
Functional Pearl

Cutting Out Continuations

Graham Hutton1 and Patrick Bahr2

1 University of Nottingham, UK
2 IT University of Copenhagen, Denmark

Abstract. In the field of program transformation, one often transforms
programs into continuation-passing style to make their flow of control
explicit, and then immediately removes the resulting continuations using
defunctionalisation to make the programs first-order. In this article, we
show how these two transformations can be fused together into a single
transformation step that cuts out the need to first introduce and then
eliminate continuations. Our approach is calculational, uses standard
equational reasoning techniques, and is widely applicable.

1 Introduction

In his seminal work on definitional interpreters for higher-order programming
languages, Reynolds [12] popularised two techniques that have become central to
the field of program transformation: i) transforming programs into continuation-
passing style (CPS) to make their flow of control explicit; and ii) transforming
higher-order programs into first-order style using defunctionalisation. These two
transformations are often applied together in sequence, for example to transform
high-level denotational semantics for programming languages into low-level im-
plementations such as abstract machines or compilers [12,13,11,1,2].

However, there is something rather unsatisfactory about applying these two
transformations in sequence: the CPS transformation introduces continuations,
only for these to immediately be removed by defunctionalisation. This seems
like an ideal opportunity for applying fusion, which in general aims to combine
a series of transformations into a single transformation that achieves the same
result, but without the overhead of using intermediate structures between each
step. In our case, the intermediate structures are continuations.

Despite CPS transformation and defunctionalisation being obvious candi-
dates for being fused into a single transformation, this does not appear to have
been considered before. In this article, we show how this can be achieved in
a straightforward manner using an approach developed in our recent work on
calculating compilers [5]. Our approach starts with a specification that captures
the intended behaviour of the desired output program in terms of the input
program. We then calculate definitions that satisfy the specification by con-
structive induction [4], using the desire to apply induction hypotheses as the
driving force for the calculation process. The resulting calculations only require

standard equational reasoning techniques, and achieve the combined effect of
CPS and defunctionalisation without the intermediate use of continuations.

We illustrate our approach by means of two examples: a minimal language
of arithmetic expressions to introduce the basic ideas in a simple manner, and
a call-by-value lambda calculus to show how it can be applied to a language
with variable binding. More generally, the approach scales up to a wide range
of programming language features and their combination, including exceptions,
state, loops, non-determinism, interrupts, and different orders of evaluation.

The article is aimed at a general functional programming audience rather
than specialists, and all the programs and calculations are written in Haskell.
The calculations have also been mechanically verified using the Coq proof assis-
tant, and the proof scripts for our two examples, together with a range of other
applications, are freely available online via GitHub [7].

2 Arithmetic Expressions

Consider a simple language of arithmetic expressions built up from integers and
addition, whose syntax and denotational semantics are defined as follows:

data Expr = Val Int | Add Expr Expr

eval :: Expr → Int
eval (Val n) = n
eval (Add x y) = eval x + eval y

Now suppose that we wish to calculate an abstract machine for this language,
which is given by a set of first-order, tail-recursive functions that are together
semantically equivalent to the function eval . We initially perform this calcula-
tion using the standard two step approach [1]: transformation into continuation-
passing style, followed by defunctionalisation. Then in section 3 we show how
these two transformation steps can be combined into a single step.

Step 1 - Add Continuations

The first step is to transform the evaluation function into continuation-passing
style. More specifically, we seek to derive a more general evaluation function

eval ′ :: Expr → (Int → Int)→ Int

that takes a continuation of type Int → Int as additional argument, which is
applied to the result of evaluating the expression. More precisely, the desired
behaviour of eval ′ is specified by the following equation:

eval ′ x c = c (eval x) (1)

Rather than first defining the new function eval ′ and then separately proving
by induction that it satisfies the above equation, we aim to calculate a definition

for eval ′ that satisfies this equation by constructive induction on the expression
argument x . In each case, we start with the term eval ′ x c and gradually trans-
form it by equational reasoning, aiming to arrive at a term t that does not refer
to the original semantic function eval , such that we can then take eval ′ x c = t as
a defining equation for eval ′ in this case. For the base case, when the expression
has the form Val n, the calculation is trivial:

eval ′ (Val n) c
= { specification (1) }
c (eval (Val n))

