- A ,

4 ¢ { .
i »y o
i yr ',-.

1 ¢ ¢] ." r

i
F i f
4 f /|
4 _)
h \ L

Advanced DTrace
Tips, Tricks and Gotchas

Bryan Cantrill, Mike Shapiro and
Adam Leventhal

Team DTrace

WA Y \\\\\1
% { W

Advanced DTrace

e Assumption that the basics of DTrace
are understood - or at least familiar

* You need not have used DTrace to
appreciate this presentation...

e ...but the more you have, the more
you'll appreciate it
e In no particular order, we will be

describing some tips, some tricks and
some gotchas

DTrace Tips

e Tips are pointers to facilities that are
(for the most part) fully documented

e But despite (usually) being well-
documented, they might not be well-
known...

e This presentation will present these
facilities, but won't serve as a tutorial
for them; see the documentation for
details

DTrace Tricks

e There are a few useful DTrace
techniques that are not obvious, and
are not particularly documented

 Some of these “tricks” are actually
workarounds to limitations in DTrace

 Some of these limitations are being (or
will be) addressed, so some tricks will
be obviated by future work

DTrace Gotchas

e Like any system, DTrace has some
pitfalls that novices may run into — and
a few that even experts may run into

e We've tried to minimize these, but
many remain as endemic to the
Instrumentation problem

e Several of these are documented, but
they aren't collected into a single place

Tip: Stable providers

e Allow meaningful instrumentation of
the kernel without requiring knowledge
of its implementation, covering:

— CPU scheduling (sched)
— Process management (proc)
- 1/0 (1i0)
— Some kernel statistics (vminfo, sysinfo,
fpuinfo, mib)
— More on the way...
 [f nothing else, read the documentation

chapters covering them!

Tip: Speculative tracing

e DTrace has a well-known predicate
mechanism for conditional execution

e This works when one knows at probe-
firing whether or not one is interested

e But In some cases, one only knows
after the fact

e Speculative tracing is a mechanism for
speculatively recording data,
committing it or discarding It at a later
time

Tip: Normalizing aggregations

e Often, one wishes to know not absolute
numbers, but rather per-unit rates (e.q.
system calls per second, |/0 operations
per transaction, etc.)

e In DTrace, aggregations can be turned
Into per-unit rates via normalization

e Format is “normalize (@agg, n),”

where agg Is an aggregation and n is
an arbitrary D expression

Tip: clear and tick probes

e clear zeroes an aggregation's values

« With tick probes, clear can be used
to build custom monitoring tools:

io:::start
{

@[execname] = count () ;

}

tick-1sec

{
printa (“%40s %@d\n”, @) ;
clear (@) ;

Trick: Valueless printa

e printa takes a format string and an
aggregation identifier

e “%@” In the format string denotes the
aggregation value

e This 1s not required; you can print only
the aggregation tuple

e Can be used as an implicit unig(1)

e Can be used to effect a global ordering
by specifying max (timestamp) as the
aggregating action

Tip: stop

 One may wish to stop a process to
allow subsequent investigation with a
traditional debugger (e.g. DBX, MDB)

e Do this with the stop destructive
action:

#pragma D option destructive

io:::start
/execname == “java”/
{
printf (“stopping %d...”, pid);

stop () ;

Trick: Conditional breakpoints

e Existing conditional breakpoint
mechanisms are limited to pretty basic
conditions

e The stop action and the pid provider
allow for much richer conditional
breakpoints

e For example, breakpoint based on:

— Return value
— Argument value
— Latency

Gotcha: stop gone haywire

e Be very careful when using stop - It's
a destructive action for a reason!

 |f you somehow manage to stop every
process In the system, the system will
effectively be wedged

e [f @ stop script has gone haywire, try:

- Setting dtrace destructive disallow
to 1 via kmdb(1)/0BP

— Waiting for deadman to abort DTrace enabling,
then remotely logging in (hoping that inetd

hasn't been stopped!)

Gotcha: Running into limits
 If you try to enable very large D scripts

(

t
L

nundreds of enablings and/or
nousands of actions), you may find

nat DTrace rejects It:

dtrace: failed to enable './biggie.d': DIF
program exceeds maximum program size

e This can be worked around by tuning
dtrace dof maxsize In

/etc/systemor via “mdb —kw”
e Default size Is 256K

Tip: Verbose error messages

e For a more verbose error message when
DOF Is rejected by the kernel, set
dtrace err verbosetol

A more verbose message will appear on
the console and In the system log:

./biggie.d

dtrace: failed to enable './biggie2.d': DIF
program exceeds maximum program size

tail -1 /var/adm/messages

Feb 9 17:55:57 pitkin dtrace: [ID 646358
kern.warning] WARNING: failed to process DOF:
load size exceeds maximum

Gotcha: Enabling pidi123: ::

 When using the pid provider, one
usually wants to instrument function
entry and return

e The pid provider can instrument every
Instruction

e [f you specify “pid123:::” 1t will
attempt to instrument every instruction
In process 123!

e This will work — but you may be waiting
a while...

