
PostgreSQL + ZFS
Best Practices and Standard Procedures

"If you are not using ZFS,
you are losing data*."

ZFS is not magic, but it is an incredibly impressive piece of software.

Clark's Three Laws3

1. When a distinguished but elderly scientist states that something is possible,
he is almost certainly right. When he states that something is impossible, he
is very probably wrong.

2. The only way of discovering the limits of the possible is to venture a little
way past them into the impossible.

3. Any sufficiently advanced technology is indistinguishable from magic.

PostgreSQL and ZFS4

•Many bits
•Lots of bits
•Huge bits
•It's gunna be great
•Very excited
•We have the best filesystems
•People tell me this is true
•Except the fake media, they didn't tell me this

Too soon?

5

•Many bits
•Lots of bits
•Huge bits
•It's gunna be great
•Very excited
•We have the best filesystems
•People tell me this is true
•Except the fake media, they didn't tell me this

PostgreSQL and ZFS: It's about the bits and storage, stupid.

Some FS minutiae may have been harmed in the making of this talk.
Nit-pick as necessary (preferably after).

PostgreSQL and ZFS6

1. Review PostgreSQL from a storage administrator's perspective
2. Learn what it takes to become a PostgreSQL "backup expert"
3. Dive through a naive block-based filesystem
4. Walk through the a high-level abstraction of ZFS
5. See some examples of how to use ZFS with PostgreSQL

•Tips
•Tunables
•Anecdotes

PostgreSQL - A Storage Administrator's View7

•User-land page cache maintained by PostgreSQL in shared memory
•8K page size
•Each PostgreSQL table is backed by one or more files in $PGDATA/
•Tables larger than 1GB are automatically shared into individual 1GB files
•pwrite(2)'s to tables are:

•append-only if no free pages in the table are available
•in-place updated if free pages are available in the free-space map

•pwrite(2)'s are page-aligned
•Makes heavy use of a Write Ahead Log (WAL), aka an Intent Log

Storage Administration: WAL on Disk8

•WAL files are written to sequentially
•append-only IO
•Still 8K page-aligned writes via pwrite(2)
•WAL logs are 16MB each, pre-allocated
•WAL logs are never unlink(2)'ed, only recycled via rename(2)
•Low-latency pwrite(2)'s and fsync(2) for WAL files is required for good
write performance

Wait for pg_start_backup() to return
before backing up $PGDATA/ directory.

PostgreSQL - Backups9

Traditionally, only two SQL commands that you must know:
1.pg_start_backup('my_backup')
2.${some_random_backup_utility} $PGDATA/
3.pg_stop_backup()

Manual CHECKPOINT if you can't twiddle the
args to pg_start_backup().

PostgreSQL - Backups10

Only two^Wthree SQL commands that you must know:
1.CHECKPOINT
2.pg_start_backup('my_backup')
3.${some_random_backup_utility} $PGDATA/
4.pg_stop_backup()

pg_start_backup('my_backup', true) 
a.k.a. aggressive checkpointing (vs default perf hit of: 
0.5 * checkpoint_completion_target)

PostgreSQL - Backups11

Only two^Wthree^Wtwo commands that you must know:
1.CHECKPOINT
2.pg_start_backup('my_backup', true)
3.${some_random_backup_utility} $PGDATA/
4.pg_stop_backup()

Quick ZFS Primer14

TIP: Look for parallels.

Quick ZFS Primer15

Quick ZFS Primer: Features (read: why you must use ZFS)16

•Never inconsistent (no fsck(8)'s required, ever)
•Filesystem atomically moves from one consistent state to another consistent state
•All blocks are checksummed
•Compression builtin
•Snapshots are free and unlimited
•Clones are easy
•Changes accumulate in memory, flushed to disk in a transaction
•Redundant metadata (and optionally data)
•Filesystem management independent of physical storage management
•Log-Structured Filesystem
•Copy on Write (COW)

Feature Consequences (read: how your butt gets saved)17

•bitrot detected and automatically corrected if possible
•phantom writes
•misdirected reads or writes by the drive heads
•DMA parity errors
•firmware or driver bugs
•RAM capacitors aren't refreshed fast enough or with enough power

•Phenomenal sequential and random IO write performance
•Performance increase for sequential reads
•Cost of ownership goes down
•New tricks and tools to solve "data gravity" problems