= { applying eval }
c n

By means of this calculation, we have discovered the definition for eval ′ in the
base case, namely: eval ′ (Val n) c = c n. In the inductive case, when the
expression has the form Add x y , we start in the same manner as above:

eval ′ (Add x y) c
= { specification (1) }
c (eval (Add x y))

= { applying eval }
c (eval x + eval y)

Now we appear to be stuck, as no further definitions can be applied. However, as
we are performing an inductive calculation, we can use the induction hypotheses
for x and y , that is, eval ′ x c′ = c′ (eval x) and eval ′ y c′′ = c′′ (eval y). To
use these hypotheses, we must rewrite the term being manipulated into the form
c′ (eval x) and c′′ (eval y) for some continuations c′ and c′′. This can be readily
achieved by abstracting over eval x and eval y using lambda expressions. Using
this idea, the rest of the calculation is then straightforward:

c (eval x + eval y)
= { abstracting over eval y }

(λm → c (eval x + m)) (eval y)
= { induction hypothesis for y }
eval ′ y (λm → c (eval x + m))

= { abstracting over eval x }
(λn → eval ′ y (λm → c (n + m))) (eval x)

= { induction hypothesis for x }
eval ′ x (λn → eval ′ y (λm → c (n + m))

The same result can also be achieved by applying the induction hypotheses in
the opposite order to the above, but for the purposes of the later fused calculation
it is important that we apply the induction hypothesis on y first if we want to
ensure that the resulting abstract machine evaluates the arguments of addition
from left-to-right. In conclusion, we have calculated the following definition:

eval ′ :: Expr → (Int → Int)→ Int
eval ′ (Val n) c = c n
eval ′ (Add x y) c = eval ′ x (λn → eval ′ y (λm → c (n + m)))

Finally, our original evaluation function can now be redefined in terms of
the new version by taking the identity function as the continuation in specifica-
tion (1), which results in the definition eval x = eval ′ x (λn → n).

Step 2 - Defunctionalise

The second step is to transform the new evaluation function back into first-order
style, using defunctionalisation. The basic idea is to replace the higher-order type
Int → Int of continuations by a first-order datatype whose values represent the
specific forms of continuations that we actually need.

Within the definitions for the functions eval and eval ′, there are only three
forms of continuations that are used, namely one to terminate the evaluation pro-
cess, one to continue once the first argument of an addition has been evaluated,
and one to add two integer results together. We begin by defining an abbrevi-
ation Cont for the type of continuations, together with three combinators halt ,
next and add for constructing the required forms of continuations:

type Cont = Int → Int

halt :: Cont
halt = λn → n

next :: Expr → Cont → Cont
next y c = λn → eval ′ y (add n c)

add :: Int → Cont → Cont
add n c = λm → c (n + m)

Using these definitions, our evaluator can now be rewritten as:

eval :: Expr → Int
eval x = eval ′ x halt

eval ′ :: Expr → Cont → Int
eval ′ (Val n) c = c n
eval ′ (Add x y) c = eval ′ x (next y c)

The next stage in the process is to define a first-order datatype whose con-
structors represent the three combinators:

data CONT where
HALT :: CONT
NEXT :: Expr → CONT → CONT
ADD :: Int → CONT → CONT

Note that the constructors for the new type have the same names and types as
the combinators for the Cont type, except that all the items are now capitalised.

