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Introduction 
“​C++ is a general-purpose programming language providing a direct and efficient 
model of hardware combined with facilities for defining lightweight and efficient 
abstractions. 

 
Or terser: 
 
C++ is a language for developing and using elegant and efficient abstractions.​” 
 

— Bjarne Stroustrup, ​The C++ Programming Language (4th Edition) 
 
The Coroutines TS provides users with an elegant and efficient abstraction for writing 
asynchronous code. We mean that as both sincere praise, and as a critique: the Coroutines TS 
provides an abstraction, but it does not provide programmers with the facilities they need to 
define their own elegant and efficient abstractions. Furthermore, the TS’s abstraction prioritizes 
the asynchronous use case in a variety of ways, which prevents it from being general-purpose. 
It gives programmers ways of extending and reusing the asynchrony abstraction, but they 
remain locked into many of the design tradeoffs motivated by the original use case. 
 
Fundamentally, the Coroutines TS does not provide a direct and efficient model of hardware : 1

the primitive objects and operations that are used to implement coroutines are hidden behind an 
abstraction boundary. 
 
Nearly all of the most serious issues we identified in ​P0973R0​ are reflections of this problem: 

● Programmers cannot reliably prevent coroutine-based code from allocating memory, 
even if they know the allocation is unnecessary, because the allocation takes place 
behind the abstraction boundary. 

● Programmers cannot control variable-capture semantics, and can all too easily overlook 
them entirely, because the capture is hidden behind an interface that presents itself as a 
function call. 

● The library bindings are extremely complex because different abstractions require the 
underlying primitives to be composed in different ways. The TS supports this by 
providing APIs for the programmer to ​configure how they are composed​, rather than 
permitting the programmer to ​write code that composes them​. 

● The ​co_await​ keyword is an overt manifestation of the TS’s preference for the 
asynchronous use case. 

 

1 We suggest as a friendly amendment that the quote should say “a direct and efficient model of ​the 
platform​”. For example, C++ templates provide a direct and efficient map of the compiler’s code 
generation facilities, rather than of any hardware feature. 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0973r0.pdf


In this paper, we propose exposing a minimal set of coroutine primitives that map directly to the 
underlying implementation. This results in a design for coroutines that is substantially simpler 
and yet can efficiently support a broader range of uses. 
 
We see no practical way of making our proposed revisions backwards-compatible with the 
Coroutines TS design, so they must be adopted before coroutines reach an IS (if at all). Straw 
polling in Jacksonville indicated a strong desire to ship coroutines in C++20, but we are 
uncertain as to whether our proposal can be implemented and sufficiently vetted in the time 
remaining, so as an alternative we also present a much more minimal set of changes to the TS, 
which we believe are feasible in the C++20 timeframe, to address some of the concerns from 
P0973. However, these alternative changes necessarily avoid addressing the fundamental issue 
of hidden primitives, and instead focus on adding yet more configuration options to patch use 
cases already known to be problematic. 

Non-goals 
This proposal is solely concerned with “stackless” coroutines, and does not address the kinds of 
problems that are solved by “stackful” coroutines. We fully support the committee’s decision to 
pursue stackless and stackful coroutines independently. 
 
This proposal does not attempt to extend coroutines to be a fully general monad facility. For 
programmers who wish to adopt a monadic approach, both our proposal and the TS are limited 
to supporting ​linear monads​, because they do not support copying a suspended coroutine 
frame, and consequently do not support nondeterministically resuming from the same state with 
multiple inputs.  

Proposed Design 

Unwrap operator syntax 
We propose replacing the ​co_await​ keyword with an operator-like token, which we tentatively 
suggest spelling ​[<-]​ (we are very open to committee feedback on the spelling): 

optional​<string>​ f​(); 
string​ s ​=​ ​[<-]​ f​(); 

 

future​<string>​ g​(); 
string​ s ​=​ ​[<-]​ g​(); 

 

expected​<string>​ h​(); 
string​ s ​=​ ​[<-]​ h​(); 



 
Our proposed spelling is intended to suggest ​unwrapping​, which we regard as the most central 
meaning of these expressions. Correspondingly, we propose to refer to them as ​unwrap 
expressions​ rather than “await expressions”, and we refer to the operand of an unwrap 
expression as a ​wrapper​ (and its type as a ​wrapper type​). 
 
An operator-like token has two major advantages over an English-derived keyword: 

● An operator can more easily avoid tying itself to a particular use case, as ​co_await​ is 
tied to asynchrony. 

● An operator need not choose between colliding with existing identifiers in user code, or 
being so awkwardly spelled that no existing code uses it. It must avoid colliding with 
existing C++ syntax, but that’s a far more manageable problem.  

 
Option:​ We could also introduce a binary operator analogous to ​->​, such that ​x ​op​ y​ is 
equivalent to ​([<-]x).y​. This would make it easier to chain applications of the unwrap 
operator. 
 
Alternative:​ The unwrap token could be a suffix, rather than a prefix. This has the advantage of 
naturally supporting chaining: 

optional_struct​[->].​optional_sub_struct​[->].​field 

However, this would depart from C++ convention (unary operators are generally prefixes), and 
could reduce readability by making the token less prominent. 
 
Alternative:​ A different keyword spelling could be less use-case-specific than ​co_await​. 
However, any keyword will still suffer from the need to avoid collisions with identifiers, and it is 
doubtful if any keyword can fully capture the breadth of possible use cases. Our best suggestion 
along these lines would be something like ​co_unwrap​, but unwrapping is not the sole meaning 
of this operation; just the most central one. For example, it’s a poor fit for unidirectional 
generators: 

co_unwrap std​::​yield​(​foo​);​  ​// Huh? 

Unwrap operator semantics 
Consider how an expression ​co_await x​ is evaluated: the state of the enclosing coroutine is 
reified as an object, and passed to an algorithm that is controlled by the library associated with 
x​. That algorithm may eventually do two things: 

1. return a value to the coroutine’s caller, and 
2. specify the value of the ​co_await​ expression, and resume the coroutine by invoking it. 

The first is mandatory and synchronous, whereas the second is optional and may be 
synchronous or asynchronous. 
 



Notice that both suspension and resumption of the coroutine act as inversions of control; this is 
most obvious in the case of resumption, where control returns from an expression via a function 
call, rather than a ​return​ statement, but the initial transfer of control (from a stack frame to an 
algorithm that takes that frame as input) is effectively a complementary inversion of control. 
 
We propose to allow the library to implement that entire algorithm directly in C++ code, as a 
function which takes a coroutine object and returns the value that is returned to the coroutine’s 
caller, while arranging for the coroutine to be resumed in whatever manner is appropriate to the 
library. This change is motivated by the observation that C++ code is a far simpler and more 
general way to specify an algorithm than overloading the ~15 extension points of a fixed 
algorithm specified by the standard. 
 
Specifically, we propose specifying the algorithm by overloading ​operator[<-]​. Here’s an 
example of such an overload for ​expected<T,E>​: 

template​ ​<​typename​ T​,​ ​typename​ U​,​ ​typename​ E​,​ ​typename​ ​Coroutine​, 
          ​typename​ ​SuspendPoint​> 
expected​<​U​,​ E​>​ ​operator​[<-]( 
    ​const​ expected​<​T​,​E​>&​ e​,​ ​Coroutine​&​ coroutine​,​ ​SuspendPoint​ s​, 
    implicit_convert​<​expected​<​U​,​ E​>>&​ final_return​)​ ​[<-]​ ​const​ T​&​ ​{ 
  ​if​ ​(​e​.​has_value​())​ ​{ 
    tail ​return​ coroutine​(*​e​,​ s​,​ final_return​); 
  ​}​ ​else​ ​{ 
    ​return​ unexpected​(​e​.​error​()); 
  ​} 
} 

(See ​below​ for a discussion of ​tail return​) 
 
An ​operator[<-]​ overload’s arguments are as follows (in order): 

1. The object being unwrapped (this is the implicit object argument, if the operator is 
defined as a member). 

2. The coroutine that contains the unwrap expression being executed. 
3. A tag representing the point at which the coroutine was suspended (i.e. the specific 

unwrap expression being evaluated). 
4. The “final return functor” that was passed into the coroutine when it was previously 

resumed. In addition to its role inside the coroutine (discussed below), this object can be 
used as a side channel to propagate information from one suspension to the next.  

operator[<-]​’s return value becomes the value returned to the caller who most recently 
resumed the coroutine. The coroutine can be resumed again by invoking it; that invocation takes 
arguments representing the value of the unwrap expression, the suspend point where it is 
currently suspended, and a final return functor. The final return functor is used to handle the 
coroutine’s final return value; implicit and explicit ​return​ statements in the coroutine definition 
are transformed into invocations of the final return functor, and its nested member ​return_type 
determines the return type of the coroutine (we can’t use ​decltype​ for this, because the functor 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r6.html


may be invoked with different argument types in different contexts). The final return functor also 
acts as a useful hook for ADL: because the functor is generally specified when the coroutine is 
created, it enables different kinds of coroutines to select different ​operator[<-]​ overloads, 
even if the wrapper type is the same. 
 
Thus, the example above says that if ​e​ holds a ​T​ value, the coroutine is resumed, with ​*e​ as the 
value of the unwrap expression. This happens synchronously as part of the ​[<-]​ operation, so 
even though the coroutine returns when the ​[<-]​ operation returns, the effect is as if the ​[<-] 
operation simply returned control to the coroutine, which then returns normally. On the other 
hand, if ​e​ holds an error, that error is returned immediately to the coroutine’s caller, and 
consequently the coroutine returns immediately, and the remainder of the coroutine is never 
executed. 
 
