
Crypto Won’t Save You Either

Peter Gutmann

University of Auckland

Sound Advice from the USG

Saw Something, Said Something

Saw Something, Said Something (ctd)

You’re not paranoid, they really are out to get you

BULLRUN

Funded to the tune of $250-300M/year

BULLRUN (ctd)

“capabilities against TLS/SSL, HTTPS, SSH, VPNs, VoIP,

webmail, ...”

BULLRUN (ctd)

“aggressive effort to defeat network security and privacy”

“defeat the encryption used in network communication

technologies”

What’s that NSAie? Crypto’s fallen in the well?

I Know, Bigger Keys!

We need to get bigger keys. BIG F**ING KEYS!
— “Deep Impact”, 1992

Quick, do something!

Cue the

stannomillinery

Crypto Won’t Save You

Shamir’s Law: Crypto is bypassed, not penetrated

Cryptography is usually bypassed. I am not aware of any major

world-class security system employing cryptography in which the

hackers penetrated the system by actually going through the

cryptanalysis […] usually there are much simpler ways of

penetrating the security system — Adi Shamir

Crypto

User interface

Application

Security

protocol

Attacker

User

Example: Games Consoles

All of the major consoles use fairly extensive amounts of

sophisticated cryptography

• PS3

• Wii

• Xbox

• Xbox 360

Example: Games Consoles (ctd)

Measures include

• Signed executables

• Encrypted storage

• Full-media encryption and signing

• Memory encryption and integrity-protection

• On-die key storage and/or use of security coprocessors

– If you asked someone a decade ago what this was

describing, they’d have guessed an NSA-designed crypto

box

All of them have been hacked

• In none of the cases was it necessary to break the cryptography

Crypto Won’t Save You

Amazon Kindle 2

• All binaries signed with a 1024-bit RSA key

• Jailbreakers replaced it with their own one

• Later versions of the Kindle were similarly jailbroken without

breaking the crypto

HTC Thunderbolt

• Signed binaries

• Signed kernel

• Signed system-recovery/restart code

• Remove the signature-checking code

Crypto Won’t Save You (ctd)

Motorola cellphones

• Careful chaining of hashes, MACs (keyed hashes), and digital

signatures

• Ignore the crypto and target

the ARM TrustZone

hardware-enforced security

system

• “It’s secure, because we

say it is!”

• Find exploit inside the trusted, secure kernel and attack the

untrusted code from inside the trusted kernel

– Bootloader code was (apparently) quite good, it was the

trusted security kernel that was insecure

Crypto Won’t Save You (ctd)

Samsung Galaxy

• Firmware signed with 2048-bit RSA key

– Round up twice the usual number of key bits!

• Modify firmware metadata to load it over the top of the

signature-checking code

Nikon Cameras

• Sign images using a 1024-bit RSA key

• Signature encoded in photo EXIF data

• Signing key encoded in camera firmware…

Crypto Won’t Save You (ctd)

Canon Cameras

• Authenticate images using HMAC (keyed hash function)

• HMAC is symmetric: Verifier needs to know the key as well

• Shared HMAC key encoded in camera firmware…

Airport Express

• Signs data with a 2048-bit RSA key

• Recover the private key from the firmware image

Crypto Won’t Save You (ctd)

Diaspora

• Privacy-aware alternative to Facebook

• Replace the victim’s public key with your own one

• You can now MITM all of the victim’s messages

Google Chromecast

• Carefully verified signed image on loading

• Ignored the return value of the signature-checking function

Crypto Won’t Save You (ctd)

Google TV

• Range of devices from various manufacturers

• Exploit inadvertently-enabled debug modes

• Use improper path validation to run unapproved binaries

• Remap NAND flash controller registers to allow kernel

memory overwrite

• Desolder encrypted SSD and replace with unencrypted one

• Usual plethora of Linux kernel bugs and application-level

errors

Crypto Won’t Save You (ctd)

Android code signing

• APK = JAR = Zip file

• Signed using specially-named files included in the Zip archive

(MANIFEST.MF, CERT.SF, CERT.RSA)

