PostgreSQL + ZFS

Best Practices and Standard Procedures

'If you are not using ZFS,
you are losing data™.’

Clark's Three Laws

1. When a distinguished but elderly scientist states that something is possible,
he Is almost certainly right. WWhen he states that something is impossible, he
IS very probably wrong.

2. The only way of discovering the limits of the possible is to venture a little
way past them into the impossible.

3. Any sufficiently advanced technology Is indistinguishable from magic.

/FS Is not magic, but it is an incredibly impressive piece of software.

PostgreSQL and ZFS

e \Many bits

o | ots of bits

* Huge bits

°|t's gunna be great

*\/ery excited

¢ \\Ve have the best filesystems

e People tell me this is true

e Except the fake media, they didn't tell me this

Po
sig
reSQ
L
and
ZF
S.
- It's
ab
out the
bit
S
and
sto
ra
ge
, StU
pid

‘FF'S—@LHW

}

1o
O sSooN?

PostgreSQL and ZFS

1. Review PostgreSQL from a storage administrator's perspective
2. Learn what it takes to become a PostgreSQL "backup expert”
3. Dive through a naive block-based filesystem
4. Walk through the a high-level abstraction of ZFS
5. See some examples of how to use ZFS with PostgreSQL
®[|pS
¢ [unables
e Anecdotes

Some FS minutiae may have been harmed in the making of this talk.
Nit-pick as necessary (preferably after).

PostgreSQL - A Storage Administrator's View

e User-land page cache maintained by PostgreSQL in shared memory
o 3K page size
e Fach PostgreSQL table is backed by one or more files in SPGDATA/
e [ables larger than 1GB are automatically shared into individual 1GB files
epwrite(2)'s to tables are:
e append-only If No free pages In the table are available
*n-place updated If free pages are available In the free-space map
epwrite(2)'s are page-aligned
e Makes heavy use of a Write Ahead Log (WAL), aka an Intent Log

Storage Administration: WAL on Disk

o \WAL files are written to sequentially

e append-only |O

o Still 8K page-aligned writes via pwrite (2)

*\WAL logs are 16MB each, pre-allocated

*\WAL logs are never unlink (2) 'ed, only recycled via rename(2)

o[ow-latency pwrite(2)'sand fsync(2) for WAL files is required for good
write performance

PostgreSQL - Backups

Traditionally, only two SQL commands that you must know:
l.pg start backup('my backup')
2.${some random backup utility} S$PGDATA/
3.pg stop backup()

Wait for pg start backup() to return
pbefore backing up SPGDATA/ directory.

0 PostgreSQL - Backups

Only fwo “wWthree SQL commands that you must know:

1 .CHECKPOINT

2.pg start backup(' my backup')
3.${some random backup utility} S$PGDATA/
4.pg stop backup()

Manual CHECKPOINT If you can't twiddle the
args 10 pg start backup().

PostgreSQL - Backups

Only twe “Wtaree “Wtwo commands that you must know:

1 . CHECKPOINT

2.pg start backup(' my backup', true)
3.${some random backup utility} S$PGDATA/
4.pg stop backup()

pg start backup('my backup', true)
a.k.a. aggressive checkpointing (vs default perf hit of:
0.5 * checkpoint completion target)

@ Achievement unlocked
PostgreSQL Backup expert

@ Achievement Pending
/FS Ninja

14 Quick ZFS Primer

15 Quick ZFS Primer

11P: Look for parallels.

Quick ZFS Primer: Features (read: why you must use ZFS)

e Never inconsistent (N0 £sck(8)'s required, ever)

* -llesystem atomically moves from one consistent state to another consistent state
e All blocks are checksummed

e Compression builtin

* Snapshots are free and unlimited

e Clones are easy

e Changes accumulate in memory, flushed to disk in a transaction

e Redundant metadata (and optionally data)

* -llesystem management independent of physical storage management

o | og-Structured Filesystem
e Copy on Write (COW)

Feature Consequences (read: how your butt gets saved)

e pitrot detected and automatically corrected if possible
® phantom writes
e Misdirected reads or writes by the drive heads
e DMA parity errors
e firmware or driver bugs
e RAM capacitors aren't refreshed fast enough or with enough power
e Phenomenal sequential and random 1O write performance
* Performance increase for sequential reads
e Cost of ownership goes down
e New tricks and tools to solve "data gravity” problems

