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I
n May 2002 Stephen Wolfram finally unveiled
his self-proclaimed masterpiece, A New Kind
of Science (hereinafter referred to as ANKS).
Published by Wolfram’s own company, the
1,280-page volume contains his thoughts on

everything from the physics of the universe to the
mysteries of human behavior, all based on the 
results of several years of analyzing the graphical
output of some very simple computer programs.

The scope of the book is impressive, covering a
bewildering variety of mathematical models and 
illustrated by 973 high-resolution black and white
pictures. There are whole chapters devoted to 
biology, physics, and human perception, with
shorter sections touching on such unexpected 
subjects as free will and extraterrestrial art. The 
extensive historical and technical notes at the end
of the book (349 pages of small print) provide 
fascinating background material.

The primary mathematical focus of the book is
a class of discrete-time dynamical systems called
cellular automata, or “CAs”. (See the next section
for definitions and examples.) Back in the 1980s,
Wolfram introduced several ideas that had a sig-
nificant impact on CA research, and he also dis-
covered a number of specific CAs with intriguing

properties. His ac-
tivities in this direc-
tion were inter-
rupted when he
became occupied
with the develop-
ment and promotion
of Mathematica. But
he felt that the ideas
in several of his CA
papers had never re-
ally been “absorbed”
by other scientists
(ANKS, p. 882), so in
1991 he began work

on the book that he hopes will start a scientific rev-
olution.

Do we need this revolution? According to Wol-
fram, “traditional” mathematics and science are
doomed: mathematics because of its emphasis on
rigorous proof, and science because of its prefer-
ence for models that can make accurate predictions.
He says that the most interesting problems presented
by nature are likely to be formally undecidable or
computationally irreducible (ANKS, pp. 7, 794–5,
and 1138), rendering proofs and predictions 
impossible. Mathematicians and scientists have 
managed to keep busy only by carefully choosing 
to work on the relatively small set of problems 
that have simple solutions (ANKS, p. 3).

There is more: most mathematical models in
science are based on the assumption that time and
space are continuous, whereas Wolfram says that
time and space are discrete. He would have us
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abandon models based on calculus and Euclidean
geometry in favor of discrete systems like CAs
(ANKS, p. 8). Indeed, he sees the entire universe 
as a CA-like system that likely follows a simple 
dynamical rule, and the better part of Chapter 9 
consists of some clever speculation on the exact 
nature of such a rule.

To make his argument convincing, Wolfram
needed a simple CA that was capable of highly 
complex behavior. Enter the CA known as “Rule 110”,
whose dynamical rule is about as simple as possi-
ble, as you will see later in this review. The model
was discovered by Wolfram in the 1980s, when 
he conjectured that its behavior was “universal”,
meaning that it could be used to simulate a 
universal Turing machine. The conjecture was 
proved in the 1990s by Matthew Cook, a former 
employee of Wolfram Research.

Rule 110 is featured prominently throughout
ANKS, and it provides the primary motivation for
Wolfram’s scientific philosophy, which is that the
key to understanding complex behavior can be
found in very simple discrete systems. He has been
pushing this idea for twenty years. But in ANKS we
find a much more provocative version, the “Prin-
ciple of Computational Equivalence”, which we are
told is a “new law of nature” that “has vastly richer
implications than…any [other] single collection 
of laws in science” (ANKS, pp. 720 and 726). The
entire final chapter of the book is devoted to this
principle, but, surprisingly, Wolfram does not 
provide us with a definitive statement of it. Here
is my attempt, pieced together from various phrases
in Chapter 12 of ANKS:

Except for those trajectories that are
obviously simple, almost all of the 
trajectories of a (natural or theoretical)
dynamical system can be viewed as 
computations of equivalent sophistica-
tion, which is to say that they are 
universal (see ANKS, pp. 716–9).

Thus, if you observe a trajectory of some system,
such as a CA or a differential equation or the
weather or even a bucket of rusting nails, then 
either you will see something that is obviously 
simple, or else arbitrarily complex computations
will pass before your eyes.

Wolfram’s attitude toward traditional mathe-
matics and science is consistent with his principle.
After all, if everything nontrivial behaves like a
universal Turing machine, then it is a waste of time
to try to find ways to predict anything that is not
already obvious. He advises scientists to start doing
what he has been doing for the past two decades,
which is to systematically explore simple CAs and
related discrete systems, searching for models to
match various interesting natural phenomena. The
Principle of Computational Equivalence seems to

suggest that such models are out there somewhere,
and Wolfram provides many examples from all
areas of science to try to show us that they can 
actually be found.

Am I convinced? Not really. Wolfram’s brand of
computer experimentation is a potentially power-
ful scientific tool. Indeed, I find that by far the
most valuable aspect of the book is that it brings
together so many interesting examples of CAs and
related models that first found the light of day in
one of his computer searches. But can he really 
justify statements like this: “…the new kind of sci-
ence that I develop in this book is for the first time
able to make meaningful statements about even im-
mensely complex behavior” (ANKS, p. 3)?

Wolfram loves to tell us why other scientific
theories cannot handle complexity. But in these 
discussions, he badly mischaracterizes his com-
petition. Here is a typical example: “The field of 
nonlinear dynamics is concerned with analyzing
more complicated equations [than linear ones]. Its
greatest success has been with so-called soliton
equations for which careful manipulation leads to
a property similar to linearity. But the kinds of
systems that I discuss in this book typically show
much more complex behavior, and have no such
simplifying properties” (ANKS, pp. 15–6). He is par-
ticularly hard on chaos theory, which he more or
less reduces to a trivial observation about sensitive
dependence on initial conditions: “Indeed, all that
it shows is that if there is complexity in the details
of the initial conditions, then this complexity will
eventually appear in the large-scale behavior of
the system” (ANKS, p. 13). He claims to have ex-
amples of dynamical systems that exhibit chaotic
behavior without sensitive dependence on initial
conditions. But his examples are highly question-
able, as I will later explain when I discuss his no-
tion of “intrinsic randomness generation”.

Wolfram provides very little hard evidence for
the Principle of Computational Equivalence. The 
key phrase “obviously simple” is pretty much left
undefined, except to say that it covers systems
that are attracted to periodic orbits or follow some
other easily detectable pattern. Even when the prin-
ciple is taken at face value, serious doubts about
both its validity and practical significance have
been raised (see the list of reviews given below). I
will raise a few more later on, when I discuss fault-
tolerant computation and universal CAs.