• Use custom archive tool to create Zip file with duplicate

filenames

• Verification is done using a Java hashmap

– Duplicate entries are overwritten

• Installation is done via C code

– Duplicate entries are processed on the assumption that

they’ve been sig-checked

Crypto Won’t Save You (ctd)

iPhone/iPad/iOS

• Lots of security measures, too many to cover here

Bypasses include

• Inject executable code as data pages

– Data isn’t code so it’s not signature-checked

• Exploit debugging facilities present in signed OS components

• Use ROP to synthesise exploits from existing signed code

fragments

• …

Crypto Won’t Save You (ctd)

Windows RT UEFI

• Exploit privilege escalation vulnerability in the RT kernel to

bypass signing

Windows 8 UEFI

• Patch SPI flash memory holding UEFI firmware to skip the

signature-check

• Clear flags in system NVRAM to disable signature checks

Crypto Won’t Save You (ctd)

CCC 2011 Badge

• Used Corrected Block TEA/XXTEA block cipher with 128-bit

key

• Various exploits that all bypassed the need to deal with

XXTEA

• Eventually, loaded custom code to extract the 128-bit key

It’s probably at least some sort of sign of the end times

when your conference badge has a rootkit

Crypto Won’t Save You (ctd)

Xbox (earlier attack)

• Data moving over high-speed internal buses was deemed to be

secure

• HyperTransport bus analysers existed only in a few

semiconductor manufacturer labs

LVDS signalling looks a lot like HT signalling

• Use an LVDS transceiver to decode HT signalling

Standard FPGA’s aren’t fast enough to process the data

• Hand-optimise paths through the FPGA’s switching fabric

• Clock data onto four phases of a quarter-speed clock

– 8-bit stream → 32-bit stream at ¼ speed

• Overclock the FPGA

Crypto Won’t Save You (ctd)

Xbox (later attacks)

• Force the CPU to boot off external ROM rather than secure

internal ROM

– Standard smart-card hacker’s trick

• Exploit architectural quirks in the CPU

– Microsoft developed with AMD CPUs but shipped with an

Intel CPU

• Exploit backwards-compatibility support in the CPU for bugs

dating back to the 80286

• Exploit the fact that font files (TTFs) were never verified

– Use doctored fonts to leverage a vulnerability in the Xbox

font handler

Crypto Won’t Save You (ctd)

PS3

• Variant of the first Xbox attack

• Don’t try and pull data off the bus, just glitch it

• Processor now has an incorrect view of what’s stored in

memory

– Data in cache doesn’t match what’s actually in memory

Xbox 360

• Another glitch attack

• Ensure that a hash comparison always returns a hash-matched

result

Crypto Won’t Save You (ctd)

Jailbreakers are rediscovering 15-20 year old smart card

attacks

I never met a smart-card I couldn’t glitch

— European smart card hacker

Example: Clock glitches

• Send multiple clock pulses in the time interval when a single

pulse should occur

• Fast-reacting parts of the CPU like the program counter

respond

• Slower-reacting parts of the CPU like the ALU don’t have time

• Skip instructions, e.g. ones that perform access-control checks

Some Metrics…

How unnecessary is it to attack the crypto?

Geer’s Law:

Any security technology whose effectiveness can’t be empirically

determined is indistinguishable from blind luck

— Dan Geer

Some Metrics… (ctd)

Large-scale experiment carried out by a who’s-who of

companies

• Amazon

• Apple

• Dell

• eBay

• HP

• HSBC

• LinkedIn

• Paypal

• Twitter

Some Metrics… (ctd)

In late 2012, researchers noticed that these organisations,

and many others, were using toy keys for DKIM signing

• 12,000 organisations

• 4,000 were using keys so weak that an individual attacker

could have broken them

If this crypto was so weak, why didn’t anyone attack it?

• It wasn’t necessary

Some Metrics… (ctd)

There were so many other ways to render DKIM

ineffective that no-one bothered attacking the crypto

• Anyone with a bit of technical knowledge could have broken

the crypto

• No-one did because it was so easy to bypass that it wasn’t

worth attacking

– “Crypto is bypassed, …”

Strong crypto will Save Us!