In this case, the final return functor type is a simple generic helper that implicitly converts its 
argument: 

template​ ​<​typename​ T​> 
struct​ implicit_convert ​{ 
  ​using​ return_type ​=​ T​; 
  ​template​ ​<​typename​ U​>​ T ​operator​()(​U​&&​ u​)​ ​{​ ​return​ std​::​forward​<​U​>(​u​);​ ​} 
}; 

(Like all libraries discussed in this paper, this is merely an example; we are not proposing it for 
standardization at this time.) 
 
Note that when evaluating an unwrap expression, control leaves the enclosing coroutine 
(without exiting any scopes) before the ​operator[<-]​ overload is invoked. Consequently, if an 
operator[<-]​ overload throws an exception, the coroutine will not be found during stack 
unwinding. An unwrap expression can only throw if its operand throws, or the coroutine is 
explicitly resumed with an exception via the ​raise()​ operation discussed ​below​. 
 
We deliberately speak in terms of “unwrap expressions” rather than “the ​[<-]​ operator”, 
because the ​[<-]​ token doesn’t precisely behave as an operator- it affects control flow, rather 
than merely being a syntactically-sugared function call. In this respect, ​[<-]​ draws on the 
precedent set by ​new​. 

Return type(s) 
Because of the aforementioned inversion of control, this function effectively has two return 
types: the type of the unwrap expression (in the domain of ordinary user code), and the type 
returned from the function body (in the inverted domain of the library). The purpose of the ​[<-] 
const T&​ suffix on the function signature is to specify the type of the unwrap expression, while 
ordinary return type syntax represents the inverted return type. Both types form part of its API 
(and hence part of its signature), and which one to treat as “the” return type will depend on the 
context. For example, the inverted return type is the return type for purposes of reading the 



function body, which is our main motivation for having it occupy the return-type position in the 
signature. However, for purposes of name lookup and overload resolution, it makes more sense 
to treat the user return type as the return type, because the user return type is determined by 
the function implementation (although, unfortunately, not in a way that permits it to be easily 
deduced), whereas the inverted return type has to match the return type of the coroutine. 
 
Indeed, for those purposes and for template argument deduction, we actually need the inverted 
return type to behave like a parameter, because ​operator[<-]​ effectively behaves like an 
implicit conversion from the operand type to the coroutine return type, so we need both types to 
participate in name lookup and resolution. This is one purpose of the ​FinalReturn​ parameter. It 
would be nice to avoid the duplication between the actual return type and 
FinalReturn::return_type​ (we are very open to suggestions on this point), but we note that 
this minimal burden falls only on authors of wrapper libraries, and we expect those to be 
relatively rare. 
 
Alternative:​ The syntactic return type could represent the user return type, and the special 
syntax could represent the inverted return type. This would eliminate the need for the nested 
typedef ​return_type​ (and the associated duplication), at the cost of making the function body 
more surprising. Alternatively, we could require special syntax for both types, to minimize the 
risk of misinterpretation. We are very open to committee guidance on how to syntactically 
represent this rather odd situation. 
 
Alternative:​ ​operator[<-]​ could be defined to return ​void​, with the final return functor 
propagating its output via a library-defined side channel. This can be a useful technique in some 
cases (see e.g. the ​future example​), but in others (such as the ​expected​ example we’ve just 
seen), it’s much cleaner and simpler for ​operator[<-]​ to return a value. 
 
Note that for simplicity, this example glosses over the issue of qualifiers on the ​expected<T,E> 
object: like ​*e​, ​[<-] e​ should be mutable if and only if ​e​ is mutable, and should be an rvalue if 
and only if ​e​ is an rvalue. This can be accomplished via a set of four overloads (with the user 
return type qualified to match the parameter), and/or perfect forwarding (with the user return 
type computed via a metafunction such as ​P0847R0​’s ​like_t​). 

The suspend point parameter 
The suspend-point arguments will represent different suspend points with different types, so that 
the invocation of ​coroutine​ can be dispatched statically. However, the types are implicitly 
convertible to ​size_t​, and ​Coroutine​ will be overloaded to take ​size_t​ and dynamically 
dispatch appropriately (e.g. via a ​switch​). The suspend points, when converted to ​size_t​, will 
be guaranteed not to equal ​0​ or ​MAX_SIZE​ so that both the implementation and the wrapper 
library have the option of using those values as sentinels for the beginning and end of 
execution. 
 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0847r0.html


Decoupling the suspend point from the coroutine has important performance benefits. In many 
cases (notably, generators) the library will need to persistently store a coroutine across many 
suspensions, tracking the suspend point dynamically. This design enables the library to track 
the suspend point dynamically, while retaining full static knowledge of the coroutine object itself. 
This in turn enables many optimizations. For example, with a dynamic suspend point and a 
static coroutine, the optimizer’s existing constant folding and propagation logic should already 
be sufficient to eliminate the dynamic dispatch in many cases. On the other hand, if the 
coroutine is type-erased, eliminating the dynamic dispatch would essentially require 
devirtualization, a notoriously challenging form of optimization. These optimizations will be 
especially critical for generators, where the dispatch is more likely to be in a tight inner loop. 
 
coroutine​ also provides a ​raise()​ method, which takes a ​std::exception_ptr​ and a 
dynamic suspend point , and has the effect of resuming the coroutine as though the ​[<-] 2

operation had thrown the given exception. Note that if the coroutine does not catch it, the 
exception will propagate back into the ​raise()​ caller. 
 
The return type of ​operator[<-]​ must be convertible to the return type of ​Coroutine​, because 
the return value of ​operator[<-]​ becomes the return value of the coroutine. Typically, the 
return type will be an instantiation of the same template as the wrapper, but that is not a 
requirement, and there are occasional use cases for deviating from that convention. 
 
Alternative:​ We could instead have ​operator[<-]​ take a single continuation argument, which 
is callable with a single argument (the value callback) to resume the coroutine, and for which the 
suspension point is a hidden implementation detail. This would preclude the optimization 
discussed above (erasing the suspension point but not the coroutine), so we would probably 
need to permit wrapper types to provide overloads of either form, depending on whether they 
can take advantage of that optimization. This would provide one slight simplification: the 
suspend points for a given coroutine could be different values of a single type, since the 
two-argument form is only needed when the suspend point is going to be type-erased anyway, 
so the signature would be more like 

template​ ​<​typename​ T​,​ ​typename​ E​,​ ​typename​ U​,​ ​typename​ E2​,​ ​typename​ ​Coroutine​> 
expected​<​U​,​ E2​>​ ​operator​[<-]( 
    ​const​ expected​<​T​,​E​>&​ e​,​ ​Coroutine​&​ coroutine​,​ size_t suspend_point​, 
    implicit_convert​<​expected​<​U​,​ E2​>>&​ final_return​)​ ​[<-]​ ​const​ E​& 

 
However, permitting two syntactically and semantically different forms of ​operator[<-] 
overload seems like unnecessary complexity. Overloads of ​operator[<-]​ should be fairly rare, 
so there’s relatively little benefit in making them easier to write, and there’s a relatively high risk 
of inconsistency creating confusion. 

2 Static suspend point overloads could also be added, but we suspect that if you care about the cost of a 
single switch during exception handling, you’re misusing exceptions. 



Coroutine lambdas 
Since ​operator[<-]​ overloads take coroutine objects as inputs, we need a corresponding way 
to create coroutine objects. We propose to use lambda expression syntax for this purpose, 
since it has exactly the properties we need: it lets us define a callable object from a function 
body, and allows us to explicitly specify capture semantics. To distinguish coroutine lambdas 
from ordinary lambdas, we propose that coroutine lambdas should have the ​do​ keyword in place 
of the argument list: 

future​<string>​ foo​(); 
future​<int>​ bar​(); 
… 

auto​ my_coroutine ​=​ ​[]​ ​do​ ​->​ future​<int>​ ​{ 
  ​int​ i ​=​ ​([<-]​foo​()).​size​(); 
  ​return​ i ​+​ ​[<-]​bar​(); 
}; 

 
A coroutine lambda is much like an ordinary lambda, except that its state includes not only its 
captures, but also any local variables that must be preserved across suspensions. Similarly, it 
exposes not only a call operator for the initial invocation, but also call operators and ​raise() 
methods for resuming execution, as described earlier. 
 
Coroutine lambdas cannot take parameters. This is for reasons of safety: the code in a 
coroutine may continue executing after the initial function call has returned (from the caller’s 
point of view), so if any temporary values were passed to pointer or reference parameters of the 
coroutine, they would be left dangling. The inputs to a coroutine lambda are instead expressed 
via the capture group. See ​below​ for how coroutine lambdas can be used to define ordinary 
functions with parameters, etc. 
 
This design has two major benefits: first, it enables library code to control the creation, usage, 
and destruction of coroutine frames in exactly the same way as any other object (and in 
particular, allows the creation of coroutine libraries that are allocation-free by construction, 
rather than at the whim of the optimizer). Second, the capture syntax gives programmers explicit 
control over capture semantics (in the Coroutines TS, capture semantics are controlled by the 
parameter types, but parameter types are API-visible, and so API owners are not always at 
liberty to change them). Use of capture syntax also leverages programmers’ existing intuitions: 
reference and pointer inputs to a coroutine are potentially hazardous in the same way, and for 
the same reasons, as the reference and pointer captures of an ordinary lambda. 
 
Note that exceptions have no special semantics inside a coroutine: any exception that isn’t 
caught in the body of the coroutine will propagate to the caller that resumed the coroutine 
(which will typically be library code associated with the coroutine, so this shouldn’t have any 
major functional effects). 