ELI5: Block Filesystems vs Log
Structured Filesystems

Block Filesystems: Top-Down19

Userland Application

bufferwrite(fd, buffer, cnt)

Userland

Block Filesystems: Top-Down20

Userland Application

bufferwrite(fd, buffer, cnt)

VFS Layer

Userland
Kernel

Logical File: PGDATA/global/1

Block Filesystems: Top-Down21

Userland Application

bufferwrite(fd, buffer, cnt)

VFS Layer

Userland
Kernel

Logical File: PGDATA/global/1

System Buffers

Block Filesystems: Top-Down22

Userland Application
bufferwrite(fd, buffer, cnt)

VFS Layer

Userland
Kernel

Logical File: PGDATA/global/1

System Buffers

10 2 3 4
Logical File Blocks

Block Filesystems: Top-Down23

VFS Layer

Kernel

Logical File: PGDATA/global/1

System Buffers

10 2 3 4
Logical File Blocks

Physical Storage Layer

0: #8884

2: #9971

1: #7014

3: #0016

4: #0317

Pretend this is a
spinning disk

Block Filesystems: PostgreSQL Edition24

Userland Application
8k bufferwrite(fd, buffer, cnt)

Userland

cnt = 2

Block Filesystems: PostgreSQL Edition25

Userland Application
8k bufferwrite(fd, buffer, cnt)

VFS Layer

Userland
Kernel

Logical File: PGDATA/global/1

System Buffers

10 2 3

Logical File Blocks

cnt = 2

Block Filesystems: PostgreSQL Edition26

VFS Layer

Kernel

Logical File: PGDATA/global/1

System Buffers

10 2 3

Logical File Blocks

Physical Storage Layer

0: #8884

2: #9971

1: #7014

3: #0016

Quiz Time27

What happens when you twiddle a bool in a row?

UPDATE foo_table SET enabled = FALSE WHERE id = 123;

Quiz Answer: Write Amplification28

UPDATE foo_table SET enabled = FALSE WHERE id = 123;

Userland Application
8k bufferwrite(fd, buffer, cnt)

<~182 tuples

foo_table Tuple

ZFS Tip: postgresql.conf: full_page_writes=off29

ALTER SYSTEM SET full_page_writes=off;
CHECKPOINT;
-- Restart PostgreSQL

IMPORTANT NOTE: full_page_writes=off interferes with cascading replication

Block Filesystems: PostgreSQL Edition30

Userland Application
8k bufferwrite(fd, buffer, cnt)

VFS Layer

Userland
Kernel

Logical File: PGDATA/global/1

System Buffers

10 2 3

Logical File Blocks

cnt = 2•buffers can be 4K
•disk sectors are 512B - 4K
•ordering of writes is important
•consistency requires complete
cooperation and coordination

If you remember one thing from this section,
this is it.

ZFS Filesystem Storage Abstraction31

Physical Storage is
decoupled

from
Filesystems.