AES-256, because we want keys that go to 11

Original image, unencrypted

Strong crypto will Save Us! (ctd)

AES-256, because we want keys that go to 11

Image encrypted with AES-256, ECB mode

HSMs will Save Us!

Hardware Security Module

• All crypto and keys are locked inside the HSM

Banks use these in large quantities for ATMs and PIN

processing

HSMs will Save Us! (ctd)

HSM used for PIN processing

• Encrypt the customer’s primary account number (PAN) under

the PIN derivation key (PDK) to get the PIN

• Result is a set of values in the range 0x0 – 0xF

• Use a decimalisation table to convert to PIN digits in 0…9

range

• encryptPDK(PAN) = 2A3F…

• Decimalise 2A3F → 2036

Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F

Dec 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 6

HSMs will Save Us! (ctd)

Customer-defined PINs are handled by adding an offset to

the PIN

• Not security-critical, since it’s useless without the PIN

PIN verification

• Take an encrypted PIN block from the ATM

• Feed it to the HSM in the bank alongside the decimalisation

table

• HSM verifies the PIN and returns “failure” or “success”

All inside the HSM

• No keys or plaintext ever leaves the HSM

Secure, right?

HSMs will Save Us! (ctd)

Decimalisation tables are customer-defined

• Use a modified table to guess each PIN digit

• Enter PIN block

• If the HSM still reports “success” then the PIN contains no

zeroes

Repeat for all digits

• Now you know the digits in the PIN, but not their location

Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F

Dec 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 6

HSMs will Save Us! (ctd)

To find the digit locations, adjust the PIN offset

• Use offset to cancel out the decimalisation-table modification

– This table converts 0s to 1s in the PIN

• Taking PIN 2036 (from previous slides), offset 0000

Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F

Dec 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 6

Offset HSM result PIN

0001 failure ????

0010 failure ????

0100 success ?0??

HSMs will Save Us! (ctd)

Iterate for each digit in the PIN

• Recovers the PIN without knowing any encryption keys or

having access to the HSM’s internals

Crypto Summary

Number of attacks that broke the crypto: 0

Number of attacks that bypassed the crypto: All the rest

• No matter how strong the crypto was, or how large the keys

were, the attackers walked around it

Getting Back to BULLRUN…

New York Times:

“companies were coerced

by the government into

handing over master

encryption keys”

“the NSA hacked into

target computers”

One-week CERT Summary (SB13-273)

“obtain administrative privileges by leveraging read access to the configuration file”, “allows remote authenticated users to

bypass an unspecified authentication step”, “allows remote attackers to discover usernames and passwords via an HTTP

request”, “allows remote attackers to execute arbitrary commands”, “allows remote attackers to read arbitrary files”, “allows

remote attackers to read arbitrary text files”, “allows remote authenticated users to execute arbitrary code”, “allows local users

to gain privileges”, “allows remote attackers to obtain sensitive information or modify data”, “allows remote attackers to

execute arbitrary SQL commands”, “allows remote attackers to execute arbitrary SQL commands”, “allows local users to gain

privileges”, “allows man-in-the-middle attackers to spoof SSL servers”, “allows man-in-the-middle attackers to spoof servers”,

“allows man- in-the-middle attackers to obtain sensitive information or modify the data stream”, “allows local users to gain

privileges”, “allows remote attackers to enumerate valid usernames”, “allows remote attackers to execute arbitrary commands”,

“allows remote attackers to execute arbitrary commands”, “allows local users to execute arbitrary Baseboard Management

Controller (BMC) commands”, “allows man-in-the-middle attackers to read or modify an inter-device data stream”, “allows

local users to gain privileges”, “allow remote attackers to inject arbitrary web script or HTML”, “allows remote attackers to

inject arbitrary web script or HTML”, “allows remote attackers to obtain sensitive query string or cookie information”, “allows

remote attackers to hijack the authentication of administrators”, “allows remote attackers to inject arbitrary web script or

HTML”, “allows remote attackers to inject arbitrary web script or HTML”, “allows local users to obtain sensitive information”,