 
Alternative:​ we could specify that exceptions that escape the coroutine are forwarded via the 
final return functor. This would provide some minor benefits (primarily, greater consistency in 
how exceptions and ordinary returns are propagated), but also some minor drawbacks: it would 
complicate the API for the final return functor, and we would not be able to handle exceptions 
thrown from tail calls (i.e. unwrap expressions and return statements), which may be surprising, 
and may limit the consistency benefits. 

Expository implementation 
The following example illustrates how a compiler might generate equivalent C++17 code for a 
given coroutine. Of course, this is not how we expect coroutine compilation to actually work, but 
it can serve as a “reference implementation” to understand the API and behavior of coroutine 
objects. 
 
Consider the following code: 

expected​<​string​,​ ​Err​>​ foo​(​const​ ​string​&​ s​); 
expected​<​int​,​ ​Err​>​ bar​(); 
 

void​ f​(​const​ ​string​&​ s​)​ ​{ 
  ​auto​ coroutine ​=​ ​[&​s​]​ ​do​ ​->​ expected​<​int​,​ ​Err​>​ ​{ 
        ​int​ i ​=​ ​([<-]​foo​(​s​)).​size​(); 
        ​return​ i ​+​ ​[<-]​bar​(); 
      ​}; 
} 

 
The compiler could implement that by generating the following code: 

// Convenience helper shared by all coroutine implementations 

template​ ​<​typename​ T​> 
class​ __manual_lifetime ​{ 
  std​::​aligned_storage_t​<​sizeof​(​T​),​ ​alignof​(​T​)>​ storage_​; 
 

 ​public​: 
  ​template​ ​<​typename​...​ ​Args​> 
  ​void​ emplace​(​Args​&&...​ args​)​ ​{ 
    ​new​ ​(&​storage_​)​ ​(​std​::​forward​<​Args​>(​args​)...); 
  ​} 
 

  T​&​ ​get​()​ ​{​ ​return​ ​*​reinterpret_cast​<​T​*>(&​storage_​);​ ​} 
 

  ​void​ destroy​()​ ​{ 
    ​get​().~​T​(); 
  ​} 
}; 



 

class​ _f_1 ​{ 
 ​public​: 
  _f_1​(​const​ _f_1​&)​ ​=​ ​delete​; 
  _f_1​(​_f_1​&&)​ ​=​ ​delete​; 
  _f_1​&​ ​operator​=(​const​ _f_1​&)​ ​=​ ​delete​; 
  _f_1​&​ ​operator​=(​_f_1​&&)​ ​=​ ​delete​; 
 

  ​// Beginning of execution 
  ​template​ ​<​typename​ ​FinalReturn​> 
  ​typename​ ​FinalReturn​::​return_type ​operator​()(​FinalReturn​&​ final_return​)​ ​{ 
    ​static_assert​( 
        std​::​is_same_v​<​typename​ ​FinalReturn​::​return_type​,​ expected​<​int​,​ ​Err​>>); 
    __tmp_1​.​emplace​(​foo​(​s​)); 
    __suspend_point ​=​ ​1​; 
    tail ​return​ ​operator​[<-](​__tmp_1​.​get​(),​ ​*​this​,​ suspend_point_t​<​1​>{}, 
                           final_return​); 
  ​} 
 

  ​template​ ​<​typename​ T​,​ ​typename​ ​FinalReturn​> 
  ​typename​ ​FinalReturn​::​return_type ​operator​()( 
      ​[]​ ​->​ T __val​,​ size_t suspend_point​,​ ​FinalReturn​&​ final_return​)​ ​{ 
    ​static_assert​( 
        std​::​is_same_v​<​typename​ ​FinalReturn​::​return_type​,​ expected​<​int​,​ ​Err​>>); 
    ​assert​(​suspend_point ​==​ __suspend_point​); 
    ​switch​ ​(​suspend_point​)​ ​{ 
      ​case​ ​1​: 
        i​.​emplace​(​implicit_cast​<​unwrap_expression_type​<​1​>>( 
            __val​()).​size​()); 
        __tmp_1​.​destroy​(); 
        __tmp_2​.​emplace​(​bar​()); 
        __suspend_point ​=​ ​2​; 
        tail ​return​ ​operator​[<-](​__tmp_2​.​get​(),​ ​*​this​,​ suspend_point_t​<​2​>{}, 
                               final_return​); 
 

      ​case​ ​2​: 
        ​int​ __result ​=​ i​.​get​()​ ​+​ implicit_cast​<​unwrap_expression_type​<​2​>>( 
            __val​()); 
        __tmp_2​.​destroy​(); 
        i​.​destroy​(); 
        ​return​ final_return​(​__result​); 
    ​} 
  ​} 
 

  ​// Statically dispatched version of the above. For ease of exposition, we're 
  ​// assuming the optimizer will inline, constant-fold, and eliminate the switch. 
  ​template​ ​<​typename​ T​,​ size_t suspend_point​,​ ​typename​ ​FinalReturn​> 



  ​typename​ ​FinalReturn​::​return_type ​operator​()( 
      ​[]​ ​->​ T __val​,​ suspend_point_t​<suspend_point>​,​ ​FinalReturn​&​ final_return​)​ ​{ 
    ​static_assert​( 
        std​::​is_same_v​<​typename​ ​FinalReturn​::​return_type​,​ expected​<​int​,​ ​Err​>>); 
    ​assert​(​n ​==​ __suspend_point​); 
    tail ​return​ ​(*​this​)(​__val​(),​ suspend_point​,​ return_type​); 
  ​} 
 

  ​template​ ​<​typename​ ​FinalReturn​> 
  ​typename​ ​FinalReturn​::​return_type ​raise​( 
      std​::​exception_ptr e​,​ size_t suspend_point​,​ ​FinalReturn​&)​ ​{ 
    ​static_assert​( 
        std​::​is_same_v​<​typename​ ​FinalReturn​::​return_type​,​ expected​<​int​,​ ​Err​>>); 
    ​assert​ ​(​suspend_point ​==​ __suspend_point​); 
    ​switch​ ​(​suspend_point​)​ ​{ 
      ​case​ ​1​: 
        __tmp_1​.​destroy​(); 
        std​::​rethrow_exception​(​e​); 
      ​case​ ​2​: 
        __tmp_2​.​destroy​(); 
        i​.​destroy​(); 
        std​::​rethrow_exception​(​e​); 
    ​} 
  ​} 
 

  ​~​_f_1​()​ ​{ 
    ​switch​(​__suspend_point​)​ ​{ 
      ​case​ ​0​:​ ​break​; 
      ​case​ ​1​: 
        __tmp_1​.​destroy​(); 
        ​break​; 
      ​case​ ​2​: 
        __tmp_2​.​destroy​(); 
        i​.​destroy​(); 
        ​break​; 
    ​} 
  ​} 
 

 ​private​: 
  ​// Implicitly invoked via lambda capture syntax 
  _f_1​(​const​ ​string​&​ s​)​ ​:​ s​(​s​),​ __suspend_point​(​0​)​ ​{} 
 

  ​template​ ​<​size_t n​> 
  ​using​ suspend_point_t ​=​ std​::​integral_constant​<​size_t​,​ n​>; 
 

  ​template​ ​<​size_t n​> 
  ​using​ unwrap_expression_type ​=​ ​/* see below */​; 



 

  size_t __suspend_point​; 
 

  ​// Captures 
  ​const​ ​string​&​ s​; 
 

  ​// Stack variables 
  ​// 
  ​// The layout of these members is purely illustrative; in practice we expect 
  ​// the compiler to lay out this class using the same algorithms it uses to 
  ​// lay out ordinary stack frames. 
  __manual_lifetime​<int>​ i​; 
 

  ​union​ ​{ 
    __manual_lifetime​<​expected​<​string​,​ ​Err​>>​ __tmp_1​; 
    __manual_lifetime​<​expected​<​int​,​ ​Err​>>​ __tmp_2​; 
  ​}; 
  ​}; 
 

 
Some notes on how we present this implementation: 

● We rely on lazy function parameters, as proposed by ​P0927R0​, to avoid moving the 
unwrap expression result or storing it in the local stack frame (where it could inhibit tail 
call elimination). If lazy parameter support is unavailable, we can achieve the same 
effect by requiring ​operator[<-]​ overloads to wrap the expression result in a lambda 
before passing it in.  

● The coroutine object tracks the suspend point solely as a way of tracking object liveness 
for use in the destructor (although as a convenience we also use it in debug 
diagnostics), because in that case we cannot require the suspend point to be supplied 
externally. 

● For ease of exposition, we depict the dynamically-dispatched ​operator()​ as a single 
function template with a ​switch​ on the suspend point. This is not precisely accurate, 
because it would require all cases of the ​switch​ to compile for all argument types, but 
we only want to require that the ​n​th case of the switch compiles when the argument type 
is ​unwrap_expression_type<n>​; for any other argument type, its behavior is undefined. 

 
The ​operator()​ overloads are never ​const​ (in effect, ​do​ implies ​mutable​); in principle we 
could allow the user to specify or omit ​mutable​ as with ordinary lambdas, but in practice 
mutable​ would just be boilerplate, since it would only be correct and safe to omit it in cases 
where the coroutine has effectively no mutable stack variables, which we expect to be rare and 
marginal. 
 
The ​unwrap_expression_type<n>​ alias represents the type of the ​n​th unwrap expression, and 
hence the parameter type of the corresponding continuation. 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0927r0.pdf


 
If the return type was explicitly specified in the coroutine definition (which we expect to be rare), 
it must match the ​return_type​ of the final return functor (hence the ​static_assert​s in the 
example code). 
 
