
Quantiles on Streams

Chiranjeeb Buragohain

Amazon.com

Seattle, WA 98104, USA

chiran@amazon.com

Subhash Suri

Dept. of Computer Science,

University of California

Santa Barbara, CA 93106, USA

suri@cs.ucsb.edu

SYNONYMS

Median; histogram; selection; order statistics

DEFINITION

Quantiles are order statistics of data: the φ-quantile (0 ≤ φ ≤ 1) of a set S is an element x such that φ|S|
elements of S are less than or equal to x and the remaining (1 − φ)|S| are greater than x. This article describes
data stream (single-pass) algorithms for computing an approximation of such quantiles.

HISTORICAL BACKGROUND

The need to summarize data has been around since the earliest days of data processing. Large volumes of raw,
unstructured data easily overwhelm human ability to comprehend or digest, and tools that help identify the
major underlying trends or patterns in data have enormous value. Quantiles characterize distributions of real
world data sets in ways that are less sensitive to outliers than simpler alternatives such as the mean and the
variance. Consequently, quantiles are of interest to both database implementers and users: for instance, they
are a fundamental tool for query optimization, splitting of data in parallel database systems, and statistical data
analysis.
Quantiles are closely related to the familiar concepts of frequency distributions and histograms. The cumulative
frequency distribution F () is commonly used to summarize the distribution of a (totally ordered) set S.
Specifically, for any value x,

F (x) = Number of values less than x.(1)

The quantile Q(φ), or the φ-th quantile is simply the inverse of F (x). Specifically, if the set S has n elements,
then the element x has the property that

Q(F (x)/n) = x.(2)

Thus, the 1/2-quantile is just the familiar median of a set, while 0- and 1-quantiles are the minimum and the
maximum elements of the set. Histograms are another popular method for summarizing data into a smaller
number of “buckets”: the buckets only retain the information how many elements fall between two consecutive
bucket boundaries, but not their precise values. It is easy to see that a sequence of quantiles resembles a histogram

of the underlying set, and provides a natural and complete summary of the entire distribution of the data values.
In computer science, sorting and selection (another name for quantile computation) are two of the most basic
problems, with long and intellectually rich history of research. Indeed, the computational complexity of selection,
namely, determining the element of a given rank, is one of the earliest celebrated problems, and the elegant,
linear-time algorithm of Blum et al. [2] is a classical result, taught regularly in the undergraduate algorithms
and data structures course. For more recent theoretical results on the complexity of selection in the classical
comparison-complexity model, please refer to the survey by Paterson [16].

SCIENTIFIC FUNDAMENTALS

The problem of quantile computation, while well-solved in the classical model of computation, assumes a new
and challenging character within the constraints of single-pass computation (the streaming model). Indeed, when
the algorithm’s memory is limited and significantly smaller than the size of the data set S, it is not possible to
compute the quantile precisely, and the best possible solution is an approximation. This was formalized in a 1980
paper by Munro and Paterson [15] who proved that any algorithm that determines the median of a set by making
at most p sequential scans of the input requires at least Ω(n1/p) working memory. Thus, computing the true
median will require memory linear in the size of the set.
Against this backdrop, therefore, the main focus of recent research has been on achieving provable-quality
approximation of the quantiles. In particular, an ε-approximate quantile summary of a sequence of n elements
is a data structure that can answer quantile queries about the sequence to within a precision of εn. In other
words, when queried for a φ-quantile, for 0 ≤ φ ≤ 1, the structure returns an element x that is guaranteed to
be in the [φ − ε, φ + ε] quantile range. The key evaluation metric for the performance of these approximation
schemes is the size (memory footprint) of their summary data structures, although other factors such as simplicity
of implementation are also desirable.
The discussion in this article will focus on algorithms that operate in the data stream model: the algorithm
is endowed with a finite memory, which is significantly smaller in size than the size of the input; the input is
presented to the algorithm in an arbitrary (perhaps adversarial) order; and any data not explicitly stored by the
algorithm is irretrievably lost. Thus, the algorithm is restricted to a single scan of the data in the input order,
and after this scan it must output an approximation of the quantiles of the input values.
Before discussing the state of the art for this problem, it may help to consider a real-world scenario for the
use of quantiles in data streams, both to illustrate a motivating application and to appreciate the scale of the
problem. A web site, such as a search engine, consists of several web server hosts; the users’ queries (requests)
are collectively handled by these servers (using some scheduling protocol); and the overall performance of the
web site is characterized by the latency (delay) encountered by the users. The distribution of the latency values
is typically very skewed, and a common practice is to track some particular quantiles, for instance, the 95th
percentile latency. In this context, one can ask several questions.

