
Recounting the Rationals: Twice!

Roland Backhouse and João F. Ferreira∗

School of Computer Science

University of Nottingham

Nottingham NG8 1BB, England

{rcb,jff}@cs.nott.ac.uk

April 8, 2008

Abstract

We derive an algorithm that enables the rationals to be efficiently enumerated

in two different ways. One way is known and is credited to Moshe Newman; it

corresponds to a deforestation of the so-called Calkin-Wilf tree of rationals. The

second is new and corresponds to a deforestation of the Stern-Brocot tree of rationals.

We show that both enumerations stem from the same simple algorithm. In this way,

we construct a Stern-Brocot enumeration algorithm with the same time and space

complexity as Newman’s algorithm.

Keywords: Calkin-Wilf tree, Stern-Brocot tree, algorithm derivation, enumer-

ation algorithm, rational numbers

Recently, there has been a spate of interest in the construction of bijections between

the natural numbers and the (positive) rationals (see [GLB06, KRSS03, CW00] and

[AZ04, pages 94–97]). Gibbons et al [GLB06] describe as “startling” the observation that

the rationals can be efficiently enumerated1 by “deforesting” the Calkin-Wilf [CW00] tree

of rationals. However, they claim that it is “not at all obvious” how to “deforest” the

Stern-Brocot tree of rationals. (For information on the Stern-Brocot tree, see [GKP94,

pages 116–118].)

In this paper, we derive an efficient algorithm for enumerating the rationals both

in Calkin-Wilf and Stern-Brocot order. The algorithm is based on a bijection between

the rationals and invertible 2×2 matrices. The key to the algorithm’s derivation is the

∗Funded by Fundação para a Ciência e a Tecnologia (Portugal) under grant SFRH/BD/24269/20051By an efficient enumeration we mean a method of generating each rational without duplication with

constant cost per rational in terms of arbitrary-precision simple arithmetic operations.

1

reformulation of Euclid’s algorithm in terms of matrices. The enumeration is efficient

in the sense that it has the same time and space complexity as the algorithm credited

to Moshe Newman in [KRSS03], albeit with a constant-fold increase in the number of

variables and number of arithmetic operations needed at each iteration.

Section 1 reviews Euclid’s algorithm, whilst section 2 discusses the enumeration al-

gorithms. Section 3 discusses the method used to derive the algorithm. The appendix

documents a Haskell implementation of the algorithm.

1 Euclid’s Algorithm

A positive rational in so-called “lowest form” is an ordered pair of positive, coprime

integers. Every rational m
n

has unique lowest-form representation
m/(m▽n)
n/(m▽n)

. (We use “▽”

to denote “greatest common divisor”. We prefer to use an infix notation whenever —as in

this case— the operator is symmetric and associative. As we see below, the exploitation

of symmetry and associativity is extremely important to effective reasoning.)

Because computing the lowest-form representation involves computing greatest com-

mon divisors, it seems sensible to investigate Euclid’s algorithm to see whether it gives

insight into how to enumerate the rationals. Indeed it does.

Below we present Euclid’s algorithm as it might be presented in a modern textbook.

(We use Dijkstra’s Guarded Command Language [Dij75] to express the algorithm because

it allows us to fully express the symmetry between m and n. The “do-od” statement is

executed repeatedly. Termination occurs when both of the two guards y<x and x<y

are false (i.e. when x and y are equal). When y<x evaluates to true, the assignment

x := x − y is executed, and then the do-od is executed again. Similarly, when x<y the

assignment y := y − x is executed before repeated execution of the do-od statement.)

{ 0<m ∧ 0<n }

x,y := m,n ;

{ Invariant: 0<x ∧ 0<y ∧ x▽y = m▽n

Bound function: x + y }

do y<x → x := x − y

2 x<y → y := y − x

od

{ x = y = x▽y = m▽n }

The algorithm below is a somewhat unusual, but very effective, way of rewriting

2

Euclid’s algorithm when the goal is to establish the theorem that the greatest common

divisor of two numbers is a linear combination of the numbers.

The algorithm is expressed in matrix terms. The input to the algorithm is a vector

(m n) of strictly positive integers. The vector (x y) is initialised to (m n) and, on ter-

mination, its value is the vector (m▽n m▽n). In addition to computing the greatest

common divisor, it also computes a matrix C. An invariant of the algorithm is that

the vector (x y) equals (m n)×C. In words, (x y) is a “linear combination” of (m n).