“allows remote attackers to conduct cross-site request forgery (CSRF) attacks”, “allows remote attackers to inject arbitrary web

script or HTML via an HTML”, “allows remote attackers to execute arbitrary code”, “allows remote attackers to execute

arbitrary code”, “allow remote attackers to inject arbitrary web script or HTML”, “allows local users to bypass intended access

restrictions”, “allows remote attackers to inject arbitrary web script or HTML”, “allows remote attackers to inject arbitrary web

script or HTML”, “allows remote attackers to obtain sensitive information”, “allows remote attackers to obtain sensitive

information”, “allows remote attackers to inject arbitrary web script or HTML”, “allows remote attackers to read session

cookies”, “allows remote attackers to inject arbitrary web script or HTML”, “allows remote attackers to obtain privileged

access”, “allows local users to gain privileges”, “allows remote attackers to execute arbitrary code”, “allows remote attackers to

inject arbitrary web script or HTML”, “allows local users to gain privileges”, “allows remote attackers to obtain sensitive

information”, “allows remote attackers to inject arbitrary web script or HTML”, “allows local users to gain privileges”, “allows

local users to gain privileges”, “allows remote attackers to obtain sensitive information”, “allow remote attackers to bypass

intended access restrictions”, “allows remote authenticated users to bypass intended payment requirements”, “allows remote

attackers to inject arbitrary web script or HTML”, “allows remote attackers to inject arbitrary web script or HTML”, “allows

remote attackers to bypass TLS verification”, “allows remote attackers to inject arbitrary web script or HTML”, “allows remote

attackers to inject arbitrary web script or HTML”, “allows man-in-the-middle attackers to obtain access”, “allows remote

National Security Letters

The legalised form of rubber-hose cryptanalysis

• Requirement to hand over data, or else

• Built-in gag order to prevent you talking about it

– Details of both vary depending on court challenges to their

constitutionality

National Security Letters (ctd)

Bypass any crypto at the service provider by requiring

them to hand over plaintext

• FBI over-used them while under-reporting their use to

Congress

Several providers (LavaBit, Silent Mail, CryptoSeal,

CertiVox) have shut down in the face of NSLs

• Larger, more commercially-oriented providers complied with

them

BULLRUN Again…

“covertly influence and/or overtly leverage commercial

products’ designs”

“design changes make the systems in question exploitable”

“to the consumer, however, the systems’ security remains

intact”

BULLRUN Again… (ctd)

Dual_EC_DRBG

In 1985, ANSI X9.17 specified a pseudorandom number

generator (PRNG) for banking use

temp = encrypt(seed);

out = encrypt(temp ˄ Vn);

Vn+1 = encrypt(out ˄ temp);

Based on triple DES, the state of the art at the time

• Security relies on the strength of 3DES secret keys

Dual_EC_DRBG (ctd)

In 1998, NIST adopted it verbatim in X9.31, adding the

option to use AES

Over a period of several years subsequently, many people

at NIST hacked around on a bunch of PRNGs

• Design-by-committee, but in series rather than parallel

Finally published in 2012 as NIST SP 800-90A

Dual_EC_DRBG (ctd)

Some SP 800-90 generators are straightforward and

sensible

• X9.17/X9.31 updated to use HMAC

• Half a page in X9.17

Some are not

• Hash_DRBG

• Five pages in SP 800-90

Dual_EC_DRBG (ctd)

Others are just stupid

• Dual_EC_DRBG

• Sixteen pages in SP 800-90

– Pages and pages of maths

– Where’s the RNG?

• Complex, awkward, incredibly slow, …

NSA also pushed hard to get it into other standards

• ANSI X9.82

• ISO 18031

These are even worse than SP 800-90

• No way to generate your own parameters

Dual_EC_DRBG (ctd)

It’s OK, no-one in their right mind would implement this

I’ve never met anyone who would actually use Dual-EC-DRBG.