VDEVs On the Bottom32

zpool: rpool or tank

VDEV: raidz

disk1 disk2 disk3 disk4

IO Scheduler
VDEV: mirror

disk5 disk6

IO Scheduler

VFS

/usr/local/etctank/local/etc
tank/local none

/usrtank/ROOT/usr
/dbtank/db
/
Mountpoint

tank/ROOT
Dataset Name

Filesystems On Top33

canmount=off

Offensively Over Simplified Architecture Diagram34

zpool: rpool or tank

DSL - Dataset and Snapshot Layer

Datasets

Filesystem zvol

ZPL - ZFS POSIX Layer

VDEV: raidz

disk1 disk2 disk3 disk4

IO Scheduler
VDEV: mirror

disk5 disk6

IO Scheduler

ZFS is magic until you know how it fits together35

zpool: rpool or tank

DSL - Dataset and Snapshot Layer

Datasets

Filesystem zvol

ZPL - ZFS POSIX Layer

VDEV: raidz

disk1 disk2 disk3 disk4

IO Scheduler
VDEV: mirror

disk5 disk6

IO Scheduler

VFS

/usr/local/etctank/local/etc
tank/local none

/usrtank/ROOT/usr
/dbtank/db
/
Mountpoint

tank/ROOT
Dataset Name

Log-Structured Filesystems: Top-Down36

Log-Structured Filesystems: Top-Down37

Disk Block with
foo_table Tuple

ZFS: User Data Block Lookup via ZFS Posix Layer38

uberblock
Disk Block with
foo_table Tuple

ZFS: User Data + File dnode39

t1

ZFS: Object Set40

t1

t2

ZFS: Meta-Object Set Layer41

t1

t2

t3

ZFS: Uberblock42

t4

t1

t2

t3

At what point did the filesystem become inconsistent? 43

t4

t1

t2

t3

At what point could the filesystem become inconsistent? 44

t4

t1

t2

t3At t1

How? I lied while explaining the situation. Alternate Truth.45

Neglected to highlight ZFS is Copy-On-Write (read: knowingly committed
perjury in front of a live audience)

(read: I nearly committed perjury in front of a live audience by knowingly
withholding vital information)

How? I lied while explaining the situation. Alternate 46

ZFS is Copy-On-Write
What what's not been deleted and on disk is immutable.

ZFS is Copy-On-Write47

t1

Disk Block with
foo_table Tuple

At what point did the filesystem become inconsistent? 48

t1

t2

At what point did the filesystem become inconsistent? 49

t1

t2

t3

At what point did the filesystem become inconsistent? 50

t4

t1

t2

t3

At what point could the filesystem become inconsistent? 51

t4

t1

t2

t3NEVER

52

•Transaction groups are flushed to disk ever N seconds (defaults to 5s)
•A transaction group (txg) in ZFS is called a "checkpoint"
•User Data can be modified as its written to disk
•All data is checksummed
•Compression should be enabled by default

TIL about ZFS: Transactions and Disk Pages

ZFS Tip: ALWAYS enable compression53

$ zfs get compression
NAME PROPERTY VALUE SOURCE
rpool compression off default
rpool/root compression off default
$ sudo zfs set compression=lz4 rpool
$ zfs get compression
NAME PROPERTY VALUE SOURCE
rpool compression lz4 local
rpool/root compression lz4 inherited from rpool

•Across ~7PB of PostgreSQL and mixed workloads and applications:
compression ratio of ~2.8:1 was the average.

•Have seen >100:1 compression on some databases 
(cough this data probably didn't belong in a database cough)

•Have seen as low as 1.01:1

ZFS Tip: ALWAYS enable compression54

$ zfs get compression
NAME PROPERTY VALUE SOURCE
rpool compression off default
rpool/root compression off default
$ sudo zfs set compression=lz4 rpool
$ zfs get compression
NAME PROPERTY VALUE SOURCE
rpool compression lz4 local
rpool/root compression lz4 inherited from rpool

I have yet to see compression slow down benchmarking results or real world
workloads. My experience is with:

•spinning rust (7.2K RPM, 10K RPM, and 15KRPM)
•fibre channel connected SANs
•SSDs
•NVME

ZFS Tip: ALWAYS enable compression55

$ zfs get compressratio
NAME PROPERTY VALUE SOURCE
rpool compressratio 1.64x -
rpool/db compressratio 2.58x -
rpool/db/pgdb1-10 compressratio 2.61x -
rpool/root compressratio 1.62x -

•Use lz4 by default everywhere.
•Use gzip-9 only for archive servers
•Never mix-and-match compression where you can't suffer the
consequences of lowest-common-denominator performance

•Anxious to see ZStandard support (I'm looking at you Allan Jude)

ZFS Perk: Data Locality56

•Data written at the same time is stored near each other because it's frequently
part of the same record

•Data can now pre-fault into kernel cache (ZFS ARC) by virtue of the temporal
adjacency of the related pwrite(2) calls

•Write locality + compression=lz4 + pg_repack == PostgreSQL Dream Team

If you don't know what pg_repack is, figure out how to move into a database
environment that supports pg_repack and use it regularly. 

https://reorg.github.io/pg_repack/ && https://github.com/reorg/pg_repack/

ZFS Perk: Data Locality57

•Data written at the same time is stored near each other because it's frequently
part of the same record

•Data can now pre-fault into kernel cache (ZFS ARC) by virtue of the temporal
adjacency of the related pwrite(2) calls

•Write locality + compression=lz4 + pg_repack == PostgreSQL Dream Team

https://reorg.github.io/pg_repack/
https://github.com/reorg/pg_repack/

Ask after if you are curious, but here's a teaser:

What do you do if the dedup hash tables don't fit in RAM?