Specifically, I, A and B are 2×2 matrices; I is the identity matrix
(

1

0

0

1

)

, A is the matrix
(

1

−1

0

1

)

and B is the matrix
(

1

0

−1

1

)

. The assignment (x y) := (x y)×A is equivalent to

x,y := x − y,y, as can be easily checked.

{ 0<m ∧ 0<n }

(x y) ,C := (m n) ,I ;

{ Invariant: (x y) = (m n)×C }

do y<x → (x y) ,C := (x y)×A , C×A

2 x<y → (x y) ,C := (x y)×B , C×B

od

{ (x y) = (m▽n m▽n) = (m n)×C }

The verification of the supplied invariant is a simple consequence of the associativity

of matrix multiplication. It is this form of the algorithm that is the starting point for

our enumeration of the rationals.

2 Enumerating the Rationals

Beginning with an arbitrary pair of positive integers m and n, the above algorithm

calculates an invertible matrix C such that

(m▽n m▽n) = (m n)×C .

It follows that

(1 1)×C−1 = (m/(m▽n)
n/(m▽n)) .(1)

Because the algorithm is deterministic, positive integers m and n uniquely define the

matrix C. That is, there is a function from pairs of positive integers to finite products

of the matrices A and B.

Also, because the matrices A and B are constant and invertible, C−1 is a finite product

of the matrices A−1 and B−1 and (1) uniquely defines a rational m
n

. We may therefore

3

conclude that there is a bijection between the rationals and the finite products of the

matrices A−1 and B−1 provided that we can show that all such products are different.

The finite products of matrices A−1 and B−1 form a binary tree with root the identity

matrix (the empty product). Renaming A−1 as L and B−1 as R, the tree can be displayed

with “L” indicating a left branch and “R” indicating a right branch. Fig. 1 displays the

first few levels of the tree.

(

1

0

0

1

)

(

1

1

0

1

) (

1

0

1

1

)

L R

(

1

2

0

1

) (

1

1

1

2

) (

2

1

1

1

) (

1

0

2

1

)

L R L R

Figure 1: Tree of Products of L and R

That all matrices in the tree are different is proved by showing that the tree is a

binary search tree (as formalised shortly). The key element of the proof2 is that the

determinants of A and B are both equal to 1 and, hence, the determinant of any finite

product of Ls and Rs is also 1.

Formally, we define the relation ≺ on matrices that are finite products of Ls and Rs

by

(a

b

c

d

)

≺

(

a ′

b ′

c ′

d ′

)

≡
a + c

b + d
<

a ′ + c ′

b ′ + d ′
.

(Note that the denominator in these fractions is strictly positive; this fact is easily proved

by induction.) We prove that, for all such matrices X, Y and Z,

X×L×Y ≺ X ≺ X×R×Z .(2)

It immediately follows that there are no duplicates in the tree of matrices because the

relation ≺ is clearly transitive and a subset of the inequality relation. (Property (2)

formalises precisely what we mean by the tree of matrices forming a binary search tree:2The proof is an adaptation of the proof in [GKP94, page 117] that the rationals in the Stern-Brocot

tree are all different. Our use of determinants corresponds to their use of “the fundamental fact” (4.31).

Note that the definitions of L and R are swapped around in [GKP94].)

4

the entries are properly ordered by the relation ≺, with matrices in the left branch being

“less than” the root matrix which is “less than” matrices in the right branch.)

In order to show that

X×L×Y ≺X ,(3)

suppose X=
(

a

b

c

d

)

and Y=
(

a′

b′

c′

d′

)

. Then, since L=
(

1

1

0

1

)

, (3) is easily calculated to

be

(a + c)×a ′ + (c×b ′) + (a + c)×c ′ + (c×d ′)

(b + d)×a ′ + (d×b ′) + (b + d)×c ′ + (d×d ′)
<

a + c

b + d
.

That this is true is also a simple, albeit longer, calculation (which exploits the mono-

tonicity properties of multiplication and addition); as observed earlier, the key property

is that the determinant of X is 1, i.e. a×d − b×c = 1. The proof that X≺X×R×Z is

similar.

