
Self-Defending Databases

Alexander Kornbrust,
Red-Database-Security GmbH

Agenda
¡ Introduction

¡ Root Cause

¡ Anatomy of an attack

¡ Detection of an attack

¡ Countermeasures

¡ How to implement

¡ Discussion

Introduction
This presentation shows how databases can defend themselves against

SQL Injection attacks without human interaction.

Web applications/services are permanently attacked from the internet
(successful/unsuccessful). A successful attack often leads to data loss

(e.g. data is posted on websites like pastebin.com).

The majority of attacker are using tools to attack web applications and

to download data that’s why human reaction on these events is

normally to slow.

Introduction

Monitoring 30 web applications: (Imperva Trend Report #4, Sep 2011)

¡  on average 71 SQL injection attempts per hour

¡  800-1300 injection attempts at peak times

¡  Use of highly automated SQL injection tools, e.g. sqlmap, Havij,...

http://www.imperva.com/download.asp?id=352
https://www.hashdays.ch/slides/2011/bockermann_hashdays11.pdf (

Hashdays 2011 – Protecting
Databases with Trees
The presentation “A syntax-based approach to detect SQL injections”

from Christian Bockermann showed how to use the parse tree to detect

SQL Injection attacks.

This approach is smart but complex (SQL Parser, Training data, …).
Additionally it does not answer the problem what to in case of an SQL

Injection.

https://www.hashdays.ch/slides/2011/bockermann_hashdays11.pdf

Root Cause

Problem:

Web applications are often vulnerable against SQL Injection

Solution:

Fix all vulnerable web applications and allow only the

deployment of secure (after pentest) applications

Is this really realistic in a
(large) organization?

No !

¡  There is no secure code

¡  Majority of applications are not pentested

¡  Applications are longer used than expected (sometimes 10+ years)

¡  Application patches are difficult to get/patch or not available

Anatomy of an SQL Injection
Web Attack

1.  Use a tool (e.g. Havij, Netsparker, Matrixay,
Pangolin, SQLMap, …) or google to find a SQL
Injection vulnerability by crawling the entire
website

2.  Select the tables (data) in the tool

3.  Download the data via the tool

1. Find a SQL Injection
Vulnerability

Google Hacking

2. Select the data

3. Download the data

And the data is gone ...

(in often less than 2 minutes)

Potential Reaction for SQL Inj.
Attacks

Solution:

Within 2 minutes after the attack started, the Manager on
Duty is receiving an alert and automatically stops the attack

by shutting down the service

Is this really realistic in a
(large) organization?

No !

¡  Time for a human reaction is too short

¡  Several companies do not have a Security information and event Management
(SIEM) and Security Operation Center (SOC) in place to forward these kind of alert,

¡  Even with a SIEM system 2 minutes are a challenge for most organizations

¡  Side effects of a stopping a system/service is not documented in most companies

¡  A manager on duty would normally not stop a system

We don’t live in a perfect
world that’s why we need a
different real-world
approach against SQL
Injection attacks

Approach

1.  The system itself has to detect the hacking attempt

2.  Appropriate counter measures have to be taken

Detection

How and where can we detect a SQL Injection hacking attempt?

¡  Web Application Firewall (WAF/IDS)

¡  Can block some of the attacks by filtering the input

¡  Webserver

¡  Can block some of the attacks by filtering the input (mod_security)

¡  Application

¡  Not without changing the application itself (which is difficult)

¡  Database

¡  Yes, by detecting SQL errors

Detection

Out-of-the-box Databases like Oracle or Microsoft SQL Server are able

to detect SQL specific error messages and can run (custom) code

(=countermeasure) after the detection.

MySQL could use this technique via a MySQL proxy.

These specific database errors only occur if a vulnerability exists and

this vulnerability was triggered by a specific string (e.g. “or 1=1--”)

False positives are rare. A false positive could occur if a developers are

deploying applications with incorrect SQL statement (e.g. missing

single quote).