Extreme ZFS Warning: Purge all memory of dedup58

•This is not just my recommendation, it's also from the community and author
of the feature.

•These are not the droids you are looking for
•Do not pass Go
•Do not collect $200
•Go straight to system unavailability jail
•The feature works, but you run the risk of bricking your ZFS server.

Bitrot is a Studied Phenomena

Bitrot is a Studied Phenomena

Bitrot is a Studied Phenomena

Bitrot is a Studied Phenomena

TIL: Bitrot is here63

•TL;DR: 4.2% -> 34% of SSDs have one UBER per year

TIL: Bitrot Roulette64

(1-(1-uberRate)^(numDisks)) = Probability of UBER/server/year
 (1-(1-0.042)^(20)) = 58%
 (1-(1-0.34)^(20)) = 99.975%

Highest quality SSD drives on the market

Lowest quality commercially viable SSD drives on the market

Causes of bitrot are Internal and External65

External Factors for UBER on SSDs:

• Temperature
• Bus Power Consumption
• Data Written by the System Software
• Workload changes due to SSD failure

In a Datacenter no-one can hear your bits scream...

...except maybe they can.

Take Care of your bits68

Answer their cry for help.

Take Care of your bits69

Similar studies and research exist for:

•Fibre Channel
•SAS
•SATA
•Tape
•SANs
•Cloud Object Stores

"...I told you all of that, so I can tell you this..."

So what about PostgreSQL?70

ZFS Terminology: VDEV71

VDEV | vē-dēv
noun

 a virtual device

•Physical drive redundancy is handled at the VDEV level
•Zero or more physical disks arranged like a RAID set:
•mirror
•stripe
•raidz
•raidz2
•raidz3

Loose a VDEV, loose the zpool.

ZFS Terminology: zpool72

zpool | zē-poo͞l
noun

 an abstraction of physical storage made up of a set of VDEVs

ZFS Terminology: ZPL73

ZPL | zē-pē-el
noun

 ZFS POSIX Layer

•Layer that handles the impedance mismatch between POSIX filesystem
semantics and the ZFS "object database."

ZFS Terminology: ZIL74

ZIL | zil
noun

 ZFS Intent Log

•The ZFS analog of PostgreSQL's WAL
•If you use a ZIL:

•Use disks that have low-latency writes
•Mirror your ZIL
•If you loose your ZIL, whatever data had not made it to the main data disks

will be lost. The PostgreSQL equivalent of: rm -rf pg_xlog/

TIP: Limit ARC's max size to a percentage of physical memory
minus the shared_buffer cache for PostgreSQL minus the
kernel's memory overhead.

ZFS Terminology: ARC75

ARC | ärk
noun

 Adaptive Replacement Cache

•ZFS's page cache
•ARC will grow or shrink to match use up all of the available memory

ZFS Terminology: Datasets76

dataset | dædə ˌsɛt
noun

 A filesystem or volume ("zvol")

•A ZFS filesystem dataset uses the underlying zpool
•A dataset belongs to one and only one zpool
•Misc tunables, including compression and quotas are set on the dataset level

ZFS Terminology: The Missing Bits77

ZAP ZFS Attribute Processor
DMU Data Management Unit
DSL Dataset and Snapshot Layer
SPA Storage Pool Allocator
ZVOL ZFS Volume
ZIO ZFS I/O
RAIDZ RAID with variable-size stripes
L2ARC Level 2 Adaptive Replacement Cache
record unit of user data, think RAID stripe size

Storage Management78

$ sudo zfs list
NAME USED AVAIL REFER MOUNTPOINT
rpool 818M 56.8G 96K none
rpool/root 817M 56.8G 817M /
$ ls -lA -d /db
ls: cannot access '/db': No such file or directory
$ sudo zfs create rpool/db -o mountpoint=/db
$ sudo zfs list
NAME USED AVAIL REFER MOUNTPOINT
rpool 818M 56.8G 96K none
rpool/db 96K 56.8G 96K /db
rpool/root 817M 56.8G 817M /
$ ls -lA /db
total 9
drwxr-xr-x 2 root root 2 Mar 2 18:06 ./
drwxr-xr-x 22 root root 24 Mar 2 18:06 ../

Storage Management79

•Running out of disk space is bad, m'kay?
•Block file systems reserve ~8% of the disk space above 100%
•At ~92% capacity the performance of block allocators change from

"performance optimized" to "space optimized" (read: performance "drops").