Of course, we can also express Euclid’s algorithm in terms of transpose matrices. In-

stead of writing assignments to the vector (x y), we can write assignments to its transpose
(

x

y

)

. Noting that A and B are each other’s transposition, the assignment

(x y) ,C := (x y)×A , C×A

in the body of Euclid’s algorithm becomes
(

x

y

)

, C := B×

(

x

y

)

, B×C .

Similarly, the assignment

(x y) ,C := (x y)×B , C×B

becomes
(

x

y

)

, C := A×

(

x

y

)

, A×C .

On termination, the matrix C computed by the revised algorithm will of course be

different; the pair
(

m/(m▽n)
n/(m▽n)

)

is recovered from it by the identity

C−1×

(

1

1

)

=

(

m/(m▽n)

n/(m▽n)

)

.

In this way, we get a second bijection between the rationals and the finite products of

the matrices A−1 and B−1. This is the basis for our second method of enumerating the

rationals.

In summary, we have:

5

Theorem 4 Define the matrices L and R by

L =

(

1

1

0

1

)

and R =

(

1

0

1

1

)

.

Then the following algorithm computes a bijection between the (positive) rationals and

the finite products of L and R. Specifically, the bijection is given by the function that

maps the rational m
n

to the matrix D constructed by the algorithm together with the

function from a finite product, D, of Ls and Rs to (1 1)×D. (The comments added to

the algorithm supply the information needed to verify this assertion.)

{ 0<m ∧ 0<n }

(x y) ,D := (m n) ,I ;

{ Invariant: (m n) = (x y)×D }

do y<x → (x y) ,D := (x y)×L−1 , L×D

2 x<y → (x y) ,D := (x y)×R−1 , R×D

od

{ (x y) = (m▽n m▽n) ∧ (m/(m▽n)
n/(m▽n)) = (1 1)×D }

Similarly, by applying the rules of matrix transposition to all expressions in the above,

Euclid’s algorithm constructs a second bijection between the rationals and finite products

of the matrices L and R. Specifically, the bijection is given by the function that maps

the rational m
n

to the matrix D constructed by the revised algorithm together with the

function from finite products, D, of Ls and Rs to D×
(

1

1

)

.

2

2.1 Enumerating Products of L and R

The problem of enumerating the rationals has been transformed to the problem of enu-

merating all finite products of the matrices L and R. As observed earlier, the matrices

are naturally visualised as a tree —recall fig. 1— with left branching corresponding to

multiplying (on the right) by L and right branching to multiplying (on the right) by R.

By premultiplying each matrix in the tree by (1 1), we get a tree of rationals. (Pre-

multiplying by (1 1) is accomplished by adding the elements in each column.) This tree

is called the Calkin-Wilf tree [GLB06, AZ04, CW00]. The first four levels of the tree are

shown in fig. 2. In this figure, the vector (x y) has been displayed as y

x
. (Note the order

of x and y. This is to aid comparison with existing literature.)

6

1

1

1

2

2

1

1

3

3

2

2

3

3

1

1

4

4

3

3

5

5

2

2

5

5

3

3

4

4

1

Figure 2: Calkin-Wilf Tree of Rationals

By postmultiplying each matrix in the tree by
(

1

1

)

, we also get a tree of rationals.

(Postmultiplying by
(

1

1

)

is accomplished by adding the elements in each row.) This tree

is called the Stern-Brocot tree [GKP94, pages 116–118]. See fig. 3. In this figure, the

vector
(

x

y

)

has been displayed as x
y
.

1

1

1

2

2

1

1

3

2

3

3

2

3

1

1

4

2

5

3

5

3

4

4

3

5

3

5

2

4

1

Figure 3: Stern-Brocot Tree of Rationals

Of course, if we can find an efficient way of enumerating the matrices in fig. 1, we

immediately get an enumeration of the rationals as displayed in the Calkin-Wilf tree and

as displayed in the Stern-Brocot tree — as each matrix is enumerated, simply premultiply

by (1 1) or postmultiply by
(

1

1

)

. Formally, the matrices are enumerated by enumerating

all strings of Ls and Rs in lexicographic order, beginning with the empty string; each

string is mapped to a matrix by the homomorphism that maps “L” to L, “R” to R, and

string concatenation to matrix product. It is easy to enumerate all such strings; as we

see shortly, converting strings to matrices is also not difficult, for the simple reason that

L and R are invertible.

