Hardened Stateless Session Cookies

Steven J. Murdoch

University of Cambridge, Computer Laboratory
http://www.cl.cam.ac.uk/users/sjm217/

Abstract. Stateless session cookies allow web applications to alter their
behaviour based on user preferences and access rights, without maintain-
ing server-side state for each session. This is desirable because it reduces
the impact of denial of service attacks and eases database replication
issues in load-balanced environments. The security of existing session
cookie proposals depends on the server protecting the secrecy of a sym-
metric MAC key, which for engineering reasons is usually stored in a
database, and thus at risk of accidental leakage or disclosure via appli-
cation vulnerabilities. In this paper we show that by including a salted
iterated hash of the user password in the database, and its pre-image
in a session cookie, an attacker with read access to the server is unable
to spoof an authenticated session. Even with knowledge of the server’s
MAC key the attacker needs a user’s password, which is not stored on the
server, to create a valid cookie. By extending an existing session cookie
scheme, we maintain all the previous security guarantees, but also pre-
serve security under partial compromise.

1 Introduction

Many websites require users to authenticate themselves before permitting access.
Reasons include customising the appearance to meet user preferences, restricting
access to confidential information, limiting who can change site configuration,
and tracking who contributes to the site. The protocol used for webpage access,
HTTP [I], does not provide a session layer. If needed, websites must implement
a mechanism for securely linking a series of requests together and back to a user
account. This paper discusses the construction of a session management system
which is robust against disclosure of the authentication database.

1.1 Web Authentication

Users almost universally authenticate to websites by providing a username and
password. Both are sent as a HT'TP form submission, optionally encrypted with
TLS [2I3]. The website will then retrieve the specified user’s account details,
typically from a SQL [4] database, and check if the password is correct.

It is prudent engineering practice not to record the cleartext password in the
database; instead the result of a one-way function should be stored. This allows
the site to verify whether a presented password is correct, but an attacker who

In Sixteenth International Workshop on Security Protocols, Cambridge, UK (April 2008). LNCS,
Springer (to appear)

http://www.cl.cam.ac.uk/users/sjm217/

2 Steven J. Murdoch

can read the authentication database cannot directly retrieve the password. It
would still be possible for such an attacker to test all common passwords, and
time-space trade-offs such as rainbow tables [5] can perform this attack almost
instantaneously. To resist these attacks, a per-account random value, the salt,
should be additionally fed into the one-way function, and stored. Adding a salt
makes pre-computing a dictionary infeasible (hence each account must be brute-
forced individually), and hides whether two users share a password [6].

1.2 Session Management

Following successful authentication, the website must be able to link HTTP
requests to the relevant user account. This is achieved by the website returning
a byte string to the client on login, a session cookie [7]. The client will include this
cookie in the headers of subsequent HTTP requests to the same domain, until
the cookie is deleted by the user or it expires. Cookies may be set as persistent,
and otherwise will be be deleted when the web browser exits. The structure of
the cookie is opaque to the client.

There are a number of standard approaches for constructing session cook-
ies. One common technique, supported by web frameworks such as PHP, stores
session state on the webserver, in a file or database. Here, the cookie contains
a randomly generated session identifier which allows the website to retrieve or
save the relevant session state. The cookie contents should be a cryptographi-
cally secure pseudorandom number and be sufficiently long to make guessing a
valid session identifier infeasible.

Many users will have multiple sessions associated with their account, for ex-
ample one for work and one from their home PC. Also, unless users explicitly log
out, the server state associated with a session must be retained until the session
times out. This means that the space required on the server for maintaining state
can grow much faster than the number of users. This also introduces a denial
of service vulnerability, in that attackers could create many sessions and fill up
the filesystem. CAPTCHAs [8] can restrict automated account creation, but it
would significantly harm usability to require them for login.

It is thus desirable to implement stateless session cookies. Here, the server
does not need to store any session state — all necessary information is stored
in the cookie held by the client. With this approach, load balancing is easier,
as session state does not need to be replicated over multiple front-end servers.
This paper will discuss how to implement such cookies securely, so that attackers
cannot spoof authenticated users or alter critical session data. While previous
work has assumed that an attacker has no control of the server state, here we
show how a limited version of the security guarantees can be retained even when
the attacker is able to read the account database.