The fact that values of type CONT represent continuations of type Cont is
formalised by the following denotational semantics:

exec :: CONT → Cont
exec HALT = halt
exec (NEXT y c) = next y (exec c)
exec (ADD n c) = add n (exec c)

In the literature this function is typically called apply [12]. The reason for using
the name exec in our setting will become clear shortly. Using these ideas, our
aim now is to derive a new evaluation function

eval ′′ :: Expr → CONT → Int

that behaves in the same way as our continuation semantics eval ′ :: Expr →
Cont → Int , except that it uses values of type CONT rather than continuations
of type Cont . The desired behaviour of eval ′′ is specified by the equation:

eval ′′ x c = eval ′ x (exec c) (2)

We can now calculate a definition for eval ′′ from this specification, and in turn
new definitions for exec and eval in terms of the new function eval ′′. The calcu-
lations are entirely straightforward, and can be found in Hutton and Wright [8].
The end result is the following set of definitions:

eval ′′ :: Expr → CONT → Int
eval ′′ (Val n) c = exec c n
eval ′′ (Add x y) c = eval ′′ x (NEXT y c)

exec :: CONT → Int → Int
exec HALT n = n
exec (NEXT y c) n = eval ′′ y (ADD n c)
exec (ADD n c) m = exec c (n + m)

eval :: Expr → Int
eval x = eval ′′ x HALT

Together with the new type, these definitions form an abstract machine for
evaluating expressions: CONT is the type of control stacks for the machine,
which specify how it should continue after the current evaluation has concluded;
eval ′′ evaluates an expression in the context of a control stack; exec executes a
control stack in the context of an integer argument; and finally, eval evaluates an
expression by invoking eval ′′ with the empty control stack HALT . The fact that
the machine operates by means of two mutually recursive functions, eval ′′ and
exec, reflects the fact that it has two modes of operation, depending on whether
it is being driven by the structure of the expression or the control stack.

3 Fusing the Transformation Steps

We now show how the two separate transformation steps that were used to derive
the abstract machine for evaluating expressions can be combined into a single

step that avoids the use of continuations. In the previous section, we started off
by defining a datatype Expr and a function eval ::Expr → Int that respectively
encode the syntax and semantics for arithmetic expressions. Then in two steps
we derived an abstract machine comprising four components:

– A datatype CONT that represents control stacks;
– A function eval ′′ :: Expr → CONT → Int that evaluates expressions;
– A function exec :: CONT → Int → Int that executes control stacks;
– A new definition for eval :: Expr → Int in terms of eval ′′.

By combining specifications (1) and (2), the relationship between the three func-
tions is captured by the following equation:

eval ′′ x c = exec c (eval x) (3)

That is, evaluating an expression in the context of a control stack gives the
same result as executing the control stack in the context of the value of the
expression. The key to combining the CPS and defunctionalisation steps is to
use this equation directly as a specification for the four additional components,
from which we then aim to calculate definitions that satisfy the specification.
Given that the equation involves two known definitions (Expr and the original
eval) and four unknown definitions (CONT , eval ′′, exec, and the new eval), this
may seem like an impossible task. However, with the benefit of the experience
gained from our earlier calculations, it turns out to be straightforward.

We proceed from specification (3) by constructive induction on the expres-
sion x . In each case, we aim to rewrite the term eval ′′ x c into a term t that does
not refer to the original semantics eval , such that we can then take eval ′′ x c = t
as a defining equation for eval ′′. In order to do this we will find that we need to
introduce new constructors into the CONT type, along with their interpretation
by the function exec. The base case is once again trivial:

eval ′′ (Val n) c
= { specification (3) }
exec c (eval (Val n))

= { applying eval }
exec c n

The inductive case begins in the same way:

eval ′′ (Add x y) c
= { specification (3) }
exec c (eval (Add x y))

= { applying eval }
exec c (eval x + eval y)

At this point no further definitions can be applied. However, we can make use
of the induction hypotheses for the argument expressions x and y . In order to
use the induction hypothesis for y , that is, eval ′′ y c′ = exec c′ (eval y), we

must rewrite the term that is being manipulated into the form exec c′ (eval y)
for some control stack c′. That is, we need to solve the equation:

exec c′ (eval y) = exec c (eval x + eval y)

First of all, we generalise eval x and eval y to give:

exec c′ m = exec c (n + m)

Note that we can’t simply use this equation as a definition for exec, because
n and c would be unbound in the body of the definition. The solution is to
package these two variables up in the control stack argument c′ by adding a new
constructor to the CONT type that takes these two variables as arguments,

ADD :: Int → CONT → CONT

and define a new equation for exec as follows:

exec (ADD n c) m = exec c (n + m)