(Blum-Blum-Shub-fanatics show up all the time, but they are all

nutcases)

— Kristian Gjøsteen, Norwegian University

of Science and Technology

• (Kristian submitted a comment paper to NIST as far back as

2006 pointing out that the EC DRBG was cryptographically

unsound and shouldn’t be used)

Dual_EC_DRBG (ctd)

So we’ve established that no-one would ever take this thing

seriously

You were serious about dat?

— “My Cousin Vinnie”, 1992

Dual_EC_DRBG (ctd)

Well, except for a pile of US companies, including

• Blackberry

• Certicom (holders of ECC patents)

• Cisco

• GE Healthcare

• Juniper

• Lancope (who only provide EC_DRBG)

• McAfee

• Microsoft

• Mocana

• Openpeak

continues

Dual_EC_DRBG (ctd)

continued

• OpenSSL (umbrella use by numerous organisations)

• RSA

• Safenet

• SafeLogic

• Samsung (must have had USG customers)

• Symantec

• Thales (see Samsung entry)

RSA made it the default in their crypto library

Dual_EC_DRBG (ctd)

OpenSSL didn’t actually use it, though

• Implementation contained “a fatal bug in the Dual EC DRBG

implementation”

This bug is fatal in the sense that it prevents all use of the

Dual EC DRBG algorithm […] we do not plan to correct the

bug. A FIPS 140-2 validated module cannot be changed

without considerable expense and effort

— “Flaw in Dual EC DRBG (no, not that one)”,

Steve Marquess

Presumably no-one had ever used this generator in

OpenSSL, since no-one complained that it didn’t work

• Presumably...

Dual_EC_DRBG (ctd)

FIPS 140 doesn’t allow you to fix things

We did specifically ask if we had any discretion at all in the choice
of points and were told that we were required to use the
compromised points […] if you want to be FIPS 140-2 compliant
you MUST use the compromised points

— “Flaw in Dual EC DRBG (no, not that one)”,
Steve Marquess

But wouldn’t the FIPS validation have caught the fact that the
OpenSSL implementation didn’t work?

Not only the original validation but many subsequent validations
have successfully passed the algorithm tests… several hundred
times now. That’s a lot of fail […] the FIPS 140-2 validation testing
isn’t very useful for catching real-world problems

— “Flaw in Dual EC DRBG (no, not that one)”,
Steve Marquess

Dual_EC_DRBG (ctd)

So what’s the problem (apart from it being a stupid

design)?

• How long do you have?

• Read “The Many Flaws of Dual_EC_DRBG”,
http://blog.cryptographyengineering.com/

2013/09/the-many-flaws-of-dualecdrbg.html

• (You are not expected to understand this)

Dual_EC_DRBG (ctd)

Short summary of just one issue

• Public value sent at start of SSL/TLS handshake, Client

Random, is 32 bytes (256 bits)

– Used to randomise each new exchange

• If generated with Dual_EC_DRBG you can predict the

SSL/TLS premaster secret

• All crypto keys in SSL/TLS are derived from this value

Dual_EC_DRBG (ctd)

NSA attempted to make this attack even easier

The United States Department of Defense has requested a

TLS mode which allows the use of longer public randomness

values

— draft-rescorla-tls-extended-random-00

– (Eric Rescorla is co-chair of the TLS working group, draft

co-authored by Margaret Salter of the NSA)

• Leaks even more information needed to recover the generator's

internal state

Dual_EC_DRBG (ctd)

WTF RSA?

• Specified in a NIST standard

• Lots of government customers

• Implemented several of the generators in the standard

– Including the dumb ones

• Speculation: “It would really help this large government

contract if you made EC_DRBG he default. It’s OK, it’s a

NIST-approved generator like all the others”

Dual_EC_DRBG (ctd)

It was more sinister than that though

RSA received $10 million in a deal that set the NSA formula as
the default method for number generation in the BSafe software
[…] it represented more than a third of the revenue that the
relevant division at RSA had taken in during the entire previous
year

— Reuters, “Secret contract tied NSA and security
industry pioneer”

NSA then used this to force its adoption as a standard

RSA adopted the algorithm even before NIST approved it. The
NSA then cited the early use of Dual Elliptic Curve inside the
government to argue successfully for NIST approval

— Reuters, “Secret contract tied NSA and security
industry pioneer”