Implementation

The implementation of this detection has to be done in different ways

depending from the underlying database:

Oracle:

¡  Database Errror Trigger

Microsoft SQL Server:

¡  Event Notification

MySQL:

¡  MySQL Proxy or MySQL Audit Plugin*

* http://dev.mysql.com/doc/refman/5.5/en/writing-audit-plugins.html

Detection of SQL Injection
attacks via error messages
•  Depending from the used attack method (UNION, extend query,

create error messages to retrieve data, …) a specific error will be

created

e.g.

ORA-01789: query block has incorrect number of result columns

•  Or
Microsoft OLE DB Provider for ODBC Drivers error

'80040e07' [Microsoft][ODBC SQL Server Driver][SQL Server]Syntax

error converting the nvarchar value ’mypassword' to a column of

data type int. /Administrator/login.asp, line 27

Typical SQL Injection Attack I

Original SQL command

select custname, custid, custorder from customer;

SQL command extended by an attacker

select custname, custid, custorder from customer
union
select username, null, password from dba_users;

Typical SQL Injection Attack II

Typical SQL Injection Attack III

Typical SQL Injection Attack IV

Typical SQL Injection Attack V

Injected:
Union null,username from all_users--

Error message:
ERROR at line 1:
ORA-01789: query block has incorrect number of result
columns

è Attacker (or tool) is adding NULLs until a proper SQL

statement was created and executed

Next attempt:
Union null,null,username from all_users—

Typical SQL Injection Attack VI

SQL Injection Error Codes Oracle - I
Error code	
 Error Message	
 Typical Command	

ORA-00900	
 invalid SQL statement	
 	

ORA-00906	
 missing left parenthesis	
 	

ORA-00907	
 missing right parenthesis	
 	

ORA-00911	
 invalid character 	
 e.g. PHP MAGIC_QUOTES_GPC
activated and attempt to
inject a single quote	

ORA-00917	
 missing comma	
 	

ORA-00920	
 invalid relational operator	
 	

ORA-00923	
 FROM keyword not found where expected	
 	

ORA-00933	
 SQL command not properly terminated	
 	

ORA-00970	
 missing WITH keyword	
 	

ORA-01031	
 insufficient privileges	
 Attempted privilege escalation	

ORA-01476	
 divisor is equal to zero	
 Blind SQL Injection attempt
(e.g. sqlmap)	

ORA-01719	
 outer join operator not allowed in operand
of OR or IN	

 	

ORA-01722	
 invalid number	
 Enumeration with rownum and
current rownum does not exist	

SQL Injection Error Codes Oracle - II
Fehlernr	
 Fehlermeldung	
 Auslöser	

ORA-01742	
 comment not properly terminated	
 inline comment, e.g

optimizer hint is not properly
terminated	

ORA-01756	
 quoted not properly terminated	
 single quote not properly
terminated	

ORA-01789	
 query block has incorrect number of
result columns	

Attempt to use UNION
SELECT	

ORA-01790	
 expression must have same datatype
as corresponding	

Attempt to use UNION
SELECT	

ORA-24247	
 network access denied by access
control list	

Oracle ACL has blocked
the usage of UTL_INADDR
(or similar)	

ORA-29257	
 Host %S unknown	
 Attempted SQL Injection
via utl_inaddr	

ORA-29540	
 Class does not exist	
 Attempted utl_inaddr
attempt but Java is not
installed	

ORA-31011	
 XML parsing failed	
 SQL Injection attempt via
xmltype	

ORA-19202	
 Error occurred in XML processing	
 SQL Injection via
extractvalue	

SQL Injection Error Codes MSSQL

http://www.evilsql.com/main/page2.php

Error Message	
 Typical Command	

Unclosed quotation mark before the character
string ''	

 Usage of single quotes	

Syntax error converting the varchar value 'test' to a
column of data type int.	

 Usage of -- 	

Column	
 '[COLUMN	
 NAME]'	
 is	
 invalid	
 in	
 the	
 select	
 list	

because	
 it	
 is	
 not	
 contained	
 in	
 an	
 aggregate	
 function	

and	
 there	
 is	
 no	
 GROUP	
 BY	
 clause.	