ELIS: Block Filesystems vs Log
Structured Filesystems

Block Filesystems: Top-Down

Userland Application

write(fd, buffer, cnt) ©

buffer

Userland

Block Filesystems: Top-Down

Userland Application

write(fd, buffer, cnt) * buffer
Userland i i
“Kernel 0
VFS Layer

Logical File: PGDATA/global/1

Block Filesystems: Top-Down

Userland Application

write(fd, buffer, cnt) buffer
Userland i i
ermel
VES Layer

Logical File: PGDATA/global/1

System Buffers

Block Filesystems: Top-Down

Userland Application

write(fd, buffer, cnt) ™

buffer

|
|
|
|
Userland |
Kernel

VFS Layer

Logical File: PGDATA/global/1

System Buffers

Logical File Blocks

0 1 2

Block Filesystems: Top-Down

Kernel

VFS Layer

Logical File: PGDATA/global/1

System Buffers

Logical File Blocks i | | |

0 1 2 3 4
—~—~ AN /
T~ N N/, [/
Physical Storage Layer
% 2. #9971

Pretend this Is a 3: #0016
- : : —— 0: #3884
spinning disk ﬁ 4: #0317

1: #7014

Block Filesystems: PostgreSQL Edition

Userland Application cnt = 2

write(fd, buffer, cnt) * 8k buffer

Userland

Block Filesystems: PostgreSQL Edition

Userland Application cnt = 2

write(fd, buffer, cnt) ™

8k buffer

Userland
Kernel

VFS Layer

Logical File: PGDATA/global/1

System Buffers

Logical File Blocks

0 1

Block Filesystems: PostgreSQL Edition

Kernel

VES Layer

Logical File: PGDATA/global/1

System Buffers

Logical File Blocks

0 1 2 3
Physical Storage Layer
2: #9971
KA
3: #0016 | | 0- #8884
N

1: #7014

Quiz Time

What happens when you twiddle a bool in a row?

UPDATE foo table SET enabled = FALSE WHERE 1id = 123;

28

Ification
Answer: Write Amplific
Quiz An

1d = 123;
d =
WHERE 1
= FALSE
SET enabled
table
E foo
UPDAT

foo_table Tuple

--~----------~-----~--~----

----~-------~---------~--~--

Userland Application

)

8K buffer

290 ZFS Tip: postgresql.conf: full_page_ writes=off

ALTER SYSTEM SET full page writes=off;
CHECKPOINT;

IMPORTANT NOTE: full page writes=off interferes with cascading replication

Block Filesystems: PostgreSQL Edition

ebuffers can be 4K st attar, o A st
edisk sectors are 5128 - 4K o ’

eordering of writes Is iImportant o

VES Layer

econsistency requires complete P —p T
cooperation and coordination '

System Buffers

Logical File Blocks

0 1 2 3

st ZFS Filesystem Storage Abstraction

Physical Storage is
decoupled
from

Fllesystems.

f you remember one thing from this section,
this Is It.

2 VDEVs On the Bottom

VDEV: raidz VDEV: mirror
|O Scheduler |O Scheduler

zpool: rpool or tank

Filesystems On Top

VFS
Dataset Name Mountpoint
tank/ROOT / _
tank/db /db canmount=off
tank/ROOT/usr /usr
tank/local none

tank/local/etc /usr/local/etc

3 Offensively Over Simplified Architecture Diagram

ZPL - ZFS POSIX Layer

Filesystem zvol

Datasets

DSL - Dataset and Snapshot Layer

VDEV: raidz VDEV: mirror
|O Scheduler |O Scheduler

zpool: rpool or tank

5 ZFS is magic until you know how it fits together

VFS
Dataset Name Mountpoint
tank/ROOT /
tank/db /db
tank/ROOT/usr /usr
tank/local none

tank/local/etc /usr/local/etc

ZPL - ZFS POSIX Layer

Filesystem zvol

Datasets

DSL - Dataset and Snapshot Layer

VDEV: raidz VDEV: mirror
|O Scheduler |O Scheduler

zpool: rpool or tank

% Log-Structured Filesystems: Top-Down

37 Log-Structured Filesystems: Top-Down

A4

Disk Block with
foo table luple

3 ZFS: User Data Block Lookup via ZFS Posix Layer

- == berblock
Disk Block with

foo table Tup\e/-\

9 ZFS: User Data + File dnode

w0 ZFS: Object Set

41 ZFS: Meta-Object Set Layer

2 ZFS: Uberblock

3 At what point did the filesystem become inconsistent?

t4-

4 At what point could the filesystem become inconsistent?

l4

At t,

How? | lied while explaining the situation. Alternate Truth.