••What is the 95th percentile latency of a single web server?

•What is the 95th percentile latency of the entire web site (over all the servers)?

•What is the 95th percentile latency of the website during the last one hour?

The Yahoo website, for instance, handles more than 3.4 billion hits per day, which translates to 40000 requests
per second. The Wikipedia website handles 30000 requests per second at peak, with 350 web servers.
While all three questions relate to computing of quantiles, they have different technical nuances, and often
require different algorithmic approaches. In particular, the first question is the most basic version, asking for
a determination of quantiles for a stream of data; the second extends the setting to distributed input, and thus
demands an algorithm in the distributed computing model. The third problem is an instance of the sliding

window model, where the computation must occur over a subset (time window) of the stream, and this subset
is continuously changing. This article is primarily focused on the stream setting (problem 1), also known as the
cash register model, but will also discuss, when appropriate, extensions to these other models.

Randomized Algorithms
One can estimate the quantiles of a stream by the quantiles of a random sample of the input. The key idea is
to maintain a random sample of appropriate size and when asked for a quantile of the input set, simply report
the corresponding quantile of the random sample. If the size of the input stream, N is known, then the following
simple algorithm can compute a random sample of size k in one-pass: choose each element independently with
probability k/N to include in the sample. If the size of the full data stream is not known in advance, or if the
ability to answer queries during reading the stream is required as well, then the reservoir sampling algorithm
of Vitter [19] can be used instead. To maintain a sample of size k, the reservoir sampling algorithms begins by
including the first k stream elements in the sample; from then on, the ith element from the stream is chosen with

2

probability i/n. If the ith element is chosen, one of the elements from the current sample is evicted uniformly
at random to keep the size of the sample constant at k. While straightforward to implement, random sampling
has the disadvantage of needing a rather large sample to achieve expected approximation accuracy. Specifically,
in order to estimate the quantiles with precision εn, with probability at least 1 − δ, a sample of size Θ(1

ε2 log 1
δ)

is required, where 0 < δ < 1.
In [5], Cormode and Muthukrishnan proposed a more space-efficient data structure, called Count-Min
sketch, which is inspired by Bloom filters. Count-Min sketch allows ε-approximation of quantiles using
O(1

ε log2 n log(log n
φδ)) memory. Although the space needed by Count-Min is worse than the two deterministic

schemes discussed below, it has the advantage of allowing general updates to the streams: past elements can be
deleted as well as their values updated.

Deterministic Algorithms
The first deterministic streaming algorithm for quantiles was proposed by Manku, Rajagopalan and Lindsay [13,
14], building on the prior work by Munro and Paterson’s [15]. This algorithm has space complexity O(1

ε log2 εn),
meaning that using memory that grows poly-logarithmically in the stream size and inversely with the accuracy
parameter ε, the quantiles can be estimated with precision εn. This result has since been improved by two groups:
in [9], Greenwald and Khanna propose a O(1

ε log εn) memory scheme, and in [18], Shrivastava, Buragohain,
Agrawal and Suri propose a O(1

ε log U) memory scheme, where U is the size of domain from which the input is
drawn.
The Greenwald-Khanna (GK) algorithm is based on the idea that if a sorted subset {v1, v2, · · ·} of the input
stream S (of current size n) can be maintained such that the ranks of vi and vi+1 are within 2εn of each other,
then an arbitrary quantile query can be answered with precision εn. Their main contribution is to show how to
maintain such a subset of values using a data structure of size O(1

ε log εn). The Q-Digest scheme of Shrivastava
et al. [18] approaches the quantile problem as a histogram problem over a universe of size U ; thus log U is the
number of bits needed to represent each element. Q-Digest maintains a set of buckets dynamically, merging those
that are light (containing few items of the stream) and splitting those that are heavy, with an aim to keep the
relative sizes of all the buckets nearly equal. Specifically, using a O(1

ε log U) size data structure, Q-Digest ensures
that the input stream is divided into O(1/ε) buckets, with each bucket containing O(εn) items. Thus, the rank
of any item can be determined with precision εn by locating its bucket.
In theoretical terms, the GK scheme has better performance when the input is drawn from a large universe, but
the stream itself has only modest size. The Q-Digest, on the other hand, is superior when the stream size is huge
but elements are drawn from a smaller universe. The GK algorithm is very clever, but requires a sophisticated
analysis. The Q-Digest is simpler to understand, analyze, and implement, and it lends itself to easy extensions
to distributed settings.