	

http://[site]/page.asp?id=1	
 having	
 1=1-­‐-­‐	

Syntax	
 error	
 converting	
 the	
 nvarchar	
 value	
 '[DB	

USER]'	
 to	
 a	
 column	
 of	
 data	
 type	
 int.	

http://[site]/page.asp?id=1	
 or	

1=convert(int,(USER))-­‐-­‐	

React on errors
•  The system could react on the errors caused by SQL Injection attempts

•  Detection only / Audit the event

•  Send an email to the manager-on-duty/DBA/Security Department

•  Lock the database account

•  Terminate this session or terminate all sessions

•  To minimize the impact, different database accounts should be used
for different applications (e.g. Internet, Intranet, Android, iOS, ..).

•  If the application is blocked from the internet, intranet users can still
work with the application.

•  Only errors caused by the application server should create such a
reaction (i.e. ORA-01756 from SQL*Plus, TOAD or SQL Management
Studio will be ignored)

Additional options to react

•  After the account was locked the user can‘t use the webapp

•  Send an email to the operating and/or Manager on Duty

•  Analyze error ('or 1=1 oder O‘Leary)

•  Unlock account in case of false positive

•  In case of a real alert try to identify the type of attacker

(Amateur, Pro, Skript-Kiddie with tool, …)

•  Option to lock ip ranges (lock only people outside of hungary)

•  Fix the software bug and/or search a workaround.

Oracle Error Trigger
- Sample code

CREATE OR REPLACE TRIGGER after_error
 AFTER SERVERERROR ON DATABASE
 DECLARE
 sql_text ORA_NAME_LIST_T;
 v_stmt CLOB; -- SQL statement causing the problem
 n NUMBER; -- number of junks for constructing the sql statement causing the
error
 v_program VARCHAR2(64);
 v_serial number;
 v_sid number;
BEGIN
-- Version 1.00
select program,serial#,sid into v_program,v_serial,v_sid from v$session where
sid=sys_context('USERENV', 'SID');
 -- construct the sql text
 n := ora_sql_txt(sql_text);
 --
 IF n >= 1
 THEN
 FOR i IN 1..n LOOP
 v_stmt := v_stmt || sql_text(i);
 END LOOP;
 END IF;
 --

FOR n IN 1..ora_server_error_depth LOOP

IF (lower(v_program) = 'iis.exe') -- add your own application server
 and (ora_server_error(n) in
('942','900','906','907','911','917','920','923','933','970','1031','1476','1719','1722','1742','1756','17
89','1790','19202','24247','29257','29540','31011'))
 THEN
 -- Potential attack was detected
 -- 1. Monitor the attack
 -- 2. Send an email to the responsible person (DBA/MoD)
 -- send_email (e.g. via utl_smtp)
 -- 3. Lock database user used by the webapp
 execute immediate ('ALTER USER /* Error_Trigger */ "'|
sys_context('USERENV','SESSION_USER')||'" account lock');
 -- 4. Terminate Session
execute immediate ('ALTER SYSTEM /* Error_Trigger */ KILL SESSION '''||v_sid||','||
v_serial||''' account lock');
alter system kill session 'session-id,session-serial'
 -- 5. Other countermeasures

 END IF;

 END LOOP;
 --
END after_error;
/

SQL Server

Concept SQL Server
•  Event notifications are a special kind of database object that

send information about server and database events to a Service

Broker service.

•  Create events for typical SQL injection errors

http://weblogs.sqlteam.com/mladenp/archive/2008/07/18/Immediate-deadlock-notifications-without-changing-existing-code.aspx
http://msdn.microsoft.com/en-us/library/ms189453.aspx

MySQL
(all credits go to Xavier Mertens)

http://blog.rootshell.be/2012/11/01/mysql-attacks-self-detection/

Concept MySQL

Concept MySQL
•  Create an UDF to write errors in a log file.

•  A LUA script will rewrite the query by appending the “SHOW
WARNINGS” statement + some variables at the end of the query.