Neglected to highlight ZFS is Copy-On-Write (read: knowingly committed
perjury in front of a live audience)

6 How? I lied while explaining the situation. Alternate

ZFS is Copy-On-Write

VWhat what's not been deleted and on disk IS iImmutable.

(read: | nearly committed perjury in front of a live audience by knowingly
withholding vital information)

47 ZFS 1s Copy-On-Write

DIsk Block with

foo table Tu%

8 At what point did the filesystem become inconsistent?

9 At what point did the filesystem become inconsistent?

l4

l4

(1

2 TIL about ZFS: Transactions and Disk Pages

e [ransaction groups are flushed to disk ever N seconds (defaults to 5s)
e A transaction group (txg) in ZFS is called a "checkpoint®

e User Data can be modified as its written to disk

¢ All data is checksummed

e Compression should be enabled by default

53 ZFS Tip: ALWAYS enable compression

zfs get compression

sudo zfs set compression=1z4 rpool
zfs get compression

e Across ~/PB of PostgreSQL and mixed workloads and applications:
compression ratio of ~2.8:1 was the average.

eHave seen >100:1 compression on some databases
(cough this data probably didn't belong in a database cough)

eHave seen as low as 1.01:1

54 ZFS Tip: ALWAYS enable compression

zfs get compression

sudo zfs set compression=1z4 rpool
zfs get compression

| have yet to see compression slow down benchmarking results or real world
workloads. My experience Is with:

espinning rust (7.2K RPM, 10K RPM, and 15KRPM)
oflore channel connected SANs

eSSDs

*NVME

55 ZFS Tip: ALWAYS enable compression

zfs get compressratio

eUse 1z4 by default everywhere.
eUse gzip-9 only for archive servers

eNever mix-and-match compression where you can't suffer the
conseguences of lowest-common-denominator performance

e Anxious to see ZStandard support (I'm looking at you Allan Jude)

ZFS Perk: Data Locality

e Data written at the same time is stored near each other because it's frequently
part of the same record

e Data can now pre-fault into kernel cache (ZFS ARC) by virtue of the temporal
adjacency of the related pwrite(2) calls

o\\rite locality + compression=1z4 + pg repack == PostgreSQL Dream Team

ZFS Perk: Data Locality

e Data written at the same time is stored near each other because it's frequently
part of the same record

e Data can now pre-fault into kernel cache (ZFS ARC) by virtue of the temporal
adjacency of the related pwrite(2) calls

o\\rite locality + compression=1z4 + pg repack == PostgreSQL Dream Team

f you don't know what pg repack is, figure out how to move into a database
environment that supports pg repack and use it regularly.

https://reorg.qithub.io/pg repack/ && https://qithub.com/reorg/pg repack/

https://reorg.github.io/pg_repack/
https://github.com/reorg/pg_repack/

Extreme ZFS Warning: Purge all memory of dedup

* [his is not just my recommendation, it's also from the community and author
of the feature.

* [hese are not the droids you are looking for

* Do not pass Go

e Do not collect $200

¢ (GO straight to system unavailabllity jalil

* [he feature works, but you run the risk of bricking your ZFS server.

Ask after If you are curious, but here's a teaser:

What do you do if the dedup hash tables don't fit in RAM?

Bitrot is a Studied Phenomena

A Large-Scale Study of Flash Memory Failures in the Field

Justin Meza Qiang Wu
Carnegie Mellon University Facebook, Inc.
meza@cmu.edu qwu@fb.com
ABSTRACT

Servers use Jash memory based solid state drives (SSDs) as a
high-performance alternative to hard disk drives to store per-
sistent data. Unfortunately, recent increases in fash density
have also brought about decreases in chip-level reliability. In
a data center environment, flash-based SSD failures can lead
to downtime and, in the worst case, data loss. As a result,
it is important to nunderstand flash memory reliability char-
acteristics over flash lifetime in a realistic production data
center environment running modern applications and system
software.

T'his paper presents the first large-scale study of flash-based
S5 reliability in the leld. We analyze data collected across
a majority of flash-based solid state drives at Facebook data
venters over nearly four years and many millioos of operational
hours in order to understand failure properties and trends of
fiash-based SS5Ds. Our study considers a variety of SSI1) char-
acteristics, including: the amount of data written to and read
fram flash chips; how data is mapped within the SSI) address
space; the amount of data copied, erased, and discarded by the
[lash controller; and [ash board temperalure and bus power,