That is, executing the command ADD n c in the context of an integer argu-
ment m proceeds by adding the two integers and then executing the remaining
commands in the control stack c, hence the choice of the name for the new
constructor. Using these ideas, we continue the calculation:

exec c (eval x + eval y)
= { define: exec (ADD n c) m = exec c (n + m) }
exec (ADD (eval x) c) (eval y)

= { induction hypothesis for y }
eval ′′ y (ADD (eval x) c)

No further definitions can be applied at this point, so we seek to use the induction
hypothesis for x , that is, eval ′′ x c′ = exec c′ (eval x). In order to do this, we
must rewrite the term eval ′′ y (ADD (eval x) c) into the form exec c′ (eval x)
for some control stack c′. That is, we need to solve the equation:

exec c′ (eval x) = eval ′′ y (ADD (eval x) c)

As with the case for y , we first generalise eval x to give

exec c′ n = eval ′′ y (ADD n c)

and then package the free variables y and c up in the argument c′ by adding a
new constructor to CONT that takes these variables as arguments

NEXT :: Expr → CONT → CONT

and define a new equation for exec as follows:

exec (NEXT y c) n = eval ′′ y (ADD n c)

That is, executing the command NEXT y c in the context of an integer argu-
ment n proceeds by evaluating the expression y and then executing the control
stack ADD n c. Using this idea, the calculation can now be completed:

eval ′′ y (ADD (eval x) c)
= { define: exec (NEXT y c) n = eval ′′ y (ADD n c) }
exec (NEXT y c) (eval x)

= { induction hypothesis for x }
eval ′′ x (NEXT y c)

Finally, we conclude the development of the abstract machine by aiming to
redefine the original evaluation function eval :: Expr → Int in terms of the new
evaluation function eval ′′ :: Expr → CONT → Int . In this case there is no need
to use induction as simple calculation suffices, during which we introduce a new
constructor HALT :: CONT to transform the term being manipulated into the
required form in order that specification (3) can then be applied:

eval x
= { define: exec HALT n = n }
exec HALT (eval x)

= { specification (3) }
eval ′′ x HALT

In summary, we have calculated the following definitions:

data CONT where
HALT :: CONT
NEXT :: Expr → CONT → CONT
ADD :: Int → CONT → CONT

eval ′′ :: Expr → CONT → Int
eval ′′ (Val n) c = exec c n
eval ′′ (Add x y) c = eval ′′ x (NEXT y c)

exec :: CONT → Int → Int
exec HALT n = n
exec (NEXT y c) n = eval ′′ y (ADD n c)
exec (ADD n c) m = exec c (n + m)

eval :: Expr → Int
eval x = eval ′′ x HALT

These are precisely the same definitions as in the previous section, except that
they have now been calculated directly from a specification for the correctness
of the abstract machine, rather than indirectly using two transformation steps.

In a similar manner to the first calculation step in section 2, we could have
reversed the order in which we apply the induction hypotheses in the case of
Add , which would result in an abstract machine that evaluates the arguments
of addition right-to-left rather than left-to-right.

Reflection

The fundamental drawback of the two step approach is that we have to find
the right specification for the first step in order for the second step to yield the
desired result. This is non-trivial. How would we change the specification for
the CPS transformation such that subsequent defunctionalisation yields a com-
piler rather than an abstract machine? Why did the specification we used yield
an abstract machine? By combining the two transformation steps into a single
transformation, we avoid this problem altogether: we write one specification that
directly relates the old program to the one we want to calculate. As a result, we
have an immediate link between the decisions we make during the calculations
and the characteristics of the resulting program. Moreover, by avoiding CPS and
defunctionalisation, the calculations become conceptually simpler. Because the
specification directly relates the input program and the output program, it only
requires the concepts and terminology of the domain we are already working on:
no continuations or higher-order functions are needed.

