

Note that this definition is given solely in terms of type con-
structors already defined. We have been arguing for the use-
fulness of a modal approach to type semantics, as well as a
finer-grained decomposition of such semantics; definition 32
exemplifies both of these ideas in a nice way. To underscore
the flexibility of this decomposition, we speculate that one
could synthesize, without dipping back into the underlying
logic, a replacement for “l 7→ τ ′” that would yield a region-
enabled definition of the ref constructor, and thereby permit
deallocation.

7. Type preservation
Suppose v : τ in some state, and then a memory location
is updated—either to initialize a new reference or to update

an old one. One of the usual difficulties in a semantics of
references is to ensure that v : τ in the new state. For
example, if τ = list(ref σ) (with list defined in equation 61,
below) how can we ensure that the store to memory has
not modified one of the list cells or one of the references?
In our framework the solution is (1) use R to constrain the
evolution of worlds; (2) make sure that τ is necessary, that is,
τ is preserved as we change worlds; and (3) use validmem()
to constrain the machine states to follow the evolution of
worlds. Concretely, we demonstrate that, with our choice of
accessibility relation, reference types are necessary and all
interesting store operations (memory access, allocation and
update) are permitted.

We use the following technical lemma several times.
Lemma 7.1 (Approximation and Equality). A type and its
approximation can be related as follows.

(k, Ψ)
 B teq(τ, bτck)

We show that an allocated memory location remains allo-
cated forever and that its type is preserved.
Lemma 7.2 (Store Typing Preservation).

l 7→ τ ` B∃σ:Type.l 7→ σ (33)
l 7→ τ ` B∀σ:Type.l 7→ σ ⇒ B teq(τ, σ) (34)

Proof. We assume (k, Ψ)
 l 7→ τ , that is, Ψ(l) = τ . Let
(k′, Ψ′) be a world such that (k, Ψ)R(k′, Ψ′).

By definition 31, we have dom Ψ ⊂ domΨ′, and there-
fore, for some type σ, we have Ψ′(l) = σ, that is, (k′, Ψ′)

l 7→ σ. This proves the first assertion.
Now, let σ be a type such that (k′, Ψ′)
 l 7→ σ, that

is, Ψ′(l) = σ. By definition 31, σ = bτck′ . Hence, by
lemma 7.1, (k′, Ψ′)
 B teq(τ, σ) as required to prove the
second assertion.

In particular, if a storable value u can be stored at loca-
tion l now, it can still be stored at this location in the future:

l 7→ τ ∧B(u ◦
◦ τ) ` B∀σ:Type.l 7→ σ ⇒ B(u ◦

◦ σ). (35)

Another direct corollary of the lemma is that reference types
are necessary.

We now show that the expected store operations are per-
mitted. For instance, if the location l has type ref τ , the
storable-value u has type τ and the current memory m is
valid, we should be able to store u at location l; that is, the
memory m[l := u] should be valid in some world one step
after the current world.
Lemma 7.3 (Unchanged memory). If we have

(k + 1, Ψ)
 validmem(m) (36)

then there exists a store typing Ψ′ such that

(k + 1, Ψ)R(k, Ψ′) (37)
(k, Ψ′)
 validmem(m) (38)
domΨ′ = dom Ψ (39)

7 2006/10/27

Proof. We take Ψ′ = bΨck. We clearly have assertions 37
and 39. We now prove assertion 38 using definition 27. Let
l be a location and τ be a type such that (k, Ψ′)
 l 7→ τ .
By definition 26, as dom Ψ′ = dom Ψ, there exists τ ′ such
that (k + 1, Ψ)
 l 7→ τ ′. Furthermore, by assertion 36,
(k+1, Ψ)
 B(m(l) ◦

◦ τ ′). Hence, by assertion 35, (k, Ψ′)

B(m(l) ◦
◦ τ) as wanted.

Lemma 7.4 (Memory update). If the type τ is necessary
and

(k + 1, Ψ)
 validmem(m) (40)
(k + 1, Ψ)
 (l ◦

◦ ref τ) (41)
(k + 1, Ψ)
 (u ◦

◦ τ) (42)

then there exists a store typing Ψ′ such that

(k + 1, Ψ)R(k, Ψ′) (43)
(k, Ψ′)
 validmem(m[l := u]) (44)
dom Ψ′ = dom Ψ (45)

Proof. We take Ψ′ = bΨck as for the previous lemma 7.3.
This ensures that (k+1, Ψ)R(k, Ψ′) and dom Ψ′ = domΨ.
We now prove assertion 44 using definition 27. Let l′ be a
location and τ ′ be a type such that (k, Ψ′)
 l′ 7→ τ ′. If
l′ 6= l, we can conclude as in lemma 7.3. So, we suppose that
l′ = l. From assumption 41 and by definition 32, there exists
a type τ ′′ such that (k + 1, Ψ)
 l 7→ τ ′′ and (k + 1, Ψ)

B teq(τ, τ ′′). From assumption 42, using the fact that τ is
necessary, we therefore get (k + 1, Ψ)
 B(u ◦

◦ τ ′′). Hence,
by assertion 35, (k, Ψ′)
 B(u ◦

◦ τ ′) as wanted.

