
TRANSPORTING A
PORTABLE OPERATING
SYSTEM: UNIX TO AN
IBM MINICOMPUTER
PAUL J. JAUCS and THOMAS S. HEINES Cleveland State University

Paul I.]alics has research
interests in the design and

performance measurement of
operating systems,

transportability of programs,
and the performance of user

application programs.
Thomas S. Heines has

research interests in the
design, measurement, and

evaluation of operating
systems.

Authors' Present Address:
Paul J. Jalics and Thomas S.

Heines, Department of
Computer and Information

Science, Cleveland State
University, Cleveland. Ohio

44115

UNIX is a trademark of Bell
Laboratories.

Permission to copy without
fee all or part of this material

is granted provided that the
copies are not made or

distributed for direct
commercial advantage, the
ACM copyright notice and
the title of the publication

and its date appear, and
notice is given that copying

is by permission of the
Association for Computing

Machinery. To copy
otherwise, or to republish,

requires a fee and/or specific
permission. © 1983 ACM

0001-0782/83/1200-1066 75¢

B A C K G R O U N D
An operating system is a complex set of computer programs
that manages the execution of application programs. Every
computer typically has its own operating system written in a
machine-dependent language. Thus, every time a new ma-
chine is developed, a new operating system and new compi-
lers must also be developed. In addition, existing application
programs need modification because the new operating sys-
tem requires facilities that are different from the old one.

The first development promising to simplify this complex
process was that of higher level implementation~ languages
designed specifically for writing systems software [2, 4, 8].
With the aid of such a language, one could write a system at
a higher level with less machine dependency. Later, experi-
ence [3, 6] revealed that most machine dependency could be
confined to 10% or less of the operating system.

The second such development involved a number of re-
search efforts in which an entire operating system was "trans-
ported" from one machine architecture to another [3, 6, 7].
Three basic approaches to transporting were explored:

1. Create a hardware emulator for an existing computer on
a newer computer and then simply run the operating
system and applications of the older machine on the
new machine under the emulator. For example, IBM
7090 and 1401 emulators running in IBM 360 computers.
This approach was successful but had a continuous per-
formance penalty.

2. Create an instruction set and architecture tbr a mythical
machine that is "higher level" and easier to program
than normal hardware. Then, write an operating system
in the assembly language of this mythical machine. Fi-
nally, execute the operating systems and application pro-
grams written for the mythical machine by emulation.
The advantage here is that only the emulator is ma-
chine-dependent. The San Jose labs of IBM implemented
EDX this way on the IBM System/7 computer [5]. EDX
was later transported to the IBM Series/1. The perform-
ance penalty of emulation still had to be paid, but the
fact that the emulated "instructions" were higher level
may have reduced this effect somewhat.

3. Write the entire operating system and the compilers in a
higher level language and isolate all machine-dependent
parts of the operating system and compilers. Then, re-

SUMMARY: The "portable" UNIX
operating system was transported to
an IBM Series/1 minicomputer.
The process of transporting is
described with emphasis on (1)
adapting to the target machine
architecture; (2) the selection of the
approach taken to transporting; (3)
a description of the problems
encountered; (4) the degree of
portability of the UNIX system; and
(5) a summary of the portability
lessons learned.

1066 Communications of the ACM December 1983 Volume 26 Number 12

write the code generator for this language to generate
machine instructions for the new machine. Rewrite the
machine-dependent parts of the operating system for the
new machine. Finally, recompile all of the operating
system using the modified compiler to come up with an
operating system that will execute on the new machine.
This approach offers the best potential for readable, un-
derstandable, transportable operating systems with the
best possible performance.

SPECIFIC GOALS
Just as our interest in portable software became more focused,
Bell Labs made available a so-called "Portable UNIX" operat-
ing system (Version 7), which embodied substantial lessons
learned from transporting UNIX to two different machines. It
also included improvements of the user applications which
had also been transported to various machines on which the
UNIX C compiler was available.

We obtained a copy of this UNIX operating system and
proceeded to start a portability project of our own to transport
UNIX to an IBM Series/1 available in our lab. The goals of
the project were as follows:

1. To follow up on the work of Ritchie and Johnson [3] and
verify the transportability claims for UNIX.

2. To add to the base of experience in the transportability
of operating systems especially regarding new problems
arising from aspects of the new machine's architecture.