Despite the provocative attitude and high-minded
speculation, there is plenty to enjoy in the book, 
especially the very accessible and very extensive 
coverage of so many different kinds of discrete
models. In addition to CAs, we find mobile cellular
automata, Turing machines, substitution systems,
sequential substitution systems, tag systems, cyclic
tag systems, register machines, and causal 
networks. For each type of system, Wolfram presents
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and carefully explains numerous examples, ex-
pertly illustrated by instructive and thought-
provoking graphics. I am familiar with Turing 
machines, for example, but had not seen their work-
ings graphically depicted as in ANKS. Interesting 
statistics are given about the range of behaviors in
these systems, based on Wolfram’s own computer
experiments.

It is also a lot of fun watching Wolfram find
connections with the real world. Some of them are
original to Wolfram, many are not, and it is un-
fortunately not always so easy to determine which
is which. But it is great having them all together in
one book. Particularly impressive is the chapter
where he attempts to capture modern physics, in-
cluding relativity theory and quantum mechanics,
in a CA-like system. Scott Aaronson’s review (see
below) points out a serious mathematical flaw in
this section, and Wolfram’s model bears similarity
to earlier work that is not acknowledged, but the
result is impressive and intriguing nonetheless.

In general, the book is easy for the nonexpert
to read but difficult for the expert to use. The main
part of the text provides a nice nontechnical in-
troduction to many topics, but the accompanying
notes in the back of the book are hampered by 
Wolfram’s preference for expressing formulas 
and equations in the language of Mathematica. 
Bibliographic references are entirely lacking, except
for a list of Wolfram’s own publications. The his-
torical notes are quite thorough, but at the same
time they are heavily biased towards Wolfram’s
own accomplishments.

My review, like others that have appeared, cannot
cover all aspects of ANKS. So I recommend that you
also look at the following (given in the approximate
order in which I learned of them). All of them can 
be easily found online.
1. “Reflections on Stephen Wolfram’s A New Kind

of Science” by Ray Kurzweil. (Ably criticizes the
conclusions that Wolfram draws from his Prin-
ciple of Computational Equivalence.)

2. Book review by Leo Kadanoff for Physics Today,
July 2002. (Provides a balanced perspective on
Wolfram’s contributions to science while ques-
tioning whether they add up to a whole new
kind of science.)

3. Book review by Scott Aaronson for Quantum In-
formation and Computing, September 2002.
(Proves that Wolfram’s proposed discrete model
for the universe cannot accommodate both spe-
cial relativity and Bell’s inequality violations.)

4. Book review by Henry Cohn for MAA Online,
June 2002. (Addresses the existence of levels of
complexity that lie between the two extremes
found in the Principle of Computation Equiva-
lence.)

5. Book review by Ben Goertzel for Extropy, June
2002. (Amplifies and strengthens Kurzweil’s

criticisms and questions Wolfram’s rejection 
of natural selection as a significant factor in
evolution.)

6. “The World According to Wolfram” by Brian
Hayes, in The American Scientist, July–August
2002. (Counters some of Wolfram’s claims of 
discovery.)

7. “Blinded by Science” by Jordan Ellenberg, in
Slate, posted on July 2, 2002. (This is a most 
entertaining and intelligent review.)

8. “Is the Universe a Universal Computer?” by
Melanie Mitchell, in Science, October 4, 2002.
(Takes Wolfram to task for several of his
grandiose assertions.)

Each of these articles finds something significant
to praise in ANKS (clarity, enthusiasm, expert 
coverage, fresh perspectives, etc.) while at the same
time drawing attention to serious difficulties.

In the remainder of my review, I will focus on
various mathematical issues raised by Wolfram’s
presentation of the theory of CAs. I have some 
familiarity with CAs, since my own area of research
centers on their stochastic cousins, known as prob-
abilistic cellular automata, or PCAs. My current 
research concerns PCA models of traffic jams.

Cellular Automata
A CA is a deterministic dynamical system, con-
sisting of an array Λ of identical finite machines
or cells that repeatedly change states or colors by
following an update rule U. This rule is applied si-
multaneously to all of the cells in Λ at discrete time
units. When U is applied to a particular cell x ∈ Λ,
the new color for x is determined by the current
colors of the cells in the neighborhood of x, denoted
by Nx.

Although there are many interesting choices for
Λ , I will restrict my attention to the d-dimensional
integer lattice Zd, usually with d = 1 or d = 2. When
d = 1, the neighborhood of a cell x is the interval
Nx = {y ∈ Z : |x− y| ≤ ρ} , where ρ is a positive
integer parameter called the range. When d = 2, a
common choice is the Moore neighborhood with
range ρ, which is the (2ρ + 1)× (2ρ + 1) square
block centered at the cell x = (x1, x2) . More pre-
cisely, it is the set

Nx = {y = (y1, y2) : |x1 − y1| ≤ ρ
and |x2 − y2| ≤ ρ} .

Another choice in the 2-dimensional case is the 
diamond-shaped von Neumann neighborhood:

Nx = {y = (y1, y2) : |x1 − y1| + |x2 − y2| ≤ ρ} .
In general, the cells in a CA can take on one of

k different colors, where k ≥ 2. In my examples I
will take k = 2, and I will refer to the two colors 
as white and black. In pictures and most verbal 
descriptions, white will be depicted as � and black



unit to the right whenever possible. More precisely,
if there is a car at cell x and a space at cell x+ 1,
then the car moves from x to x+ 1 at the next up-
date, leaving behind a space at x. This model has
been extensively studied, and its behavior is well
understood.

Rule 30 is one of the most interesting CAs ever
studied. The first 100 updates for Rule 30 are shown
in Figure 1, using the initial state . . .������� . . . .
You can see this initial state in the top row of the 
figure, with later states appearing in successive 
rows, working from the top downward, so that the
bottom row in the figure depicts the state after 100
updates. This convention for showing trajectories
in 1-dimensional CAs is quite common, and it is the
one followed by Wolfram in ANKS.