The enumeration proceeds level-by-level. Beginning with the unit matrix (level 0),

the matrices on each level are enumerated from left to right. There are 2k matrices on

level k, the first of which is Lk. The problem is to determine for a given matrix, which

is the matrix “adjacent” to it. That is, given a matrix D, which is a finite product of L

and R, and is different from Rk for all k, what is the matrix that is to the immediate

7

right of D in fig. 1?

Consider the lexicographic ordering on strings of Ls and Rs of the same length. The

string immediately following a string s (that is not the last) is found by identifying the

rightmost L in s. Supposing s is the string tLRj, where Rj is a string of j Rs, its successor

is tRLj.

It’s now easy to see how to transform the matrix identified by s to its successor

matrix. Simply postmultiply by R−j×L−1×R×Lj. This is because, for all T and j,

(T×L×Rj)×(R−j×L−1×R×Lj) = T×R×Lj .

Also, it is easy to calculate R−j×L−1×R×Lj. Specifically,

R−j×L−1×R×Lj =

(

2j + 1

−1

1

0

)

.

(We omit the details. Briefly, by induction, Lj equals
(

1

j

0

1

)

. Also, R is the transpose of

L.)

The final task is to determine, given a matrix D, which is a finite product of Ls and

Rs, and is different from Rk for all k, the unique value j such that D = T×L×Rj for

some T. This can be determined by examining Euclid’s algorithm once more.

The matrix form of Euclid’s algorithm discussed in theorem 4 computes a matrix D

given a pair of positive numbers m and n; it maintains the invariant

(m n) = (x y)×D .

D is initially the identity matrix and x and y are initialised to m and n, respectively;

immediately following the initialisation process, D is repeatedly premultiplied by R so

long as x is less than y. Simultaneously, y is reduced by x. The number of times that D

is premultiplied by R is thus the greatest number j such that j×m is less than n, which

is
⌊

n − 1
m

⌋

. Now suppose the input values m and n are coprime. Then, on termination of

the algorithm, (1 1)×D equals (m n). That is, if

D =

(

D00

D10

D01

D11

)

,

then,
⌊

n − 1

m

⌋

=

⌊

D01 + D11 − 1

D00 + D10

⌋

.

It remains to decide how to keep track of the levels in the tree. For this purpose, it is

not necessary to maintain a counter. It suffices to observe that D is a power of R exactly

when the rationals in the Calkin-Wilf, or Stern-Brocot, tree are integers, and this integer

is the number of the next level in the tree (where the root is on level 0). So, it is easy

8

to test whether the last matrix on the current level has been reached. Equally, the first

matrix on the next level is easily calculated. For reasons we discuss in the next section,

we choose to test whether the rational in the Calkin-Wilf tree is an integer; that is, we

evaluate the boolean D00 + D10 = 1. In this way, we get the following (non-terminating)

program which computes the successive values of D.

D := I ;

do D00 + D10 = 1 → D :=
(

1

D01 + D11

0

1

)

2 D00 + D10 6= 1 → j :=
⌊

D01 + D11 − 1

D00 + D10

⌋

; D := D×
(

2j + 1

−1

1

0

)

od

A minor simplification of this algorithm is that the “− 1” in the assignment to j can be

omitted. This is because
⌊

n − 1
m

⌋

and
⌊

n
m

⌋

are equal when m and n are coprime and m

is different from 1. We return to this shortly.

2.2 The Enumerations

As remarked earlier, we immediately get an enumeration of the rationals as displayed

in the Calkin-Wilf tree and as displayed in the Stern-Brocot tree — as each matrix is

enumerated, simply premultiply by (1 1) or postmultiply by
(

1

1

)

, respectively.

In the case of enumerating the Calkin-Wilf tree, several optimisations are possible.

First, it is immediate from our derivation that the value assigned to the local variable

j is a function of (1 1)×D. In turn, the matrix
(

2j + 1

−1

1

0

)

is also a function of (1 1)×D.

Let us name the function J, so that the assignment becomes

D := D× J.((1 1)×D) .

Then, the Calkin-Wilf enumeration iteratively evaluates

(1 1)×(D× J.((1 1)×D)) .

Matrix multiplication is associative; so this is

((1 1)×D)× J.((1 1)×D) ,

which is also a function of (1 1)×D. Moreover —in anticipation of the current discussion—

we have been careful to ensure that the test for a change in the level in the tree is also

a function of (1 1)×D. Combined together, this means that, in order to enumerate the

rationals in Calkin-Wilf order, it is not necessary to compute D at each iteration, but

only (1 1)×D. Naming the two components of this vector m and n, and simplifying the

matrix multiplications, we get33Recall that, to comply with existing literature, the enumerated rational is n
m

and not m
n

.