3. To transport an operating system without prior intimate
knowledge of its internals. Most other projects were car-
ried out by people who had a great deal of prior knowl-
edge. We felt that the perspective of an outsider would
yield interesting insights and different estimates of the
work involved.

4. To make more effective use of the IBM Series/1 ma-
chine. The operating system supplied, RPS, was found to
be difficult to use and slow for program preparation. In
addition, it required so much memory to execute effi-
ciently that there was little room left for user programs.

PREPARATORY STEPS
At the time we started work on the project, we had no PDP-
11 machine available to us. We did not fully appreciate the
difficulty of transporting UNIX without having a UNIX home
base to run on. Also, UNIX documentation is terse and best
understood by people that already know most of its contents.

The first challenge was to get cross-referenced listings from
the release tape containing UNIX source modules. This was
no small task since the tape contained over 2000 files and did
not include a description of the tape format. A bit of detective
work was necessary to decode the file system image on the
tape.

At this point, we attended a UNIX Users' Conference (To-
ronto, 1979) where we learned that Professor D.J. Farber of
the University of Delaware was just completing his modifica-
tions to the standard UNIX C compiler to generate code for
the IBM Series/1. Dr. Farber was kind enough to let us use
his compiler, thus saving a substantial amount of effort.

After carefully studying the material, we decided that we
lacked the resources to carry out this project without a work-
ing UNIX system; we placed an order for a PDP-11/34.

During the six months we spent awaiting the PDP-11, we
studied the internals of UNIX using the commentary by Lions
[1]. In a way, it was an advantage not to have the opportunity
to start immediately; we had time to sit back and study the
problem carefully instead.

HARDWARE CHARACTERISTICS OF THE mM
SEglFS/1
The main features of the IBM Series/1 are described below:

1. A 16-bit word size, with byte addressing and the poten-
tial of a 16 mbyte physical memory.

2. Four sets of eight "general purpose" registers of 16 bits
each.

3. A stack mechanism with instructions for allocating stack
frames from 1 byte to 16K bytes, and for pushing and
popping data. Stack instructions address a three-word
stack control block in memory. Stack overflow and un-
derflow are detected by the hardware, and instructions
causing stack faults may be restarted easily.

4. Memory segmentation using 2K-byte blocks, with eight
64K-byte address spaces where separable address spaces
can be specified for instruction fetching, source oper-
ands, and destination operands.

5. A large instruction set with instructions of one, two, or
three words. The instruction set is not particularly sym-
metric with some operations available in all forms while
others are restricted to register-to-register or register-to-
memory only.

ADAPTING UNIX TO NEW HARDWARE: THE DESIGN
DECISIONS

Subroutine Linkage and Register Usage
The Series/1 has eight 16-bit registers like the PDP-11 and
should be at an advantage since none of the registers are
dedicated. In fact, the Series/1 has only three really useful
registers because of the asymmetric addressing modes. Some
addressing modes can use registers 0-7, but others are re-
stricted to 0-3 or 1-3. This makes registers 0 and 4-7 only
marginally useful especially in a compiler code generator,
which does not easily lend itself to a complex structure or
special cases.

The decisions here were already made by the Delaware C
Compiler implementors. We simply reviewed them and saw
that they were adequate for UNIX:

• Register 0: the address of the stack control block. This is
not necessary but reduces by one word each
stack-related machine instruction.

• Register 1: frame pointer to local variables.
• Register 2: parameter register for UNIX system calls and

function-return register.
• Register 3: second parameter register for UNIX system

calls and second part of function return for 32-
bit values.

• Register 4-6: rarely used temporary registers.
• Register 7: return address from last procedure call.

The calling sequence pushes parameters on the stack, does
a branch and link to the subroutine, and pops parameters
from stack. The subroutine prologue consists of one instruc-
tion which saves registers, allocates local storage on the stack,
and saves a control word on the stack which describes these
actions. The subroutine epilogue then consists of one instruc-
tion which undoes all these actions and returns.