4 Lambda Calculus

For our second example, we consider a call-by-value variant of the untyped
lambda calculus. To this end, we assume for the sake of simplicity that our meta-
language is strict. For the purposes of defining the syntax for the language, we
represent variables using de Bruijn indices:

data Expr = Var Int | Abs Expr | App Expr Expr

Informally, Var i is the variable with de Bruijn index i > 0, Abs x constructs
an abstraction over the expression x , and App x y applies the abstraction that
results from evaluating the expression x to the value of the expression y .

In order to define the semantics for the language, we will use an environ-
ment to interpret the free variables in an expression. Using de Bruijn indices we
can represent an environment simply as a list of values, in which the value of
variable i is given by indexing into the list at position i :

type Env = [Value]

In turn, we will use a value domain for the semantics in which functional values
are represented as closures [10] comprising an expression and an environment
that captures the values of its free variables:

data Value = Clo Expr Env

Using these ideas, it is now straightforward to define an evaluation function
that formalises the semantics of lambda expressions:

eval :: Expr → Env → Value
eval (Var i) e = e !! i

eval (Abs x) e = Clo x e
eval (App x y) e = case eval x e of

Clo x ′ e ′ → eval x ′ (eval y e : e ′)

Keep in mind that although we use Haskell syntax, we now assume a strict
semantics for the meta language. In particular, in the case of App x y above,
this means that the argument expression y is evaluated before x ′.

Unlike our first example, however, the above semantics is not compositional.
That is, it is not structurally recursive: in the case for App x y we make a
recursive call eval x ′ on the expression x ′ that results from evaluating the ar-
gument expression x . As a consequence, we can no longer use simple structural
induction to calculate an abstract machine, but must use the more general tech-
nique of rule induction [14]. To this end, it is convenient to first reformulate
the semantics in an explicit rule-based manner. We define an evaluation relation
⇓ ⊆ Expr ×Env ×Value by means of the following set of inference rules, which
are obtained by rewriting the definition of eval in relational style:

e !! i is defined

Var i ⇓e e !! i Abs x ⇓e Clo x e

x ⇓e Clo x ′ e ′ y ⇓e u x ′ ⇓u:e′ v

App x y ⇓e v

Note that eval is not a total function because i) evaluation may fail to termi-
nate, and ii) looking up a variable in the environment may fail to return a value.
The first cause of partiality is captured by the ⇓ relation: if eval x e fails to
terminate, then there is no value v with x ⇓e v . The second cause is captured
by the side-condition “e !! i is defined” on the inference rule for Var i .

Specification

For the purposes of calculating an abstract machine based on the above seman-
tics, the types for the desired new evaluation and execution functions remain
essentially the same as those for arithmetic expressions,

eval ′′ :: Expr → CONT → Int
exec :: CONT → Int → Int

except that eval ′′ now requires an environment to interpret free variables in its
expression argument, and the value type is now Value rather than Int :

eval ′′ :: Expr → Env → CONT → Value
exec :: CONT → Value → Value

For arithmetic expressions, the desired behaviour of the abstract machine was
specified by the equation eval ′′ x c = exec c (eval x). For lambda expressions,

this equation needs to be modified to take account of the presence of an envi-
ronment e, and the fact that the semantics is expressed by a relation ⇓ rather
than a function eval . The resulting specification is as follows:

x ⇓e v ⇒ eval ′′ x e c = exec c v (4)

Note that there is an important qualitative difference between the specifi-
cation above and equation (3) for arithmetic expressions. The latter expresses
soundness and completeness of the abstract machine, whereas the above only
covers completeness, that is, every result produced by the semantics is also pro-
duced by the machine. But the specification does not rule out that exec termi-
nates with a result for an expression that diverges according to the semantics. A
separate argument about soundness has to be made. Bahr and Hutton [5] discuss
this issue in more detail in the context of calculating compilers.

Calculation

Based upon specification (4), we now calculate definitions for the functions eval ′′

and exec by constructive rule induction on the assumption x ⇓e v . In each case,
we aim to rewrite the left-hand side eval ′′ x e c of the equation into a term t
that does not refer to the evaluation relation ⇓, from which we can then conclude
that the definition eval ′′ x e c = t satisfies the specification in this case. As in
our first example, along the way we will find that we need to introduce new
constructors into the CONT type, together with their interpretation by exec.
The base cases for variables and abstractions are trivial.