Based on our field analysis of how flash memory errors man-
ifest when running modern workloads on modern SSDs, Lhis
paper is the first to make several major observations: (1)
SSD failure rates do nmot increase monotonically with flash
chip wear; instead thev po through several distinct periods
corresponding o how failures emerge and are subsequently
detected, (2) the effects of read disturbance errors are not
prevalent in the feld, (3) sparse logical dala layout across an
S81)’s physical address space (e.g., nan-contignons dara), as
measured by the amount of metadata required to track logical
address translations stored in an SSD-internal DIRAM bulfer,
can greatly affect SSD failure rate, (1) higher temperatures
lead to higher failure rates, but technigues that throuvtle SSD
operation appear to greatly reduce the negative reliability im-
pact of higher temperatures, and (5) data written by the op-
erating system Lo flash-based SSDs does nol always accurately

Sanjeev Kumar Onur Mutlu
Facebook, Inc. Carnegie Mellan University
skumar@fb.com onur@cmu.edu

Categories and Subject Descriptors

B.3.4. [Hardware]: Memory Structures—Relivbility, Tesi-
ing, and Fawlit- Tolcrance

Keywords

flash memory; reliability; warehouse-scale data centers

1. INTRODUCTION

Servers use flash memory for persistent storage due to the
low aceess latency of fash chips compared to hard disk drives.
Historically, flash capacity has lagged behind hard disk drive
capacity, limiting the use of flash memory. In the past decade,
however, advances in NAND flash memory technology have
increased flash capacily by more than 1000x. This rapid in-
crease in flash capacity has brought both an increase in flash
wemory use and a decrease in flash memory reliability. For
example, the nuimber of times that a cell can he reliably pro-
grammed and erased before wearing out and failing dropped
from 10,000 times for 50 nm cells to anly 2,000 times for 20 nm
cells [28|. This trend is expected to continue for newer gen-
erations of flash memory. Therefore, if we want to improve
the vperational lifetime and reliabilivy ol lash memory-based
devices, we must first fully understand their failure character-
istics.

In the pasr, a large body of prior work examined the failure
characteristice of flash cells in controlled environments using
small numbers e.g., tens) ol raw Hash chips (e.g., [36, 23, 21,
27, 22, 25, 16, 33, 14, 3, 18, 4, 24, 40, 41, 26, 31, 30, 37, 6, 11,
10, 7, 13, 9, 8, 12, 20]). This work quantified a variely of flash
cell failure modes and formed the basis of the community’s un-
derstanding of finsh cell reliability. Yet prior work was limited
in its analysis because these studies: (1) were conducted on
stall numbers of raw flash chips accessed in adversarial man-
ners over short amounts of time, (2) did not examine failures
when usiog real applications runuing on modern servers and

Bitrot is a Studied Phenomena

3.1 Bit Error Rate

The bit error rate (BER) of an SSD is the rate at which er-
rors occur relative to the amount of information that is trans-
mitted from/to the SSD. BER can be used to gauge the relia-
bility of data transmission across a medium. We measure the
uncorrectable bit error rate (UBER) from the SSD as:

Uncorrectable errors
Bits accessed

For flash-based SSDs, UBER is an important reliability met-

ric that is related to the SSD lifetime. SSDs with high UBERSs
are expected to have more failed cells and encounter more (se-

vere) errors that may potentially go undetected and corrupt

UBER =

Bitrot is a Studied Phenomena

data than SSDs with low UBERs. Recent work by Grupp et
al. examined the BER of raw MLC flash chips (without per-
forming error correction in the flash controller) in a controlled
environment [20]. They found the raw BER to vary from
1 x 10~! for the least reliable flash chips down to 1 x 10™°
for the most reliable, with most chips having a BER in the
1 x 107° to 1 x 102 range. Their study did not analyze the
effects of the use of chips in SSDs under real workloads and
system software.

Table 1 shows the UBER of the platforms that we examine.
We find that for flash-based SSDs used in servers, the UBER
ranges from 2.6 x 107 to 5.1 x 10~ **. While we expect that
the UBER of the SSDs that we measure (which correct small
errors, perform wear leveling, and are not at the end of their
rated life but still being used in a production environment)
should be less than the raw chip BER in Grupp et al.’s study
(which did not correct any errors in the flash controller, exer-
cised flash chips until the end of their rated life, and accessed
flash chips in an adversarial manner), we find that in some
cases the BERs were within around one order of magnitude
of each other. For example, the UBER of Platform B in our
study, 2.6 x 10™°, comes close to the lower end of the raw chip
BER range reported in prior work, 1 x 1075,

Bitrot is a Studied Phenomena

<
P

Figure 2 (bottom) shows the average yearly uncorrectable
error rate among SSDs within the different platforms — the
sum of errors that occurred on all servers within a platform
over 12 months ending in November 2014 divided by the num-
ber of servers in the platform. The yearly rates of uncor-
rectable errors on the SSDs we examined range from 15,128
for Platform D to 978,806 for Platform B. The older Platforms
A and B have a higher error rate than the younger Platforms
C through F, suggesting that the incidence of uncorrectable
errors increases as SSDs are utilized more. We will examine
this relationship further in Section 4.