Address Space and Memory Management
All addresses on both the PDP-11 and Series/1 are 16-bit;
therefore the basic address space is 64K bytes long The PDP-
11 is able to double this by having separate address spaces for
instructions and data on some models. The Series/1 has simi-

December 1983 Volume 26 Number 12 Communications of the ACM 1067

lar facilities and a slightly more generalized structure on some
models. There are eight complete, 64K-bytes address spaces,
each having its own set of 32~segmentation registers. There is
an address key register designating which of the eight address
spaces is to be used for:

1. fetching instructions (like PDP-11 I space).
2. source data operands (like PDP-11 D space, but only for

source operands).
3. destination data operands (like PDP-11 D space, but only

for destination operands. Having separate source and
destination fields is useful for transferring data between
address spaces).

The availability of eight-address spaces required a decision
on how to best use them in UNIX. All I /O is mapped on the
Series/I, meaning that any process doing raw I /O (I/O di-
rectly into user memory rather than buffered through system
buffers) must also have one of the eight-address spaces. Thus
the following allocation of address spaces was made:

• Address space 0: operating system data space.
• Address space 1: operating system instruction space.
• Address space 2: current-user data spade.
• Address space 3: current-user instructi~)n space.
• Address space 4-7: dynamically allocated to raw I/O.

Main Memory Allocation
The PDP-11 main memory is allocated in UNIX in 64-byte
units called clicks, in harmony with the PDP-11 segmentation
hardware. The Series/1 allows 2K-byte segments that must
start on 2K-byte memory boundaries. The question arose as to
whether the definition of clicks should be changed. Study
indicated that memory allocation was always done in physi-
cal segments; and so the click was redefined to be 2,048 bytes
to match the Series/1 segmentation hardware.

Allocation of Hardware Levels and Interrupt Masks
The Series/1 has four complete sets of registers each associ-
ated with a level. A program running at Level 2 can be
interrupted by any I /O or external interrupt at Level 0 or 1
but not Level 3. SVC and some error interrupts always occur
on the same level as the program causing the interrupt. In
addition, there is a four-bit level mask which will prevent any
IO or external interrupts at the levels where the mask bit is
set. Finally, there is a summary-mask bit in the status register
of each level which controls all I /O and external interrupts
while that level is active.

The UNIX system is based on the PDP-11 architecture
which has eight levels of priority where user programs use
Level 0; a long clock routine uses Level 1; terminal interrupt
handlers use Level 4; disk interrupt handlers use Level 5; the
clock interrupt handier uses Level 6; and all interrupts are
prevented at Level 7. Throughout UNIX, there are subroutine
calls that change the priority. On the Series/I, it is relatively
expensive to change hardware levels since register set con-
tents have to be copied. Analysis of the uses and durations of
sections in the operating system where priority was changed
yielded the following design:

• Level 0: hardware clock and high-priority I /O devices.
• Level 1: medium-priority I /O devices.
• Level 2: low-priority I /O devices and the long clock proc-

essing.
• Level 3: user programs and system call processing.

The UNIX routines setting the priority were changed to set/

reset the four level masks and the summary mask was not
used.

The hardware facilities were not well-matched here with
UNIX. The Series/1 has a more complex structure, hut one
that did not provide any extra advantages.

Miscellaneous Considerations
A button on the front panel causes a console interrupt which
was used to toggle a debugging facility to turn the periodic
clock interrupts on and off. Most of UNIX will run without a
clock. This allowed single-stepping and breakpointing most of
UNIX or user programs. This low-level debugging is very
useful in the first stages when every component is suspect.

The Series/1 was not designed for demand paging, with the
segmentation exception seemingly treated as an error as in
the PDP-11. On the other hand, stack faults (overflow/under-
flow) were detected by the hardware and the instruction
simply had to be restarted to continue. This was used to
automatically extend the stack and reexecute the instruction
causing the fault, which cannot be done reliably on some
models of the PDP-11.

TRANSPORTING STEPS

The C Compiler
Most of UNIX and its application programs are written in the
C language which is an implementation language giving rea-
sonable access to bits, bytes, and pointers which are normally
thought to be machine-dependent. C programs have been
found to be quite transportable.

The C compiler received from Delaware was a modified
Ritchie Compiler. This compiler has three phases: syntactic
analysis, code generation, and code optimization. The first of
these is almost completely portable, the second and third
phases had been almost completely rewritten. Finally, the
output of Phases 2 and 3 is a UNIX-style Assembly language.
The Delaware implementors wrote an Assembler for the Se-
ries/1 code entirely in C. The PDP-11 UNIX Assembler is
written in Assembler and is not portable at all.