ZFS doesn't have an artificial pool of free
space: you have to manage that yourself.

Storage Management80

•Running out of disk space is bad, m'kay?
•Block file systems reserve ~8% of the disk space above 100%
•At ~92% capacity the performance of block allocators change from

"performance optimized" to "space optimized" (read: performance "drops").

Storage Management81

$ sudo zpool list -H -o size
59.6G
$ sudo zpool list

The pool should never consume more than 80% of the available space

Storage Management82

$ sudo zfs set quota=48G rpool/db
$ sudo zfs get quota rpool/db
NAME PROPERTY VALUE SOURCE
rpool/db quota 48G local
$ sudo zfs list
NAME USED AVAIL REFER MOUNTPOINT
rpool 818M 56.8G 96K none
rpool/db 96K 48.0G 96K /db
rpool/root 817M 56.8G 817M /

Dataset Tuning Tips83

•Disable atime
•Enable compression
•Tune the recordsize
•Consider tweaking the primarycache

ZFS Dataset Tuning84

zfs get atime,compression,primarycache,recordsize rpool/db
NAME PROPERTY VALUE SOURCE
rpool/db atime on inherited from rpool
rpool/db compression lz4 inherited from rpool
rpool/db primarycache all default
rpool/db recordsize 128K default
zfs set atime=off rpool/db
zfs set compression=lz4 rpool/db
zfs set recordsize=16K rpool/db
zfs set primarycache=metadata rpool/db
zfs get atime,compression,primarycache,recordsize rpool/db
NAME PROPERTY VALUE SOURCE
rpool/db atime off local
rpool/db compression lz4 local
rpool/db primarycache metadata local
rpool/db recordsize 16K local

Discuss: recordsize=16K85

•Pre-fault next page: useful for sequential scans
•With compression=lz4, reasonable to expect ~3-4x pages worth of data

in a single ZFS record

Anecdotes and Recommendations:
•Performed better in most workloads vs ZFS's prefetch
•Disabling prefetch isn't necessary, tends to still be a net win
•Monitor arc cache usage

Discuss: primarycache=metadata86

•metadata instructs ZFS's ARC to only cache metadata (e.g. dnode entries),
not page data itself

•Default: cache all data

Two different recommendations based on benchmark workloads:
•Enable primarycache=all where working set exceeds RAM
•Enable primarycache=metadata where working set fits in RAM

Reasonable Default anecdote: Cap max ARC size ~15%-25%
physical RAM + ~50% RAM shared_buffers

Discuss: primarycache=metadata87

•metadata instructs ZFS's ARC to only cache metadata (e.g. dnode entries),
not page data itself

•Default: cache all data
•Double-caching happens

Two different recommendations based on benchmark workloads:
•Enable primarycache=all where working set exceeds RAM
•Enable primarycache=metadata where working set fits in RAM

Performance Wins88

2-4µs/pwrite(2)!!

Performance Wins89

Performance Wins90

Performance Wins91

P.S. This was observed on 10K RPM spinning rust.

Checksum errors are an early indicator of failing disks

ZFS Always has your back92

•ZFS will checksum every read from disk
•A failed checksum will result in a fault and automatic data reconstruction
•Scrubs do background check of every record
•Schedule periodic scrubs

•Frequently for new and old devices
•Infrequently for devices in service between 6mo and 2.5yr

PSA: The "Compressed ARC" feature was added to catch checksum errors in RAM

Schedule Periodic Scrubs93

zpool status
 pool: rpool
 state: ONLINE
 scan: none requested
config:

NAME STATE READ WRITE CKSUM
rpool ONLINE 0 0 0
 sda1 ONLINE 0 0 0

errors: No known data errors
zpool scrub rpool
zpool status
 pool: rpool
 state: ONLINE
 scan: scrub in progress since Fri Mar 3 20:41:44 2017
 753M scanned out of 819M at 151M/s, 0h0m to go
 0 repaired, 91.97% done
config:

NAME STATE READ WRITE CKSUM
rpool ONLINE 0 0 0
 sda1 ONLINE 0 0 0

errors: No known data errors
zpool status
 pool: rpool
 state: ONLINE
 scan: scrub repaired 0 in 0h0m with 0 errors on Fri Mar 3 20:41:49 2017

Non-zero on
any of these
values is bad™

Checksum errors are an early indicator of failing disks

One dataset per database94

•Create one ZFS dataset per database instance
•General rules of thumb:

•Use the same dataset for $PGDATA/ and pg_xlogs/
•Set a reasonable quota
•Optional: reserve space to guarantee minimal available space

One dataset per database95

zfs list
NAME USED AVAIL REFER MOUNTPOINT
rpool 819M 56.8G 96K none
rpool/db 160K 48.0G 96K /db
rpool/root 818M 56.8G 818M /
zfs create rpool/db/pgdb1
chown postgres:postgres /db/pgdb1
zfs list
NAME USED AVAIL REFER MOUNTPOINT
rpool 819M 56.8G 96K none
rpool/db 256K 48.0G 96K /db
rpool/db/pgdb1 96K 48.0G 96K /db/pgdb1
rpool/root 818M 56.8G 818M /
zfs set reservation=1G rpool/db/pgdb1
zfs list
NAME USED AVAIL REFER MOUNTPOINT
rpool 1.80G 55.8G 96K none
rpool/db 1.00G 47.0G 96K /db
rpool/db/pgdb1 96K 48.0G 12.0M /db/pgdb1
rpool/root 818M 55.8G 818M /

initdb like a boss96

su postgres -c 'initdb --no-locale -E=UTF8 -n -N -D /db/pgdb1'
Running in noclean mode. Mistakes will not be cleaned up.
The files belonging to this database system will be owned by user "postgres".
This user must also own the server process.

The database cluster will be initialized with locale "C".
The default text search configuration will be set to "english".

Data page checksums are disabled.

fixing permissions on existing directory /db/pgdb1 ... ok
creating subdirectories ... ok

•Encode using UTF8, sort using C
•Only enable locale when you know you need it

•~2x perf bump by avoiding calls to iconv(3) to figure out sort order
•DO NOT use PostgreSQL checksums or compression

zfs list -t snapshot
no datasets available
pwd
/db/pgdb1
find . | wc -l
895
head -1 postmaster.pid
25114
zfs snapshot rpool/db/pgdb1@pre-rm
zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
rpool/db/pgdb1@pre-rm 0 - 12.0M -
psql -U postgres
psql (9.6.2)
Type "help" for help.

postgres=# \q
rm -rf *
ls -1 | wc -l
0
psql -U postgres
psql: FATAL: could not open relation mapping file "global/pg_filenode.map":
No such file or directory

Backups97

Guilty Pleasure
During Demos

Backups: Has Them98

$ psql
psql: FATAL: could not open relation mapping file "global/pg_filenode.map": No such file or directory
cat postgres.log
LOG: database system was shut down at 2017-03-03 21:08:05 UTC
LOG: MultiXact member wraparound protections are now enabled
LOG: database system is ready to accept connections
LOG: autovacuum launcher started
FATAL: could not open relation mapping file "global/pg_filenode.map": No such file or directory
LOG: could not open temporary statistics file "pg_stat_tmp/global.tmp": No such file or directory
LOG: could not open temporary statistics file "pg_stat_tmp/global.tmp": No such file or directory
...
LOG: could not open temporary statistics file "pg_stat_tmp/global.tmp": No such file or directory
LOG: could not open file "postmaster.pid": No such file or directory
LOG: performing immediate shutdown because data directory lock file is invalid
LOG: received immediate shutdown request
LOG: could not open temporary statistics file "pg_stat/global.tmp": No such file or directory
WARNING: terminating connection because of crash of another server process
DETAIL: The postmaster has commanded this server process to roll back the current transaction and exit,
because another server process exited abnormally and possibly corrupted shared memory.
HINT: In a moment you should be able to reconnect to the database and repeat your command.
LOG: database system is shut down
ll
total 1
drwx------ 2 postgres postgres 2 Mar 3 21:40 ./
drwxr-xr-x 3 root root 3 Mar 3 21:03 ../