There are a number of ways in which unauthorised read access to a database
can be gained. For example, a simple Google search can find several database
backups for blogs unintentionally left on the weHH Also, one of the most common

1T have contacted the site operators in question, recommending they remove the
backups and change their passwords.

Hardened Stateless Session Cookies 3

security vulnerabilities in web applications is the SQL injection attack, which
we will show can often grant read, but not write, access.

1.3 SQL Injection

Storing website data in a relational databases is a very common design choice
made by developers. This approach permits convenient and efficient querying
of data, and allows the now stateless front-end webserver to be replicated for
scalability and redundancy. However, the use of a database introduces the risk
of SQL injection attacks, one of the most problematic classes of web application
vulnerabilities. Here, improperly sanitised user provided information is used in
constructing a SQL query, allowing the attacker to inject malicious SQL code.

For example, suppose the following SQL query is executed by a web appli-
cation, in order to retrieve the account details for a uselﬂ

SELECT * FROM wp_users WHERE user_login = '$user_login'

The value of $user_login may be chosen by the attacker, and if it contains
a ' character, the string literal will be terminated and the remainder of the
value interpreted as SQL. To exploit this vulnerability the following value for
$user_login may be chosen:

' UNION ALL SELECT 1,2,user_pass,4,5,6,7,8,9,10 FROM wp_users
WHERE ID=1/%

Now, the SQL executed will be:

SELECT * FROM wp_users WHERE user_login = '' UNION ALL SELECT
1,2,user pass,4,5,6,7,8,9,10 FROM wp_users WHERE ID=1/%'

The result of this query will be the concatenation (union) of rows returned
from the two subqueries. As no rows fulfil the user_login = '' expression, the
only row retrieved will be where the user’s ID is 1, which is by convention the site
administrator. The /* starts a comment, preventing the trailing ' from causing
a syntax error.

As will be shown in Section [2] with Wordpress, knowing the contents of the
user_pass column is sufficient to impersonate the respective user. If the result of
the above query can be retrieved, the attacker can then exploit further security
weaknesses to eventually escalate privileges to user-level, and potentially root
access, on the web server.

At this point, it is useful to note the structure of the queries above — the
attacker can only append SQL into the existing string. In particular, the attacker
cannot convert a SELECT query (for reading data) into UPDATE or INSERT
(which modify data). The SQL syntax does support executing multiple queries

2 This example is a simplified version of the exploit code for CVE-2007-2821, a
SQL injection vulnerability in Wordpress 2.1.3, written by Janek Vind: http:
//wuw.milwOrm.com/exploits/3960

http://www.milw0rm.com/exploits/3960
http://www.milw0rm.com/exploits/3960

4 Steven J. Murdoch

in a single call, by separating them with a ; character, however the standard
database API rejects such queriesﬂ Effectively, the attacker has read-only access
to the database.

In many cases, the ability to read the database is sufficient to totally com-
promise the security of a web application. Web servers are, for security reasons,
commonly prevented from writing any data to the filesystem, other than via the
database engine. Thus all secrets, whether randomly generated or entered into
the management web interface, are at risk from SQL injection vulnerabilities.

As with buffer overflows, the theory of preventing SQL vulnerabilities is
well understood but poorly applied in practice, especially in legacy applications.
Identifying potentially dangerous code is difficult, especially when user input
is processed by several layers of escaping and unescaping, by partially undocu-
mented libraries, before the string is passed to the database engine. Prepared
statements [9] improve matters, but these cannot be used when the user input
defines the structure of the query itself.

It appears that SQL injection vulnerabilities are inevitable in large web ap-
plications — even if they do not exist when the system is written they could
easily be introduced later by less-experienced programmers or carelessly written
libraries. Therefore, following the principle of defence in depth, in addition to
efforts to eliminate vulnerabilities, the application should be structured to limit
the harm caused by exploits.

Previous proposals for stateless session cookies fail completely if the database
can be read, for example through SQL injection. This is understandable, given
the common attitude that a website vulnerable to SQL injection is a hopeless
case and so there is no need to consider further layers of defences. Nevertheless,
we have shown some cases where an attacker has read access, but may find
gaining write access more difficult, or even impossible. This paper will show how
to leverage this read-only property into limiting the potential damage.