•  Then the query results of the modified query will be read by the

LUA scripts and written to a log-file

•  It is also possible to lock the MySQL user account (similar to the

other databases)

Countermeasures after
detecting an attack

Countermeasures after detection I

Monitor the attempt and send an email to the security officer

Pro:

¡  Small footprint

¡  No side effect on the application

Cons:

¡  Fast response needed

¡  What happens during the night, vacation, …

Countermeasures after detection II

Lock the database account and kill all already running processes

Pro:

¡  Attack is immediately stopped

¡  Do data is lost

Cons:

¡  Side effect on the application (Denial-of-Service)

¡  Potential false positive

Countermeasures after detection III

Get the IP address from the web application server and start a

denial-of-service against the IP where the attack was coming from

Pro:

¡  Database strikes back ;-)

Cons:

¡  Is this legal?

What do you prefer?

Service not available

 or

Data is lost/published?

What happens after lockout?

Manager on Duty can decide if the database account should be

re-enabled / unlock.

This is normally an easier decision instead of stopping a service to
stop an on-going attack?

Potential false positives

If a web application is vulnerable against SQL Injection attacks, an

“accidental” string like “O’Leary” can trigger the account lockout.

In this case the string was not part of an attack. In such a case it could
be an option to exclude the string from the detection and re-enable

the service again.

The vulnerability should be fixed as soon as possible.

Or

Developer has deployed wrong SQL code (e.g. Single Quote is missing)

SQL Injection Errors from Web Application
Scanner

If a web application is vulnerable against SQL Injection attacks, and

a web application scanner is performing a scan we know that we

are under attack.

How can we detect that a webapp scanner was causing the error?

SQL Injection Errors from Web Application
Scanner

Vulnerable URL:
php3.php?ename=test

Webapp Scanner is trying to inject patterns and analyzes the result

php3.php?ename=' and 1=0 union select 1,password from dba_users
where username='SYSTEM’--

ERROR:

ORA-01789 - query block has incorrect number of result columns

SQL Statement:

Select * from emp where ename=‘’ and 1=0 union select 1,password from
dba_users where username='SYSTEM’--

è Acunetix was used

Acunetix – Forensic Traces
Test strings (partial)

|| (select username from dual) --

' union select username,password from
dba_users--
'union select user, sysdate from dual
--
and 1=0 union select 1,2 from dual--

and 1=1 Union select null,banner from v
$version--!

SQL Injection Errors from Web Application
Scanner

Vulnerable URL:
php1.php?id=7900

Webapp Scanner is trying to inject patterns and analyzes the result

php1.php?id=' OR 'ns'='ns

ERROR:

ORA-00933: SQL command not properly ended

SQL Statement:

Select * from emp where id=' OR 'ns'='ns

è Netsparker (ns) was used

Netsparker – Forensic Traces
Test strings (partial)

OR 17-7=10

+CHAR(95)+CHAR(33)+CHAR(64)

' OR 'ns'='ns

OR 1=1

/**/AND/**/1=/**/
CHAR(95)+CHAR(33)+CHAR(64)+SUBSTRING(CA
ST((SELECT/**/@@version)/**/AS/**/
varchar(3000)),
0,343)+CHAR(95)+CHAR(33)+CHAR(64)

Matrixay – Forensic Traces
Test strings (partial)

AnD 1=1

AnD AsC(1)<65535

AnD user<Chr(0)

AnD (SeLEcT CoUNt(TaBLe_NaME) FrOM
user_tables)>0
AnD AsCIi(DaTAbAsE())=0!

HP Webinspect – Forensic Traces
Test strings (partial)

value' OR 5=5 OR 's'='0

value' AND 5=5 OR 's'='0

value' OR 5=0 OR 's'='0

value' AND 5=0 OR 's'='0

0+value

value AND 5=5

value AND 5=0

value OR 5=5 OR 4=0

value OR 5=0 OR 4=0

Pangolin – Forensic Traces
Test strings (partial)

union all select null from dual-- and
1=1
union all select null,null from dual--
and 1=1
and (select length(table_name) from
(select rownum r,table_name from
(select rownum r,table_name from
user_tables where rownum<=1 order by 1
desc)

SQL Injection Errors from Web Application
Scanner

A stored procedure in the database could be used to identify the

common SQL Injection tools and block the access.