Lemma 7.5 (Memory allocation). If the type τ is neces-
sary, and

(k + 1, Ψ)
 validmem(m) (46)
(k + 1, Ψ)
 (u ◦

◦ τ) (47)
l 6∈ dom Ψ (48)

then there exists a store typing Ψ′ such that

(k + 1, Ψ)R(k, Ψ′) (49)
(k, Ψ′)
 validmem(m[l := u]) (50)
(k, Ψ′)
 (l ◦

◦ ref τ) (51)
dom Ψ′ = dom Ψ ∪ {l} (52)

Proof. We take Ψ′ = bΨck ∪ {l 7→ bτck}. This is well-
defined as l 6∈ dom Ψ′. Clearly, we have (k + 1, Ψ)R(k, Ψ′)
and dom Ψ′ = dom Ψ ∪ {l}. We now prove assertion 50
using definition 27. Let l′ be a location and τ ′ be a type
such that (k, Ψ′)
 l′ 7→ τ ′. If l′ 6= l, we can con-
clude as in lemma 7.3. So, we suppose that l′ = l. From
assumption 47, using the fact that τ is necessary, we get
(k, Ψ′)
 B(u ◦

◦ τ). Using lemma 7.1, this gives (k, Ψ′)

B(u ◦
◦ bτck). Thus, using the fact that τ ′ = Ψ′(l) = bτck , we

have (k, Ψ′)
 B(u ◦
◦ τ ′) as wanted. Finally, by lemma 7.1,

(k, Ψ′)
 B teq(τ, bτck), and by definition of Ψ′, (k, Ψ′)

l 7→ bτck. Therefore, we have assertion 51 by definition 32.

Lemma 7.6 (Memory access). If

w
 (l ◦
◦ ref τ) (53)

w
 validmem(m) (54)
wRw′ (55)

then w′

 (m(l) ◦

◦ τ) (56)

Proof. From assumption 53 there exists a type τ ′ such that
w
 l 7→ τ ′ and w
 B teq(τ, τ ′). Using assumption 54 we
get w
 B m(l) ◦

◦ τ ′ and then w
 Bm(l) ◦
◦ τ . Finally, by

definition of B, w′
 (m(l) ◦
◦ τ), as wanted.

With these lemmas, we can prove soundness of rules for
type-checking store instructions for initializing new refer-
ences or updating old ones (Appendix A).

8. Data structures
To describe the memory layout of data structures and of
the stored program, we need address arithmetic on locations
(Loc). In this paper we will identify Loc with the integers. To
reason about address arithmetic on Loc, we have arithmetic
operators in the type system:

plus(i, j, k)
prim
= {(w, v) | i + j = k} (57)

greater(i, j)
prim
= {(w, v) | i > j} (58)

From these we can construct the offset type constructor,
such that l ◦

◦ offset(n, τ) iff l+n ◦
◦ τ . This is useful for record

fields and program labels.

offset(n, τ)
syn
= ∃l:Loc. just l∧

∃l′:Loc. plus(l, n, l′) ∧ l′ ◦
◦ τ

(59)

Now records are just intersections of fields, and disjoint
union types such as lists are easy to construct.

pair(σ, τ)
syn
= offset(0, ref σ) ∧ offset(1, ref τ) (60)

list τ
syn
= rec α. just 0 ∨

∃l:Loc. just l ∧ greater(l, 0)
∧ pair(τ, α)

(61)

That is, nil of a list is zero; the cons cell of a list must be at
an address l, such that l > 0, and also must be a pair of an
element τ and a list α.
Immutable references. An immutable reference to type τ
can be modeled as a mutable reference to a singleton l, such
that (in this world) l has type τ :

iref τ
syn
= ∃l:Loc. ref(just l) ∧ l ◦

◦ τ (62)

Henry Ford sold Model Ts in any color the customer wanted,
so long as it was black. An immutable ref is a mutable ref
into which the customer can store any value he wants, so
long as it’s the value that’s already there.

8 2006/10/27

9. Safe states in safe worlds
We wish to reason about function values and function ap-
plication. A function of type τ → σ (or, on a von Neumann
machine, a code pointer of type codeptr(τ)) is a value that is
safe to apply to arguments of type τ . To synthesize function
or code-pointer types, we must first model safety in our type
system.

Our notion of “safe for k steps” is independent of our
choice of calculus. It requires only that the calculus comes
equipped with a small-step relation � ⊂ State× State.

safe0(s)
def
= True (63)

safek+1(s)
def
= (∃s′. s � s′) ∧ ∀s′. s � s′ ⇒ safek s′

(64)

For a calculus of mutable references, we assume that
State = V × Mem, that is, the state (v, m) on a von
Neumann machine has register-bank v and memory m, or
in a λ-calculus has expression v and store m.