Assuming Var i ⇓e e !! i , we have that

eval ′′ (Var i) e c
= { specification (4) }
exec c (e !! i)

and assuming Abs x ⇓e Clo x e, we have that

eval ′′ (Abs x) e c
= { specification (4) }
exec c (Clo x e)

In the case for App x y ⇓e v , we may assume x ⇓e Clo x ′ e ′, y ⇓e u and
x ′ ⇓u:e′ v by the inference rule that defines the behaviour of App x y , together
with induction hypotheses for the three component expressions x , y and x ′.
The calculation then proceeds by aiming to rewrite the term being manipulated
into a form to which these induction hypotheses can be applied. Applying the
induction hypothesis for x ′, i.e. eval ′′ x ′ (u :e ′) c′ = exec c′ v , is straightforward:

eval ′′ (App x y) e c
= { specification (4) }
exec c v

= { induction hypothesis for x ′ }
eval ′′ x ′ (u : e ′) c

In turn, to apply the induction hypothesis for y , i.e. eval ′′ y e c′ = exec c′ u,
we need to rewrite the term eval ′′ x ′ (u : e ′) c into the form exec c′ u for some
control stack c′, i.e. we need to solve the equation:

exec c′ u = eval ′′ x ′ (u : e ′) c

As in our first example, the solution is to package the free variables x ′, e ′ and c
in this equation up in the control stack argument c′ by adding a new constructor
to the CONT type that takes these variables as arguments

FUN :: Expr → Env → CONT → CONT

adding a new equation for exec

exec (FUN x ′ e ′ c) u = eval ′′ x ′ (u : e ′) c

and then continuing the calculation:

eval ′′ x ′ (u : e ′) c
= { define: exec (FUN x ′ e ′ c) u = eval ′′ x ′ (u : e ′) c }
exec (FUN x ′ e ′ c) u

= { induction hypothesis for y }
eval ′′ y e (FUN x ′ e ′ c)

Finally, to apply the induction hypothesis for the expression x , i.e. eval ′′ x e c′ =
exec c′ (Clo x ′ e ′), we need to solve the equation

exec c′ (Clo x ′ e ′) = eval ′′ y e (FUN x ′ e ′ c)

for which purposes we add another new constructor to the CONT type that
takes the free variables y , e and c in this equation as arguments,

ARG :: Expr → Env → CONT → CONT

add a new equation for exec

exec (ARG y e c) (Clo x ′ e ′) = eval ′′ y e (FUN x ′ e ′ c)

and then conclude as follows:

eval ′′ y e (FUN x ′ e ′ c)
= { define: exec (ARG y e c) (Clo x ′ e ′) = eval ′′ y e (FUN x ′ e ′ c) }
exec (ARG y e c) (Clo x ′ e ′)

= { induction hypothesis for x }
eval ′′ x e (ARG y e c)

In a similar manner to the first example, we can then define the top-level eval-
uation function simply by applying eval ′′ to a nullary constructor HALT .

In summary, we have calculated the following definitions, which together form
an abstract machine for evaluating lambda expressions:

data CONT where
HALT :: CONT
ARG :: Expr → Env → CONT → CONT
FUN :: Expr → Env → CONT → CONT

eval ′′ :: Expr → Env → CONT → Value
eval ′′ (Var i) e c = exec c (e !! i)
eval ′′ (Abs x) e c = exec c (Clo x e)
eval ′′ (App x y) e c = eval ′′ x e (ARG y e c)

exec :: CONT → Value → Value
exec (ARG y e c) (Clo x ′ e ′) = eval ′′ y e (FUN x ′ e ′ c)
exec (FUN x ′ e ′ c) u = eval ′′ x ′ (u : e ′) c

eval :: Expr → Env → Value
eval x e = eval ′′ x e HALT

The names of the control stack commands are based on the intuition that
ARG evaluates the argument of a function application, whereas FUN evalu-
ates the function body. The resulting abstract machine coincides with the CEK
machine [6]. We have also calculated abstract machines for lambda calculi with
call-by-name and call-by-need semantics, which correspond to the Krivine ma-
chine [9] and a lazy variant of the Krivine machine derived by Ager et. al [3],
respectively. The calculations can be found in the associated Coq proofs [7].