This stored procedure is called inside the trigger/event notification.

Improve the concept I

¡  The application could use dedicated connections for dedicated

services (e.g. internal users and external users are using a different

connection or special connections for IOS and Android Apps). A

lockout of the external users does not affect the internal users

¡  Block only IP’s or IP ranges from specific blocks/regions/countries
(e.g. if majority of customers is coming from CH, block requests

from the outside of CH)

Improve the concept II

¡  The database mechanism to detect attacks could communicate

with the webserver to block specific IPs already at the webserver

level instead of blocking the entire account

è Depends how much time and effort is done for the

implementation

Improve the concept III

¡  Use different weights for the decision what to do

¡  Error comes from a TOR network +10

¡  Error comes from the intranet +4

¡  Error comes from an uncommon country (e.g. Turkemnistan) +7

¡  Injected string contains a -- +10

¡  Know attack string from webapp scanner +20

¡  Single quote comes after D, O +1 (Palm D’or, O’Connor) +1

¡  Single quote comes after a nonD/non-O +3

¡  …

¡  Add all weights

¡  If a certain weight is reached lock the user

Other ways to detect an
SQL Injection attack

Fake Data (Honey Data)

¡  Using fake data could help to identify attacks which are not triggered by

error messages (e.g. if attacker uses a known exploit for standard

software (e.g. Wordpress, …))

¡  Fake data (Honey data) is data (e.g. Passwords, Credit card numbers,
…) in tables which is never used by the application. If someone from the

web application server is accessing this kind of data this is often part of

the data discovery process of the attacker.

Fake-Data (Honey-Data)

•  Creation a table or tables containing unused data with juicy
names (e.g. PASSWORD, CREDITCARD, SALARY). Such interesting
data is often the target of attackers.

•  During the attack, attackers are often accessing the view
ALL_TAB_COLUMNS (Oracle) or INFORMATION_SCHEMA.COLUMNS
(MSSQL) to get the column names of interesting data

•  Attackers are normally downloading the data of interesting tables
found via the column name in further attacks.

•  You could monitor such an access and could react (send email,
lock user, …)

•  Oracle can implement this monitoring via Virtual Private Database
(VPD)

Fake-Data (Honey-Data)
-- Create Honeytable

create table app.userdata (username varchar2(30), password varchar2(30));

-- Fill Honeytable with data
insert into app.userdata values ('WEBUSER','WEBUSER01');
insert into app.userdata values ('WEBADM','ADMADM01');
insert into app.userdata values ('WEBREAD','READUSER01');

-- create predicate function
create or replace function perfcheck (pv_schema in varchar2, pv_object in
varchar2)
return varchar2 as
 begin

dbms_output.put_line(‘Send email to the security team or lock the database user...');
-- return always true. Attacker will see all results

 return '1=1';
end;
/

-- now we activate VPD for this table
exec dbms_rls.add_policy(object_schema => ‘APP', object_name => ‘USERDATA',
policy_name => 'PERFCHECK', policy_function => 'PERFCHECK');

VPD is free but requires Oracle Enterprise Eidition

Fake Functions

¡  Developers are typically using obvious function names.

¡  A common function name for encrypting/decrypting data is
encrypt()/decrypt().

¡  If an attacker finds a encrypted password column and a function

called decrypt, he will probably use the decrypt function:

Select decrypt(password) from app.appusers;

¡  Instead of decrypting the the password, this function is sending an

email to the security officer.

Summary

¡  Self-Defending databases can be a cheap and fast step to

protect databases.

¡  Implementation is transparent. No need to change the
application (but it could be useful)

¡  Can also be used during pentests to monitor if SQL Errors were

triggered by Pentesters

¡  Data loss can be prevented

¡  Dilemma for the management:

Stop the service or stop the data loss

Q & A?

Thanks
¡  Contact:

Red-Database-Security GmbH

Bliesstr. 16

D-.66538 Neunkirchen

Germany