Note that the coroutine transformation does not affect the existing rules for the 
sequenced-before relation; if an unwrap expression and some other operation are 
unsequenced, the latter operation may be evaluated before the unwrap expression, or it may 
not be evaluated until the continuation is resumed (which, of course, may never happen). 

Coroutine functions 
We expect that in most use cases, coroutine lambdas will not be part of public APIs; instead, 
they will be hidden implementation details of ordinary functions, which wrap the coroutine 
lambdas to handle issues such as parameter passing/capture, lifetime management, and 
whether to defer initial invocation of the lambda. Naively, these functions could require more 
boilerplate than coroutine functions in the TS, but we believe we can resolve that through a 
combination of relatively natural, orthogonal features, many of which are useful even outside of 
the context of coroutines. 
 
As a motivating example, consider this asynchronous function: 

// Consumes all bytes from `connection`, and returns the number 

// of bytes consumed. `connection` must remain live until the returned 

// future is ready. 

auto​ count_bytes​(​Connection​&​ connection​)​ ​{ 
  ​return​ make_future​<int>​(​new​ ​auto​([&​connection​]​ ​do​ ​{ 
      ​int​ bytes_read ​=​ ​0​; 
      vector​<char>​ buffer​(​1024​); 
      ​while​(!​connection​.​done​())​  ​{ 
        bytes_read ​+=​ ​[<-]​connection​.​Read​(​buffer​.​data​(),​ buffer​.​size​()); 
      ​} 
      ​return​ bytes_read​; 
  ​})); 
} 

 
In this example ​make_future​ is a function provided by the ​future<T>​ library, which takes a 
pointer to a coroutine, takes ownership of it, invokes it, and returns a future representing the 
coroutine’s result. The memory allocation is necessary because the coroutine object needs to 
outlive the initial ​count_bytes​ call.  
 
The explicit memory allocation has at least three drawbacks: 

● It’s inconsistent with modern C++ style, which strongly discourages explicit ​new​. 



● It precludes the ​make_shared​-style optimization of allocating the coroutine object 
together with the future’s shared state. 

● It adds boilerplate to the function definition. 
 
We can solve the first two problems by having ​make_future​ take a callback, which it evaluates 
to obtain the coroutine object, allocating the result directly on the heap: 

auto​ count_bytes​(​Connection​&​ connection​)​ ​{ 
  ​return​ make_future​<int>​([&]​ ​{​ ​return​ ​[&​connection​]​ ​do​ ​{ 
      ​int​ bytes_read ​=​ ​0​; 
      vector​<char>​ buffer​(​1024​); 
      ​while​(!​connection​.​done​())​  ​{ 
        bytes_read ​+=​ ​[<-]​connection​.​Read​(​buffer​.​data​(),​ buffer​.​size​()); 
      ​} 
      ​return​ bytes_read​; 
  ​}}); 
} 

 
However, this doesn’t address the boilerplate problem, and the addition of a second lambda 
makes the code even harder to read. However, this problem goes away if ​make_future​ takes a 
lazy parameter, as proposed in ​P0927​: 

auto​ count_bytes​(​Connection​&​ connection​)​ ​{ 
  ​return​ make_future​<int>​([&​connection​]​ ​do​ ​{ 
      ​int​ bytes_read ​=​ ​0​; 
      vector​<char>​ buffer​(​1024​); 
      ​while​(!​connection​.​done​())​  ​{ 
        bytes_read ​+=​ ​[<-]​connection​.​Read​(​buffer​.​data​(),​ buffer​.​size​()); 
      ​} 
      ​return​ bytes_read​; 
  ​}); 
} 

 
The boilerplate can be further reduced if we have a terse syntax for expression aliases (for 
example, by generalizing ​P0573​’s proposed ​=>​ syntax to apply to functions): 

auto​ count_bytes​(​Connection​&​ connection​)​ ​=>​ make_future​<int>​( 
  ​[&​connection​]​ ​do​ ​{ 
    ​int​ bytes_read ​=​ ​0​; 
    vector​<char>​ buffer​(​1024​); 
    ​while​(!​connection​.​done​())​  ​{ 
      bytes_read ​+=​ ​[<-]​connection​.​Read​(​buffer​.​data​(),​ buffer​.​size​()); 
    ​} 
    ​return​ bytes_read​; 
  ​}); 

 

http://wg21.link/P0927
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0573r0.html


We contend that this syntax contains almost no boilerplate other than a smattering of 
punctuation. The additional syntactic elements not present in the Coroutines TS all have 
important, user-facing functional roles: 

● make_future<int>​ specifies what kind of coroutine this is, including (implicitly) the 
return type. 

● The capture group specifies the capture semantics of the coroutine object. 
● do​ acts as an introducer, specifying that the following block is a coroutine. 

 
In all three cases, making these properties syntactically explicit has important advantages: 

● The programmer has explicit, local control over what kind of coroutine is being defined, 
even if they do not control the function signature, e.g. because they must match an 
existing API (In the Coroutines TS, this can be controlled only via a trait parameterized 
by the parameter and return types). Symmetrically, the reader can easily tell what kind of 
coroutine they are reading. 

● The programmer has explicit control over capture behavior, so that for example an 
argument can be captured by value (for safety) even if the API is obliged to pass by 
reference. Symmetrically, the capture behavior is explicitly visible in the code, cueing the 
reader (and programmer) to possible safety or performance concerns. 

● The explicit introducer enables both the reader and the programmer to immediately and 
reliably recognize coroutine code. This eliminates the need for a separate ​co_return 
syntax to cue the compiler that it’s processing a coroutine. 

Tail calls 
Consider a coroutine like the following: 

[&​connection​]​ ​do​ ​->​ expected​<​int​,​ ​Err​>​ ​{ 
  ​int​ bytes_read ​=​ ​0​; 
  vector​<char>​ buffer​(​1024​); 
  ​while​(!​connection​.​done​())​  ​{ 
    bytes_read ​+=​ ​[<-]​connection​.​Read​(​buffer​.​data​(),​ buffer​.​size​()); 
  ​} 
  ​return​ bytes_read​; 
} 

With the design described above, the unbounded iteration in this code will be transformed into 
an unbounded ​recursion​, raising obvious concerns about stack size. However, the mutual 
recursion between ​expected<T,E>::operator[<-]​ and the generated coroutine code is 
actually all tail recursion, because every mutually recursive call is actually the final operation 
before the enclosing function returns. Consequently, the compiler should be able to apply tail 
call elimination (hereinafter “TCE”) to avoid growing the stack. 
 
For this approach to be viable, programmers will need to have complete confidence that TCE 
will in fact be applied (even in non-optimizing build modes). There are two reasons this is 
difficult to achieve: 



● There is currently no way to specify that TCE will take place, because the C++ standard 
has no explicit concept of stack storage as a finite resource.  

● It’s not as easy as it seems to determine whether a call is eligible for TCE in the first 
place. For example, a statement of the form ​return f(...);​ is nevertheless ineligible if 
there are any local variables with nontrivial destructors still live at that point (because 
then the function call is not actually the last operation before the return), or if the ​f()​ call 
takes a pointer or reference to any local variable. This is not an issue for ​operator[<-] 
calls inside the coroutine generated code (because the compiler can ensure that it’s able 
to apply TCE to the code it generates), but it is an issue when user-defined 
operator[<-]​ overloads invoke the continuation synchronously. 

 
To address the first issue, we propose adding standard wording such as the following: 
 

“If this International Standard specifies that a function invocation is a ​tail call​, then the 
implementation must disregard the invoking function call before entering the tail call, for 
purposes of enforcing any implementation-defined limits concerning the number of 
simultaneously active function calls, or the number or size of simultaneously-live 
variables with automatic storage duration. [​Note:​ The effect of this requirement is that on 
implementations with a bounded stack, a tail call must reuse the stack frame of the 
calling function. — ​end note​] 

 
To address the second issue, we propose introducing a new syntax ​tail return​, which 
requires its operand to be a tail call (​tail​ is a contextual keyword, with a special meaning only 
when followed by ​return​, so this should not break any existing code). This would be both a 
constraint on the operand (to make it eligible for TCE) and a requirement on the implementation 
(to apply the TCE). The standard wording would be something like the following: 
 

If a ​return​ statement is preceded by ​tail​, then evaluation of its operand will be a tail 
call, and the program is ill-formed if: 

● the statement is within a ​function-try-block​, 
● the operand is not a function call expression whose ​postfix-expression​ has a 

function type, 
● any live object with automatic storage duration within the scope of the enclosing 

function has a non-trivial destructor, or its address is taken or it is bound to a 
reference anywhere within the function body, or 

● the function designated by the function call expression is not defined in the 
current translation unit, or has a return type that is not the same as the return 
type of the calling function, or has a ​parameter-declaration-clause​ that terminates 
with an ellipsis. 

 
We believe that the above conditions are minimally sufficient to permit TCE in Clang, and 
probably in any other reasonable C++ implementation (of course, we particularly welcome 
implementer feedback on this point). Note that the generated code for a coroutine lambda can 



easily ensure that all these conditions hold for its invocations of ​operator[<-]​, except that it 
cannot guarantee that the operator is defined in the current translation unit. We will therefore 
specify that invocation of ​operator[<-]​ by a coroutine lambda is always a tail call ​if​ the 
selected overload is defined in the current translation unit. 
 
Alternative:​ we could loosen the above rules somewhat to permit taking addresses of and 
forming references to local variables, but specify that the lifetime of local variables ends when 
the tail call begins (since we forbid nontrivial destructors, the effect of this is just that it’s UB to 
access them after that point). However, that would make this construct less safe, since 
changing ​return​ to ​tail return​ could break code in ways that can’t be detected at compile 
time. 
 
