Speeding up
Networking

Van Jacobson
van@packetdesign.com

Bob Felderman
feldy@precisionio.com

Precision |/O

Linux.conf.au 2006
Dunedin, NZ

mailto:van@packetdesign.com
mailto:van@packetdesign.com
mailto:feldy@precisionio.com
mailto:feldy@precisionio.com

This talk is not about *fixing’
the Linux networking stack

The Linux networking stack isn’t broken.

® The people who take care of the stack know
what they’re doing & do good work.

® Based on all the measurements I’'m aware of,
Linux has the fastest & most complete stack of

any OS.

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

This talk is about fixing
an architectural problem

created a long time ago
in a place far, far away. ..

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

In the beginning ...
ARPA created MULTICS

® First OS networking stack (MIT, 1970)

® Ran on a multi-user ‘super-computer’
(GE-640 @ 0.4 MIPS)

® Rarely fewer than |00 users; took ~2 minutes
to page in a user.

® Since ARPAnet performance depended only
on how fast host could empty its 6 IMP
buffers, had to put stack in kernel.

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

The Multics stack begat

many other stacks ...

First TCP/IP stack done on Multics (1980)

People from that project went to BBN to
do first TCP/IP stack for Berkeley Unix
(1983).

Berkeley CSRG used BBN stack as
functional spec for 4.1c BSD stack (1985).

CSRG wins long battle with University of

California lawyers & makes stack source
available under ‘BSD copyright’ (1987).

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

Multics architecture, as
elaborated by Berkeley,
became ‘Standard Model’

Interrupt level Task level

System Application

(s8> @ (Socket)—(rend

byte stream

“The way we’ve always done it”
IS not necessarily the same as
“the right way to do it”

There are a lot of problems associated
with this style of implementation ...

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

Protocol Complication

® Since data is received by destination
kernel,“window’ was added to distinguish
between “data has arrived” & “data was
consumed”.

This addition more than triples the size of
the protocol (window probes, persist
states) and is responsible for at least half
the interoperability issues (Silly Window
Syndrome, FIN wars, etc.)

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

Internet Stability

You can view a hetwork connection as a

servo-loop: @\/’:®

A kernel-based protocol implementation
converts this to two coupled loops:

e__o®
A very general theorem (Routh-Hurwitz)
says that the two coupled loops will always

be less stable then one.

The kernel loop also hides the receiving app
dynamics from the sender which screws up
the RTT estimate & causes spurious
retransmissions.

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

Compromises

Even for a simple stream abstraction like TCP,
there’s no such thing as a “one size fits all”
protocol implementation.

® The packetization and send strategies are
completely different for bulk data vs.
transactions vs. event streams.

® The ack strategies are completely different
for streaming vs. request response.

Some of this can be handled with sockopts
but some app / kernel implementation
mismatch is inevitable.

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

Performance
(the topic for the rest of this talk)

Kernel-based implementations often have
extra data copies (packet to skb to user).

Kernel-based implementations often have
extra boundary crossings (hardware
interrupt to software interrupt to context
switch to syscall return).

Kernel-based implementations often have
lock contention and hotspots.

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

Why should we care!

Networking gear has gotten fast enough
(10Gb/s) and cheap enough ($10 for an 8
port Gb switch) that it’s changing from a
communications technology to a backplane
technology.

The huge mismatch between processor
clock rate & memory latency has forced
chip makers to put multiple cores on a die.

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

Why multiple cores!?

® Vanilla 2GHz P4 issues 2-4 instr / clock
= 4-8 instr / ns.

Internal structure of DRAM chip makes
cache line fetch take 50-100ns (FSB speed
doesn’t matter).

If you did 400 instructions of computing on
every cache line, system would be 50%
efficient with one core & 100% with two.

Typical number is more like 20 instr / line
or 2.5% efficient with one core (20 cores

for 100%).

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

Good system performance
comes from having lots of
cores working independently

® This is the canonical Internet problem.

® The solution is called the “end-to-end
principle”. It says you should push all work
to the edge & do the absolute minimum
inside the net.

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

The end of the wire isn’t
the end of the net

On a uni-processor it doesn’t matter but on a
multi-processor the protocol work should be done
on the processor that’s going to consume the data.

This means ISR & Softint should

do almost nothing and Socket @
should do everything. @

D)

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

How good is the stack at
spreading out the work!?