THE UNIX C RUN-TIME LIBRARY
Most of the work needed for the run-time library entailed
writing the Assembler interface routines which allow UNIX
system calls from C programs. Some 2,560 lines of Assembler
statements were rewritten, but it was a repetitive process
because of the similar structure of all the routines. The only
routines requiring substantial insights were the ones dealing
with signal interception and processing, output formatting,
and double-length integer arithmetic. Some of the formatting
routines (like printf) could easily have been written in C,
thereby making them quite transportable. Instead, they were
written in Assembler presumably for performance reasons.
Floating-point emulation routines were written but were not
an essential part of the project since UNIX does not use
floating point nor do most commands.

TRANSPORTING UNIX
The minimal UNIX supporting one disk and a console termi-
nal consists of 34 modules totaling some 9,200 lines and two
assembly modules totaling about 850 lines.

Rewriting the Assembly Modules
One assembly module simply described the low-memory lay-
out and initialized the interrupt vectors. This was completely
machine-dependent and needed design planning to adapt to

"~)~B Communications of the ACM December 1983 Volume 26 Number 12

UNIX requirements. Once this was done, the work involved
in this module was minimal.

The other module contained the code that directed hard-
ware interrupts to the appropriate C language handier, plus a
host of short routines called from C for initiating I/O, setting
up segmentation, and copying data to/from the user-address
space. While a number of small decisions had to be made
about how to use the existing hardware, this code followed
the pattern of the module for the PDP-11. Thus, we had to
understand what the PDP-11 routines did and then write
analogous code.

Transporting Memory Management
This was one of the most machine-dependent parts of the
operating system. Almost all of the code relating to memory
management/segmentation was contained in one short mod-
ule and a few Assembler routines. Once the design decisions
about the use of the segmentation hardware had been made,
rewriting routines was straightforward.

The only difficult bugs encountered involved the redefini-
tion of clicks from 64 to 2,048 bytes. Several places were
found in the operating system where the magic numbers 64
or 6 (2**6=64) were used. After finding a couple of these, we
used our cross-reference for all occurrences of 5, 6, 7, 63, and
64 and thus finding all the places. These had to do with
converting addresses to/from dicks and setting or reading
segmentation register contents.

Transporting the Machine-Dependent C Code
A number of short routines that were machine-dependent
were in one C module. Once one understood what was in-
tended with each routine, it became straightforward to mod-
ify or rewrite it. Reasonable header comments for most rou-
tines gave a good indication of what a routine did. Routines
for starting the clock or an I /O operation are done on the
PDP-11 by addressing the appropriate UNIBUS locations di-
rectly from C. The Series/1 does not use memory-mapped
I/O, so Assembler routines were coded to use the appropriate
I /O instructions.

The other main module dealing with machine dependen-
cies was the C interrupt handler for all system calls and error
interrupts. This had to be modified substantially to take care
of all passible Series/1 interrupts. The format of the stack at
interrupt time was quite different from that of the PDP-11,
but once one understood what the original code did, adapting
to the new was straightforward. We tried to make the best
possible use of the different kinds of I /O interrupts, error
interrupts, and system calls on the Series/1. The I /O inter-
rupts did not need to save the environment since they took
over an unused hardware level, whereas the error interrupts
and system calls occurred on the same level as the executing
program. For the error and system call interrupts, the envi-
ronment was saved in a block which was unique to the kind
of interrupt that occurred. An I /O interrupt might at its com-
pletion have to call the scheduler which was normally called
from error interrupts or system calls. Also, an error or system
call interrupt handler could not save its environment in the
special save blocks for long since another interrupt of the
same kind could occur before completion of the first.

We decided to transform all types of interrupts into a com-
mon type with all of the environment saved on the system
stack. This was another case where a more complex but
incompatible architecture denied us the advantage of some
Series/ /facil i t ies for quick switching for I /O interrupts.

Transporting Device Drivers
I /O device drivers are among the most machine-dependent
parts of an operating system. One must understand the de-
vice-driver interface to the rest of the operating system. This
is best done by studying existing drivers for character and
block-type devices. The task of writing a device driver be-
came one of mimicking most of the functions of the old.