The type safemem(m) expresses the set of configurations
(w, v) in which it is safe to run forward from state (v, m).
Note that the world w contains an “expiration date” n telling
how many steps forward we may attempt to take. After n
steps we declare victory, that is, we do not care whether the
small-step relation might get stuck after the nth step.

safemem(m)
prim
= {((n, Ψ), v) | safen(v, m)} (65)

safe
syn
= ∀m:Mem.validmem(m)⇒ safemem(m) (66)

The judgment w
 v : safe is an important one. A
memory m is “in” a world w whenever w
 validmem(m).
A value v is safe in w when, for all m “in” w, the state (v, m)
is safe for all the steps remaining in w. It is on the primitive
constructor safe that we will build (in Section 11) the notion
of codeptr, that is, continuation-pointer.

10. λ-calculus
The reader may skip this section without loss of compre-
hension of later sections. The main point of departure here
is Ahmed’s thesis [Ahm04], especially Section 3.3.5, which
gives constructions used in defining the type constructor for
arrow types.

Our type system works well to classify the terms of sys-
tems of λ-calculus, such as the one given below. In fact, all
of our previous definitions apply without modification; recall
that for λ-calculus we have SV = V and −→u def

= u.

e ::= () | x | l | λx. e | (e1e2) | new e | ! e | e1 := e2

(67)
u, v ::= () | l | λx. e (68)

This is a λ-calculus extended with mutable references. It’s a
contribution of our system that even in the presence of such

T-UNIT
Γ |= () : unit

T-VAR
Γ(x) = τ

Γ |= x : τ

T-ABS
Γ[x := σ] |= e : τ

Γ |= (λx. e) : σ → τ

T-APP
Γ |= e1 : σ → τ Γ |= e2 : σ

Γ |= (e1e2) : τ

T-NEW
Γ |= e : τ

Γ |= (new e) : ref τ

T-DEREF
Γ |= e : ref τ

Γ |= (! e) : τ

T-ASSIGN
Γ |= e1 : ref τ Γ |= e2 : τ

Γ |= (e1 := e2) : unit

Figure 3. Typing rules specific to λ-calculus

references, impredicative type abstraction and type applica-
tion (and so forth) are coercions with no operational signifi-
cance; in particular, terms of quantified type have no explicit
introduction or elimination forms, such as “pack” and “un-
pack”. Section 13.1 discusses how we achieve this.

Because we define our types semantically, we decline to
give an inductive definition for type expressions. Moreover
we treat λ-calculus à la Curry and omit type decorations
from our terms. We use the standard small-step call-by-value
operational semantics, and omit the rules for same.

Definitions of the primitive type constructors, and those
for quantified, recursive, and reference types remain un-
changed. It therefore remains to give semantics to the unit
and arrow types; the typing judgments for closed terms, sub-
stitutions, and open terms; and to prove the typing lem-
mas (which would be rules in a syntactic progress-and-
preservation proof) for abstraction and application.

First the typing judgment for closed terms.

e :(k,Ψ)τ
def
= ∀j < k, m, m′, e′.

(k, Ψ)
 validmem(m)
⇒ (m, e) �j (m′, e′) ∧ irred(m′, e′)
⇒ ∃Ψ′. (k, Ψ)R=(k − j, Ψ′)

∧ (k − j, Ψ′)
 validmem(m′)
∧ (k − j, Ψ′)
 e′ : τ

(69)

The state (m, e) may step to (m′, e′) which is irreducible
(either a value or stuck); but since
 e′ : τ only when e′ is
a value, then a well-typed term e cannot get stuck within k
steps.

There are two new type constructors of interest,

unit
prim
= {(w, ()) | True}, and (70)

τ → σ
syn
= B(τ →′ σ), where (71)

τ →′ σ
prim
= {(w, λx. e) | ∀w, v.(w, v) ∈ τ ⇒ e[v/x] :w σ}.

9 2006/10/27

Finally we define the general typing judgment |= in terms of
ground substitutions γ:

γ :w Γ
def
= ∀x ∈ domΓ. γ(x) :w Γ(x)

Γ |= e : τ
def
= ∀w, γ. γ :w Γ⇒ γ(e) :w τ

The expected typing rules (Figure 3) can be proved as lem-
mas from the model.

One of our major semantic innovations is the decomposi-
tion of function types into primitive notions such as safety.
Equation 69 does not show this, because so far we have
worked out this more modular decomposition only in the
von Neumann setting. Therefore the next section explains
this decomposition in terms of code pointers.