Dual_EC_DRBG (ctd)

Dual_EC_DRBG (ctd)

Microsoft’s reason for adding it parallels the RSA one

(without the bribe):

Microsoft decided to include the algorithm in its operating system

because a major customer was asking for it

— Kim Zetter, Wired

As does OpenSSL’s

It was requested by a sponsor as one of several deliverables. The

reasoning at the time was that we would implement any algorithm

based on official published standards

— “Flaw in Dual EC DRBG (no, not that one)”,

Steve Marquess

Dual_EC_DRBG (ctd)

It’s OK though, apart from RSA (and Lancope) no-one

made it the default

• It has to be explicitly configured to be the default

Surely no-one would do that

• Except perhaps a large government organisation…

… the NSA hacked into target computers…

… to the consumer the systems’ security remains intact…

Just the mere presence of such a facility is already a

security risk

How to Backdoor Dual_EC_DRBG

Backdoor capability was first pointed out in 2005

If P and Q are established in a security domain controlled by

an administrator, and the entity who generates Q for the

domain does so with knowledge of e (or indirectly via

knowledge of d), the administrator will have an escrow key for

every ECRNG that follows that standard

— “Elliptic curve random number generation”,

Patent Application CA2594670 A1, 21 January 2005

How to Backdoor Dual_EC_DRBG (ctd)

In December 2013, Aris Adamantiadis released OpenSSL-

based proof-of-concept code to backdoor the EC_DRBG

It is quite obvious in light of the recent revelations from

Snowden that this weakness was introduced by purpose by

the NSA. It is very elegant and leaks its complete internal state

in only 32 bytes of output […] It is obviously complete

madness to use the reference implementation from NIST

— Aris Adamantiadis, “Dual_EC_DRBG backdoor: a

proof of concept”

Used his own EC parameters (not the NIST ones)

• Only the NSA can break the one with the NIST parameters,

since it requires knowledge of the secret value d used to

generate them

NIST ECC Curves

ECC isn’t so much an algorithm as a set of toothpicks and

a tube of glue

• All the bells, whistles, and gongs you’ll ever need

Need to define standardised parameters (“curves”) for

interoperability

• NIST defined several

• Most common are P256, P384, and P512

NIST ECC Curves (ctd)

Example: P256 curve over a prime field

Prime p = 11579208921035624876269744694940757353008614341529031419

5533631308867097853951

Parameter a = 11579208921035624876269744694940757353008614341529031

4195533631308867097853948

Parameter b = 41058363725152142129326129780047268409114441015993725

554835256314039467401291

Base point xG = 484395612939064517590525852527979142027629495260417

47995844080717082404635286

Base point yG = 36134250956749795798585127919587881956611106672985

015071877198253568414405109

Order q of the point G = 1157920892103562487626974469494075735299969

55224135760342422259061068512044369

• (You are not expected, etc)

NIST ECC Curves (ctd)

How were these generated?

• Deterministically (i.e. verifiably), from a public seed value

What’s the seed value?

• C49D3608 86E70493 6A6678E1 139D26B7 819F7E90

Where did that come from?

• Jerry Solinas at the NSA

• (Jerry is a known ECC mathematician at the NSA)

NIST ECC Curves (ctd)

So how would you use this to backdoor the NIST curves?

• Suppose the NSA knew of (say) a 264 attack that breaks one

256-bit curve in a billion

• The NSA can recognise from the group order whether an attack

on the curve will be successful (reasonable assumption)

This isn’t as unlikely as it seems

• Whole classes of elliptic curves are vulnerable to various

attacks that make them (relatively) easy to break

• Generating curve parameters is a lengthy, involved process to

find one that isn’t vulnerable to the catalogue of known attacks

NIST ECC Curves (ctd)

NSA generates billions of seeds, from which they generate

curves until they find one that’s vulnerable to this attack

• Get it adopted as a NIST standard…

• … which is a the de facto standard used by US software

vendors …

• … which is the de facto global standard

– (Speculation courtesy Dan Bernstein)

The curve is “verifiable” in the sense that it was verifiably

generated from the seed

• At that point, things stop

Scenario fits the NIST curves

NIST ECC Curves (ctd)

European Brainpool curve designers recognised this in

2005

• The choice of the seeds from which the curve parameters

have been derived is not motivated leaving an essential part of

the security analysis open.