Platform B has a much higher average yearly rate of un-

correctable errors (978,806) compared to the other platforms
(the second highest amount, for Platform A, is 106,678). We

find that this is due to a small number of SSDs having a much

SSD failure rale

02 04 06 038

0.0

A B C D E F

8e+05
|

4e+05
|

| | . =

Yearly uncorrectable errors per SSD

Ce+00
|

A B C D E F

Figure 2: The failure rate (top) and average yearly
uncorrectable errors per SSD (bottom), among SSDs
within each platform.

63 TIL: Bitrot is here

o [:.DR: 4.2% -> 34% of SSDs have one UBER per year

o4 TIL: Bitrot Roulette

(1-(1-uberRate) " (numDisks)) = Probability of UBER/server/year
(1-(1-0.042)"(20)) = 58%
(1-(1=0.34)"(20)) =99.975%

Highest quality SSD drives on the market

Lowest quality commercially viable SSD drives on the market

Causes of bitrot are Internal and External

—xternal Factors for UBER on SSDs:

Temperature

Bus Power Consumption

Data Written by the System Software
Workload changes due to SSD failure

In a Datacenter no-one can hear your bits scream...

C @& https://www.youtube.com/watch?v=tDacjrSCeqd

Youlll: Search Q

T
> »l o) 0:51/159

Shouting in the Datacenter

Bryan Cantrill

= 1,318,915 views

...except maybe they can.

D 1:06 / 1:59

s Take Care of your bits

$ zpool status tank | head -n 3
pool: tank
state: ONLINE
scan: scrub repaired 4.50K in 53h44m with 0 errors on Tue May 26 21:36:26 2015

7

Answer their cry for help.

Take Care of your bits

Similar studies and research exist for:

ebre Channel

e SAS

o SATA

® [ape

* SANS

e Cloud Object Stores

o So what about PostgreSQL?

"...I told you all of that, so | can tell you this..."

ZFS Terminology: VDEV

VDEV | vé-dév
noun
a virtual device

e Physical drive redundancy is handled at the VDEV level
® /ero or more physical disks arranged like a RAID set:
*Mirror
estripe
eraidz
eraidz?2
eraidz3

ZFS Terminology: zpool

zpool | zé-pool
noun
an abstraction of physical storage made up of a set of VDEVs

| oose a VDEYV, loose the zpool.

s ZFS Terminology: ZPL

ZPL | zé-pé-el
noun
ZFS POSIX Layer

e | ayer that handles the impedance mismatch between POSIX filesystem
semantics and the ZFS "object database.”

ZFS Terminology: ZIL

ZIL | zil
noun
ZFS Intent Log

e The ZFS analog of PostgreSQL's WAL
o |f you use a ZIL:
e Jse disks that have low-latency writes
* Mirror your ZIL

e f you loose your ZIL, whatever data had not made it to the main data disks
will be lost. The PostgreSQL equivalent of: rm -rf pg xlog/

ZFS Terminology: ARC

ARC | ark
noun
Adaptive Replacement Cache

*/FS's page cache
e ARC will grow or shrink to match use up all of the available memory

TIP: Limit ARC's max size to a percentage of physical memory
minus the shared buffer cache for PostgreSQL minus the

kernel's memory overhead.

ZFS Terminology: Datasets

dataset | daedo set
noun
A filesystem or volume ("zvol")

o A /FS filesystem dataset uses the underlying zpool
¢ A dataset belongs to one and only one zpool
e Misc tunables, including compression and quotas are set on the dataset level

ZFS Terminology: The Missing Bits

/FS Attribute Processor
Data Management Unit
Dataset and Snapshot Layer
Storage Pool Allocator

/FS Volume

/FS 1/0

RAID with variable-size stripes

Level 2 Adaptive Replacement Cache

LR NIt of user data, think RAID stripe size

s Storage Management

sudo zfs list

ls -1A -4 /db

sudo zfs create rpool/db -o mountpoint=/db
sudo zfs list

Storage Management

e Running out of disk space is bad, m'kay?
e Block file systems reserve ~8% of the disk space above 100%

o At ~92% capacity the performance of block allocators change from
"oerformance optimized" to "space optimized" (read: performance "drops").