11. Machine instructions
Sections 2–9 apply to models of computation ranging from
λ-calculus to von Neumann machines. Now we will dis-
cuss von Neumann machines specifically. A location of type
codeptr(τ) is the address of a continuation to which it’s safe
to jump, providing one passes an argument of type τ . That is,
if l ◦

◦ codeptr(τ) then one can safely set the program counter
to l, as long as the registers satisfy τ .

codeptr(τ)
syn
=

∃l:Loc. just l ∧B!(slot(pc, just l) ∧ τ ⇒ safe)
(72)

At any time strictly in the future, whenever it is the case that
the program counter = l and the (other) registers satisfy τ ,
then the state must be safe.6

A machine-instruction ι is a relation on machine states,
ι ⊂ State×State. If the program counter in state s1 points
to a memory location containing a number n that codes for ι,
then the machine will step to a state s2 such that ι(s1, s2).

An example of such an instruction is r3 ← m(r2 + 9),
which we can write as

LOAD(3, 2, 9) = {((v1, m1), (v2, m2)) |
v2(pc) = v1(pc) + 1 ∧ v2(3) = m1(v1(2) + 9)∧
∀i 6∈ {3, pc}. v2(i) = v1(i) ∧m1 = m2}

A number n codes for an instruction ι just when

n encodes ι
def
= ∀v1, m1, v2, m2.

m1(v1(pc)) = n ⇒
(v1, m1) � (v2, m2) ⇔ ι((v1, m1), (v2, m2))

(73)

Programs. A von Neumann program p is a sequence of
integers p(0), . . . , p(n − 1) such that each p(i) encodes
some instruction ιi. For example, perhaps on some machine
6 Why “strictly in the future”—why not right now? The codeptr does not
require � instead of B for two reasons: on the one hand, then it would
not be contractive; and on the other hand, executing a jump to location l

takes at least one step, so we don’t need the stronger � condition. Contrac-
tiveness is a useful property for codeptr, since it allows the recursive type
rec α. codeptr(α).

7320 encodes LOAD(3, 2, 0), we might have a program p =
(7320, 4231, 6007):

Machine inst. ι Pseudocode
7320 LOAD(3, 2, 0) r3← m(r2 + 0)
4231 ADDIMM(2, 3, 1) r2← r3 + 1
6007 JUMP(7) pc← r7

(74)

Program-code types. For any program p, define

∆p
syn
=

∧

i∈dom p

offset(i, ref(just p(i))) (75)

(The domain of p is finite; the ∧i∈dom p is meta-notation
for an expression with |dom p| conjuncts.) For example, our
sample program p (equation 74) has,

∆0 = offset(0, ref(just 7320))
∆1 = offset(1, ref(just 4231))
∆2 = offset(2, ref(just 6007))
∆p = ∆0 ∧∆1 ∧∆2

Type-checking the example program p. Suppose that on
entry to location l, register r2 is a ref int and that register r7
is a codeptr(slot(2, int)), that is, a continuation that requires
an integer in register 2. Then the program dereferences the
ref, adds 1, and continues by jumping to the address in r7.
We can explain this as l : Γ where

Γ = codeptr(slot(2, ref int)∧ slot(7, codeptr(slot(2, int))))

Now we wish to prove that, in any world where this
program is loaded at address l, then l is also a continuation
as described by Γ. We write this claim as,

∆p ` Γ

Tan [TA06, Tan05] gives a compositional logic for con-
trol flow in which such statements can be proved. He proves
soundness of this logic using the indexed model. Our primi-
tives can express Tan’s semantics in a clean and simple way.

The form of an instruction-typing rule is ∆, BΓ ` Γ′

where ∆ describes an instruction in memory at location l,
Γ describes the type of the continuation at location l + 1,
and the conclusion Γ′ claims the type of the continuation at
l. Consider a LOAD(i, j, k) at location l. A sound but naive
typing rule is,

n encodes LOAD(i, j, k) i 6= pc τ necessary

ref(just n), B offset(1, codeptr(slot(i, τ))) `
codeptr(slot(j, offset(k, ref τ)))

(76)

That is, if the load instruction is at address l, and it’s safe to
continue at l + 1 provided that register i has a value of type
τ , then it’s also safe to continue at l provided that rj + k has
a value of type ref τ .

This is insufficiently general: it neglects the fact that
all the registers other than i are not changed by the load

10 2006/10/27

instruction. Suppose we have a type φ that characterizes the
type of several registers but leaves i unrestricted. We say, “i
is not in the domain of φ,” that is,

notindom(i, φ)
def
=

∀w, v, u.(w, v) ∈ φ ⇒ (w, v[i:=u]) ∈ φ
(77)

A stronger load rule is,

n encodes LOAD(i, j, k) i 6= pc

τ necessary φ necessary
notindom(i, φ) notindom(pc, φ)

ref(just n), B offset(1, codeptr(φ ∧ slot(i, τ))) `
codeptr(φ ∧ slot(j, offset(k, ref τ)))

(78)

With respect to our sample program p (equation 74) we
can write the invariants for locations l + 0 through l + 2 as,