The console terminal driver, for example, was over two
thirds identical to that for the PDP-11. The system interface
for drivers is simple and the time was spent getting the de-
vice-dependent details right for some of the devices. The ma-
trix printer required a control table to allow it to respond to
ASCII character codes rather than to the EBCDIC codes
which were used by default. The terminal multiplexor
worked in only half duplex and also reversed the bits in each
character requiring that a translation be done into ASCII.

The problem of half-duplex terminal hardware was made
more complicated because the break key worked only when
output was active. Periodic switching from output to input
mode created a system which felt like UNIX but was not
quite as responsive to control commands to quit or stop out-
put. Later, acquisition of full-duplex hardware solved this
problem.

TRANSPORTING THE REST OF THE UNIX
The remainder of the operating system had only a few minor
changes. This code consisted of 6,942 lines of C, only 123 of
which were changed. These changes were for machine de-
pendencies that related to segmentation and memory alloca-
tion.

This code included most of the code of the system calls, the
management of terminal input/output queues, buffer man-
agement, scheduling, and swapping. A number of these were
made to work without comprehension of their logic. This was
the only such area; most other components had to be under-
stood in fine detail before they could be transported.

Bootstrapping UNIX on the Series/1
UNIX expects to see a file system on a disk when it is booted,
so a UNIX operating system and a file system must be
brought to the target machine. UNIX has no overlays or non-
resident segments which allows the operating system to load
simply. But before UNIX is started up, a UNIX file system
must be on the disk.

The UNIX system had to be taken from the development
machine to the Series/1. Initial plans were to use a stand-
alone utility to create the image of a UNIX file system onto
the Series/1 disk and copy UNIX via a communication link.

We decided against the above strategy because we did not
want to write the programs needed and because it would
have been difficult to debug the file system on the Series/1
until UNIX was up. We were anticipating more debugging
than was actually required. We finally decided to create a
UNIX file system on a diskette on the PDP-11, then modify it
to make the PDP-11 file system acceptable to the Series/1
UNIX. This diskette was then taken over to the Series/1 and
booted from the diskette drive. The diskette contained the
required file system and a file containing UNIX.

One advantage of this strategy was that once the system
was tried and the file system was suspected of having been
altered or destroyed; we could use UNIX utilities to look at it.
This could be done by taking the diskette back to the PDP-11,
reversing the modifications, and looking at the file system

December 1983 Volume 26 Number 12 Communications of the ACM 1069

with the standard UNIX utilities. We did this a number of
times and it helped us to find some early bugs.

The UNIX Byte-Reversing nUxi Problem: Inheritance from
the PDP-11
A persistent problem encountered in the transporting process
was one related to addressing on the PDP-11. We noticed this
in one of the first programs brought over to the Series/1. The
program was supposed to print out Unix and instead printed
out nUxi (reversing pairs of bytes). Each machine addresses
words by an even address. The PDP-11 addresses a word by
its low-order byte, and the Series/1 addresses a word by its
high-order byte. The effect is that byte-oriented data are cor-
rect when taken from one machine to another; but word-
oriented data, including instructions, must have the bytes of
each word interchanged. This architectural difference had
substantial implications in moving any data between the PDP-
11 and the Series/1. In addition, this difference was incorpo-
rated into program logic whenever a two-byte sequence was
considered at times as a 16-bit binary word, and at other
times a sequence of two 8-bit bytes.

Moving source files pose no problems. Object programs
were one of the most important things to be moved, and they
did contain both character and binary data. It is impossible to
take a file which contains a mixture of words and bytes
arbitrarily intermixed and "fix" it so that it can be interpreted
properly on the Series/1. Object files on UNIX are all created
by the UNIX Assembler, which distinguishes between charac-
ters and binary words because the C Compiler makes this
distinction when creating its output for assembly later. Thus,
the cross-assembler which ran on the PDP-11 was able to
ensure that the load module arrived correctly on the Series/1.

Transporting a file system was more complicated because
the file directories and the allocation tables were a mixture of
characters and binary words of 16 or 32 bits. In addition, file
systems contain files which contain characters, binary data,
and object programs. To create a file system on the PDP-11
which is acceptable to the Series/I, the three-step sequence
of modifications was undertaken.