Towards the left edge of the picture for Rule 30,
quite a bit of regularity can be seen. But the rest of the
pattern seems quite unpredictable, and there is no
known formula for predicting the colors at any given
position. In fact, the sequence of colors attained by
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as � . But in cases where I want to write down a 
formula for the update rule U, I will use 0 for 
white and 1 for black.

Let us look at two important families of CAs:
The Simplest Case: d = 1, ρ = 1, k = 2
This family of CAs is essentially the one that put
Wolfram on the map, so it is a good place for us
to start. For these CAs the update rule at a cell x
depends on the current colors of the three cells in
the neighborhood of x, so that we may denote the
new color of x by U (p, q, r ), where p, q, r denote
the current colors of x− 1, x, x+ 1 respectively.
Since we have 23 = 8 different possible inputs for
U and 2 possible outputs, we get 28 = 256 differ-
ent possible update rules U.

To get an idea of what can happen, we will look
at five rules, labeled by Wolfram as Rules 30, 110,
170, 184, and 254. Table 1 gives the formula for
U (p, q, r ) in each case. In these formulas each of
the inputs p, q, r can be either a 0 or a 1. The for-
mulas are found by first expressing U as a logical
function (using And, Or, Not) and then converting
the logical function to a polynomial, using identi-
ties like p Or q = p + q − pq .

For two of these rules, the behavior is fairly easy
to describe. Rule 170 simply shifts the entire se-
quence of colors to the left, one unit at each update.
In Rule 254 � never changes to �, and, furthermore,
� spreads from one cell to the next in both direc-
tions at each update. So for all initial states except
the one with all � ’s, Rule 254 goes to the state
with all � ’s as time goes to infinity.

Rule 184 is sometimes used as a very simple
traffic model in which � represents a car and � rep-
resents a space. At each update, cars move one

Figure 1. The first 100 updates for Rule 30.

Rule number U (p, q, r )

30 p + (1− 2p)(q + r − qr )

110 q + r − qr − pqr

170 r

184 qr + (1− q)p

254 1− (1− p)(1− q)(1− r )
Table 1. Some update rules.
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the cell at the origin forms the basis for the random
number generator used by Mathematica. This ap-
parently perfectly random behavior was first noticed
by Wolfram in 1984, and it seems to defy any sort of
rigorous analysis. The best mathematical result 
that I know about Rule 30 is due to Erica Jen [5], who
proved that with the initial state in Figure 1, the 
sequence of colors attained in any two adjacent cells
is not periodic.

Rule 110 is the most interesting of all. With the
same initial state as before, the first 750 updates are
shown in Figure 2. Note the interesting mixture of
chaotic and orderly behavior. This CA continues to go
through a complicated sequence of states for 2,780
updates, after which it finally falls into a 
predictable pattern. But it turns out that by choosing
other initial states, one can get Rule 110 to exhibit
arbitrarily complex behavior, in the sense that it can
simulate a universal Turing machine. In other words,
the Rule 110 CA can be used as a computer that is 
capable of running any program that can be written
in, say, the C++ programming language. To be sure,
such a computer would require a rather messy com-
piler to convert C++ programs into the correspond-
ing initial states for Rule 110. Run-times would be 
unbearably long, because the simulation requires all
program data to be represented in unary form (rather
than binary), forcing an “exponential slowdown”. De-
coding the program output from the CA trajectories
(the “user interface”) would also be no piece of cake.

But the bottom line is that certain questions
about the behavior of Rule 110 are just as
hard as the “halting problem” for Turing ma-
chines, which is to say that they are unde-
cidable. The only way to try to answer such
questions would be to actually compute the
sequence of states visited by the CA one by
one. In some cases the answer would never
come.

The universal behavior of Rule 110 was first
conjectured by Wolfram around 1985. The re-
sult was proved by Matthew Cook in the mid
to late 1990s. However, Cook was prevented
from publishing this result, because he had
signed an agreement, as an employee of Wol-
fram Research, not to disclose his proof until
ANKS was published. Because the appearance
of ANKS was long delayed, Cook tested this
agreement by presenting his result at a con-
ference at the Santa Fe Institute, at which I was
present. His talk was the highlight of the con-
ference, but Wolfram threatened legal action,
preventing it from appearing in the confer-
ence proceedings. Now that the nondisclo-
sure agreement has expired, Cook’s proof
should become available. I have seen it and I
highly recommend it, because it shows just
how tenuous the original conjecture was—
the proof just barely works. Of course, Wol-
fram firmly believes (because of his principle)

that unless a CA is obviously simple (like Rules 170,
184, and 254), it can simulate a universal Turing ma-
chine. For example, he believes that Rule 30 is also
universal. I find this to be sheer wishful thinking.

The discovery of Rules 30 and 110 is one of 
Wolfram’s greatest contributions to CA theory. Both
CAs have very simple rules and very complicated
behavior. A significant portion of ANKS is devoted
to Rules 30 and 110, and Wolfram speculates often
that their behavior forms the basis for understand-
ing all that is complex in the world around us.
Outer-Totalistic Rules
Once we start considering larger neighborhoods,
higher dimensions, or more colors, the number of
CA rules increases superexponentially. For exam-
ple, if d = 2, k = 2, and ρ = 1, with the Moore neigh-
borhood, there are 2512 different update rules. It 
will not be possible to investigate all of these CAs
in the lifetime of the universe. So attention has 
focused on rules that satisfy one or more simpli-
fying assumptions.

Outer-totalistic update rules are those that depend
only on the current color of a cell and the sum of the
current colors of its neighbors, where the k possible
colors are represented by the numbers {0, . . . , k− 1}.
For the case d = 2, k = 2, and ρ = 1, with the Moore
neighborhood, the colors of the 8 neighbors of a 
cell can sum to anything between 0 and 8, giving 9
possibilities for the sum. There are 2 possibilities 

Figure 2. The first 750 updates for rule 110.
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for the color of the cell itself, giving 2× 9 total
possible inputs and 2 possible outputs for the up-
date rule. Thus, there are 218 different outer-
totalistic CAs for this case.

In general, for outer-totalistic rules with k = 2, it
is common to refer to black cells as alive and white
cells as dead. When a white cell changes to black, the
transition is called a birth. The opposite transition 
is called a death. If a live cell does not die during a
given update, we say that it survives. Outer-totalistic
update rules are commonly specified by giving the
conditions for the birth and survival of a given cell x.
By the definition of outer-totalistic, these conditions
depend only on the number of live cells in the neigh-
borhood of x (not counting x itself).