Alternative:​ we could achieve the same behavior via an attribute, e.g. ​[[tail_call]]​. This 
would be more conceptually lightweight than a new contextual keyword, correctly signalling to 
programmers that they can disregard this feature unless they have a specific need for it. 
However, an attribute might not allow us to normatively mandate TCE, which we believe is 
necessary. 
 
Alternative:​ rather than allow users to force TCE, we could make it inherent in the API for 
unwrap expressions. Specifically, we could allow ​operator[<-]​ to return either the return type 
of the coroutine, or a nullary callback (with the same return type as ​operator[<-]​). The unwrap 
expression which invokes ​operator[<-]​ would then apply a "trampoline" technique, repeatedly 
checking if the result is a callback, and if so invoking it to obtain a new result, until it obtains a 
final return value. However, this would substantially complicate the ​operator[<-]​ API, and 
would not have the benefit of allowing TCE in other contexts. 

constexpr 
We have not worked through this issue in detail, but we see no obstacles to allowing coroutines 
to be ​constexpr​ (and uses of them to be core constant expressions) on the same terms as 
ordinary functions. The sample implementation given above cannot be ​constexpr​ because of 
its use of ​reinterpret_cast​, but that is only as an expository way of depicting the compiler’s 
management of the stack frame, which we know it can do in ​constexpr​ code because it already 
does. 

Alternative: Patching the TS 
We believe the design presented above addresses all of our major concerns with the Coroutines 
TS. However, we expect that many committee members will consider this change too extensive 
to make in the C++20 timeframe (and we don’t necessarily disagree). If WG21 is committed to 
shipping Coroutines as part of C++20, it should still be possible to address some of our 
concerns. 



 
We could add first-class syntactic support for non-asynchronous use cases by replacing the 
co_await​ keyword with an operator token such as ​[<-]​. After C++20, we could still introduce 
such a token as a synonym for ​co_await​, although of course we could no longer remove 
co_await​. 
 
We could make the coroutine kind locally explicit via some form of introducer syntax. As a straw 
man example: 

auto​ ​OpenFile​(​const​ ​string​&​ filename​)​ ​using​ future_coroutine​<​File​>​ ​{ 
  ​… 

This would enable us to eliminate ​coroutine_traits​ (and hence eliminate the need for a 
shared global namespace of coroutine signatures), and also allow ordinary ​return​ in 
coroutines, although ​co_return​ would still be necessary in cases where e.g. the return value is 
not implicitly convertible to the return type. We could also add a capture group to the introducer 
syntax, to give explicit control of capture semantics: 

auto​ ​OpenFile​(​const​ ​string​&​ filename​)​ ​using​ future_coroutine​<​File​>​ ​[​filename​]​ ​{ 
  ​… 

Allocation and performance 
We believe the following is a consensus description of the Coroutines TS status quo: 

● A conforming implementation is permitted to allocate every coroutine frame via 
operator new​; neither ​HALO​ nor “suspend point simplification and elimination” is ever 
guaranteed to occur. 

● No existing implementation reliably elides unnecessary allocations. 
● Making allocation elision reliable will require ABI extensions that have not yet even been 

prototyped. 
● It is not yet clear whether coroutine frame allocation elision will be reliable in the 

no-optimization modes of major compilers (after all, it is very explicitly an "optimization"). 
● User code can unwittingly disable HALO, e.g. by allowing the coroutine object’s address 

to escape the coroutine, and it’s not yet clear how we’d teach users to avoid those 
hazards. 

● RVO currently cannot be applied to coroutine returns. 
 
Consequently, as one example, it is impossible to write a generator function that is guaranteed 
not to allocate, unless you can modify the function signature in order to trigger a custom 
operator new​ overload. We contend that in order for coroutines to be legitimately “zero 
overhead” for the generator use case, it must be possible to write a generator that is guaranteed 
not to allocate, if the corresponding non-generator-based code is guaranteed not to allocate 
(and uses only a bounded amount of stack). 
 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0981r0.html


Similarly, it is impossible to write a function that returns ​expected<T,E>​ and uses ​co_await​ for 
error propagation, but is guaranteed not to allocate. 
 
We could address these problems through the following extensions: 

● Extend the coroutine promise API with a static member ​is_resumable​, which specifies 
whether coroutines that use that promise can be resumed. This will permit types such as 
expected<T,E>​ to opt out of support for resumption. 

● Add wording to normatively require allocation elision when ​is_resumable​ is false, or 
when the conditions for HALO apply (e.g. the relevant operations are inlineable, and the 
coroutine object satisfies some specified set of conditions that imply that it does not 
escape). 

● Specify that if a coroutine promise has an accessible static member ​no_alloc​, and the 
program semantics permit the coroutine to be implicitly heap allocated, the program is 
ill-formed. This will permit programmers to ensure that a failure to satisfy the HALO 
conditions will manifest as a build failure, rather than a silent performance regression. 

● Permit coroutines to be ​constexpr​, and specify that when ​resumable​ is true, violations 
of the HALO conditions cause an expression to fail to be a core constant expression. 

● Extend the coroutine promise API to expose the storage location where a return value 
should be constructed, in order to enable RVO in coroutines (we understand that Gor 
Nishanov is working on a specific proposal for this). 

These all appear to be pure extensions, so they could be done post-C++20 if need be. 

API Complexity 
We see no viable way to address the API complexity of the Coroutines TS via such incremental 
changes. Indeed, the changes we discuss will add yet more extension points, and we think it is 
likely that there will be a more or less perpetual drip of new extension points and new 
complexity, if we proceed with the TS design. The only way we see to fundamentally simplify 
coroutines is to give user code direct access to the primitive objects and operations that 
constitute the feature. So long as the primitives are hidden behind an abstraction boundary, it 
will remain necessary to poke holes in that abstraction in order to meet the needs of our diverse 
and highly performance-sensitive user community. 

Comparison 
The following chart summarizes what we see as the key functional differences between the 
Coroutines TS status quo, the TS with incremental fixes, and our proposal: 
 

 Coroutines TS Incremental 
alternative 

Core coroutines 

Library 15: 18: 3 or 4: 



customization 
points 

 
await_transform 
operator co_await 
await_ready 
await_suspend 
await_resume 
yield_value 
return_value 
return_void 
promise_type 
get_return_object 
get_return_object_on
_allocation_failure 
coroutine_traits 
initial_suspend 
final_suspend 
unhandled_exception 

 
await_transform 
operator co_await 
await_ready 
await_suspend 
await_resume 
yield_value 
return_value 
return_void 
promise_type 
get_return_object 
get_return_object_on
_allocation_failure 
coroutine_traits 
initial_suspend 
final_suspend 
unhandled_exception 
is_resumable 
no_alloc 
return_value_slot 

 
operator[<-] 
operator() 
return_type 
(Factory function)  3

Coroutine object 
representation 

Type-erased as 
coroutine_handle 

Type-erased as 
coroutine_handle 

Concrete object 
with anonymous 
type 

Coroutine allocation 
(normative) 

All coroutine objects 
are heap-allocated by 
default. This can be 
disabled by explicit 
collaboration between 
library and user code. 

All coroutine objects 
are heap-allocated by 
default, but libraries 
can opt out. This 
constrains their usage 
to certain optimizable 
patterns, which seem 
to cover known 
common cases where 
allocation is 
unnecessary. 
 
Implementations are 
normatively required to 
implement the 
necessary 
optimizations. 

Coroutine objects 
are allocated by 
explicit code, just 
like all other 
objects. Allocation 
will normally be a 
hidden detail of 
the library. 

Coroutine allocation 
(QoI) 

Optimizers have 
demonstrated ability to 
elide coroutine 
allocations in many 

Same as Coroutines 
TS. 

Allocation elision 
applies equally to 
all kinds of 
objects, including 

3 Factory functions like `make_future` are not customization points in quite the same sense, since they 
have no special role in the language rules, and are directly exposed to users. 



common cases. 
Techniques sufficient 
to reliably elide 
allocation for specific 
types are on the 
drawing board. Unclear 
whether optimizations 
will apply in all build 
modes. 

coroutines. 

(N)RVO in 
coroutines 

No Yes No NRVO if 
there’s a suspend 
point between 
construction and 
return. 

Programmer control 
of capture 

No Yes Yes 

return​ in coroutines Forbidden Allowed, but 
co_return​ is still 
needed in some cases. 

Required 
(​co_return​ is 
unnecessary) 

User-facing syntax Keyword, 
concurrency-specific 

Operator token, 
general-purpose 

Operator token, 
general-purpose 

Conclusion 
C++ is a language that enables programmers to build powerful and efficient abstractions by 
composing simple primitives that are efficiently supported by the platform. This is a defining 
property of C++, and a cornerstone of its success, so we should not abandon it (or even 
postpone it) without extremely compelling reasons. 
 
The current design of the Coroutines TS is not consistent with that principle, because it does not 
provide simple, composable primitives, but only a complex abstraction that is tuned for a 
particular kind of use case. Shipping the current design as part of a C++ IS would be either an 
outright rejection of that principle or, at best, a wholly unjustified gamble that we’ll be able to add 
the necessary primitives as a non-breaking extension, and still end up with a coherent design. 
 
We believe that C++ can still be a vital language 50 years from now, and the language should 
be designed with that goal in mind. In 50 years nobody will even remember whether coroutines 
shipped in C++20 or C++23, but if we lock ourselves into a coroutines design that lacks such an 
essential ingredient of C++’s success, the consequences could easily last that long. 
 