Storage Management

e Running out of disk space is bad, m'kay?
e Block file systems reserve ~8% of the disk space above 100%

o At ~92% capacity the performance of block allocators change from
"oerformance optimized" to "space optimized" (read: performance "drops").

/FS doesn't have an artificial pool of free
space: you have to manage that yourselr.

8t Storage Management

sudo zpool list -H -0 size

sudo zpool list

The pool should never consume more than 80% of the available space

2 Storage Management

sudo zfs set quota=48G rpool/db
sudo zfs get quota rpool/db

sudo zfs list

Dataset Tuning Tips

e Disable atime

e nable compression

¢ [une the recordsize

e Consider tweaking the primarycache

&4 ZFS Dataset Tuning

zfs get atime,compression,primarycache,recordsize rpool/db

set atime=off rpool/db
set compression=1z4 rpool/db
set recordsize=16K rpool/db

set primarycache=metadata rpool/db
get atime,compression,primarycache,recordsize rpool/db

Discuss: recordsize=16K

e Pre-fault next page: usetul for sequential scans

e With compression=1z4, reasonable to expect ~3-4x pages worth of data
N a single ZFS record

Anecdotes and Recommendations:

e Performed better in most workloads vs ZFS's prefetch

e Disabling pretetch isn't necessary, tends to still be a net win
e Monitor arc cache usage

Discuss: primarycache=metadata

e metadata instructs ZFS's ARC to only cache metadata (e.g. dnode entries),
Nnot page data itself

e Default: cache all data

Iwo different recommendations based on benchmark workloads:
e -nable primarycache=all where working set exceeds RAM
e -nable primarycache=metadata where working set fits in RAM

Discuss: primarycache=metadata

e metadata instructs ZFS's ARC to only cache metadata (e.g. dnode entries),
Nnot page data itself

e Default: cache all data
* Double-caching happens

Two different recommendations based on benchmark workloads:
e -nable primarycache=all where working set exceeds RAM
e -nable primarycache=metadata where working set fits iIn RAM

Reasonable Default anecdote: Cap max ARC size ~15%-25%
physical RAM + ~50% RAM shared buffers

Performance Wins

. 2-4us/pwrite(2)!
dtrace -s vfs-io-postgres.d

Latencies (ns)\
postgres Write

value @ Distribution ————————m——-——o
1024
2048 @eee@ee@dddRR@@@EEeeA@e@deeree@e@@era@ 1325
4096 @e@e@d 267
8192 @@ 72
16384 0
32768 0
65536 19
131072 | 2
262144 0

Performance Wins

zpool iostat tank 1

capacity operations bandwidth
pool alloc free read write read write
tank 958G 9.94T 0 210K 1022 330M
tank 958G 9.94T 1 207K 4.99K 326M
tank 958G 9.94T 32 30.5K 79.9K 46 .9M
tank 958G 9.94T 22 9.62K 202K 15.9M
tank 958G 9.94T 15 10.2K 169K 16.5M
tank 958G 9.94T 36 10.5K 198K 14 .9M
tank 958G 9.94T 6 10.8K 39.4K 17.4M
tank 958G 9.94T 12 189K 209K 298M
tank 958G 9.94T 1 210K 7.96K 340M
tank 958G 9.94T 10 218K 23.0K 355M
tank 958G 9.94T 2 224K 4.49K 359M
tank 958G 9.94T 6 228K 12.5K 367M
tank 958G 9.94T 7 140K 53.4K 225M
tank 958G 9.94T 9 26.9K 40.9K 44 .0M
tank 958G 9.94T 0 9.43K 0 13.9M
tank 958G 9.94T 0 9.69K 0 16.3M
tank 958G 9.94T 1 74 .0K 3.49K 120M
tank 958G 9.94T 6 226K 17.0K 366M
tank 958G 9.94T 0 225K 0 385M
tank 958G 9.94T 0 176K 0 515M
tank 958G 9.94T 0 84.7K 0 382M
tank 958G 9.94T 0 39.6K 0 163M