The first step was to swap all pairs of bytes on the entire
file system, thereby making all the binary integers correct on
the Series/1. This made all integers and longs correct but left
all character sequences incorrect. It turned out that character
sequences are used in the file system data structures only for
storing file names or directory path names. So a slightly modi-
fied version of the ncheck utility was then used as a second
step to reverse pairs of characters in the file directories.

At this point, the entire file system data structures were
acceptable to the Series/1. Then, the byte-swapping program
was run individually on the character files to complete the
modifications.

While all this seems complicated, it did not involve sub-
stantial programming and took only 5 minutes to run.

nUxi Problems in C Programs
A more difficult problem came from styles of programming
which made implicit assumptions about the placement of
bytes in words. Most often this happened when a 16-bit quan-
tity was sometimes treated as a binary number and at other
times treated as two separate characters. Several examples of
this were found in UNIX and in commands.

TRANSPORTING UNIX COMMANDS
Once UNIX as an operating system has been booted, you

quickly find that everything works but there is very little that
can be done. Most of UNIX's facilities are the commands.
There were so many commands that we made a priority list
and transported the most important ones like the editor and
the file-system utilities first. A surprising number of them
(editor, loader, cp, tar, shell, etc.) worked immediately without
any changes. A few, like the dump processor od worked
partially, but had small nUxi problems. Our machine had no
floating-peint hardware and our C Compiler did not compile
floating point, so a few items relating to floating point were
missing from our C library. This affected only a few com-
mands.

TIME SCHEDULE
1. The UNIX Version 7 release tape and documentation

arrived in June 1979. About two man-weeks were spent de-
coding the tape format and generating cross-referenced listings
of selected groupings of source files from that tape.

2. The rest of that summer, full-time efforts were directed
to understanding the UNIX Kernel with considerable help
from the Lions Commentary [1] which described an earlier
UNIX.

3. Part-time activities in the fall and winter completed the
design decisions for the Series/1. Stand-alone I /O program-
ming on the various Series/1 I /O devices was also done.

4. The spring quarter of 1980 saw the implementation of
the assembler parts of the operating system, the modifications
to memory management, and other machine-dependent parts.

5. The first 6 weeks of the summer were spent wrapping
up the changes to the operating system, including writing
terminal and disk I /O drivers. Concurrent with this, the as-
sembly parts of the C run-time library were written. The
system was first booted in early August and within a month
became quite stable and usable.

6. Part-time activity in the fall of 1980 saw the implemen-
tation of I /O drivers for the remaining devices and the trans-
porting of the UNIX commands to the Series/1. This was
followed by the transporting of the C Compiler and Assem-
bler to the Series/1.

7. In January 1981, we called the project "finished." This
was necessary since the task of maintaining and embellishing
operating systems and user environments is never really fin-
ished.

SUMMING UP PORTABILITY ~ N S
UNIX Version 7 is a portable operating system, i.e., one that
can be transported with less effort than writing it anew. We
estimate that the project took about 16 man-months, starting
with a good knowledge of operating systems but no knowl-
edge of UNIX. This does not include the modification of the C
Compiler and the writing of the Assembler which we re-
ceived from the University of Delaware. Since the UNIX sys-
tem has several man-years of effort in it, it would seem that
the system is highly portable because it takes much less effort
to transport than to rewrite.

The authors believe that UNIX cannot be transported to a
new architecture without intimate knowledge of UNIX and
the C Compiler. While major sections of the operating system
will work unchanged on the new machine, one needs sub-
stantial insights to make reasonable design decisions and to do
the actual debugging.

A continual problem on transporting UNIX was the so-
called nUxi problem, which arose from PDP-11 and Series/1
hardware differences. Future transporters might well consider

1070 Communications of the ACM December 1983 Volume 26 Number 12

TABLE I. Report of Changes by Groups

Lines Original IBM S/1 Number of Lines Lines
Group Identification Changed Number Lines Changes Deleted Inserted (%) of Lines

Stand-Alone 100 0 727 3 0 727
Commands 4 23,298 24,035 82 142 879
Kernel 25 9,565 11,901 328 637 2,973
C Library 37 6,463 6,678 305 2,252 2,467
C Compiler 61 10,093 13,799 831 4,654 8,360
Assembler 100 0 4,537 8 0 4,537
Totals 33 49,419 61,677 1,557 7,685 19,943

starting with a version of UNIX which is similar to their target
machine hardware.