We have shown that a revised design that accords with that principle is well within reach, and 
that the resulting facility will be simpler, more general, and more efficient. We therefore urge the 
committee not to merge the Coroutines TS into the IS in its current form, and instead to allow 
sufficient time for this design to be fleshed out and validated. 
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Appendix: Examples 
Caveat: unless otherwise indicated, these examples are completely untested. 

Futures 
The following is a (very) rough implementation of a future library that supports coroutines. All 
types other than ​promise​ and ​future​ are hidden implementation details. This implementation 
leaks all shared states, in order to avoid a lot of distracting reference-counting machinery: 
 

// Interface of all future shared states. This API should be sufficient 

// to implement future<T>. 

template​ ​<​typename​ T​> 
class​ future_shared_state ​{ 
 ​public​: 
  ​virtual​ ​bool​ is_ready​()​ ​const​ ​=​ ​0​; 
  ​virtual​ T​&​ ​get​()​ ​const​ ​=​ ​0​; 
 

  ​// Causes the result of this shared state to be fed into `continuation`. 
  ​// `is_ready` and `get` cannot be called after this.  

  ​virtual​ ​void​ fuse_to​(​promise​<​T​>​ continuation​)​ ​=​ ​0​; 
 

  ​virtual​ ​~​future_shared_state​()​ ​=​ ​0​; 
}; 

 

// Interface of all promises. 

template​ ​<​typename​ T​> 
class​ promise_interface ​{ 
 ​public​: 
  ​virtual​ ​void​ set_value​(​const​ T​&​ value​)​ ​=​ ​0​; 
  ​virtual​ ​void​ set_exception​(​std​::​exception_ptr ptr​)​ ​=​ ​0​; 
  ​virtual​ ​~​promise_shared_state​()​ ​=​ ​0​; 
} 

 

// Tag type representing a shared state that is not yet ready. 

struct​ not_ready​{}; 
 

// Tag type representing a shared state whose result has been computed, and 

// immediately passed to a continuation. 

struct​ consumed​{}; 
 

// A shared state implementation for ordinary promise/future patterns. 

template​ ​<​typename​ T​> 
class​ concrete_shared_state ​:​ ​public​ promise_interface​<​T​>,​ future_shared_state​<​T​>​ ​{ 



 

  variant​<​not_ready​,​ T​,​ std​::​exception_ptr​,​ consumed​>​ state_​; 
  promise​<​T​>​ continuation_​; 
 

  std​::​mutex mu_​; 
  std​::​condition_variable done_​; 
 

 ​public​:  

  ​bool​ is_ready​()​ ​const​ ​override​ ​{ 
    lock_guard guard​(​mu_​); 
    ​assert​(!​holds_alternative​<consumed>​(​state_​)); 
    ​return​ ​!​holds_alternative​<not_ready>​(​state_​); 
  ​} 
 

  T​&​ ​get​()​ ​const​ ​override​ ​{ 
    lock_guard guard​(​mu_​); 
    done_​.​wait​(​guard​,​ ​[&]​ ​{​ ​return​ ​!​holds_alternative​<not_ready>​(​state_​);​ ​}); 
    ​return​ std​::​visit​(​overloaded​( 
        ​[]​ ​(​not_ready​)​ ​->​ T​&​ ​{​ std​::​abort​();​ ​} 
        ​[]​ ​(​T​&​ t​)​ ​{​ ​return​ t​;​ ​}, 
        ​[]​ ​(​std​::​exception_ptr ptr​)​ ​->​ T​&​ ​{​ std​::​rethrow_exception​(​ptr​);​ ​}, 
        ​[]​ ​(​consumed​)​ ​->​ T​&​ ​{​ std​::​abort​();​ ​})); 
  ​} 
 

  ​void​ fuse_to​(​promise​<​T​>​ continuation​)​ ​{ 
    ​bool​ already_done ​=​ ​true​; 
    ​{ 
      lock_guard guard​(​mu_​); 
      ​assert​(!​holds_alternative​<consumed>​(​state_​)); 
      ​if​ ​(​holds_alternative​<not_ready>​(​state_​))​ ​{ 
        ​assert​(!​continuation_​); 
        continuation_ ​=​ std​::​move​(​continuation​); 
        already_done ​=​ ​false​; 
      ​} 
    ​} 
  

    ​if​ ​(​already_done​)​ ​{  

      std​::​visit​(​overloaded​( 
          ​[&]​ ​(​T​&​ t​)​ ​{​ continuation​.​set_value​(​t​);​ ​}, 
          ​[&]​ ​(​std​::​exception_ptr ptr​)​ ​{​ continuation​.​set_exception​(​ptr​);​ ​}, 
          ​[&]​ ​(​auto​&)​ ​{​ ​assert​(​false​);​ ​}), 
        state_​); 
      state_​.​emplace​<consumed>​(); 
    ​} 
  ​} 
 

  ​void​ set_value​(​const​ T​&​ value​)​ ​override​ ​{ 



    promise​<​T​>​ continuation​; 
    ​{ 
      lock_guard guard​(​mu_​); 
      ​if​ ​(!​continuation_​)​ ​{ 
        state_​.​emplace​<​T​>(​value​); 
        done_​.​notify_all​(); 
        ​return​; 
      ​} 
      continuation ​=​ std​::​move​(​continuation_​); 
      state_​.​emplace​<consumed>​(); 
    ​} 
    continuation​->​set_value​(​value​); 
  ​} 
 

  ​void​ set_exception​(​std​::​exception_ptr ptr​)​ ​override​ ​{ 
    promise​<​T​>​ continuation​; 
    ​{ 
      lock_guard guard​(​mu_​); 
      ​if​ ​(!​continuation_​)​ ​{ 
        state_​.​emplace​<​std​::​exception_ptr​>(​ptr​); 
        done_​.​notify_all​(); 
        ​return​; 
      ​} 
      continuation ​=​ std​::​move​(​continuation_​); 
      state_​.​emplace​<consumed>​(); 
    ​} 
    continuation​->​set_exception​(​ptr​); 
  ​} 
}; 

 

// A shared state co-allocated with a coroutine. Does not implement 

// promise_interface, because the value is determined by running the coroutine. 

template​ ​<​typename​ T​,​ ​typename​ ​Coroutine​> 
class​ coroutine_shared_state ​:​ ​public​ future_shared_state​<​T​>​ ​{ 
  concrete_shared_state​<​T​>​ shared_state_​; 
  ​Coroutine​ coroutine_​; 
 

 ​public​: 
 

  ​// Enable this object to act as a final return functor. 
  ​using​ return_type ​=​ ​void​; 
  ​template​ ​<​typename​ U​> 
  ​void​ ​operator​()(​const​ U​&​ u​)​ ​{ 
    set_value​(​u​); 
  ​} 
 

  coroutine_shared_state​([]​ ​->​ ​Coroutine​ coroutine​) 



      ​:​ coroutine_​(​coroutine​())​ ​{ 
    ​// Begin execution of the coroutine, and return the first time it 
    ​// blocks. 
    ​try​ ​{ 
      coroutine_​(*​this​); 
    ​}​ ​catch​ ​(...)​ ​{ 
      shared_state_​.​set_exception​(​std​::​current_exception​()); 
    ​} 
  ​} 
 

  ​bool​ is_ready​()​ ​const​ ​override​ ​{​ ​return​ shared_state_​.​is_ready​();​ ​} 
  ​void​ set_continuation​(​promise​<​T​>​ continuation​)​ ​override​ ​{ 
    shared_state_​.​set_continuation​(​continuation​); 
  ​} 
 

  T​&​ ​get​()​ ​const​ ​override​ ​{ 
    ​return​ shared_state_​.​get​(); 
  ​} 
 

  ​template​ ​<​typename​ U​,​ ​typename​ ​SuspendPoint​> 
  promise​<​U​>​ make_resume_promise​(​SuspendPoint​ suspend_point​)​ ​{ 
    ​struct​ resume_promise ​:​ ​public​ promise_interface​<​U​>​ ​{ 
      coroutine_shared_state​*​ parent​; 
      ​SuspendPoint​ suspend_point​; 
 

      ​void​ set_value​(​const​ T​&​ value​)​ ​override​ ​{ 
        ​try​ ​{ 
          parent_​->​coroutine_​(​value​,​ suspend_point​,​ ​*​parent_​); 
        ​}​ ​catch​ ​(...)​ ​{ 
          parent_​->​set_exception​(​std​::​current_exception​()); 
        ​} 
      ​} 
      ​void​ set_exception​(​std​::​exception_ptr ptr​)​ ​override​ ​{ 
        parent_​->​coroutine_​.​raise​(​ptr​,​ suspend_point​,​ ​*​parent_​); 
      ​} 
    ​}; 
    ​return​ promise​<​U​>(​new​ resume_promise​{​this​,​ suspend_point​}); 
  ​} 
}; 

 

template​ ​<​typename​ T​> 
class​ promise ​{ 
  ​// Invariant: if two promise objects have equal shared_state_ values, they are 
  ​// both null. 
  promise_interface​<​T​>*​ shared_state_​; 
 

 ​public​: 



  promise​(​promise_interface​<​T​>*​ shared_state​) 
      ​:​ shared_state_​(​shared_state​)​ ​{} 
 

  promise​(​promise​&&​ other​) 
      ​:​ shared_state_​(​other​.​shared_state_​)​ ​{ 
    other​.​shared_state_ ​=​ ​nullptr​; 
  ​} 
  promise​&​ ​operator​=(​promise​&&​ rhs​)​ ​{ 
    shared_state_ ​=​ rhs​.​shared_state_​; 
    rhs​.​shared_state_ ​=​ ​nullptr​; 
  ​} 
 