The most famous CA of all is outer-totalistic, with
d = 2, k = 2, and the ρ = 1 Moore neighborhood.
It is called the Game of Life. The birth condition for
this rule is that exactly 3 of the 8 neighbors be
alive, while the survival condition is that exactly 2
or 3 neighbors be alive.

The Game of Life was discovered in 1970 by John
Conway, who was primarily interested in finding a
simple CA that could simulate a universal Turing
machine. (In Wolfram’s version of history, “Conway
treated the system largely as a recreation.” See ANKS,
p. 877.) During the next decade Conway, Gosper, and
others discovered that the Game of Life had all of
the features that were considered necessary for the
Turing machine simulation. A sketch of their argu-
ment can be found in the 1982 book Winning Ways
for Your Mathematical Plays, by Berlekamp, Conway,
and Guy. Conway’s argument was deemed accept-
able by Wolfram when he cited it in his paper “Twenty
problems in the theory of cellular automata” (1985),
but by the time ANKS appeared his view had changed:

The fact remains that a complete and 
rigorous proof of universality has ap-
parently still never been given for the
Game of Life. Particularly in recent years
elaborate constructions have been made
of for example Turing machines. But so
far they have always had only a fixed num-
ber of elements on their tape, which is not
sufficient for universality (ANKS, p.1117).

It is hard to know what is meant by this state-
ment. An explicit implementation of a Turing ma-
chine in the Game of Life can be found at the web-
site of Paul Rendell. The “tape” in this construction
can be made arbitrarily long, with up to 8 different
symbols available for each cell on the tape. On an
infinite lattice, the tape can be infinitely long.
Rendell’s design for the “head” is expandable to al-
low for up to 16 states, making it more than ade-
quate for the head of a universal Turing machine.
Rendell says his construction was put together “in
1999–2000 mainly using patterns that I created in
the 1980s”. Rendell’s configuration even looks like

a Turing machine (the tape and the head are clearly
visible), and it runs in “real time”, up to a constant
multiple factor.

In the 1982 book cited above, Conway says: “Life
is Universal!…It’s remarkable how such a simple sys-
tem of genetic rules can lead to such far-reaching
results.” So it seems that somebody besides Wolfram
deserves credit for discovering that simple computer
programs can produce highly complex behavior.
And yet Wolfram says that this idea is the “pivotal
discovery that I made some eighteen years ago,” 
and he considers it to be “one of the more impor-
tant single discoveries in the whole history of 
theoretical science” (ANKS, p. 2).

There are many other families of CAs in ANKS.
There are also a few significant ones that cannot
be found there. Outside of ANKS, a good place to
start exploring CAs is David Griffeath’s website,
where you can find a lot of good, genuine mathe-
matics and beautiful color pictures.

Do the Math
Wolfram tells us in ANKS that he has very little use
for mathematicians:

Over the years, I have watched with dis-
appointment the continuing failure of
most scientists and mathematicians to
grasp the idea of doing computer exper-
iments on the simplest possible sys-
tems…[Mathematicians] tend to add 
features to make their systems fit in with
complicated and abstract ideas—often
related to continuity—that exist in mod-
ern mathematics. …One might imagine
that the best way to be certain about 
what could possibly happen in some 
particular system would be to prove a
theorem… But in my experience… it is
easy to end up making implicit assump-
tions that can be violated by circum-
stances one cannot foresee. And indeed,
by now, I have come to trust the correct-
ness of conclusions based on simple 
systematic computer experiments much
more than I trust all but the simplest
proofs (ANKS, pp. 898–9). 

Given this dismissive attitude, it should not be
surprising that some of Wolfram’s ideas do not hold
up so well when examined under the harsh light
of rigorous mathematics.
Wolfram’s Four Classes of CA Behavior
In 1984 Wolfram introduced a classification scheme
for CAs that separated them into four classes. This
idea created quite a bit of excitement, and for
several years serious attempts were made to refine
the definitions of these classes and to develop var-
ious criteria for determining the class of a CA from
numerical or statistical features of its trajectories.
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Nowadays these classes remain useful for de-
scribing certain general features of CA behavior, but
beyond that they have “proved neither subtle nor
fruitful” (to quote Leo Kadanoff). But they play a
significant role in ANKS, and some discussion here
will be useful.

Rule 254 is a typical Class 1 CA. It has an at-
tracting fixed point, the all � state, that attracts
all other states, except for one repelling fixed point,
which is the all � state. In general, Class 1 CAs have
a single attracting fixed point or periodic orbit
whose basin of attraction is all but a few isolated
states. Another way to characterize a Class 1 CA
is to say that “information about initial conditions
is always rapidly forgotten” (ANKS, p. 252).

Rule 170 is in Class 2. Another Class 2 CA is 
Rule 204, otherwise known as the identity map. A
more interesting example is Rule 178, which hap-
pens to be outer-totalistic. The birth condition for
Rule 178 is that at least one of the two neighbors 
be alive, and the survival condition is that both 
neighbors be alive. This rule has two repelling fixed
points (all � and all �). It has infinitely many states
with period 2, in which intervals with � ’s at the even
cells and � ’s at the odd cells alternate with intervals
of the opposite type. From all initial states except
the two fixed points, the system rapidly converges
to one of the period 2 orbits. In general, a Class 2 CA
has many fixed or periodic orbits (possibly modulo
a shift, as in Rule 170), and from most initial states
it will quickly converge to one of those orbits. In a
Class 2 CA “some information in the initial state is
retained in the final configuration…but this infor-
mation always remains completely localized” (ANKS,
p. 252). CAs in both Class 1 and Class 2 are consid-
ered to be “obviously simple” as far as the Principle
of Computational Equivalence is concerned.

Rule 30 is a Class 3 CA. This class is character-
ized by trajectories that have apparent randomness.
But not all Class 3 CAs are as unpredictable as
Rule 30. Consider, for example, Rule 90, whose
update rule is given by U (p, q, r ) = p + r (mod 2) .
Because of the linear nature of this rule, it turns
out to be easy to find an explicit formula for any
given trajectory of Rule 90. Wolfram places both
Rule 30 and Rule 90 into Class 3, primarily on the
basis of the visual appearance of their trajectories,
which is very similar for most initial states. This
appearance reflects the way in which Class 3 CAs
“show long-range communication of information—
so that any change made anywhere in the system
will almost always eventually be communicated
even to the most distant parts of the system”
(ANKS, p. 252).