Performance Wins

zpool iostat tank 1

capacity operations bandwidth
pool alloc free read write read write
tank 958G 9.94T 210K 1022 330M
tank 958G 9.94T 1 207K 4.99K 326M
tank 958G 9.94T 32 30.5K 79.9K 46 .9M
tank 958G 9.94T 22 9.62K 202K 15.9M
tank 958G 9.94T 15 10.2K 169K 16.5M
tank 958G 9.94T 36 10.5K 198K 14 .9M
tank 958G 9.94T 6 10.8K 39.4K 17.4M
tank 958G 9.9 12 189K 209K 298M
tank 958G 9.94T 1 210K 7.96K 340M
tank 958G 9.94T 218K 23.0K 355M
tank 958G 9.94T 2 224K 4.49K 359M
tank 958G 9.94T 6 228K 12.5K 367M
tank 958G 9.94T 7 140K 53.4K 225M
tank 958G 9.94T 9 26.9K 40.9K 44 .0M
tank 958G 9.94T 0 9.43K 0 13.9M
tank 958G 9.94T 0 9.69K 0 16.3M
tank 958G 9.94T 1 74 .0K 3.49K 120M
tank 958G 9.94T 6 226K 17.0K 366M
tank 958G 9.94T 0 225K 0 385M
tank 958G 9.94T 0 176K 0 515M
tank 958G 9.94T 0 84.7K 0 382M
tank 958G 9.94T 0 39.6K 0 163M

Performance Wins

zpool iostat tank 1

alloc

958G
958G
958G

capacity
free read
9.94T
9.94T
9 94T 32

operations
write read
210K 1022
207K 4.99K
30 5K 79 9K

bandwidth
write

JM

e PSS Thls WEE observed on 1OK RPM spmnmg rust. g

tan
tank
tank
tank
tank
tank
tank
tank
tank
tank
tank
tank
tank
tank
tank
tank
tank

958G
958G
958G
958G
958G
958G
958G
958G
958G
958G
958G
958G
958G
958G
958G
958G

9. 94T
9.9
9.94T
9.94T
9.94T
9.94T
9.94T
9.94T
9.94T
9.94T
9.94T
9.94T
9.94T
9.94T
9.94T
9.94T

6
12

1

OO OO0 KHFHFOOWLWdON

10.8K
189K
210K
218K
224K
228K
140K
26.9K
9.43K
9.69K
74 .0K
226K
225K
176K
84.7K
39.6K

39. 4K
209K
7.96K
23.0K
4.49K
12.5K
53.4K
40.9K

0

0
3.49K
17.0K

OO OO

. IM
17.4M
298M
340M
355M
359M
367M
225M
44 .0M
13.9M
16.3M
120M
366M
385M
515M
382M
163M

2 ZFS Always has your back

o /FS will checksum every read from disk
¢ A falled checksum will result in a fault and automatic data reconstruction
e Scrubs do background check of every record
e Schedule periodic scrubs
e Frequently for new and old devices
¢ |nfrequently for devices Iin service between 6mo and 2.5yr

PSA: The "Compressed ARC" feature was added to catch checksum errors in RAM

Checksum errors are an early indicator of failing disks

3 Schedule Periodic Scrubs

zpool status

Non-zero on

scrub rpool

status any of these

values Is bad™

% One dataset per database

e Create one ZFS dataset per database instance
e General rules of thumb:
e Use the same dataset for SPGDATA/ and pg xlogs/
® Set a reasonable quota
e Optional: reserve space to guarantee minimal available space

Checksum errors are an early indicator of failing disks

% One dataset per database

zfs list

zfs create rpool/db/pgdbl
chown postgres:postgres /db/pgdbl
zfs list

zfs set reservation=1G rpool/db/pgdbl
zfs list

96 initdb like a boss

su postgres -c 'initdb --no-locale -E=UTF8 -n -N -D /db/pgdbl’

e -ncode using UTFS8, sort using C
e Only enable locale when you know you need it
o ~2Xx pert bump by avoiding calls to iconv (3) to figure out sort order

* DO NOT use PostgreSQL checksums or compression

o7 Backups

zfs list -t snapshot
pwd

find . | we -1

head -1 postmaster.pid

zfs snapshot rpool/db/pgdbl@pre-rm
zfs list -t snapshot

psqgl -U postgres

Guilty Pleasure

ls -1 | we -1 During Demos
psql -U postgres

rm -rf *

s Backups: Has Them

psql

cat postgres.log

% Restores: As Important as Backups

zfs list -t snapshot

zfs rollback rpool/db/pgdbl@pre-rm
su postgres -c '/usr/lib/postgresql/9.6/bin/postgres -D /db/pgdbl’

Works all the time, every time, even with kill -9
(possible dataloss from ungraceful shutdown and IPC cleanup not withstanding)