Practical Considerations
A detailed study of the empirical performance of quantile algorithms was carried out by Cormode et al. [3] on IP
stream datasets. They concluded that with careful implementation, a commodity hardware machine (dual Pentium
2.8GHz CPU and 4GB RAM) can keep up with a 2Gbit/second stream (310,000 packets/second). Performance
numbers can depend also on the input distribution. For example, the deterministic algorithms presented above
can have different memory usage and accuracy depending on the order in which the input values are presented,
but sketching techniques such as the Count-Min sketch are not affected by the order of the input. The input
value distribution can also impact perceived accuracy of the approximate quantiles. For example, for skewed
distributions, the numeric value of the exact φ-th quantile can be arbitrarily far from the numeric values of the
(φ ± ε)-th quantile.

Extensions
Given the fundamental nature of quantiles and their widespread applications in data processing, it is no surprise
that there are multiple extensions of the basic setting that have been considered so far. There are many interesting
and practically-motivated applications, such as the latency of the web site mentioned earlier, where quantiles must
be computed over distributed data, or over a sliding window portion of the stream etc. In the following, the current
state of algorithms for these variants are briefly discussed.

3

Quantiles in distributed streams. In many settings, data of interest are naturally distributed across multiple
sources, such as servers in a web application and measurement devices in a sensor network. In these applications,
it is necessary to compute the quantile summary of the entire data, but without creating a centralized repository of
data, which could be undesirable because of the additional latency, communication overhead, or energy constraints
of untethered sensors. The efficiency of an algorithm in this distributed setting is measured by the amount of
information each node in the system must transmit during the computation.
One natural approach for distributed approximation of quantiles is for each node (server, sensor, etc.) to compute
a local summary of its data, and arrange the nodes in a virtual hierarchy that guides them to merge these
summaries into a final structure computed at the root of the hierarchy. The tree-based Q-digest [18] algorithm
extends rather easily to the distributed setting, as the the histogram boundaries of the Q-Digest are aligned
to binary partition of the original value space U . The space complexity of the distributed version remains the
same as the stream version, namely, O(1

ε log U). The GK algorithm is little more complicated to extend to
distributed streams, but Greenwald and Khanna themselves developed such an extension in [10] However, the
space complexity of their distributed data structure grows to O(1

ε log3 n) [10]. The Bloom filter based Count-Min
sketch [5] also extends easily to the distributed setting also without any increase in the space complexity.

Quantiles in sliding windows. In many applications, the user is primarily interested in the most recent portion of
the data stream. This poses the sliding window extension of the quantiles problem, in which the desired quantile
summary for the most recent N data elements—the window slides with the arrival of each new element, as the
oldest element of the window is discarded and the new arrival added. In [12], Lin et al. presented such a sliding
window scheme for quantile summaries, however, the space requirement for their algorithm is O(1

ε2 + 1
ε log ε2N).

This was was soon improved by Arasu and Manku [1] to O(1
ε log 1

ε log N).

Biased estimate of quantiles. The absolute measure of approximation precision is quite reasonable so long as
the error εn is quite small compared to the rank of the quantile sought, namely, φn. This holds as long as the
quantiles of interest are in the middle of the distribution. But if φ is either close to 0 or 1, one may prefer a
relative error, so that the estimated quantile is in the range [(1− ε), (1+ ε)]φn. This variant was solved by Gupta
and Zane [11] using random sampling techniques with a O(1

ε3 log n log 1
δ) size data structure. The space bound

has since been improved by Cormode et al. [4] to O(1
ε log U log(εn)) using a deterministic algorithm.

Duplicate insensitive quantiles. In some distributed settings, a single event can be observed multiple times. For
example in the Internet, a single packet is observed at multiple routers; in wireless sensor networks, due to the
broadcast nature of the medium, and to add fault-tolerance, data can be routed along multiple paths. Summaries
such as quantiles or the number of distinct items are clearly not robust against duplication of data; on the other
hand, simpler statistics such as minimum and maximum are not affected by duplication. Flajolet and Martin’s
distinct counting algorithm [8] is the seminal work in this direction. Cormode et al. have introduced algorithms
based on sampling to compute various duplicate insensitive aggregates [6]. Their Count-Min sketch can be also
easily adapted to compute duplicate insensitive quantiles.