9

m,n := 1,1 ;

do m=1 → m,n := n + 1,m

2 m 6=1 → m,n := (2

⌊

n − 1

m

⌋

+ 1)×m − n , m

od

At this point, a further simplification is also possible. We remarked earlier that
⌊

n − 1
m

⌋

equals
⌊

n
m

⌋

when m and n are coprime and m is different from 1. By good fortune, it is

also the case that (2
⌊

n
m

⌋

+ 1)×m − n simplifies to n + 1 when m is equal to 1. That is,

the elimination of “− 1” in the evaluation of the floor function leads to the elimination of

the entire case analysis! This is the algorithm attributed to Newman in [KRSS03].

m,n := 1,1 ;

do m,n := (2
⌊ n

m

⌋

+ 1)×m − n , m

od

3 Discussion

This paper was motivated by reading two publications, [GKP94, pages 116–118] and

[GLB06]. Gibbons, Lester and Bird [GLB06] show how to enumerate the elements of

the Calkin-Wilf tree, but claim that “it is not at all obvious how to do this for the

Stern-Brocot tree". Specifically, they say:

However, there is an even better compensation for the loss of the ordering

property in moving from the Stern-Brocot to the Calkin-Wilf tree: it becomes

possible to deforest the tree altogether, and generate the rationals directly,

maintaining no additional state beyond the ‘current’ rational. This startling

observation is due to Moshe Newman (Newman, 2003). In contrast, it is

not at all obvious how to do this for the Stern-Brocot tree; the best we can

do seems to be to deforest the tree as far as its levels, but this still entails

additional state of increasing size.

In this paper, we have shown that it is possible to enumerate the rationals in Stern-Brocot

order without incurring “additional state of increasing size”. More importantly, we have

presented one enumeration algorithm with two specialisations, one being the Calkin-

Wilf enumeration they present, and the other being the Stern-Brocot enumeration that

they described as being “not at all obvious”.

The optimisation of Calkin-Wilf enumeration which leads to Newman’s algorithm is

not possible for Stern-Brocot enumeration. Nevertheless, the complexity of Stern-Brocot

10

enumeration is the same as the complexity of Newman’s algorithm, both in time and

space. The only disadvantage of Stern-Brocot enumeration is that four variables are

needed in place of two; the advantage is the (well-known) advantage of the Stern-Brocot

tree over the Calkin-Wilf tree — the rationals on a given level are in ascending order.

Gibbons, Lester and Bird’s goal seems to have been to show how the functional

programming language Haskell implements the various constructions – the construction

of the tree structures and Newman’s algorithm. In doing so, they repeat the existing

mathematical presentations of the algorithms as given in [GKP94, CW00, KRSS03]. The

ingredients for an efficient enumeration of the Stern-Brocot tree are all present in these

publications, but the recipe is missing!

The fact that expressing the rationals in “lowest form” is essential to the avoidance

of duplication in any enumeration immediately suggests the relevance of Euclid’s algo-

rithm. The key to our exposition is that Euclid’s algorithm can be expressed in terms

of matrix multiplications, where —significantly— the underlying matrices are invertible.

Transposition and inversion of the matrices capture the symmetry properties in a precise,

calculational framework. As a result, the bijection between the rationals and the tree

elements is immediate and we do not need to give separate, inductive proofs for both

tree structures. Also, the determination of the next element in an enumeration of the

tree elements has been reduced to one unifying construction.

Acknowledgements Thanks go to Jeremy Gibbons for his comments on earlier drafts

of this paper, and for help with TEX commands. Thanks also to our colleagues in the

Nottingham Tuesday Morning Club for helping iron out omissions and ambiguities.

This paper was submitted in April 2007 to the American Mathematical Monthly; it

was rejected in November 2007 on the grounds that it was not of sufficient interest to

readers of the Monthly. One (of two referees) did, however, recommend publication. The

referee made the following general comment.

Each of the two trees of rationals—the Stern-Brocot tree and the Calkin-Wilf

tree—has some history. Since this paper now gives the definitive link between

these trees, I encourage the authors, perhaps in their Discussion section, to

also give the definitive histories of these trees, something in the same spirit

as the Remarks at the end of the Calkin and Wilf paper.