A substantial portion of the debugging of the Series/1 UNIX
was spent tracing bugs related to bad code generated by the C
Compiler. The C Compiler we received from the University of
Delaware was already in fairly good shape. The point is that a
lot of time can be wasted tracing even minor Compiler bugs
with a not-yet-working operating system. The authors believe
that a battery of tests for the C Compiler ought to be devel-
oped and run before ever trying to port an operating system
with a new Compiler. These programs could be written to be
largely machine-independent. UNIX has fine facilities for
comparing outputs of correctly running tests to those being
tested, and so much of the C code generation validation could
be automated with concise reporting of exceptions.

The differences between the original and modified source
files for the entire project are summarized in Tables I and II.
They were generated with the UNIX diff command, which
strives to find the minimum number of lines different. Al-
though the number of lines of code different may not be the
best indicator of effort required, it provides a simple, unbiased
value. For example, the effort required for the 2,422 lines of
Assembler code for the C library of UNIX is much less than
the 850 lines of Assembly code rewritten for the operating
system.

The majority (77%) bf the lines changed relate to the C
Compiler language system. A substantial part (10%) of the
remainder went to rewriting the I /O drivers for a number of
devices on the Series/1. Only 7% was involved with Assem-
bler pa.rts of the operating system. The remaining 6% was
minor changes to the operating system and UNIX commands.

Many of the same problems we encountered will be en-
countered by future transporters of UNIX. For this reason, we
created a complete set of line-by-line difference files which
were produced for every module transported. The statistics
themselves are useful to future transporters and the difference

TABLE II. Summary of Code Changes

Lines C Lines ASM Lines Group Identification Changed Changed Changed

UNIX Kernel 3,700 2,275 1,425
UNIX Commands 879 879 0
C Compiler 8,360 8,360 0
C Library 2,467 45 2,422
Assembler 4,537 4,537 0
Totals 19,943 16,096 3,847

files could be useful to pinpoint the machine-dependent parts
of the system as well.

The UNIX developers did not put many comments in pro-
grams. Many of the C procedures have header comments that
indicate what they do, and these are welcome. The Assem-
bler modules, on the other hand, are almost totally lacking in
comments. This was disconcerting to a person trying to un-
derstand UNIX and the PDP-11 at the same time. Lack of
comments in parts that obviously have to be modified or
rewritten is a serious impediment to portability.

Much of the reprogramming in UNIX was quite straightfor-
ward because there were existing models for the code that
needed rewriting. The ease of transporting I /O drivers, espe-
cially, surprised us since the manner of doing I /O is so differ-
ent on the two machines.

Using a diskette file system for the transporting of UNIX
from the host system was very satisfactory. Usually, the full
cycle of changes to source code, compilation, relinking, crea-
tion of a Series/1 acceptable file system, and the booting of
that system on the Series/1 took less than 15 minutes.

We believe it requires a Herculean effort to transport UNIX
without having a host UNIX system for the program develop-
ment. The program development facilities in UNIX are so
good that using UNIX for development is preferable even if
you must adapt a UNIX Assembler to do it. Which brings up
another point: the Assembler for UNIX Version 7 is written in
PDP-11 Assembler. Since UNIX style As~semblers are so simi-
lar for various machines, why isn't the Assembler written in
C in a portable manner? Also, a rather lengthy editing routine
(for printf) is written in Assembler and it could easily be
written in C. We assume the above are in Assembler for
performance reasons (or possibly historical reasons).

CONCLUSION
The effort invested in UNIX seemed well-rewarded both in
the portability project and the quality of the end result. It
became clear that transporting a real operating system in-
volves a substantial amount of effort, even if that system is
designed to be "portable." While one might reduce the effort
required to a fraction of that required here, the performance
and flexibility of the end result will be affected proportion-
ately.

Acknowledgments . 'We wish to thank Dr. D.J. Farber of the
Electrical Engineering Department at the University of Dela-
ware for supplying us with the Series/1 C Compiler and
Assembler. Also, a great deal is owed to the graduate students
who contributed substantially to our research efforts:

December 1983 Volume 26 Number 12 Communications of the ACM 1071

¢ ~ f p l n l ~ ~ ¢ l t l C E s

R.M. Szabo and T. Babej for the I/O drivers; and M.A. Venar
for the C library.