Let’s look at some DO\T&

Test setup

® Two Dell Poweredge 1750s (2.4GHz P4 Xeon,
dual processor, hyperthreading off) hooked up
back-to-back via Intel e 000 gig ether cards.

’ e
/ //

® Running stock 2.6.15 plus current Sourceforge
el000 driver (6.3.9).

® Measurements done with oprofile 0.9.1. Each
test was 5 5-minute runs. Showing median of 5.

® booted with idle=poll_idle. Irgbalance off.

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

Digression: comparing
two profiles

o)
_raw_spin_lock

e1000_intr
o)

o
o e1000_clean O __copy_user_intel
schedule

__switch_to
o o tcp_v4

>
o
(&)
r—
C
(O]
} .
O
a—
O
C
@)
o
o
©
o
e
o
>
-
S
O
e
<
(]
R
>
(O]
O

device interrupt & app on same cpu

LCAO6 - Jan 27,2006 ,.ccoe... ..

Uni vs. dual processor

® |cpu: run netserver (netperf) with cpu
affinity set to same cpu as el 000 interrupts.

® 2cpu:run netserver with cpu affinity set to
different cpu from el 000 interrupts.

(%) Busy = Intr Softint Socket Locks Sched App

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

Uni vs. dual processor

® |cpu: run netserver (netperf) with cpu
affinity set to same cpu as el 000 interrupts.

® 2cpu:run netserver with cpu affinity set to
different cpu from el 000 interrupts.

(%) Busy Intr Softint Socket Locks Sched App \

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

This is just Amdahl’s law
In action

When adding additional processors:

Benefit (cycles to do work) grows at most
linearly.

Cost (contention, competition,
serialization, etc.) grows quadratically.

System capacity goes as C(n) = an - bn?
For big enough n, the quadratic always wins.

The key to good scaling is to minimize b.

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

Locking destroys
performance two ways

® The lock has multiple writers so each has
to do a (fabulously expensive) RFO cache
cycle.

® The lock requires an atomic update which
is implemented by freezing the cache.

To go fast you want to have a single writer
per line and no locks.

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

® Networking involves a lot of queues.
They're often implented as doubly linked

lists: /% L~
— |

This is the poster child for cache thrashing.
Every user has to write every line and
every change has to be made multiple

places.

Since most network components have a
producer / consumer relationship, a lock
free fifo can work a lot better.

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

net channel - a cache aware,
cache friendly queue

typedef struct {
uintle t tail; next element to add */
uintd_ t wakecnt; do wakeup if != consumer wakecnt */
uintd t pad;

} net _channel producer_t;

typedef struct {

uintle t head,; next element to remove */

uintd t wakecnt; increment to request wakeup */

uintd t wake type; how to wakeup consumer */

void* wake arg; opaque argument to wakeup routine */
} net _channel_ consumer_t,;

struct {
net channel producer_t p CACHE ALIGN,; /* producer's header */
uint32 t gq[NET_CHANNEL Q ENTRIES];
net _channel _consumer_t c; /* consumer's header */
} net _channel _t ;

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

net_channel (cont.)

#define NET_CHANNEL ENTRIES 512 /* approx number of entries in channel q */

#define NET_CHANNEL Q ENTRIES \

((ROUND_UP(NET_CHANNEL ENTRIES*sizeof(uint32 t),CACHE LINE SIZE) \

- sizeof(net _channel producer_t) - sizeof(net channel consumer_t)) \
/ sizeof(uint32 t))

#define CACHE_ALIGN _ attribute_ ((aligned(CACHE LINE SIZE)))

static inline void net channel queue(net channel t *chan, uint32 t item) {
uintlé t tail = chan->p.tail;
uintle _t nxt = (tail + 1) % NET _CHANNEL Q ENTRIES;
if (nxt != chan->c.head) {
chan->q[tail] = item,;
STORE_BARRIER;
chan->p.tail = nxt;
if (chan->p.wakecnt != chan->c.wakecnt) {
++chan->p.wakecnt;
net chan_wakeup(chan);

}

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

(%)
| cpu
2cpu
drvr

“Channelize’ driver

Remove el 000 driver hard start xmit &
napi_poll routines. No softint code left in
driver & no skb’s (driver deals only in packets).

Send packets to generic_napi_poll via a net
channel.

Busy Intr Softint Socket Locks Sched App

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

(%)
| cpu
2cpu
drvr

“Channelize’ driver

Remove el 000 driver hard start xmit &
napi_poll routines. No softint code left in
driver & no skb’s (driver deals only in packets).