Rule 110 is in Class 4, as is the Game of Life. Class
4 is described as being the borderline between
Classes 2 and 3, because typical trajectories have
regions with apparently random mixing (somewhat
like Class 3) and regions with localized structures

that either stay stationary or move linearly (some-
what like Class 2). When two such structures col-
lide, various interesting things can happen, as seen
in Figure 2, and it is these interactions that make
Class 4 special. The proofs of universality for both
Rule 110 and the Game of Life make heavy use of
the variety that is found in the interactions. Wolfram
conjectures (on the basis of his Principle of
Computational Equivalence) that all Class 4 CAs are
capable of simulating universal Turing machines.

Do these classes exhaust all the possibilities? Wol-
fram thinks they do. But there are some problems
with this view. First of all, there are many CAs that
can be assigned to more than one class, depending
on the initial state. For example, Rule 184 can act
like it is in Class 1 with some initial states and like 
it is in Class 2 with others. There are even initial
states that make it behave more like a Class 3 CA. 
Wolfram is aware of this fact (as shown by his 
discussion of Rule 184 on pp. 272 and 338), but he
mostly ignores it.

A second problem is that some CAs cannot be
assigned to any class at all. A good example is the
2-dimensional outer-totalistic CA shown in Figure 3.
Births occur if 4, 6, 7, or 8 of the neighbors are alive,
and deaths occur if 4, 6, 7, or 8 of the neighbors 
are dead. Thus, there is a symmetry between the two
colors. For this example, the initial state was a 
random uniform mixture of the two colors � and
� throughout the entire lattice. Since it is not prac-
tical to work on an infinite lattice with such an 
initial state, the size of the lattice in this example
has been restricted to 200× 200, with “wrap-
around” boundary conditions.

The remaining pictures in the figure show the
states after 10, 100, and 1000 updates respectively.
Extensive simulations give convincing evidence for
the conjecture that clustering occurs. In other words,
starting from a very noisy initial state, the system
organizes itself into larger and larger regions, 
each of which primarily contains a single color.
This behavior does not fit any description that I 
have seen of Classes 1–4. Wolfram discusses this
example in ANKS (p. 336), but he does not say any-
thing about how to classify it.

In some ways the system in Figure 3 is like a Class
3 CA running backwards, because the “long-range
communication of information” seems to happen
in reverse, as a complicated initial state becomes
increasingly simplified through clustering. Perhaps
Wolfram would place this CA on the borderline 
between Classes 1 and 2, because clustering could
be interpreted as being midway between being 
attracted to a single fixed point and being attracted
to a large set of fixed or periodic points. But in that
case, a new “Class 5” is warranted, analogous to the
other borderline case, which is Class 4.

In general, there are lots of interesting types of
CA behavior, particularly in 2 dimensions and
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higher, that are not reflected in the four
classes. Yet Wolfram would have us be-
lieve that “…at an overall level the behav-
ior we see is not fundamentally much dif-
ferent in two or more dimensions than in
one dimension” (ANKS, p. 170). I do not
find this kind of oversimplification to be
very useful.

In a sense, Wolfram’s Principle of
Computational Equivalence is an attempt
to simplify things even further by sepa-
rating all dynamical systems into only two
classes: “Class A”, containing the obviously
simple systems, and “Class B”, containing
the universal ones. All of Class 4 and part
of Class 3 (such as Rule 30) are supposed
to be in Class B, and everything else is con-
signed to Class A. Wolfram says there is
nothing more complex than Class A. But
this view is only partially true, as I will ex-
plain in the next two subsections.

Universal CAs
It turns out that there is more than one
kind of universality. So far we have talked
about only the kind that primarily con-
cerns Wolfram, which is the ability to sim-
ulate arbitrary Turing machines. But there
is something known as a Universal CA, or
UCA, that can do more. A UCA with lattice
Λ must be able to simulate every other CA with lat-
tice Λ . Furthermore, the space and time “costs” of
the simulation must be bounded above by con-
stant multiples of the space and time requirements
of the CA being simulated.

What is the difference between simulating an ar-
bitrary Turing machine and simulating an arbitrary
CA? A Turing machine is essentially a computer 
with a single processor (the head), whereas a CA is
a computer with infinitely many parallel processors
(the cells). So even a universal Turing machine with
an infinite tape cannot actually simulate a CA; it can
simulate only larger and larger portions of it at a
slower and slower pace. When a UCA simulates 
another CA, the cells of the UCA are thought of as
being organized into a regular array of “blocks”, with
each block having the task of simulating a single
cell. In this fashion a UCA can simulate the infinitely
many processors (cells) of another CA, using “real
time” and “real space” (up to a multiplicative 
constant), even if the CA being simulated has more
colors or a larger range than the UCA. In practice,
the distinction is important when one is trying to
model something that involves a lot of parallel 
processing.

Wolfram gives a very nice example of a UCA on
pp. 644–56 of ANKS. It is a 1-dimensional CA with
k = 19 and ρ = 2. We are told that it is possible to
reduce the number of colors to seven. The

explanation is very clear and well illustrated. But
on p. 676 he gets sloppy when he makes the tran-
sition from the discussion of UCAs to Rule 110. He
never makes the distinction between the two types
of universality, making it sound like Rule 110 is a
UCA.

Because of certain details about the way in which
data is processed in Matthew Cook’s Rule 110 Tur-
ing simulation, I think it highly unlikely that Rule
110 is a UCA, although I have no proof. 
On the other hand, there are some explicit con-
structions, such as David Bell’s so-called “Unit Life
Cell”, that seem to indicate that the Game of Life
is a UCA. So there is a precise, mathematical sense
in which the Game of Life is capable of perform-
ing more sophisticated computations than appear
to be possible for Rule 110, contrary to the Prin-
ciple of Computational Equivalence. Perhaps UCAs
should be separated from the other Wolfram classes
to form a “Class 6”.