0 Clone: Test and Upgrade with Impunity

zfs clone rpool/db/pgdbl@pre-rm rpool/db/pgdbl-upgrade-test
zfs list -r rpool/db

destroy rpool/db/pgdbl-clone
clone rpool/db/pgdbl@pre-rm rpool/db/pgdbl-10

promote rpool/db/pgdbl-10
destroy rpool/db/pgdbl

Works all the time, every time, even with kill -9
(possible dataloss from ungraceful shutdown and IPC cleanup not withstanding)

01 Tip: Naming Conventions

e Use a short prefix not on the root filesystem (e.g. /db)
e -ncode the PostgreSQL major version into the dataset name
e Give each PostgreSQL cluster its own dataset (e.g. pgdb01)
e Optional but recommended:
*one database per cluster rpool/db/pgdbl rpool/db/prod-db01-pg94
®ONe app per database rpool/db/myapp-shardl |rpool/db/prod-myapp-shard001-pg95
e cncode environment iInto DB name |rpool/db/dbN rpool/db/prod-dbN-pg10
e cncode environment into DB username

Be explicit: codify the tight coupling between
PostgreSQL versions and SPGDATA/ .

Defy Gravity

¢ [ake and send snapshots to remote servers
ezfs send emits a snapshot to stdout: treat as a file or stream

ezfs receive reads a snapshot from stdin

o [IP: If available:
eUse the -s argument t0 zfs receive

eUse zfs get receive resume token On the receiving end to get the
required token to resume an interrupted send: zfs send -t <token>

Unlimited flexibility. Compress, encrypt,
checksum, and offsite to your heart's content.

s Defy Gravity

zfs send -v -L -p -e rpool/db/pgdbl@pre-rm > /dev/null

zfs send -v -L -p -e
rpool/db/pgdbl-10@pre-rm

zfs receive -v
rpool/db/pgdbl-10-receive

zfs list -t snapshot

Defy Gravity: Incrementally

e Use a predictable snapshot naming scheme

e Send snapshots incrementally

e Clean up old snapshots

e Use a monotonic snapshot number (a.k.a. "vector clock”)

Remember to remove old snapshots.
Distributed systems bingo!

05 Defy Gravity: Incremental

zfs snapshot rpool/db/pgdbl-l10@example-incremental-001
zfs send -v -L -p -e
-i rpool/db/pgdbl-10@pre-rm
rpool/db/pgdbl-10@example-incremental-001
> /dev/null

zfs send -v -L -p -e

-i rpool/db/pgdbl-10@pre-rm
rpool/db/pgdbl-10@example-incremental-001 |
zfs receive -v
rpool/db/pgdbl-10-receive

06 Defy Gravity: Vector Clock

zfs snapshot rpool/db/pgdbl-l10@example-incremental-002
zfs send -v -L -p -e
-1 rpool/db/pgdbl-10@example-incremental-001
rpool/db/pgdbl-10@example-incremental-002
> /dev/null

zfs send -v -L -p -e

-i rpool/db/pgdbl-10@example-incremental-001
rpool/db/pgdbl-10@example-incremental-002 |
zfs receive -v
rpool/db/pgdbl-10-receive

107

Defy Gravity: Cleanup

zfs

list -t

destroy
destroy

destroy
list -t

snapshot -o name,used, refer

rpool/db/pgdbl-10-receive@pre-rm
rpool/db/pgdbl-10@example-incremental-001
rpool/db/pgdbl-10-receive@example-incremental-001
snapshot -0 name,used, refer

Controversial: logbias=throughput

e Measure tps/gps
e [Ime duration of an outage (OS restart plus WAL replay, e.g. 10-20min)
e \easure cost of back pressure from the DB to the rest of the application

e Jse a txg timeout of 1 second

Position: since ZES will never be inconsistent and therefore PostgreSQL will
never loose integrity, 1s of actual data loss is a worthwhile tradeoff for a ~10x
performance boost in write-heavy applications.

Rationale: loss aversion costs organizations more than potentially loosing 1s
of data. Back pressure is a constant cost the rest of the application needs to
apbsorb due to continual £sync (2) 'iIng of WAL data. Architectural cost and
premature engineering costs need to be factored in. Penny-wise, pound
foolish.

100 Controversial: logbias=throughput

cat /sys/module/zfs/parameters/zfs txg timeout

echo 1 > /sys/module/zfs/parameters/zfs txg timeout
echo 'options zfs zfs txg timeout=1' >> /etc/modprobe.d/zfs.conf
psql -c 'ALTER SYSTEM SET synchronous commit=off’

zfs set logbias=throughput rpool/db

QUESTIONS?

Email sean@chittenden.org Twitter: @¢SeanChittenden
sean@hashicorp.com