  ​explicit​ ​operator​ ​bool​()​ ​{​ ​return​ shared_state_ ​!=​ ​nullptr​;​ ​} 
 

  ​void​ set_value​(​const​ T​&​ value​)​ ​{ 
    shared_state_​->​set_value​(​value​); 
  ​} 
 

  ​void​ set_exception​(​std​::​exception_ptr ptr​)​ ​{ 
    shared_state_​->​set_exception​(​ptr​); 
  ​} 
}; 

 

template​ ​<​typename​ T​> 
class​ future ​{ 
  ​// Invariant: if two future objects have equal state_ values, they are both null 
  future_shared_state​<​T​>*​ state_​; 
 

  ​template​ ​<​typename​ ​Coroutine​> 
  ​friend​ future​<​T​>​ make_future​<​T​,​ ​Coroutine​>([]​ ​->​ ​Coroutine​ coroutine​); 
 

  ​// Public API left as exercise for reader 
}; 

 

template​ ​<​typename​ T​,​ ​typename​ ​Coroutine​> 
future​<​T​>​ make_future​([]​ ​->​ ​Coroutine​ coroutine​)​ ​{ 
  ​auto​*​ state ​=​ ​new​ coroutine_shared_state​<​T​,​ ​Coroutine​>>(​coroutine​()); 
  state​.​run​(); 
  ​return​ future​<​T​>(​state​); 
} 

 

template​ ​<​typename​ T​,​ ​typename​ U​,​ ​typename​ ​Coroutine​,​ ​typename​ ​SuspendPoint​, 
          ​typename​ ​ReturnCallback​> 
void​ future​<​T​>::​operator​[<-]( 
    ​Coroutine​&​ coroutine​,​ ​SuspendPoint​ suspend_point​, 
    coroutine_shared_state​<​U​,​ ​Coroutine​>&​ outer_state​)​ ​[<-]​ T ​&&​ ​{ 
  state_​->​set_continuation​(​outer_state​.​make_resume_promise​<​T​>(​suspend_point​)); 



} 

 
A typical usage, as shown earlier, could look like: 

auto​ count_bytes​(​Connection​&​ connection​)​ ​=>​ make_future​<int>​([&​connection​]​ ​do​ ​{ 
  ​int​ bytes_read ​=​ ​0​; 
  vector​<char>​ buffer​(​1024​); 
  ​while​ ​(!​connection​.​done​())​  ​{ 
    bytes_read ​+=​ ​[<-]​connection​.​Read​(​buffer​.​data​(),​ buffer​.​size​()); 
  ​} 
  ​return​ bytes_read​; 
}); 

Simple generator 
This example prints the contents of a binary tree in order, using a generator: 

struct​ ​BstNode​ ​{ 
  ​BstNode​*​ left​,​ right​; 
  ​string​ value​; 
}; 

 

auto​ ​Traverse​(​BstNode​<int>​*​ node​)​ ​=>​ generator​<string>​([​node​]​ ​do​ ​{ 
  ​if​ ​(​node ​==​ ​nullptr​)​ ​{ 
    ​return​; 
  ​} 
  ​[<-]​ ​Traverse​(​node​->​left​); 
  ​[<-]​ std​::​yield​(​node​->​value​); 
  ​[<-]​ ​Traverse​(​node​->​right​); 
} 

 

void​ ​PrintBst​(​BstNode​*​ root​)​ ​{ 
  generator​<string>​ g ​=​ ​Traverse​(​root​); 
  ​while​ ​(​g​)​ ​{ 
    cout ​<<​ ​*​g ​<<​ endl​; 
    g​.​next​(); 
  ​}; 
} 

 
And here’s the implementation that supports it: 

namespace​ std ​{ 
// yield_handle represents the result of a `yield` call. It has no semantics 

// of its own; semantics are provided by the operator[<-] overloads for specific 

// generators. Thus, all generators can use the same `yield` function. 

template​ ​<​typename​ T​> 



struct​ yield_handle ​{ 
  T​&​ value​; 
}; 

 

template​ ​<​typename​ T​> 
yield_handle​<​T​>​ ​yield​(​T​&​ value​)​ ​{ 
  ​return​ ​{​value​}; 
} 

 

template​ ​<​typename​ T​> 
yield_handle​<​const​ T​>​ ​yield​(​const​ T​&​ value​)​ ​{ 
  ​return​ ​{​value​}; 
} 

}​  ​// namespace std 
 

// The current state of a generator<T,P>. This is a hidden implementation 

// detail, but it must be a namespace-scope template in order to facilitate 

// deduction of T and P. 

template​ ​<​typename​ T​,​ ​typename​ P​> 
struct​ generator_state ​{ 
  ​// The code to execute to resume this generator. Null if this generator 
  ​// is done. 
  std​::​function​<​state​(​P​&)>​ continuation ​=​ ​nullptr​; 
 

  ​// Pointer to the currently yielded value. Null if this generator is done. 
  T​*​ value ​=​ ​nullptr​; 
} 

 

// generator<T, P> represents a ​bidirectional generator​, i.e. that not only 
// yields values of type T, but takes arguments of type P (which become values 

// of the yield expression). Yielded values are accessed by dereferencing, 

// and the generator is advanced to the next yielded value by calling next(). 

// Like an iterator, a generator has a special past-the-end state, signifying 

// the end of the generated sequence, which cannot be dereferenced or advanced. 

// 

// The generator<T, void> specialization (which represents a traditional 

// unidirectional generator) is omitted for brevity; the differences are 

// mostly obvious, but note that it could easily implement MoveIterator 

// (see ​P0902R0​). 
template​ ​<​typename​ T​,​ ​typename​ P ​=​ ​void​> 
class​ generator ​{ 
  generator_state​<​T​,​P​>​ state_​; 
 

  ​// Manages lifetime of the coroutine lambda. Is not accessed otherwise. 
  std​::​unique_ptr​<​void​,​ ​void​(*)(​void​*)>​ coroutine_​; 
 

 ​public​: 

http://www.scipy-lectures.org/advanced/advanced_python/index.html#bidirectional-communication
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0902r0.html


  ​friend​ ​void​ swap​(​generator​&​ lhs​,​ generator​&​ rhs​)​ ​{ 
    ​using​ std​::​swap​; 
    swap​(​lhs​.​state_​,​ rhs​.​state_​); 
    swap​(​lhs​.​coroutine_​,​ rhs​.​coroutine_​); 
  ​} 
 

  ​// Move only 
  generator​(​generator​&&​ rhs​)​ ​{​ swap​(*​this​,​ rhs​);​ ​} 
  generator​&​ ​operator​=(​generator​&&​ rhs​)​ ​{​ swap​(*​this​,​ rhs​);​ ​} 
 

  ​// Constructs a generator which exposes the values yielded by lazy_coroutine(). 
  ​template​ ​<​typename​ ​Coroutine​> 
  generator​([]​ ​->​ ​Coroutine​ lazy_coroutine​)​ ​{ 
    unique_ptr​<​Coroutine​,​ ​void​(*)(​void​*)>​ coroutine​( 
        ​new​ ​Coroutine​(​lazy_coroutine​()), 
        ​+[]​ ​(​void​*​ ptr​)​ ​{​ ​delete​ ​static_cast​<​Coroutine​*>(​ptr​);​ ​}); 
    state_ ​=​ ​(*​coroutine​)(​implicit_convert​<​generator_state​<​T​,​P​>>{}); 
    coroutine_ ​=​ std​::​move​(​coroutine​); 
  ​} 
 

  ​// Returns whether the generator is dereferenceable. False indicates 
  ​// the end of the generated sequence. 
  ​explicit​ ​operator​ ​bool​()​ ​const​ ​{​ ​return​ state_​.​continuation ​!=​ ​nullptr​;​ ​} 
 

  ​// Accessors for the currently yielded value. static_cast<bool>(*this) must 
  ​// be true. Valid only until the following `next()` call. 
  T​&​ ​operator​*()​ ​{​ ​return​ ​*​state_​.​value​;​ ​} 
  T​*​ ​operator​->()​ ​{​ ​return​ state_​.​value​;​ ​} 
 

  ​// Advance to the next yielded value. static_cast<bool>(*this) must be true. 
  ​void​ ​next​(​P​&​ p​)​ ​{ 
    state_ ​=​ state_​.​continuation​(​p​); 
  ​} 
}; 

 

// operator[<-] on a generator object behaves like python's `yield from`: next() 

// operations on the outer generator are delegated to the inner generator 

// until it is done, and then the outer generator's coroutine is resumed. 