Send packets to generic_napi_poll via a net
channel.

Busy Intr Softint Socket Locks Sched App \

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

(%)
| cpu
2cpu
drvr

“Channelize’” socket

socket “registers” transport signature with
driver on “accept()”. Gets back a channel.

driver drops all packets with matching
signature into socket’s channel & wakes app
if sleeping in socket code. Socket code
processes packet(s) on wakeup.

Busy Intr Softint Socket Locks Sched App

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

“Channelize’” socket

® socket “registers” transport signature with
driver on “accept()”. Gets back a channel.

® driver drops all packets with matching
signature into socket’s channel & wakes app
if sleeping in socket code. Socket code

processes packet(s) on wakeup.

50 11| 16
77 13 | 24
1 58 12 | 16
e 28 0 |6

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

(%)
| cpu
2cpu
drvr

“Channelize’” socket

socket “registers” transport signature with
driver on “accept()”. Gets back a channel.

driver drops all packets with matching
signature into socket’s channel & wakes app
if sleeping in socket code. Socket code
processes packet(s) on wakeup.

Busy Intr Softint Socket Locks Sched App

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

“Channelize” App

® App “registers’ transport signature. Gets back an
(mmaped) channel & buffer pool.

® driver drops matching packets into channel &
wakes app if sleeping. TCP stack in library
processes packet(s) on wakeup.

(%) Busy Intr Softint Socket Locks Sched App

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

“Channelize” App

® App “registers’ transport signature. Gets back an
(mmaped) channel & buffer pool.

® driver drops matching packets into channel &
wakes app if sleeping. TCP stack in library
processes packet(s) on wakeup.

(%) Busy Intr Softint Socket Locks Sched App

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

“Channelize” App

® App “registers’ transport signature. Gets back an
(mmaped) channel & buffer pool.

® driver drops matching packets into channel &
wakes app if sleeping. TCP stack in library
processes packet(s) on wakeup.

(%) Busy Intr Softint Socket Locks Sched App

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

|0GDb/s ixgb netpipe tests

NPtcp streaming test between two nodes.

MPtzp Benchmark Bandwidth Comparison
Likrary = POLL: Driwver = el808

Bt
0
[*3

]

=

o

i

.'_'\'

o

-l
=

o
=
m

o=}

L : | : | : | :
1088 1888 18880 le+@s
Mes=zage Size (Bytesa

Freci=sion I~0 Proprietary and Confidential
Fri Dec 38 1g:32:81 2885

(4.3Gb/s throughput limit due to DDR333 memory;
cpus were loafing)

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

more |0Gb/s

NPtcp ping-pong test between two nodes (one-way latency measured).

MPtcp Ping Pong One-Hay Latency

EASE ——
Facketflow —s—

Latency tusec?

. . N | . N |
18 168 1686

Message Size (Bytesa
Frecision I<0 Proprietary and Confidential

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

more |0Gb/s

LAM MPI: Intel MPI Benchmark (IMB) using 4 boxes (8 processes)
SendRecv bandwidth (bigger is better)

Intel Benchmark Absolute Bandwidth Comparison (Driver = 21000, Lib = PFOLL, Nodes = 4, Grid = 4in) = 2(p))

Bandwidth(Mops)

16334 I2TED 131072 524288 1043576

Message Size (Butes)
M Baze M 5endrecy

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

more |0Gb/s

LAM MPI: Intel MPI Benchmark (IMB) using 4 boxes (8 processes)
SendRecv Latency (smaller is better)

Intel Benchmark Absolute Latency Comparison (Driver = el000, Lib = POLL, Modes = 4, Grid = 4{n) = 2(p})

&4 138

Hegssage Size (Butes)
M Base M Sendrecv

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

Conclusion

® With some relatively trivial changes, it’s
possible to finish the good work started by
NAPI & get rid of almost all the interrupt /
softint processing.

® As a result, everything gets a lot faster.

® Get linear scalability on multi-cpu / multi-
core systems.

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

Conclusion (cont.)

® Drivers get simpler (hard_start_xmit &
napi_poll become generic; drivers only
service hardware interrupts).

® Anything can send or receive packets,
without locks, very cheaply.

® Easy, incremental transition strategy.

LCAOQ6 - Jan 27,2006 - Jacobson / Felderman