• No proofs are provided that the proposed curves do not

belong to those classes of curves for which more efficient

cryptanalytic attacks are possible.

— “ECC Brainpool Standard Curves and Curve Generation”

Brainpool curves compute their seeds from π

• Newer designs like Dan Bernstein’s Curve25519 have even

more defences built in

NIST ECC Curves (ctd)

In October 2013, RFC 7027 on using the Brainpool curves

in TLS was published

• Announced on the TLS mailing list on 15 October 2013

Support added in OpenSSL, cryptlib, PolarSSL on the same

day

• Other implementations added support within days

The TLS working group has never moved so quickly on an

issue before…

IPsec

It can’t have got that bad by accident

IPsec was a great disappointment to us […] virtually nobody is

satisfied with the process or the result […] the documentation is

very hard to understand […] the ISAKMP specifications [the

NSA’s main overt contribution to IPsec] contain numerous errors,

essential explanations are missing, and the document contradicts

itself in various places […] none of the IPsec documentation

provides any rationale for any of the choices that were made […]

the reviewer is left to guess […]

—“A Cryptographic Evaluation of IPsec”,

Niels Ferguson and Bruce Schneier,

from the first 5 pages of 28

You mean they did this on purpose?

IPsec (ctd)

Hello? I’ve just committed IPsec and I did it on purpose!

— “Last Action Hero”, 1993

Apparently so…

IPsec (ctd)

There’s a long history behind this sort of thing

OSS field manual, 1945

IPsec (ctd)

IPsec (ctd)
(a) Organizations and Conferences

(1) Insist on doing everything through "channels." Never permit short-cuts to be taken in

order to, expedite decisions.

(2) Make "speeches." Talk as frequently as possible and at great length. Illustrate your

"points" by long anecdotes and accounts of personal experiences. Never hesitate to make

a few appropriate "patriotic" comments.

(3) When possible, refer all matters to committees, for "further study and consideration."

Attempt to make the committees as large as possible - never less than five.

(4) Bring up irrelevant issues as frequently as possible.

(5) Haggle over precise wordings of communications, minutes, resolutions.

(6) Refer back to matters decided upon at the last meeting and attempt to reopen the

question of the advisability of that decision.

(7) Advocate "caution." Be "reasonable" and urge your fellow-conferees to be "reasonable"

and avoid haste which might result in embarrassments or difficulties later on.

(8) Be worried about the propriety of any decision -raise the question of whether such

action as is contemplated lies within the jurisdiction of the group or whether it might conflict

with the policy of some higher echelon.

IPsec (ctd)
(b) Managers and Supervisors

(1) Demand written orders.

(2) "Misunderstand" orders. Ask endless questions or engage in long correspondence about such orders.

Quibble over them when you can.

(3) Do everything possible to delay the delivery of orders. Even though parts of an order may be ready

beforehand, don't deliver it until it is completely ready.

(4) Don't order new working materials until your current stocks have been virtually exhausted, so that the

slightest delay in filling your order will mean a shutdown.

(5) Order high-quality materials which are hard to get. If you don't get them argue about it. Warn that inferior

materials will mean inferior work.

(6) In making work assignments, always sign out the unimportant jobs first. See that the important jobs are

assigned to inefficient workers of poor machines.

(7) Insist on perfect work in relatively unimportant products; send back for refinishing those which have the

least flaw. Approve other defective parts whose flaws are not visible to the naked eye.

(8) Make mistakes in routing so that parts and materials will be sent to the wrong place in the plant.

(9) When training new workers, give incomplete or misleading instructions.

(10) To lower morale and with it, production, be pleasant to inefficient workers; give them undeserved

promotions. Discriminate against efficient workers; complain unjustly about their work.

(11) Hold conferences when there is more critical work to be done.

(12) Multiply paper work in plausible ways. Start duplicate files.