Γ0 = offset(0, codeptr(φ ∧ slot(2, ref int)))
Γ1 = offset(1, codeptr(φ ∧ slot(3, int)))
Γ2 = offset(2, codeptr(φ ∧ slot(2, int)))
Γp = Γ0 ∧ Γ1 ∧ Γ2

where φ = slot(7, codeptr(slot(2, int)))

(79)

Then we can use rules for LOAD, ADDIMM, and JUMP to
show,

∆0, B Γ1 ` Γ0

∆1, B Γ2 ` Γ1

∆2 ` Γ2

(80)

11.1 Whole-program typing

The example program is not recursive and does not loop, so
in our example, the proof for each instruction i needs only
BΓi+1. However, our type system is applicable to programs
with loops and recursion. Suppose i is a conditional branch
to location j, then we need,

∆i, B(Γj ∧ Γi+1) ` Γi.

The general case is ∆i, BΓp ` Γi.
Tan’s calculus for control flow [TA06, Tan05] manages

such proofs in a modular way. Given proofs of this form for
each i, we can combine them using rules for type intersection
into,

∆p, BΓp ` Γp (81)
So, in general, we have a program p and its associated ∆p.

An oracle (perhaps a type-preserving compiler) provides a
hypothesis Γp giving a codeptr type for each address. An
automatic type-checker uses our rules—or syntax-directed
specializations of our rules, as described by Wu [Wu05]—to
prove ∆p, BΓp ` Γp. All ref types are necessary, and ne-
cessity is preserved by offset and intersection, therefore ∆p

is necessary. Using the generalized Löb rule (Corollary 4.5),
we deduce that

∆p ` Γp (82)
This means, “in any world where the program code de-
scribed by ∆p is loaded, the loop-invariants Γp hold.”

The initial entry point. Let us assume that the “beginning
of the program” is at offset 0 in a complete program, and
suppose the hypothesis for offset 0 is codeptr(top), meaning
that it is (claimed) safe to jump to the beginning of the
program regardless of the contents of the registers. Then by
the rules of type intersection we have Γp ` codeptr(top).
Consequently (by equation 82) we have

∆p ` codeptr(top). (83)

Now we will show that this implies the program is safe.

12. Soundness
A von Neumann program is loaded at l in a machine-state
(r, m) if r(pc) = l and for each i ∈ dom p, m(l+ i) = p(i).
Lemma 12.1. If program p is loaded at l in machine-state
(v, m), then for any natural number k one can construct a
world (k, Ψ) such that,

(k, Ψ)
validmem(m) (84)
(k, Ψ)
v : slot(pc, ∆p) (85)

Proof. The type constructors used in ∆p are very simple:
just intersection, ref , and just. Therefore we can use a simple
construction of Ψ:

Ψ = {(l + i) 7→ bjust p(i)ck | i ∈ dom p}

We first check equation 84, that is, by equation 27, if
(k, Ψ)
 l′ 7→ τ , then (k, Ψ)
 B(m(l′) ◦

◦ τ). By defini-
tion 26, when the hypothesis holds, there exists i ∈ dom p
such that l′ = l + i and τ = bjust (p(i))ck. The conclu-
sion then becomes (k, Ψ)
 B(m(l + i) ◦

◦ bjust (p(i))ck),
that is, (k, Ψ)
 B(just (p(i)) ⇒ bjust (p(i))ck). This is a
consequence of lemma 7.1.

We now consider equation 85. Let i ∈ dom p and v′ be a
value. We have

(k, Ψ)
 l + i 7→ bjust p(i)ck
(k, Ψ)
 B teq(just p(i), bjust p(i)ck).

by definition 26 and lemma 7.1. Therefore, by equation 32,
(k, Ψ)
 l + i ◦

◦ ref (just p(i)). Hence, by equation 59,
(k, Ψ)
 l ◦

◦ offset(i, ref (just p(i))) for all i ∈ dom p. By
intersection, we get (k, Ψ)
 l ◦

◦ ∆p. We conclude by equa-
tion 15.

Theorem 12.2 (Soundness). If program p is loaded at l in
machine-state (v, m), and ∆p ` codeptr(top), then state
(v, m) is safe (for any number of steps k).

Proof. By Lemma 12.1, construct the world w = (k+1, Ψ).
By Lemma 7.3, there exists a world w′ = (k, Ψ′) such
that wRw′ and w′

 validmem(m). We have w
 v :
slot(pc, ∆p), and thus w
 v : slot(pc, codeptr(top)).
As the program is loaded at l, we also have w′
 v :
slot(pc, just l). By equation 72 we get w′
 v : safe, so by
equation 66 we have w′
 v : safemem(m). By equation 65,
this means safek(v, m).

11 2006/10/27

We have established that our syntactic system is sound in
the sense that every well typed program is safe. This follows
from the fact that each individual typing rule is semantically
valid in our model (from the definition of `, equation 16).
Even after we have proved Theorem 12.2 we may add more
typing rules, as long as we derive them semantically.