2 Weakness of Existing Proposals

Due to the lack of stateless session cookies in standard web frameworks, a wide
variety of ad-hoc solutions have been developed. Fu et al. [T0] showed that several
of these were seriously flawed, due to weak or non-existent cryptography, using
a counter when a cryptographically secure pseudorandom number is needed,
and inappropriate padding. Their paper demonstrates how the schemes were
reverse-engineered, without any access to the server code, simply by observing
the cookies returned and sometimes through generating specially constructed
usernames. It then describes how the schemes can be exploited, including spoof-
ing cookies for chosen accounts and even extracting the system-wide key from
one website.

Another ad-hoc solution is implemented by Wordpress, where the authenti-
cation cookie is of the form MD5(MD5(password)). The account database stores

3 http://www.php.net/mysql_query

http://www.php.net/mysql_query

Hardened Stateless Session Cookies 5

MD5(password) in the user _pass column, so on subsequent accesses, this value
can be hashed a further time and compared with the cookie. This approach suf-
fers from three main weaknesses, which are the subject of CVE-2007-6013 by the
present author [I]. Firstly, no salt is applied before storing the hashed password
in the database, easing brute force attacks. Secondly, if the attacker can read the
hashed password in the database, it is trivial to generate a valid cookie. Thirdly,
a cookie will never cease to be valid — if the database is compromised or a cookie
is leaked, the affected users must change their password to a different one.

In their paper, Fu et al. [I0] make a number of suggestions for improving web
authentication, including proposing an improved structure for stateless authen-
tication cookies:

exp=t&data=s&digest=MACy(exp=t&data=s)

Here, t is the expiry time for the cookie and s is the state the web appli-
cation needs to be maintained, such as the username or the user capabilities.
The digest is a message authentication code, such as HMAC-SHA-256, under
a key known only to the web server. This scheme prevents a valid cookie be-
ing generated by an attacker and also prevents existing cookies being modified.
Liu et al. [I2] extended this proposal to also encrypt s and optionally bind the
cookie to a particular TLS session. However, in either scheme, if the MAC key is
compromised, for example through an SQL injection attack or insecure backup,
an attacker may spoof cookies for any account, until the compromise is detected
and the key revoked.

3 Stateless Session Cookies

The motivation for the scheme proposed in this paper is to maintain the security
properties of the previous work, while also remaining secure even if the attacker
has read access to the database. In essence, we suggest including an iterated hash
of the user’s password in the database and its pre-image in the session cookie.
Thus, someone with the correct password can calculate a valid cookie, and this
can be verified using the database entry, but it is infeasible to generate a cookie
given access to the database alone.

In the following section, we use the following recursive definitions, based on
the fallback password hashing algorithm of the phpass library [13]:

ag(salt, password) = H(salt||password)
az(salt, password) = H(a,—1(salt, password)||password)

Where salt is per-account, cryptographically secure pseudorandom number,
long enough to resist brute force attack (e.g. 128 bits), and password is the user
password. H(-) is a cryptographically secure hash function (e.g. SHA-256).

(1) Account creation: On requesting an account be created, the user specifies
the desired username and password. The web site then generates the random
salt, and calculates the authenticator v = H(a, (salt, password)) both of which it
stores in the database. The public value n is the hash iteration count (e.g. 256).

6 Steven J. Murdoch

(2) Login: To log in, a user presents their username and password. The web
site retrieves the user account details, including the salt and authenticator. Using
the supplied password and retrieved salt it calculates ¢ = a,,(salt, password) and
compares it to the stored authenticator v. If H(c) # v the user is denied access
and c is discarded. If H(c) = v the web site concludes that the supplied password
was correct and returns a cookie, constructed as per the Fu et al. scheme, but
with an extra field auth:

exp=t&data=s&auth=c&digest=MAC} (exp=t&data=s&auth=c)

(3) Subsequent accesses: Following login, as the client requests further pages,
the server reads the submitted cookie, checks the MAC, extracts ¢, and compares
H(c) with the authenticator v from the database. If they match, access is granted.

3.1 Security

In the conventional threat model, an attacker does not have access to the au-
thentication database, so does not know the salt, password or MAC key and
here our proposal performs just as well as the Fu et al. scheme. Even though
it is likely that many users will select poor passwords, the inclusion of a large
salt prevents operation (3) being of help in brute-forceing the password. This
property is desirable because rate-limiting, to resist online brute-force attacks,
need only be applied to the login procedure (2), not every page that requires
authentication. This could be particularly valuable in load-balanced situations
with one login server and multiple application servers — only the login server
need retain state on the number of failed login attempts.