The issue of efficient simulation of massively 
parallel systems is an important one. One of Wol-
fram’s main themes is that complicated mechanisms
(such as Darwinian natural selection) are not required
for explaining the complexity observed in nature.
To put it simply, he says that mechanisms similar
to Rule 110 abound in our physical environment (for
example, in chemical reactions) and Rule 110 equals
a universal Turing machine, which equals Einstein,

Figure 3. Clustering.
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so how hard can it be for nature to produce Einstein?
Raymond Kurzweil has done a fine job of attacking
this argument by asking how nature is able to come
up with the “software” needed to make Rule 110 act
like Einstein. Ben Goertzel continued the attack by
pointing out that nature could not find the time and
space resources to run such software. Rule 110 pretty
much has to be abandoned as Wolfram’s prime ex-
ample of a simple system that can explain nature’s
complexity.

But what about UCAs like the Game of Life?
Presumably they can simulate something highly
parallel like the human brain, since the brain could
be considered to be some sort of CA on a rather 
irregular lattice. In the next subsection I will show
that even a well-programmed UCA will not do 
nature much good if it wants to produce Einstein.
Fault-Tolerant CAs
Even in the most carefully controlled environment,
large-scale computing requires sophisticated error
correction. How much more so in the hustle and
bustle of our natural world? Most of the known
UCAs, such as the Game of Life, are extremely sen-
sitive to errors. Randomly changing the color of a
single cell is often enough to turn an elaborate
construction like Paul Rendell’s Life Turing ma-
chine into garbage. It seems highly unlikely that the
Game of Life can carry on any sort of nontrivial sim-
ulation if it is subjected to random errors, even if
the errors are quite rare. In other words, I do not
believe that the software exists that can make some
natural version of the Game of Life reliably simu-
late a complex living organism.

A fault-tolerant universal CA is a UCA whose abil-
ity to simulate other CAs is not affected by random
color changes throughout the lattice, provided
such “errors” are sufficiently sparse. The existence
of such systems was proved by Peter Gacs [2]. His
1-dimensional example is incredibly complicated,
and the proof requires more than 200 pages. Gacs
has also constructed examples in higher dimen-
sions, where matters are somewhat easier. But his
2-dimensional rule is still far more complicated
than, say, the Game of Life. He has a 3-dimensional
example (based on ideas of John Reif and Andrei
Toom) which is relatively simple. It consists of a
2-dimensional array of synchronized 1-dimensional
UCAs that perform mutual error correction. But
such a construction does not seem like something
that would easily arise in nature.

Thus, it is not clear that nature could easily find
a mechanism that behaves like a fault-tolerant UCA
without some “guiding hand” like natural selection.
But Wolfram’s thesis seems to require nature to 
do just that. Until someone finds a simple fault-
tolerant UCA, the main theme of ANKS remains
wishful speculation.

At any rate, I consider fault-tolerant UCAs to be
more powerful and sophisticated than UCAs, which

are likely to be more powerful than Rule 110. I pro-
pose that we assign fault-tolerant UCAs to “Class
7”. There is even a further level of computational
sophistication, Gacs’s so-called “self-organizing”
fault-tolerant UCAs, which may also be important
to nature. Life is not necessarily so simple after all!
Metastability
“Finite size effects” are the bane of computer exper-
imentation with CAs. It is not unusual to observe a
particular behavior in a CA computer simulation only
to find out much later that this behavior evaporates
when the simulation is run on a computer with larger
resources (space, time, or both). In the interim a lot
of time can be wasted theorizing about the illusory
behavior that seemed so intriguing in the smaller 
system.

The computer naturally restricts the lattice in any
simulation to a finite size. For 1-dimensional systems
it is possible to run simulations on very large finite
lattices, and conclusions based on such experiments
can be reasonably reliable. But for 2-dimensional 
systems, even simulations with modest lattice sizes
like 1000× 1000 can become unwieldy, and many
phenomena require considerably larger lattices for
reliable observation. Furthermore, the effects of
“boundary conditions” (how to define the update 
rule at the edges of the finite lattice) can be quite 
pronounced in 2 dimensions. Thus, it is not too 
surprising that most of the examples in Wolfram’s
book are either 1-dimensional or 2-dimensional 
with fairly small lattice sizes. Systems in 3 or higher 
dimensions receive very little attention.

Here is a simple example of a finite size effect in
2 dimensions that actually fooled some experimen-
talists. It is an outer-totalistic CA with two colors,
using the range 1 von Neumann neighborhood. The
birth rule is that at least 2 of the 4 neighbors be 
alive, and the survival rule is that all live cells survive.
This model is called bootstrap percolation. It is not
discussed in ANKS in spite of its importance.

If the initial population of live cells in bootstrap
percolation is random but sparse, the system seems
to rapidly converge to a fixed point, consisting of
various rectangular “islands” of live cells, surrounded
by a “sea” of dead cells. Run 100 experiments with
this system on a 1000× 1000 lattice, using initial
states in which the live cells are randomly distrib-
uted with density p = .03, and you are likely to see
this same Class 2 behavior over and over. Usually
the system finds a fixed point within about 60 up-
dates.

When the initial density is changed to p = .05
on a 1000 × 1000 lattice, we usually see Class 1
behavior. One or more of the islands continues to
grow, feeding off of “debris” that consists of smaller
islands and individual live cells. Eventually the 
system reaches the fixed point in which every cell
is alive. This phenomenon led some experimen-
talists to believe that there is a critical value of p
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(in this case, somewhere between .03 and .05) that
separates the two types of behavior. They were
wrong. The Class 2 behavior observed for small p
is only metastable; it is a finite size effect. The
threshold for p goes to 0 as the lattice size L goes
to infinity. The system was carefully analyzed by
Michael Aizenman and Joel Lebowitz [1], who gave
good quantitative information about the amount
of space and time that is required to see the Class
1 behavior. More recently, Alexander Holroyd [4]
proved a much more precise result, which is that
the asymptotic threshold occurs when p → 0 and
L→∞ in such a way that limp logL = π2/18.

In retrospect, it is obvious that the Class 2 be-
havior of bootstrap percolation is a finite size effect,
because there is a very simple argument, based 
on the Borel-Cantelli Lemma from probability 
theory, that in a large enough lattice a sufficiently
large island will appear that will continue to grow
without bound. But other finite size effects are not
always so easy to detect.