KEY APPLICATIONS

Internet-scale network monitoring and database query optimization are two important applications that originally
motivated the need for quantiles summaries over data streams. Gigascope [7] is a streaming database system
that employs statistical summaries such as quantiles for monitoring network applications and systems. Quantile
estimates are also widely used in query optimizers to estimate the size of intermediate results, and use those
estimates to choose the best execution plan [13]. Distributed quantiles have been used to succinctly summarize
the distribution of values occurring over a sensor network [18]. In a similar context, distributed quantiles are also
used to summarize performance of websites and distributed applications [17].

4

FUTURE DIRECTIONS

The field of computing approximate quantiles over streams have led to a fertile research program and is expected
to bring up new challenges in both theory and implementation. Although there is an obvious lower bound of Ω(1

ε)
memory required to compute ε-approximate quantiles, no non-trivial lower bound on memory is known. Since
the current best algorithms requires O(1

ε log(εn)) or O(1
ε log(U)) memory, it will be useful to either lower the

memory usage or prove a better lower bound.
Another direction in which improvements are highly desirable is running time. The current deterministic
algorithms require amortized running time of O(log 1

ε + log log(εn)) or O(log 1
ε + log log(U)) per item. In high

data-rate streams, even such low processing times are not fast enough: what is desired is a O(1) insert time,
or even a sublinear time quantile algorithm. As of now, there is no memory efficient sub-linear time quantile
algorithm known except for random sampling.

RECOMMENDED READING

[1] A. Arasu and G. S. Manku. Approximate counts and quantiles over sliding windows. In Proc. of the PODS ’04, 2004.
[2] M. Blum, R. Floyd, V. Pratt, R. Rivest, and R. E. Tarjan. Time bounds for selection. Journal of Computer and

System Sciences, 7:448–461, 1973.
[3] G. Cormode, F. Korn, S. Muthukrishnan, T. Johnson, O. Spatscheck, and D. Srivastava. Holistic udafs at streaming

speeds. In Proc. of ACM SIGMOD, 2004.
[4] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Space and time-efficient deterministic algorithms for

biased quantiles over data streams. In Proc. of PODS ’06, 2006.
[5] G. Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch and its applications.

J. Algorithms, 55(1):58–75, 2005.
[6] G. Cormode, S. Muthukrishnan, and W. Zhuang. What’s different: Distributed, continuous monitoring of duplicate-

resilient aggregates on data streams. In Proc. of the 22nd International Conference on Data Engineering, 2006.
[7] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope: a stream database for network applications.

In Proc. ofthe ACM SIGMOD, 2003.
[8] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base applications. Journal of Computer and

System Sciences, 31(2):182–209, 1985.
[9] J. M. Greenwald and S. Khanna. Space-efficient online computation of quantile summaries. In Proc. the 20th ACM

SIGMOD Intl. Conf. on Management of Data (SIGMOD), 2001.
[10] J. M. Greenwald and S. Khanna. Power-conserving computation of order-statistics over sensor networks. In Proc. of

23rd ACM Symposium on Principles of Database Systems (PODS), 2004.
[11] A. Gupta and F. Zane. Counting inversions in streams. In Proc. of ACM-SIAM SODA, 2003.
[12] X. Lin, H. Lu, J. Xu, and J. X. Yu. Continuously maintaining quantile summaries of the most recent n elements over

a data stream. In Proc. of ICDE, pages 362–374, 2004.
[13] G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Approximate medians and other quantiles in one pass and with

limited memory. In Proc. of ACM SIGMOD ’98, pages 426–435, New York, NY, USA, 1998. ACM Press.
[14] G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Random sampling techniques for space efficient online computation

of order statistics of large datasets. In Proc. of ACM SIGMOD ’99, pages 251–262, New York, NY, USA, 1999. ACM
Press.

[15] J. I. Munro and M. S. Paterson. Selection and sorting with limited storage. Theoretical Computer Science, pages
315–323, 1980.

[16] M. S. Paterson. Progress in selection. In Scandinavian Workshop on Algorithm Theory, pages 368–379, 1996.
[17] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the data: Parallel analysis with sawzall. Scientific

Programming Journal, 13(4):227–298, 2005.
[18] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. Medians and beyond: New aggregation techniques for sensor

networks. In Proc. of SenSys’04, 2004.
[19] J. S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software, 1985.

5