We thank the referee for the detailed comments; unfortunately, we have not been able to

obtain copies of the original papers by Stern and Brocot —we would have had difficulty

reading the German and French in any case— and are not in a position to fulfill the

referee’s request. It would, indeed, be interesting for a mathematical historian to pursue

this suggestion.

11

References

[AZ04] Martin Aigner and Günter Ziegler. Proofs From The Book, 3rd Edition.

Springer-Verlag, 2004.

[CW00] Neil Calkin and Herbert S. Wilf. Recounting the rationals. The American

Mathematical Monthly, 107(4):360–363, 2000.

[Dij75] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal deriva-

tion of programs. Communications of the ACM, 18(8):453–457, 1975.

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Math-

ematics : a Foundation for Computer Science. Addison-Wesley Publishing

Company, second edition, 1994.

[GLB06] Jeremy Gibbons, David Lester, and Richard Bird. Enumerating the rationals.

Journal of Functional Programming, 16(3):281–291, 2006.

[KRSS03] Donald E. Knuth, C.P. Rupert, Alex Smith, and Richard Stong. Recounting

the rationals, continued. American Mathematical Monthly, 110(7):642–643,

2003.

12

A Appendix: Haskell Implementation

This appendix contains an encoding of the enumeration algorithms in Haskell. The file

from which this printed version was compiled is a so-called “lhs2TEX” file1 which can be

used directly as input to a Haskell compiler; this safeguards against typographical errors

in the printed paper.

The implementation encodes a matrix as a list of columns.

type Entry = Integer
type Column = [Entry]

type Matrix = [Column]

We define a type of non-empty trees, with associated map, fold and unfold functions.

data Tree a = Node (a ,Tree a ,Tree a)mapt f (Node (a , l , r)) = Node (f a ,mapt f l ,mapt f r)foldt f (Node (a , l , r)) = f (a , foldt f l , foldt f r)unfoldt f x = let (a , y , z) = f x in Node (a ,unfoldt f y ,unfoldt f z)

With matrices matId , matL and matR defined to be the identity matrix, the matrix

L and the matrix R, respectively, the tree of matrices is generated as follows.mTree ::Tree MatrixmTree = unfoldt level matId
where level m = (m ,m ×matL,m ×matR)

The Calkin-Wilf tree can be obtained by pre-multiplying the matrices by the vector

(1 1).
wTree ::Tree Rational
wTree = mapt (mkCWRat ◦ ([[1], [1]]×)) mTreemkCWRat ::Matrix → RationalmkCWRat [[m], [n]] = n/m
Similarly, the Stern-Brocot tree can be obtained by post-multiplying the matrices by

the transpose of the vector (1 1) , i.e.,
(

1

1

)

.sbTree ::Tree RationalsbTree = mapt (mkSBRat ◦ (×[[1, 1]])) mTree1The lhs2TEX system has been implemented by Ralf Hinze and Andres Löh.

13

mkSBRat ::Matrix → RationalmkSBRat [[m ,n]] = m/n
We enumerate the matrices using the iterate function, computing each matrix from

the previous one.nextM ::Matrix → MatrixnextM [[1, 0], [n , 1]] = [[1,n + 1], [0, 1]]nextM [
0 ,
1] = let j = ⌊((sum
1) − 1)/(sum
0)⌋k = 2×j + 1
k = map (k×)
0
in [zipWith (−)
k
1 ,
0]mats :: [Matrix]mats = iterate nextM matId

The (non-optimised) implementation of the Calkin-Wilf enumeration is then a matter

of premultiplying by (1 1).
wEnum :: [Rational]
wEnum = map mkCW mats
where mkCW = mkCWRat ◦ ([[1], [1]]×)

The Stern-Brocot enumeration can be defined in a similar way, but instead of pre-

multiplying, we postmultiply by
(

1

1

)

:sbEnum :: [Rational]sbEnum = map mkSB mats
where mkSB = mkSBRat ◦ (×[[1, 1]])

Incorporating the optimisations discussed above, the Calkin-Wilf enumeration is

transformed to the algorithm attributed to Newman.
wnEnum :: [Rational]
wnEnum = iterate nextCW 1/1nextCW ::Rational → RationalnextCW r = let (n ,m) = (numerator r , denominator r)j = ⌊n/m⌋

in m/((2×j + 1)×m − n)

14