13. Related work
13.1 Impredicative polymorphism with references

Here’s a type isomorphism that one would expect to hold, in
a system with continuation types and polymorphism:

codeptr(∃α. F (α)) ∼= ∀α. codeptr(F (α)). (86)

Let’s consider in particular a special case of the above,

codeptr(∃α:Type.α×A× codeptr(B))

∼= ∀α:Type.codeptr(α ×A× codeptr(B)) (87)

where the left and right-hand sides are (de Morgan) dual
ways of writing the CPS- and closure-converted type of a
function f : A → B. We’re happy to say that the isomor-
phisms 86 and 87 hold in our system. We’re also happy to
say that in our system, none of the operations on values of
quantified type—existential pack and unpack, type abstrac-
tion and application—require taking a step in the operational
semantics. (As types are not manifest at runtime in a stati-
cally checked system, such steps would be effective no-ops,
and therefore a nuisance.) To have both of these properties
simultaneously is a technical advance over previous work
[Ahm04], which presented two alternative models of quanti-
fiers, each of which possessed one property but not the other.

We believe Ahmed’s set-theoretic model can be adjusted
(by simplifying the model of quantified types) to eliminate
this nuisance. However, it is not obvious how to directly for-
malize such a repaired model—or equally, the mathematics
of Section 6—in a logic without dependent types, in par-
ticular Church’s higher-order logic (HOL). To our knowl-
edge, no previous attempt to express equation 28 in HOL
could do better than the solutionless 25. To avoid circular-
ity in the HOL representation, Ahmed chooses the range of
(HOL-encoded) Ψ to be a set of reified syntactic type ex-
pressions. This causes the failure of equation 87—in partic-
ular, the left side (codeptr(∃α. . . .)) has no useful seman-
tics, while the right side (∀α.codeptr(. . .)) has the expected
semantics. The Princeton FPCC compiler [CWAF03] works
around this problem by carefully using only the ∀codeptr

formulation of function-closures.

13.2 Approximation modality

The approximation modality is due to Nakano, who devel-
oped the idea in two papers. The first paper [Nak00] intro-
duces a type system with recursive types and an approxi-
mation modality • (to which our B is directly analogous),

which for example allows the derivation

` Y : (•X → X)→ X,

where Y is the fixed-point combinator. The approximation
modality allows, even in the presence of recursive types, a
strongly normalizing calculus that may be sensibly used as
a logic. The second paper [Nak01] generalizes the first, and
makes precise the relationship to the intuitionistic version of
the Gödel-Löb logic of provability.

Our work builds on and departs from Nakano’s in two
principal ways. First, we use the approximation modality in
calculi that are by design capable of nontermination. Second,
our main contribution is to show how the approximation
modality is not just a modality for recursion, but also a
modality for mutable references, and in general a modality
for realizing inductive properties of small-step programs.

13.3 XCAP

Shao et al.’s Certified Assembly Programming [YHS03,
NS06] is based directly on the calculus of inductive con-
structions. Like our system, CAP/XCAP supports separate
verification of code modules, permits impredicative quan-
tification and (with extensions) mutable references, and is
expressive enough to specify invariants for assembly code.
They achieve impredicativity by means of a syntactic speci-
fication of validity rules for impredicative propositions. This
method does not permit elimination rules for the quantifiers,
but they show how to work around the lack of elimination
rules when existentials appear at top level in Hoare rules,
which is good enough for a TAL.

14. Conclusion
Previous work broke functions and data structures into sim-
pler constructs—that is, existential quantifiers, address arith-
metic, unions, intersections, all applied to first-order contin-
uations and immutable or mutable references. But here we
have shown (equations 32, 62, 72) that first-order continua-
tions (codeptr) and references (iref, ref) can themselves be
broken down into simpler concepts, each of which is a type
operator: safe models program safety, B models induction
over future steps, � models type preservation, ! constructs
logical statements about the current world. This decomposi-
tion allows simpler and finer reasoning about the interaction
of instructions with types, and allows the easier construction
of new types.

Our semantic model is powerful: it is the first model of
references with impredicativity in which all the expected
identities hold. It is versatile: it can express in a natural
way all the types needed for typed assembly languages. It
is modular: the vast majority of our definitions and lemmas
apply equally to λ-calculus, von Neumann machines, and
other useful abstract machines. It is compositional: there
are a few simple primitives, from which everything else is
constructed. It is sound: we have machine-checked proofs