REFERENCES
1. Event-Driven Executive Basic Supervisor and Emulator. Publication

SB30-1053, IBM Corporation, San Jose, California, 1977.
2. Goos, G., Lagally, K., and Sapper, G. PS440: Progrommiersprachefuer

Systemimplementierung. Bericht 70002, Technische Universitaet
Muenchen, Munich, West Germany, 1970.

3 Johnson, S.C., and Ritchie, D.M. "Portability of C programs and the
UNIX system. Bell Syst. Tech. I. 57, 6, Part II August 1978, 2021-2048.

4. Kernighan, B.W., and Ritchie, D.M. The C Programming Language.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1978.

5. Lions, J., A Commentary on the UNIX Operating System. Bell Labora-
tories, Murray Hill, New Jersey, 1977,

6. Melen, L.S. A Portable, Real-Time Executive, Thoth. Master's Thesis,
Department of Computer Science, Waterloo, Ontario, Canada, Uni-
versity of Waterloo, 1976.

7. Thalmann, D., and Levrat, B. SPIP: a way of writing portable operat-
ing systems. Proc. ACM Comput. Symp. (1977), pp. 452-459.

8. Wulf, W.A. et al., BLISS Reference Manual. Computer Science Depart-
ment, Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1970.

CR Categories and Subject Descriptors: D.2 [Software]: Software Engi-
neering D.2.7 [Software Engineering[: Distribution and Maintenance--
portability; D.4 [Software]: Operating Systems

General Terms: Design, Verification
Additional Key Words and Phrases: C, UNIX, transporting, operating

system

Received 12/82; revised 4/82; accepted 6/82

ACM SPECIAL INTEREST GROUPS
ARE YOUR TECHNICAL

INTERESTS HERE?

The ACM Special Interest Groups
further the advancement of computer
science and practice in many
specialized areas. Members of each
SlG receive as one of their benefits a
periodical exclusively devoted to the
special interest. The following are the
publications that are available--
through membership or special
subscription.

SIGACT NEWS (Automata and
Computabili ty Theory)

SIGAPL Quote Quad (APL)
SIGARCH Computer Archi tec ture

News (Architecture of Computer
Systems)

SIGART Newslet ter (Artificial
Intelligence)

SIGBDP DATABASE (Business Data
Processing)

SIGBIO Newslet ter (Biomedical
Computing)

SIGCAPH Newslet ter (Computers and
the Physically Handicapped) Print
Edition

SIGCAPH Newsletter, Cassette
Edition

SIGCAPH Newsletter, Print and
Cassette Editions

SIGCAS Newslet ter (Computers and
Society)

SIGCHI Bulletin (Computer and
Human Interaction)

SIGCOMM Computer
Communicat ions Review (Data
Communications)

SIGCPR Newslet ter (Computer
Personnel Research)

SIGCSE Bulletin (Computer Science
Education)

SIGCUE Bulletin (Computer Uses in
Education)

SIGDA Newslet ter (Design
Automation)

SIGDOC Newslet ter (Systems
Documentation)

SIGGRAPH Computer Graphics
(Computer Graphics)

SIGIR Forum (Information Retrieval)
SIGMAP Newslet ter (Mathematical

Programming)
SIGMETRICS Performance

Evaluation Review (Measurement
and Evaluation)

SIGMICRO Newslet ter
(Microprogramming)

SIGMOD Record (Management of
Data)

SIGNUM Newslet ter (Numerical
Mathematics)

SIGOA Newslet ter (Office
Automation)

SIGOPS Operat ing Systems Review
(Operating Systems)

SIGPC Newslet ter (Personal
Computing)

SIGPLAN Notices (Programming
Languages)

SIGPLAN ADATEC Newslet ter
(Technical Committee on Ada)

SIGPLAN FORTEC Newslet ter
(Technical Committee on Fortran)

SIGSAC Newslet ter iSecurity, Audit
and Control)

SIGSAM Bulletin (Symbolic and
Algebraic Manipulation)

SIGSIM Simulet ter (Simulation and
Modeling)

SIGSMALL Newslet ter (Small
Computing Systems and
Applications)

SIGSOFT Software Engineering Notes
(Software Engineering)

SIGUCCS Newslet ter (University and
College Computing Services)

1072 Communications of the ACM December 1983 Volume 26 Number 12