5 Summary and Conclusion

We presented the simple idea of applying fusion on the level of program cal-
culations. Instead of first producing continuations via CPS transformation and
then immediately turning them into data via defunctionalisation, we transform
the original program in one go into the target program. Despite its conceptual
simplicity, the benefits of this idea are considerable: the input program and the
output program are linked directly to the desired output program via the spec-
ification that drives the calculation. This directness simplifies the calculation
process and allows us to guide the process towards the desired output more eas-
ily. Moreover, by cutting out the continuations as the middleman, we avoid some
of its complexities. For example, we have found that using CPS transformation
for deriving compilers often yields non-strictly-positive datatypes, which makes
the transformation unsuitable for formalisation in proof assistants. However, the
non-strictly-positive datatypes disappear after defunctionalisation, and by fusing
the two transformations we avoid the issue entirely.

To demonstrate the generality of the idea presented in this paper, we applied
it to a variety of examples. The associated Coq proofs [7] contain formal calcu-
lations of abstract machines for different varieties of lambda calculi as well as

languages with exception handling and state. The systematic nature of the cal-
culations indicates the potential for automation of the entire derivation process
with little or no interaction from the user apart from the specification.

Acknowledgements

We thank the anonymous reviewers for their comments and suggestions.

References

1. Ager, M.S., Biernacki, D., Danvy, O., Midtgaard, J.: A Functional Correspondence
Between Evaluators and Abstract Machines. In: Proceedings of the 5th ACM SIG-
PLAN International Conference on Principles and Practice of Declaritive Program-
ming (2003)

2. Ager, M.S., Biernacki, D., Danvy, O., Midtgaard, J.: From Interpreter to Compiler
and Virtual Machine: A Functional Derivation. Technical Report RS-03-14, BRICS,
Department of Computer Science, University of Aarhus (2003)

3. Ager, M.S., Danvy, O., Midtgaard, J.: A Functional Correspondence Between Call-
by-need Evaluators and Lazy Abstract Machines. Information Processing Letters
90(5), 223 – 232 (2004)

4. Backhouse, R.: Program Construction: Calculating Implementations from Specifi-
cations. John Wiley and Sons, Inc. (2003)

5. Bahr, P., Hutton, G.: Calculating Correct Compilers. Journal of Functional Pro-
gramming 25 (2015)

6. Felleisen, M., Friedman, D.P.: Control Operators, the SECD Machine, and the λ-
calculus. In: Wirsing, M. (ed.) Formal Description of Programming Concepts III,
pp. 193–217. Elsevier Science Publishers B.V. (North-Holland), Amsterdam (1986)

7. Hutton, G., Bahr, P.: Associated Coq proofs. http://github.com/pa-ba/

cps-defun

8. Hutton, G., Wright, J.: Calculating an Exceptional Machine. In: Loidl, H.W. (ed.)
Trends in Functional Programming. Intellect (Feb 2006)

9. Krivine, J.L.: Un Interpréteur du Lambda-calcul (1985), unpublished manuscript
10. Landin, P.J.: The Mechanical Evaluation of Expressions. Computer Journal 6(4),

308–320 (1964)
11. Meijer, E.: Calculating Compilers. Ph.D. thesis, Katholieke Universiteit Nijmegen

(1992)
12. Reynolds, J.C.: Definitional Interpreters for Higher-Order Programming Lan-

guages. In: Proceedings of the ACM Annual Conference. pp. 717–740 (1972)
13. Wand, M.: Deriving Target Code as a Representation of Continuation Semantics.

ACM Transactions on Programming Languages and Systems 4(3), 496–517 (Jul
1982)

14. Winskel, G.: The Formal Semantics of Programming Languages – An Introduction.
Foundation of Computing Series, MIT Press (1993)

http://github.com/pa-ba/cps-defun
http://github.com/pa-ba/cps-defun

	Functional Pearl[5pt]Cutting Out Continuations