12 2006/10/27

ID
τ ` τ

CUT
τ1 ` τ2 τ2 ` τ3

τ1 ` τ3

INTERSECTION-R
σ ` τ1 σ ` τ2

σ ` τ1 ∧ τ2

INTERSECTION-L-1
τ1 ∧ τ2 ` τ1

INTERSECTION-L-2
τ1 ∧ τ2 ` τ2

UNION-L
τ1 ` σ τ2 ` σ

τ1 ∨ τ2 ` σ

UNION-R-1
τ1 ` τ1 ∨ τ2

UNION-R-2
τ2 ` τ1 ∨ τ2

TOP-R
τ ` top

BOT-L
bot ` τ

IMPLIES-I
σ ∧ τ1 ` τ2

σ ` τ1 ⇒ τ2

IMPLIES-E
σ ` τ1 ⇒ τ2

σ ∧ τ1 ` τ2

LATER-LIFT
σ ` τ

B σ ` B τ

LATER-REP
B τ ` BB τ

LATER-FIX
B τ ` τ

top ` τ

LATER-INTERSECTION
B σ ∧B τ ` B(σ ∧ τ)

LATER-TOP
top ` B top

Figure 4. Gödel-Löb logic

JUST-UNIQUE
just l ∧ just l′ ` τ [l]⇒ τ [l′]

LATER-JUST
just l ` B just l

LATER-JUST-2
just l⇒ B τ ` B(just l⇒ τ)

SOMEWHERE-JUST
top `? just l

SLOT-LIFT
σ ` τ

slot(j, σ) ` slot(j, τ)

LATER-SLOT
slot(j, B τ) ` B slot(j, τ)

Figure 5. Just and slot

for the von Neumann version. It is operational: the statement
of the soundness theorem guarantees directly an untyped
notion of safety. Finally, it is semantic: the modal operator
B “later” explains the essence of approximation over the
remaining steps of computation, in a way that allows us to
better understand old types and better invent new ones.

Future work. Using this concise and easily representable
model, we expect that machine-checked soundness proofs
of usable TALs will be substantially smaller than those at-
tempted to date [Cra03, App01].

Acknowledgments
We thank James Leifer, Amal Ahmed, and Zhong Shao for
comments on earlier drafts of the paper.

FORALL-R
τ ` σ x not free in τ

τ ` ∀x:A.σ

FORALL-L
a ∈ A

∀x:A.τ ` τ [a/x]

EXISTS-L
σ ` τ x not free in τ

∃x:A.σ ` τ

EXISTS-R
a ∈ A

τ [a/x] ` ∃x:A.τ

LATER-FORALL
∀x:A. B τ ` B ∀x:A.τ

Figure 6. Quantification

EVERYWHERE-LIFT
σ ` τ

!σ `!τ

EVERYWHERE-REP
!τ `!!τ

EVERYWHERE-L
!τ ` τ

EVERYWHERE-INTERSECTION
!σ∧!τ `!(σ ∧ τ)

EVERYWHERE-TOP
top `!top

LATER-EVERYWHERE
! B τ ` B!τ

EVERYWHERE-LATER
B!τ `! B τ

EVERYWHERE-IMPLIES
!(σ ⇒ τ) `?σ ⇒?τ

SOMEWHERE-L
σ `!τ

?σ `!τ

EVERYWHERE-SOMEWHERE
?τ `!?τ

LATER-SOMEWHERE
? B τ ` B?τ

Figure 7. Quantification over values in a world

References
[AAV02] Amal Ahmed, Andrew W. Appel, and Roberto Virga.

A stratified semantics of general references embeddable in
higher-order logic. In 17th Annual IEEE Symp. on Logic in
Computer Science, pp. 75–86, June 2002.

[AF00] Andrew W. Appel and Amy P. Felty. A semantic model of
types and machine instructions for proof-carrying code.
In POPL ’00: 27th ACM SIGPLAN-SIGACT Symp. on
Principles of Programming Languages, pp. 243–253, Jan.
2000.

[Ahm04] Amal J. Ahmed. Semantics of Types for Mutable State.
PhD thesis, Princeton University, Princeton, NJ, Nov. 2004.
Tech Report TR-713-04.

[AM01] Andrew W. Appel and David McAllester. An indexed
model of recursive types for foundational proof-carrying
code. ACM Trans. on Programming Languages and Systems,
23(5):657–683, Sept. 2001.

13 2006/10/27

[App01] Andrew W. Appel. Foundational proof-carrying code.
In Symp. on Logic in Computer Science (LICS ’01), pp.
247–258. IEEE, 2001.

[B+98] Bruno Barras et al. The Coq Proof Assistant reference
manual. Technical report, INRIA, 1998.

[BW83] Michael Barr and Charles Wells. Toposes, Triples and
Theories. Grundlehren der math. Wissenschaften. Springer
Verlag, 1983. Reprint 12 in Theory and Applications of
Category, //www.emis.de/journals/TAC/.

[Cra03] Karl Crary. Toward a foundational typed assembly
language. In POPL ’03: 30th ACM Symp. on Principles
of Programming Languages, pp. 198–212, 2003.

[CWAF03] Juan Chen, Dinghao Wu, Andrew W. Appel, and Hai
Fang. A provably sound TAL for back-end optimization.
In PLDI ’03: Proc. 2003 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp.
208–219, June 2003.