If a cookie is retrieved, for example from a compromised or stolen computer,
or through XSS [14], the attacker may use it to log in, until the cookie expires.
The MAC prevents the expiry time from being modified. However, as the attacker
does not know the salt, the cookie cannot be used to confirm whether a particular
brute-force guess at the password is correct. It is for this reason that the salt in
the scheme must be fairly large. In conventional password hashing schemes the
salt is only to make a precomputed dictionary infeasible to store, and so a few
tens of bits are adequate. In this scheme the salt is additionally used to prevent
the attacker learning any information about the password from a cookie, so must
be as large as a cryptographic key, e.g. 128 bits.

If the attacker is able to read the database, e.g. through unsecured backups
or SQL injection, it can discover a user’s authenticator, salt and global MAC
key. This is still insufficient to generate a valid cookie, as doing so would be
equivalent to discovering the pre-image of a hash output. Of course, the attacker
can still brute force the password, and if it is weak the attacker can gain access.
This task is made more difficult by the salt (preventing a rainbow-table attack)
and is further slowed down by iterating the hash function n times (e.g. 256).

With knowledge of the MAC key, an attacker can alter cookies, so user ca-
pabilities cannot be safely stored there and instead must reside in the account

Hardened Stateless Session Cookies 7

database. If an attacker compromises the MAC key and can intercept a cookie
for a privileged user, its expiry date can be extended until the compromise is
detected and key revoked. Regularly rotating the MAC key would require the
attacker to gain access to a recent copy, limiting the vulnerable period.

An attacker with write-access to the database is outside the threat model of
this scheme. With such access, the attacker could simply create a new account
with chosen password or escalate an existing account to high privilege. We see
no way to defend against such an adversary in the general case.

3.2 Efficiency

The scheme proposed in this paper is not significantly more computationally
expensive than one based around the Fu et al. [10] proposal. At account creation
and login, the only additional step is one invocation of H(-), as the iterated
computation is present in any salted password authentication scheme. If the
salt needs to be extended, there will be a increase in size of data hashed, but
as the salt is only added once, this increase is negligible. On each subsequent
access, where authentication is required, an extra invocation of H(-) is needed,
in addition to the two already required for HMAC verification.

We also require a database read to retrieve the authenticator and user access
rights. In contrast, the Fu et al. scheme can operate independently from the
database after the login stage, because the site-wide MAC key can be cached in
memory. Our scheme introduces more complexity in load-balanced environments
because front-end servers need access to the database, however, unlike standard
session cookies, only read access is required so maintaining consistency is easier
and on-disk indices need not be updated.

4 Variations

A large variety of possibilities for variations on this scheme are possible, and
may be desirable in certain deployment environments. Any sufficiently secure
password hashing mechanism may replace a,,(salt, password), provided the salt
size is adequate to also prevent offline brute-force password-recovery attacks
on cookies. For example berypt [I5], with its 128-bit salt, would be a good
candidate. If possible, the password hashing function should be written in an
efficient compiled language, allowing a higher value of n, so as to reduce the
advantage of attacker with a custom implementation.

If the available password hashing functions do not permit a sufficiently long
salt to be added, an alternative is to encrypt the cookie under a server key before
sending it to the client [I2]. This means that the cookie alone is still not helpful
for attempting a brute-force password recovery attack. Both the extended-salt
and encrypted authenticator schemes are vulnerable to brute force, if the user’s
salt or encryption key respectively are available to the attacker.

We have not selected the encrypted authenticator option because standard
web libraries do not come with symmetric encryption libraries, possibly due to

8 Steven J. Murdoch

export regulations. Also, if the salt is sufficiently short for there to be collisions,
a user who has the same password on multiple sites might have the same au-
thenticator on some of them. In this case, if an attacker compromises one site,
obtaining a user’s cookie along with the cookie encryption key, he can replay the
cookie to a different site for which he has compromised the MAC key if the user
has both the same password and salt. This weakness can be defended against by
selecting a long enough salt such that collisions are unlikely, or by incorporating
the site URL in the calculation of the authenticator (for example, by appending
it to the salt when calculating v).