Restores: As Important as Backups99

zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
rpool/db/pgdb1@pre-rm 12.0M - 12.0M -
zfs rollback rpool/db/pgdb1@pre-rm
su postgres -c '/usr/lib/postgresql/9.6/bin/postgres -D /db/pgdb1'
LOG: database system was interrupted; last known up at 2017-03-03 21:50:57 UTC
LOG: database system was not properly shut down; automatic recovery in progress
LOG: redo starts at 0/14EE7B8
LOG: invalid record length at 0/1504150: wanted 24, got 0
LOG: redo done at 0/1504128
LOG: last completed transaction was at log time 2017-03-03 21:51:15.340442+00
LOG: MultiXact member wraparound protections are now enabled
LOG: database system is ready to accept connections
LOG: autovacuum launcher started

Works all the time, every time, even with kill -9
(possible dataloss from ungraceful shutdown and IPC cleanup not withstanding)

Clone: Test and Upgrade with Impunity100

zfs clone rpool/db/pgdb1@pre-rm rpool/db/pgdb1-upgrade-test
zfs list -r rpool/db
NAME USED AVAIL REFER MOUNTPOINT
rpool/db 1.00G 47.0G 96K /db
rpool/db/pgdb1 15.6M 48.0G 15.1M /db/pgdb1
rpool/db/pgdb1-upgrade-test 8K 47.0G 15.2M /db/pgdb1-upgrade-test
echo "Test pg_upgrade"
zfs destroy rpool/db/pgdb1-clone
zfs clone rpool/db/pgdb1@pre-rm rpool/db/pgdb1-10
echo "Run pg_upgrade for real"
zfs promote rpool/db/pgdb1-10
zfs destroy rpool/db/pgdb1

Works all the time, every time, even with kill -9
(possible dataloss from ungraceful shutdown and IPC cleanup not withstanding)

Be explicit: codify the tight coupling between
PostgreSQL versions and $PGDATA/.

Tip: Naming Conventions101

•Use a short prefix not on the root filesystem (e.g. /db)
•Encode the PostgreSQL major version into the dataset name
•Give each PostgreSQL cluster its own dataset (e.g. pgdb01)
•Optional but recommended:

•one database per cluster
•one app per database
•encode environment into DB name
•encode environment into DB username

Suboptimal Good
rpool/db/pgdb1 rpool/db/prod-db01-pg94

rpool/db/myapp-shard1 rpool/db/prod-myapp-shard001-pg95

rpool/db/dbN rpool/db/prod-dbN-pg10

Unlimited flexibility. Compress, encrypt,
checksum, and offsite to your heart's content.

Defy Gravity102

•Take and send snapshots to remote servers
•zfs send emits a snapshot to stdout: treat as a file or stream
•zfs receive reads a snapshot from stdin
•TIP: If available:

•Use the -s argument to zfs receive
•Use zfs get receive_resume_token on the receiving end to get the

required token to resume an interrupted send: zfs send -t <token>

Defy Gravity103

zfs send -v -L -p -e rpool/db/pgdb1@pre-rm > /dev/null
send from @ to rpool/db/pgdb1-10@pre-rm estimated size is 36.8M
total estimated size is 36.8M
TIME SENT SNAPSHOT
zfs send -v -L -p -e \
 rpool/db/pgdb1-10@pre-rm | \
 zfs receive -v \
 rpool/db/pgdb1-10-receive
send from @ to rpool/db/pgdb1-10@pre-rm estimated size is 36.8M
total estimated size is 36.8M
TIME SENT SNAPSHOT
received 33.8MB stream in 1 seconds (33.8MB/sec)
zfs list -t snapshot
NAME USED AVAIL REFER
MOUNTPOINT
rpool/db/pgdb1-10@pre-rm 8K - 15.2M -
rpool/db/pgdb1-10-receive@pre-rm 0 - 15.2M -

Remember to remove old snapshots.
Distributed systems bingo!