// Consequently, it does not pass a value when resuming the coroutine, even for 

// bidirectional generators. 

template​ ​<​typename​ T​,​ ​typename​ U​,​ ​typename​ P​,​ ​typename​ Q​,​ ​typename​ ​Coroutine​> 
generator_state​<​T​,​ P​>​ ​operator​[<-]( 
    generator​<​U​,​ Q​>&&​ inner_generator​,​ ​Coroutine​&​ outer_coroutine​, 
    size_t suspend_point​,​ implicit_convert​<​generator_state​<​T​,​ P​>>&)​ ​[<-]​ ​void​ ​{ 
  tail ​return​ yield_from_impl​<​T​,​U​,​P​,​Q​,​Coroutine​>( 
      std​::​move​(​inner_generator​),​ outer_coroutine​,​ suspend_point​); 
} 



 

// The implementation is factored out as a helper function, so that it can 

// call itself recursively (`[<-]` can only be used inside a coroutine, and 

// explicit invocation of `operator[<-]()` is disallowed). 

template​ ​<​typename​ T​,​ ​typename​ U​,​ ​typename​ P​,​ ​typename​ Q​,​ ​typename​ ​Coroutine​> 
generator_state​<​T​,​ P​>​ yield_from_impl​( 
    generator​<​U​,​ Q​>&&​ inner_generator​,​ ​Coroutine​&​ outer_coroutine​, 
    size_t suspend_point​)​ ​{ 
  ​if​ ​(​inner_generator​)​ ​{ 
    ​return​ ​{[&​inner_generator​,​ ​&​outer_coroutine​,​ suspend_point​]​ ​(​P​&​ p​)​ ​{ 
        inner_generator​.​next​(​p​); 
        tail ​return​ yield_from_impl​<​T​,​U​,​P​,​Q​,​Coroutine​>( 
            std​::​move​(​inner_generator​),​ outer_coroutine​,​ suspend_point​); 
      ​}, 
      ​&*​inner_generator​}; 
  ​}​ ​else​ ​{ 
    tail ​return​ outer_coroutine​( 
        suspend_point​,​ implicit_convert​<​generator_state​<​T​,​ P​>>{}); 
  ​} 
} 

 

// This overload defines the semantics of yielding from a generator<T,P> 

template​ ​<​typename​ T​,​ ​typename​ P​,​ ​typename​ ​Coroutine​> 
generator_state​<​T​,​ P​>​ ​operator​[<-]( 
    yield_handle​<​T​>​ handle​,​ ​Coroutine​&​ coroutine​,​ size_t suspend_point​, 
    implicit_convert​<​generator_state​<​T​,​P​>>&​ final_return​)​ ​[<-]​ P​&​ ​{ 
  ​return​ ​{[&​coroutine​,​ suspend_point​,​ return_type​]​ ​(​P​&​ p​)​ ​{ 
      ​return​ coroutine​(​p​,​ suspend_point​,​ final_return​); 
    ​},​ ​&​handle​.​value​}; 
} 

Zero-allocation generator 
The above generator is comparable to generators as proposed by the Coroutines TS; in 
particular, it allocates every coroutine state on the heap, which is extremely inefficient in many 
cases. The following example shows a generator that always stores its state on the stack, which 
isn’t possible with the Coroutines TS (without changing the signatures of generator functions). 
As a consequence of storing its state on the stack, generator functions defined this way cannot 
recurse (i.e. the maximum generator stack depth must be statically known). 
 
It should be possible to use similar techniques to define a generator library that supports 
recursion by using a side stack (i.e. at most one more allocation than the corresponding 
non-generator-based recursive code), but the API design of the side stack abstraction raises 
issues beyond the scope of this paper. 
 



First, a usage example: 

// Returns a generator whose output consists of the concatenated 

// outputs of each generator produced by `generators`. 

template​ ​<​typename​ T​,​ ​typename​ P​> 
auto​ flatten​(​stack_generator_base​<​stack_generator_base​<​T​,​P​>>&&​ generators​) 
    ​=>​ stack_generator​<​T​,​P​>([&]​ ​do​ ​{ 
  ​while​ ​(​generators​)​ ​{ 
    ​[<-]*​generators​; 
    generators​.​next​(); 
  ​} 
} 

 

// Returns a generator that iterates over the given range. 

template​ ​<​typename​ ​Range​> 
auto​ traverser​(​const​ ​Range​&​ range​) 
    ​=>​ stack_generator​<​decltype​(*​begin​(​range​)),​ ​void​>([&]​ ​do​ ​{ 
  ​for​ ​(​auto​&​ element​:​ range​)​ ​{ 
    ​[<-]​ std​::​yield​(​element​); 
  ​} 
} 

 

// Returns a generator that yields `f(x)`, for each `x` yielded by `g`. 

template​ ​<​typename​ T​,​ ​typename​ F​> 
auto​ transform_generator​(​stack_generator_base​<​T​>&&​ g​,​ F f​) 
    ​=>​ stack_generator​<​decltype​(​f​(*​g​)),​ ​void​>([&​g​,​ f​]​ ​do​ ​{ 
  ​while​ ​(​g​)​ ​{ 
    ​[<-]​ std​::​yield​(​f​(*​g​)); 
    g​.​next​(); 
  ​} 
} 

 

// Toy example: turn a nested vector into nested generators, and then 

// flatten them 

void​ f​(​const​ std​::​vector​<​std​::​vector​<int>​>&​ vectors​)​ ​{ 
  stack_generator​<int>​ gen ​=​ flatten​(​transform_generator​( 
      traverser​(​vectors​), 
      ​[]​ ​(​const​ std​::​vector​<int>​&​ vec​)​ ​{​ ​return​ traverser​(​vec​);​ ​})); 
  

  ​while​ ​(​gen​)​ ​{ 
    ​// Do stuff with *gen 
    gen​.​next​(); 
  ​} 
} 

 
And the underlying implementation: 



// The internal state of a stack_generator<T,P,Coroutine> 

template​ ​<​typename​ T​,​ ​typename​ P​> 
struct​ stack_generator_state ​{ 
  ​// Pointer to the currently yielded value 
  T​*​ value ​=​ ​nullptr​; 
 

  ​// Suspend point at which to resume the coroutine 
  size_t suspend_point ​=​ SIZE_MAX​; 
 

  ​// The generator we have recursed into, if any 
  stack_generator_base​<​T​,​ P​>*​ nested_generator ​=​ ​nullptr​; 
}; 

 

// Base class of all stack_generators that take P and yield T. 

// Allows us to type-erase the coroutine. 

template​ ​<​typename​ T​,​ ​typename​ P​> 
class​ stack_generator_base ​{ 
 ​public​: 
  ​void​ ​next​(​P​&​ p​)​ ​{ 
    state_​.​value ​=​ next_impl​(​p​); 
  ​} 
 

  ​operator​ ​bool​()​ ​const​ ​{ 
    ​return​ state_​.​suspend_point ​!=​ SIZE_MAX ​||​ state_​.​nested_generator ​!=​ ​nullptr​; 
  ​} 
  T​&​ ​operator​*()​ ​{​ ​return​ ​*​state_​.​value​;​ ​} 
  T​*​ ​operator​->()​ ​{​ ​return​ state_​.​value​;​ ​} 
 

 ​private​: 
  ​template​ ​<​typename​ T2​,​ ​typename​ P2​> 
  ​friend​ ​class​ stack_generator_base​<​T2​,​ P2​>; 
 

  ​// Resumes execution of the generator, and returns the new state 
  ​virtual​ stack_generator_state​<​T​,​P​>​ resume​(​P​&​ p​,​ size_t suspend_point​)​ ​=​ ​0​; 
 

  T​*​ next_impl​(​P​&​ p​)​ ​{ 
    ​if​ ​(​state_​.​nested_generator ​!=​ ​nullptr​)​ ​{ 
      T​*​ value ​=​ state_​.​nested_generator​.​next_impl​(​p​); 
      ​if​ ​(​value ​!=​ ​nullptr​)​ ​{ 
        ​return​ value​; 
      ​}​ ​else​ ​{ 
        state_​.​nested_generator ​=​ ​nullptr​; 
      ​} 
    ​} 
    ​assert​(​state_​.​nested_generator ​==​ ​nullptr​); 
 

    ​if​ ​(​state_​.​suspend_point ​==​ SIZE_MAX​)​ ​{ 



      ​return​ ​nullptr​; 
    ​} 
    state_ ​=​ resume​(​p​,​ state_​.​suspend_point​); 
    ​return​ state_​.​value​; 
  ​} 
 

  stack_generator_state​<​T​,​P​>​ state_​; 
}; 

 

template​ ​<​typename​ T​,​ ​typename​ P ​=​ ​void​,​ ​typename​ ​Coroutine​> 
class​ stack_generator ​:​ ​public​ stack_generator_base​<​T​,​P​>​ ​{ 
 ​public​: 
  stack_generator​([]​ ​->​ ​Coroutine​ coroutine​) 
      ​:​ coroutine_​(​coroutine​())​ ​{} 
 

  ​// Make stack_generator usable as a final return functor. 
  ​using​ return_type ​=​ stack_generator_state​<​T​,​P​>; 
  stack_generator_state​<​T​,​P​>​ ​operator​()()​ ​{​ ​return​ ​{};​ ​} 
 

 ​private​: 
  ​Coroutine​ coroutine_​; 
 

  stack_generator_state​<​T​,​P​>​ resume​(​P​&​ p​,​ size_t suspend_point​)​ ​override​ ​{ 
    ​return​ coroutine_​(​p​,​ suspend_point​,​ ​*​this​); 
  ​} 
}; 

 

template​ ​<​typename​ T​,​ ​typename​ P​,​ ​typename​ ​Coroutine​> 
stack_generator_state​<​T​,​ P​>​ ​operator​[<-]( 
    std​::​yield_handle​<​T​>​ handle​,​ ​Coroutine​&,​ size_t suspend_point​, 
    stack_generator​<​T​,​P​>&)​ ​[<-]​ P​&​ ​{ 
  ​return​ ​{​handle​.​value​,​ suspend_point​,​ ​nullptr​}; 
} 

 

template​ ​<​typename​ T​,​ ​typename​ U​,​ ​typename​ P​,​ ​typename​ Q​, 
          ​typename​ ​OuterCoro​,​ ​typename​ ​InnerCoro​> 
stack_generator_state​<​T​,​ P​>​ stack_generator​<​U​,​ Q​,​ ​InnerCoro​>::​operator​[<-]( 
    ​OuterCoro​&,​ size_t suspend_point​,​ stack_generator​<​T​,​P​>&) 
    ​[<-]​ ​void​ ​{ 
  ​return​ ​{​value_​,​ suspend_point​,​ ​this​}; 
} 

 
 