[Kri63] Saul A. Kripke. Semantical considerations on modal logic.
In Proceedings of a Colloquium: Modal and Many Valued
Logics, vol. 16, pp. 83–94, 1963.

[MM91] John C. Mitchell and Eugenio Moggi. Kripke-style
models for typed lambda calculus. Annals of Pure and
Applied Logic, 1991.

[MPS86] David MacQueen, Gordon Plotkin, and Ravi Sethi. An
ideal model for recursive polymophic types. Information
and Computation, 71(1/2):95–130, 1986.

[MV05] Paul-André Melliès and Jérôme Vouillon. Recursive
polymorphic types and parametricity in an operational
framework. In IEEE Symp. on Logic in Computer Science
(LICS ’05), 2005.

[Nak00] Hiroshi Nakano. A modality for recursion. In LICS ’00:
15th Annual IEEE Symp. on Logic in Computer Science, pp.
255–266. IEEE Computer Society Press, 2000.

[Nak01] Hiroshi Nakano. Fixed-point logic with the approxima-
tion modality and its Kripke completeness. In Theoretical
Aspects of Computer Software, vol. 2215 of LNCS, pp.
165–182. Springer, 2001.

[NS06] Zhaozhong Ni and Zhong Shao. Certified assembly
programming with embedded code pointers. In 33rd ACM
Symp. on Principles of Programming Languages, pp. 320–
333. ACM Press, Jan. 2006.

[PM93] Christine Paulin-Mohring. Inductive definitions in the
system Coq; rules and properties. In M. Bezem and J. F.
Groote, editors, Proc. International Conference on Typed
Lambda Calculi and Applications, vol. 664, pp. 328–345.
Springer Verlag Lecture Notes in Computer Science, 1993.

[TA06] Gang Tan and Andrew W. Appel. A compositional logic
for control flow. In 7th International Conference on
Verification, Model Checking and Abstract Interpretation
(VMCAI’06), pp. 80–94, Jan. 2006.

[Tan05] Gang Tan. A Compositional Logic for Control Flow and
its Application to Foundational Proof-Carrying Code. PhD
thesis, Princeton University, Princeton, NJ, Aug. 2005. Tech
Report CS-TR-731-05.

[Wu05] Dinghao Wu. Interfacing Compilers, Proof Checkers, and
Proofs for Foundational Proof-Carrying Code. PhD thesis,
Princeton University, Aug. 2005.

[YHS03] Dachuan Yu, Nadeem A. Hamid, and Zhong Shao.
Building certified libraries for PCC: Dynamic storage
allocation. In Proc. 2003 European Symp. on Programming
(ESOP’03), April 2003.

A. Allocation and initialization
Our type system can express the invariants of data structures
that manage a region calculus (a typed malloc/free system, or
a garbage collector). Such type systems are not new [AF00,
CWAF03, Ahm04, Wu05]. Here we briefly illustrate how
our new type system can express the necessary invariants
just using the primitives we have already defined.

The simplest possible such data structure is an integer
variable that defines the boundary between allocated and
unallocated memory. We define boundary(l) to mean that
every address≥ l is unallocated, i.e. not in the domain of Ψ:

boundary l
syn
= ∀l′:Loc.∀τ :Type. l′ 7→ τ ⇒ greater(l, l′)

(88)

Now we give a rule for type-checking STORE(i, 0, j) (i.e.,
m(r(i) + 0) ← r(j)) when it serves to initialize a new
reference:

n encodes STORE(i, 0, j)
τ necessary φ necessary notindom(pc, φ)
P = φ ∧ ∃l:Loc.boundary l ∧ slot(i, just l) ∧ slot(j, τ)
Q = φ ∧ ∃l:Loc.boundary(l + 1) ∧ slot(i, just l ∧ ref τ)

ref(just n), B offset(1, codeptr(Q)) ` codeptr(P)
(89)

Before the instruction, register i points at the boundary. The
instruction does not modify i, but does modify the boundary,
in that the domain of Ψ in the new world has moved.

The same store instruction, when it is used for the differ-
ent purpose of updating an existing ref, has this typing rule:

n encodes STORE(i, 0, j) B = boundary l
τ necessary φ necessary notindom(pc, φ)

P = B ∧ φ ∧ slot(i, ref τ) ∧ slot(j, τ)

ref(just n), B offset(1, codeptr(B ∧ φ)) ` codeptr(P)
(90)

Of course, both of these rules for STORE must be proved
as derived lemmas from the definition in our model. By
proving every typing rule as a derived lemma, we thus prove
soundness of the rules.

14 2006/10/27

	Introduction
	Kripke semantics
	Primitive type constructors
	Necessity and the modal operator ``later''
	Recursive types
	A Kripke semantics of stores
	Type preservation
	Data structures
	Safe states in safe worlds
	Lambda-calculus
	Machine instructions
	Whole-program typing

	Soundness
	Related work
	Impredicative polymorphism with references
	Approximation modality
	XCAP

	Conclusion
	Allocation and initialization

