
1

MODERN ROUTER
ARCHITECTURE
FOR PROTOCOL DESIGNERS
BRIAN PETERSEN
JOHN SCUDDER
JUNIPER NETWORKS
NOVEMBER 1, 2015

2

AGENDA
•  Router Taxonomy
•  Pipeline Characteristics
•  Considerations for Protocol Designers

3

ROUTER TAXONOMY

4

KEY ELEMENTS
•  High-scale routers comprise several key elements:
•  Control Plane

•  Responsible for managing routing tables, authenticating
subscribers, configuring interfaces

•  Packet Forwarding Engine(s) (PFE)
•  Responsible for forwarding each packet (address

lookup, queues, access lists, etc)

•  Fabric
•  Responsible for moving packets from one line card to

another inside the router

Fabric
Control Plane

PFE PFE

5

Route Engine Zero

B
ackplane

Line Card N

Embedded
Control

Processor

General
Purpose CPU Ethernet

Switch

Route Engine One

General
Purpose CPU

Ethernet
Switch PFE

PFE

ROUTER CONTROL PLANE

6

FABRIC-BASED ARCHITECTURE
•  Most high-scale routers are fabric-

based
•  Multiple line cards, each containing

PFEs
•  A chassis-wide interconnect fabric

transfers traffic from ingress to egress
line cards

Lookup chip Queuing chip

PFE complex

Line Cards

Fabric
Planes

7

PACKET FORWARDING ENGINE (PFE)

•  PFEs do the work to move packets from ingress to egress
•  Key functions:

•  L2 & L3 analysis & features
•  Figure out whose packet it is, what should happen to it, where it should go.

•  Packet buffering
•  Store the packet in DRAM until there’s room to transmit it

•  Queuing & scheduling
•  Decide which packets should go in what order to achieve fairness and real-time delivery

guarantees.

•  PFEs may be micro-programmable, table-driven or hard-coded
•  It’s the old cost/performance/flexibility tradeoff matrix…

8

SOME ROUTER ARCHITECTURE TYPES

•  General-Purpose Processor
•  Sea of General-Purpose Processors
•  Sea of Special-Purpose Processors
•  Pipeline

x86

9

TRADEOFFS

x86

Flexibility

Efficiency

(not to scale)

10

HIGH-SCALE ROUTERS VS. GENERAL-PURPOSE
COMPUTERS
•  Traditional computer architectures (e.g., x86) are “infinitely” flexible

•  … at a cost

•  High-performance routers trade flexibility for other important attributes
•  Example tradeoff: Access to packet Data

•  General-Purpose Processors are presented with a buffer containing an entire packet
•  Pipeline (et al) are presented with the first n bytes of a packet

•  The trick is to only trade away flexibility you didn’t need anyway
•  But predicting the future is hard (“wait, you want to look how deep?”)
•  This is where protocol designers can help

11

WHY PIPELINES?
•  If pipelines are limited, why bother?

•  In a word: efficiency

•  Operations per packet per Joule is far higher

•  Throughput per unit volume is far higher

•  It is not uncommon for a pipeline to sustain 500M–1B
packets per second

•  That’s 50–100 times faster than an x86

12

SO WHAT?
•  Okay, pipelines are a thing. Why should I care?
•  Because of their efficiency, pipelines are in widespread use
•  Pipelines have particular characteristics
•  Certain protocol design characteristics are awkward fits

13

PIPELINE CHARACTERISTICS

14

PIPELINE ROUTER BLOCK DIAGRAM

MACs

Ingress
Pipeline

Ingress
Data Path

B
uffering/

Q
ueuing

Egress
Pipeline

Egress Data
Path

MACs

header

body

15

HEADER VS. BODY
•  Processing

•  Lots of stages

•  Variable delay, looping, out-of-order execution, etc.

•  Expensive (power, area, complexity) to transport long header chains

•  Data Path

•  RAM-based

•  Optimized for temporary storage of variable length byte strings

16

PIPELINE STAGES
•  Pipelines break down processing into bite-sized chunks

•  For example:
•  Parsing, receive context, destination lookup, etc.

•  Each stage performs a specific operation and delivers results to the
next stage

•  Ideally, the stages work on header data sequentially

17

INSTRUCTIONS VS. GATES
•  Instructions live in RAM and are infinitely flexible, but relatively slow
•  Logic gates are fast and massively parallel
•  Complex logic and math can operate at a blazing speeds
•  But… gates are hard-wired and cannot be changed
•  Replacing logic gates with RAM-based tables enables flexibility, but

decreases efficiency

18

HEADER VOCABULARY
•  Pipelines generally have a fixed header vocabulary
•  Accommodating new ways of stacking and using headers is okay
•  Accommodating entirely new headers may require new silicon

19

AGAIN, SO WHAT?
•  Protocol and header design greatly impacts hardware design
•  Certain protocol design choices increase hardware complexity and

delay adoption
•  Given the ubiquity of pipeline-based designs, it behooves the protocol

designer to consider their characteristics to help foster widespread
adoption and deployment.

20

CONSIDERATIONS

21

HEADER SIZE LIMITS
•  Pipelines generally split header data from packet bodies
•  A long series of large headers may not fit in the allotted space

22

HEADER SPACING
•  Fixed header lengths make parsing easier
•  Fields lengths aren’t an issue (up to a point), but making header

lengths multiples of 32 bits improve hardware efficiency

23

RESPECT THE HIERARCHY
•  Ideally, headers are processed in the order that they appear in the

packet

•  Out-of-order header processing adds significant hardware complexity

•  Processing that spans multiple headers increases complexity and
eliminates opportunities for optimizations

•  Make headers self-contained units of information

•  Specifically disallow using fields from other layers in processing the
current layer

24

USE EXISTING HEADERS
•  Whenever possible, use an existing header instead of inventing a new

one
•  However, avoid using well-defined fields in ways that are unrelated to

the header’s original definition

25

ALLOW PARSING WITHOUT LOOKUPS
•  It should not be necessary to perform a large-table lookup in order to

fully parse a packet’s headers
•  Of course lookup is still needed for forwarding!

•  A next-header identifier value should be globally defined and not
variable based on the forwarding context

•  Provide reliable next-header type information in each header
•  Disallow multiple definitions for the same constant value

26

FLOW IDENTIFICATION
•  Flow identification is necessary for ECMP and LAG load balancing
•  Make it clear which fields are reliable for flow identification
•  Provide a robust means for carrying flow entropy fields to obviate deep

parsing

27

CHECK VALUES
•  Make checksums optional/experimental
•  Don’t have header checksums span multiple headers
•  Avoid checksums that span the entire packet
•  Don’t require nested CRCs

28

IN CONCLUSION…
•  Quite simply, don’t assume complete processing flexibility.