Has Wolfram ever been fooled by a finite size
effect? Possibly. Consider the 2-dimensional outer-
totalistic system shown in Figure 4. It has two 
colors and uses the range 1 Moore neighborhood.
The birth condition is the same as for the Game of
Life (exactly 3 of the 8 cells must be alive), but the
rule for survival is different: a live cell survives only
if no more than 4 of its 8 neighbors are also alive.
This example is featured on p. 178 of ANKS, 
although Wolfram’s description there of the update
rule is unfortunately incomplete. (This is not the
only error that I have found in his descriptions of
CA rules: one of the formulas that he gives for
Rule 110 on page 869 is also incorrect.)

Wolfram says that this CA exhibits a growth pat-
tern whose “shape closely approximates a circle.”
The picture in ANKS depicts the state of the system
after 400 updates, starting from an initial state in
which the “finite seed” ������� is surrounded
by an infinite sea of � ’s. I have run this example for
several thousand more updates, and the disk-shaped
pattern seems to continue to grow indefinitely. Sim-
ilar behavior is found using many other such seeds.

But matters are not as simple as one might
think. If we start the system with the seed �����,
we observe the familiar growing disk shape for
roughly 2,700 updates. Then something strange
happens. At the left boundary of the disk, a small
but very distinct peak suddenly appears. This peak
soon dominates the left side of the disk, and it ap-
pears to be a permanent feature.

What happened? The pattern of live cells around
the edge of the growing shape fluctuates quite
unpredictably. It happens that somewhere around
2,750 updates these fluctuations produce a rare con-
figuration that generates a “spike” that grows
rapidly, sticking straight out from the disk. As the
spike lengthens, the area around it is filled in, and

the peak is formed. I learned about the seed for this
example from David Griffeath, who got it from
Matthew Cook. As far as I know, Wolfram did not
know about this seed when ANKS was published.

Will a similar peak eventually appear if we use
Wolfram’s seed? No one knows. I have run the sys-
tem from that seed for more than 10,000 updates
without seeing anything. After that, my computer
slows down to a crawl. But I conjecture that the wild
fluctuations around the edge of the shape must even-
tually produce the special pattern needed for the
peak-producing spike, provided they do not first
create some other strange feature.

Wolfram first considered the possibility of cir-
cular growth in his paper with Norman Packard,
“Two-dimensional cellular automata” (1984). The
examples in that paper were not very convincing,
because the circular shapes were so rough. The ex-
ample in ANKS is supposed to be an improvement.
Wolfram’s experiments convinced him that he had
finally found a CA that exhibited an asymptotic
growth pattern that was nearly perfectly circular.
But it now seems likely that his conclusion is wrong.
Computer experiments cannot be trusted.
Intrinsic Randomness Generation
Wolfram has a lot to say about randomness in ANKS.
Much of Chapter10 is devoted to the discussion of his
practical definition of randomness, which is more or
less that something is random if it looks random and
passes the standard statistical tests for randomness.

Figure 4. A closeup of an emerging peak.
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Anyone who has used a pseudorandom number gen-
erator in computer simulations should have some
sympathy for this approach, even though it ignores
interesting recent work that brings mathematical
rigor to the notion of pseudorandomness (for an in-
troduction, see [3]).

Wolfram also gives a lot of attention to something
he calls intrinsic randomness generation, which I will
refer to as “IRG”. This idea first appeared in his 1985
paper entitled “Origins of randomness in physical
systems”, and it is one of those that he says were
not adequately understood by the rest of the sci-
entific community.

According to Wolfram, IRG is one of three differ-
ent “sources” of randomness in dynamical systems.
The other two are (i) randomness in the initial con-
ditions, which he says is the primary preoccupation
of chaos theory; and (ii) random noise in the envi-
ronment, which can be considered the reason for
stochastic process theory. These two types of ran-
domness are considered to come from “outside” of
a dynamical system. IRG is something that is sup-
posed to arise “within” a deterministic dynamical
system without any help from the outside. Wolfram
speculates that since the universe is a determinis-
tic CA-like system, all randomness must be ulti-
mately traceable to IRG. And, of course, he claims
IRG as his own discovery.

Rule 30 provides Wolfram’s favorite example
of IRG. It is a deterministic system, so random
noise is not an issue. And, as seen in Figure 1, it
does not seem to need randomness in the initial
conditions to behave in an apparently random fash-
ion. By all of the standard tests, Rule 30 produces
better random sequences than any of the other
pseudorandom number generators in common use,
and Wolfram has every right to be proud of it.

But in what way is IRG different from, say, the
kind of behavior that can be observed in models fa-
miliar from chaos theory? Here is Wolfram’s answer:

…How can one tell in an actual experi-
ment on some system in nature to what
extent intrinsic randomness generation
is really the mechanism responsible?
…The clearest sign is a somewhat un-
expected phenomenon: …if intrinsic
randomness generation is…at work,
then the precise details of the behavior
can…be repeatable (ANKS, p. 323).

The subsequent discussion makes it clear that
Wolfram intends this repeatability to be present
even if small random perturbations are made to 
the system, as will inevitably happen in physical 
experiments.

The point of this criterion is to make a clear dis-
tinction between IRG and the kind of unpredictable
behavior typically found in chaos theory, which is
always closely linked to “sensitive dependence”. In

chaos theory sensitive dependence is not suffi-
cient for chaotic behavior, but it has always been
considered necessary. Wolfram’s repeatability cri-
terion implies that sensitive dependence is not
necessary when IRG is the dominant force.

If Wolfram could produce a legitimate example
of this kind of repeatability, then he would have
something very surprising. And indeed, he claims
to have both theoretical and physical examples. Un-
fortunately, his one theoretical example contains
a fatal mathematical error (as I will explain shortly).