(13) Multiply the procedures and clearances involved in issuing instructions, pay checks, and so on. See that

three people have to approve everything where one would do.

IPsec (ctd)

Hey, I resemble that remark!

• This process may be hard to distinguish from SOP for many

organisations

(For people who want this list for use at work:
http://svn.cacert.org/CAcert/CAcert_Inc/

Board/oss/OSS_Simple_Sabotage_Manual.pdf)

IPsec (ctd)

So was IPsec deliberately sabotaged?

• Probably not

Never attribute to malice what is adequately explained by

stupidity a committee

Lesson 1: Cryptographic protocols should not be developed by a

committee

— “A Cryptographic Evaluation of IPsec”,

Niels Ferguson and Bruce Schneier

BULLRUN Again…

In any case IPsec doesn’t matter much…

• The NSA have tools for subverting it

BULLRUN Again… (ctd)

BULLRUN Again… (ctd)

As well as the routers that run it…

• When you own the router that does the crypto, IPsec becomes

irrelevant

NSA owns

• Cisco

– BANANAGLEE, JETPLOW

• Juniper

– BANANAGLEE, FEEDTROUGH, GOURMETTROUGH,

SCHOOLMONTANA, SIERRAMONTANA,

SOUFFLETROUGH, VALIDATOR

• Huawei

– HAMMERMILL, HALLUXWATER, HEADWATER

BULLRUN Again… (ctd)

Speaking of routers and security risks…

Q: Does Huawei represent an unambiguous national security

threat to the US and Australia?

A: Yes, I believe it does

— NSA Director Michael Hayden, interviewed in the

Australian Financial Review

Chinese telecom provider Huawei represents an unambiguous

national security threat to the United States and Australia

— “Huawei Is a Security Threat and There’s Proof,

Says Hayden”, eWeek

We’d better go with (expensive) US networking equipment,

since we can’t trust (cheaper) Huawei gear

BULLRUN Redux

So this…

Chinese telecom provider Huawei represents an unambiguous

national security threat to the United States and Australia

— “Huawei Is a Security Threat and There’s Proof,

Says Hayden”, eWeek

… is really this:

US intelligence agency NSA represents an unambiguous national

security threat to the United States and Australia

— “NSA Is a Security Threat and There’s Proof,

Says Snowden”, TBA

NSA-proof Crypto

We don’t need any new “NSA-proof protocols”

• Any well-designed,

appropriately-deployed

protocol is “NSA-proof”

NSA-proof Crypto (ctd)

Any properly-designed and implemented protocol will stop

• The NSA

• The CIA

• The GCSB

• The FSB (née KGB)

• …

• Your mother

• Your cat

NSA-proof Data

Sometimes we don’t need crypto at all

Let’s leverage the synergy of the cloud!

NSA-proof Data (ctd)

On second thoughts…

Let’s not.

NSA-proof Data (ctd)

Leverage the safety of your local server

• Getting data from Gmail via an NSL is much easier than

getting it from a PC at 81 Princes St, Putaruru 3411, New

Zealand

(Counterpoint: Google is better at running a mail server

than most companies are)

NSA-proof Data (ctd)

Goes back to a pre-crypto principle called geographic

entitlement

• More modern term: location-limited channel

You have to be at least this close to the data in order to

access it

• Works best with short-range links, not long-distance routable

protocols

NSA-proof Data (ctd)

Access to data is predicated on physical access to the

location

NSA-proof Data (ctd)

In plain English: Don’t put your data where the NSA can

get it

There’s already pushback in Europe against exporting data

to the US

• (So now only your local spooks can get it)

Conclusion

I love crypto, it tells me what part of the system not to bother

attacking

— Drew Gross, forensic scientist

Crypto is not soy sauce for security

— Patrick McKenzie

Crypto is fundamentally unsafe. People hear that crypto is strong

and confuse that with safe. Crypto can indeed be very strong but

it’s extremely unsafe

— Nate Lawson, Root Labs

Encryption is the chicken soup of security, feel free to apply it if it

makes you feel better because it’s not going to make things any

worse, but it may not make things any better either

— Me