Fu et al. suggest a number of other hints for maintaining secure web sites,
which complement the authentication proposal in this paper. Their recommen-
dations include prohibiting weak passwords, requiring re-authentication before
changing passwords, using HTTPS to encrypt login, and binding cookies to IP
addresses. We add a further recommendation, of storing two MAC sub-keys if
possible — one in a file and one in the database, which are combined at runtime.
To compromise the key an attacker would need to obtain both sub-keys which
mitigates certain vulnerabilities.

In addition to security, usability is another important consideration for an
authentication scheme. Enforcing an expiry time on cookies reduces the risk of
cookie compromise, but requires users to re-authenticate periodically. This could
be especially annoying to users if they compose a long blog post, only to find out
that their cookie has expired when they submit the form, potentially losing their
changes. A simple way to reduce this risk is to require users re-authenticate a
few hours before the expiry time if a GET request is made, but to permit POST
requests up to the hard deadline.

5 Conclusion

In this paper, we have described how an attack resulting in read-only access to a
website authentication database is a plausible scenario, motivated by the exam-
ples of a badly-protected database backup and SQL injection vulnerabilities. We
have shown how to harden existing stateless session cookie schemes, which were
previously vulnerable to such attackers, thereby greatly limiting the potential
damage. The new scheme we have presented has negligible overhead, when com-
pared to existing proposals, and can leverage existing password authentication
libraries, yet provides good security guarantees even when the attacker has read
access to the full website state.

Acknowledgements

Thanks are due to Richard Clayton, Markus Kuhn, the attendees at the Security
Protocols Workshop (especially Mark Lomas), and the contributors to Light Blue
Touchpaper, for their valuable discussions on the topics discussed here.

Hardened Stateless Session Cookies 9

References

10.

11.

12.

13.

14.

15.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext Transfer Protocol - HT'TP/1.1. RFC 2616, IETF (June 1999)
Rescorla, E.: HTTP over TLS. RFC 2818, IETF (May 2000)

Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) protocol version 1.1.
RFC 4346, IETF (April 2006)

JTC 1/SC 32: Information technology — database languages — SQL. ISO/IEC
9075:2006 (2003)

Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In Boneh,
D., ed.: Advances in Cryptology — Crypto 2003. Volume 2729 of LNCS., Springer
(August 2003) 617-630

Morris, R., Thompson, K.: Password security: a case history. Communications of
the ACM 22(11) (November 1979) 594-597

Kristol, D., Montulli, L.: HTTP state management mechanism. RFC 2109, IETF
(February 1997)

von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: Using hard Al
problems for security. In Biham, E., ed.: Advances in Cryptology — Eurocrypt
2003. Volume 2656 of LNCS., Springer (May 2003) 294-311

Fisk, H.: Prepared statements. MySQL Developer Zone (October 2004) http:
//dev.mysql.com/tech-resources/articles/4.1/prepared-statements.html.
Fu, K., Sit, E., Smith, K., Feamster, N.: Dos and don’ts of client authentication on
the web. In: Proceedings of the 10th USENIX Security Symposium, Washington
D.C., US (August 2001)

Murdoch, S.J.: Wordpress cookie authentication vulnerability (November 2007)
CVE-2007-6013 (candidate) http://www.cl.cam.ac.uk/~sjm217/advisories/
wordpress-cookie-auth.txt.

Liu, A.X., Kovacs, J.M., Huang, C.T., Gouda, M.G.: A secure cookie protocol. In:
Proceedings of the 14th IEEE International Conference on Computer Communi-
cations and Networks. (October 2005) 333-338

Solar Designer: Portable PHP password hashing framework (2006) http://www.
openwall.com/phpass/.

CERT Coordination Center: Malicious HTML tags embedded in client web re-
quests. Advisory CA-2000-02, CERT/CC (February 2000) http://www.cert.org/
advisories/CA-2000-02.html.

Provos, N., Mazieres, D.: A future-adaptable password scheme. In: USENIX
Annual Technical Conference, Monterey, California, US (June 1999) 81-92

http://dev.mysql.com/tech-resources/articles/4.1/prepared-statements.html
http://dev.mysql.com/tech-resources/articles/4.1/prepared-statements.html
http://www.cl.cam.ac.uk/~sjm217/advisories/wordpress-cookie-auth.txt
http://www.cl.cam.ac.uk/~sjm217/advisories/wordpress-cookie-auth.txt
http://www.openwall.com/phpass/
http://www.openwall.com/phpass/
http://www.cert.org/advisories/CA-2000-02.html
http://www.cert.org/advisories/CA-2000-02.html