Defy Gravity: Incrementally104

•Use a predictable snapshot naming scheme
•Send snapshots incrementally
•Clean up old snapshots
•Use a monotonic snapshot number (a.k.a. "vector clock")

Defy Gravity: Incremental105

echo "Change PostgreSQL's data"
zfs snapshot rpool/db/pgdb1-10@example-incremental-001
zfs send -v -L -p -e \
 -i rpool/db/pgdb1-10@pre-rm \
 rpool/db/pgdb1-10@example-incremental-001 \
 > /dev/null
send from @pre-rm to rpool/db/pgdb1-10@example-incremental-001
estimated size is 2K
total estimated size is 2K
zfs send -v -L -p -e \
 -i rpool/db/pgdb1-10@pre-rm \
 rpool/db/pgdb1-10@example-incremental-001 | \
 zfs receive -v \
 rpool/db/pgdb1-10-receive
send from @pre-rm to rpool/db/pgdb1-10@example-incremental-001
estimated size is 2K
total estimated size is 2K
receiving incremental stream of rpool/db/pgdb1-10@example-
incremental-001 into rpool/db/pgdb1-10-receive@example-incremental-001
received 312B stream in 1 seconds (312B/sec)

Defy Gravity: Vector Clock106

echo "Change more PostgreSQL's data: VACUUM FULL FREEZE"
zfs snapshot rpool/db/pgdb1-10@example-incremental-002
zfs send -v -L -p -e \
 -i rpool/db/pgdb1-10@example-incremental-001 \
 rpool/db/pgdb1-10@example-incremental-002 \
 > /dev/null
send from @example-incremental-001 to rpool/db/pgdb1-10@example-
incremental-002 estimated size is 7.60M
total estimated size is 7.60M
TIME SENT SNAPSHOT
zfs send -v -L -p -e \
 -i rpool/db/pgdb1-10@example-incremental-001 \
 rpool/db/pgdb1-10@example-incremental-002 | \
 zfs receive -v \
 rpool/db/pgdb1-10-receive
send from @example-incremental-001 to rpool/db/pgdb1-10@example-
incremental-002 estimated size is 7.60M
total estimated size is 7.60M
receiving incremental stream of rpool/db/pgdb1-10@example-incremental-002
into rpool/db/pgdb1-10-receive@example-incremental-002
TIME SENT SNAPSHOT
received 7.52MB stream in 1 seconds (7.52MB/sec)

Defy Gravity: Cleanup107

zfs list -t snapshot -o name,used,refer
NAME USED REFER
rpool/db/pgdb1-10@example-incremental-001 8K 15.2M
rpool/db/pgdb1-10@example-incremental-002 848K 15.1M
rpool/db/pgdb1-10-receive@pre-rm 8K 15.2M
rpool/db/pgdb1-10-receive@example-incremental-001 8K 15.2M
rpool/db/pgdb1-10-receive@example-incremental-002 0 15.1M
zfs destroy rpool/db/pgdb1-10-receive@pre-rm
zfs destroy rpool/db/pgdb1-10@example-incremental-001
zfs destroy rpool/db/pgdb1-10-receive@example-incremental-001
zfs list -t snapshot -o name,used,refer
NAME USED REFER
rpool/db/pgdb1-10@example-incremental-002 848K 15.1M
rpool/db/pgdb1-10-receive@example-incremental-002 0 15.1M

Controversial: logbias=throughput108

•Measure tps/qps
•Time duration of an outage (OS restart plus WAL replay, e.g. 10-20min)
•Measure cost of back pressure from the DB to the rest of the application
•Use a txg timeout of 1 second

Position: since ZFS will never be inconsistent and therefore PostgreSQL will
never loose integrity, 1s of actual data loss is a worthwhile tradeoff for a ~10x
performance boost in write-heavy applications.

Rationale: loss aversion costs organizations more than potentially loosing 1s
of data. Back pressure is a constant cost the rest of the application needs to
absorb due to continual fsync(2)'ing of WAL data. Architectural cost and
premature engineering costs need to be factored in. Penny-wise, pound
foolish.

Controversial: logbias=throughput109

cat /sys/module/zfs/parameters/zfs_txg_timeout
5
echo 1 > /sys/module/zfs/parameters/zfs_txg_timeout
echo 'options zfs zfs_txg_timeout=1' >> /etc/modprobe.d/zfs.conf
psql -c 'ALTER SYSTEM SET synchronous_commit=off'
ALTER SYSTEM
zfs set logbias=throughput rpool/db

Email sean@chittenden.org
sean@hashicorp.com

Twitter: @SeanChittenden

QUESTIONS?