Wolfram mentions a few physics and biology 
experiments (ANKS, p. 976) that are supposed to
demonstrate repeatably random behavior, but since
no references are given, we are forced to take his
word for it. In his 1985 paper there is an actual ref-
erence to a physics experiment that was run five
times with nominally identical initial conditions. For
an initial time segment, there are two different
outputs: one that is shared by three of the runs and
another that is shared by two of the runs. After the
initial time period, all five outputs diverge from one
another. This is a sort of weak repeatability that is
interesting, but it is not a completely convincing
example of Wolfram’s idea. A plausible explanation
is given in the experimental report that reminds me
somewhat of a phenomenon observed in models
of billiards, where trajectories with similar initial
conditions can stay close to one another until some
crisis (a collision) causes them to diverge. Such
models are considered to have sensitive depen-
dence, as Wolfram himself explains with a similar
example involving mirrors on p. 311 of ANKS. So
I do not buy into Wolfram’s physical examples.

For his theoretical example of repeatability,
Wolfram naturally turns to Rule 30. He admits that
this model does in fact exhibit sensitive depen-
dence (and hence nonrepeatability) when it is 
perturbed by randomly changing the color of one
or more cells. But then he introduces a second “less
drastic” kind of perturbation and finds that the
trajectories of Rule 30 are repeatable under such
perturbations. Unfortunately, it turns out that these
perturbations are so mild that this kind of re-
peatability occurs for every CA, as I will now show.

For CAs having the two colors � = 0 and � = 1,
Wolfram’s perturbation works as follows. First, 
enlarge the color “palette” to be an interval I, 
producing a continuous “gray scale”. Then extend
the update rule U to all of I in some smooth way.
For example, one can use a polynomial expression
for U, as in Table 1. Each update is now performed
in two steps: first, the color at each cell is randomly
perturbed by a small amount, and then the ex-
tended update rule is applied.

This “less drastic” perturbation scheme would be
convincing, except that Wolfram has a very special
way of extending the update rule. His extended
rule takes the form f ◦ V , where V is a polynomial
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version of the original update rule U and f is a
smooth function on R with fixed points at 0 and 1.
Furthermore, f ′(0) = f ′(1) = 0. (Actually, I have sim-
plified things slightly from what Wolfram does. But
my basic argument is still valid for his version.) So,
in a sense, the update is actually performed in three
steps: first do the random perturbation, then apply
V , then apply f.

It is this extra step involving f that invalidates
the procedure as any sort of useful criterion. Using
the properties of f, one can easily prove that for
any given V , the size of the perturbations can be
chosen small enough so that after f is applied, the
result is always extremely close to 0 and 1. In ef-
fect, the fixed points of f are so stable that they
virtually nullify the perturbations before they have
any chance to impact the behavior of the system.
The nature of the underlying CA rule is irrelevant.

Thus, ANKS contains no mathematical example
of “intrinsically random” behavior without sensi-
tive dependence, and the physical examples are ei-
ther uncheckable or unconvincing. Rule 30 is merely
a very good example of a dynamical system that
has chaotic trajectories and sensitive dependence.
The fact that some of these trajectories have “sim-
ple” initial conditions is interesting but not at all
unprecedented. There are many well-known ex-
amples of simple dynamical systems for which a
large set of initial conditions (including simple
ones) lead to motion along a “strange attractor”.
Such motion can be quite unpredictable. If this is
IRG, then Wolfram has merely “discovered” a fancy
new name for a well-known phenomenon.

In ANKS Wolfram says that “…the core of this
book can be viewed as introducing a major gener-
alization of mathematics” (p. 7). In this he is entirely
mistaken, but there are at least two ways in which
he has benefited mathematics: he has helped to 
popularize a relatively little-known mathematical
area (CA theory), and he has unwittingly provided
several highly instructive examples of the pitfalls
of trying to dispense with mathematical rigor.

For Further Study
The most immediate source for learning more
about CAs is David Griffeath’s website, psoup.
math.wisc.edu. There you will find numerous
links to other Web resources, including software
for running CA simulations. For recent progress in
explicit implementations of universal computa-
tion, see Paul Chapman’s Game of Life version of
a “Universal Minsky Register Machine” at www.
igblan.com/ca. A classic book on CAs is [6]. It was
written by two pioneers in the field and has a per-
spective that is quite different from Wolfram’s.
There is a lot more to CA theory than can be found
in ANKS, as you can determine for yourself by ran-
domly browsing the Web (for example, try investi-
gating “cyclic cellular automata”, which are not

mentioned in ANKS). Wolfram’s papers on CAs and
complexity theory can be found at his website
www.stephenwolfram.com. Another Wolfram web-
site, www.wolframscience.com, contains a grow-
ing set of “interactive tools” that supplement ANKS.

I benefited from conversations with many math-
ematicians, including David Griffeath, Peter Gacs,
Rick Moeckel, and Bill Casselman. David and Bill
also helped me considerably with the figures, which
were generated using the freely available software
MCell and Life32. I am also grateful for several
comments contributed by readers of the online
version of this article.
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The cover sequence—which should be read by columns, left to
right—is based on a design due to Lawrence Gray, and accompanies his

review of Stephen Wolfram's book, A New Kind of Sci-
ence. Gray comments, “The heart-shaped patterns show
a sequence of states visited by a simple 2-dimensional
cellular automaton. The rules of the CA are these: at
each update, a white cell turns red if exactly 3 of its 8
surrounding neighbors are red, and a red cell turns
white if 5 or more of its 8 surrounding neighbors are
red. Otherwise, the color of a cell remains unchanged.

“Starting with finitely many red cells, it is common
for the system to quickly produce an amorphous growing blob of red
cells whose shape becomes roughly circular with time. After watching
numerous computer simulations, one is tempted to agree with Wolfram,
who suggests in his book that such circular growth characterizes the
asymptotic behavior of this cellular automaton.

“But more careful exploration reveals a surprise. Some special pat-
terns, such as the heart-shape shown, produce growth only in one di-
rection. If you look carefully, you can see 3 ‘heartbeats’, each lasting 4
time units. With each heartbeat, the heart grows 2 units in the vertical
direction. Matthew Cook discovered that a pattern of this type can sud-
denly appear, in a way that seems almost accidental, near the edge of
a growing blob. As a result, the blob develops a distinct corner that ap-
pears to be permanent, and its asymptotically circular shape is spoiled.
It may well be that it is inevitable (or at least very common) for such
corners to develop on the shapes produced by this particular cellular
automaton, but only if they are allowed to grow for a very long time.
The phenomenon will not be captured by the typical computer simu-
lation, which ends too soon.''

—Bill Casselman (notices-covers@ams.org)
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