Gotcha: Too many pid probes

e pid probes are created on-the-fly as
they are enabled

 To avoid denial-of-service, there Is a
limit on the number of pid probes that
can be created

* This limit (250,000 by default) is low
enough that 1t can be hit for large
processes:

dtrace: invalid probe specifier pidi123:::: failed
to create probe in process 123: Not enough space

Tip: Allowing more pid probes

e Increase fasttrap-max—-probes
In /kernel/drv/fasttrap.conf

e After updating value, either reboot or:
— Make sure DTrace isn't running
— Unload all modules (“modunload -i 0”)
— Confirm that fasttrap is not loaded
(“modinfo | grep fasttrap”)
— Run “update drv fasttrap”

— New value will take effect upon subsequent
DTrace use

Gotcha: Misuse of copyin

e copyin canh copy In an arbitrary
amount of memory; it returns a pointer
to this memory, not the memory itself!

e This is the incorrect way to dereference
a user-level pointer to a char *:

trace (copyinstr (copyin(argoO,
curpsinfo->pr dmodel == PR MODEL ILP32 ? 4 : 8))

e This Is what was meant:

trace (copyinstr (* (uintptr t *)copyin(argo,
curpsinfo->pr dmodel == PR MODEL ILP32 ? 4 : 8)

Gotcha: Buffer drops

the possibility of
buffer space

uence of Instrumenting
arbitrary contexts

e When a record Is to be recorded and

 There Is always
running out of

e This IS @ conseg

there isn't suffi

cient space available,

| the record will be dropped, e.qg.:

dtrace: 978 drops on CPU O
dtrace: 11 aggregation drops on CPU O

Tip: Tuning away buffer drops

e Every buffer in DTrace can be tuned on
a per-consumer basis via —x or

#pragma D option

e Buffer sizes tuned via bufsize and
aggsize

e May use size suffixes (e.g. k, m, g)

e Drops may also be reduced or
eliminated by Increasing switchrate

and/or aggrate

Gotcha: Dynamic variable drops

e DTrace has a finite dynamic variable
space for use by thread-local variables
and associative array variables

 When exhausted, subsequent
allocation will induce a dynamic
| variable drop, e.q.:

dtrace: 103 dynamic variable drops

* These drops are often caused by failure
to zero dead dynamic variables

 Must be eliminated for correct results!

Tip: Tuning away dynamic drops

 |f a program correctly zeroes dead
dynamic variables, drops must be
eliminated by tuning

e Size tuned via the dynvarsize option

e In some cases, “dirty” or “rinsing”
dynamic variable drops may be seen:

dtrace: 73 dynamic variable drops with non-empty
dirty list

e These drops can be eliminated by
Increasing cleanrate

Trick: £ftruncate and trunc

« ftruncate truncates standard output
If output has been redirected to a file

e Can be used to build a monitoring
script that updates a file (e.qg.,
webpage, RSS feed)

e Use with trunc on an aggregation
with a max (i++) action and a
valueless printa to have “last n”
occurences in a single file

Trick: Tracking object lifetime

e Assigh timestamp to an associative

array indexed on memory address upon
return frommalloc

e In entry to free:

— Predicate on non-zero associative array element
— Aggregate on stack trace
- quantize current time minus stored time

 Note: eventually, long-lived objects will
consume all dynamic variable space

Trick: Rates over time

e For varying workloads, 1t can be useful
to observe changes in rates over time

e This can be done using printa and
clear out of a tick probe, but
output will be by time - not by
aggregated tuple

e Instead, aggregate with 1quantize of
current time minus start time (from
BEGIN enabling) divided by unit time

Tip: Using system

e Use the system action to execute a
command in response to a probe

e Takes printf-like format string and
arguments:

#pragma D option quiet
#pragma D option destructive

io:::start
/args[2]->fi pathname != “<none>” &&
args[2]->fi pathname != “<unknown>"/

{
system(“file %s”, args[2]->fi pathname) ;

}

Gotcha: Using system

e system IS processed at user-level -

there will be a delay between probe
firing and command execution,
bounded by the switchrate

e Be careful; it's easy to accidentally
- create a positive feedback loop:

dtrace -n 'proc:::exec
{system(“/usr/ccs/bin/size %s”, args[0]) }'

* To avoid this, add a predicate to above:

/!'progenyof (Spid) /

Trick: system (“dtrace”)

* In DTrace, actions cannot enable probes
« However, using the system action,
one D script can launch another

e [f Instrumenting processes, steps can

be taken to eliminate lossiness:
— stop In parent

— Pass the stopped process as an argument to the
child script

— Use systemto prun(1) in a BEGIN clause in
the child script

Tip: -c option

 To observe a program from start to
finish, use “-c cmd”

e Starget Is set to target process ID
e dtrace exits when command exits

dtrace -q -c date
-n 'pidS$target::malloc:entry{@ = sum(argO)}’
-n 'END{printa(“allocated %@d bytes\n”, @)}
Fri Feb 11 09:09:30 PST 2005

allocated 10700 bytes

#

Gotcha: Stripped user stacks

« When using the ustack action,

addresses are translated into symbols
as a postprocessing step

e |[f the target process has exited, symbol
translation Is impossible

. Result Is a stripped stack:

dtrace -n syscall:::entry'{ustack()}"’
CPU ID FUNCTION : NAME
0 363 resolvepath:entry
Oxfeff34fc
Oxfefe4faf
0x80474cO0

Tip: Avoiding stripped stacks

e With the “—p pid” option, dtrace
attaches to the specified process

« dtrace will hold the target process on
exit, and perform all postprocessing
before allowing the target to continue

e Limitation: you must know a priori
which process you're interested In

Trick: Using stop and ustack

 |f you don't know a priori which
processes you're interested In, you can

use a stop/system trick:

- stopinsyscall::rexit:entry
- system (“prun %d”, pid) ;

e Any user stacks processed before
processing the system action will be
printed symbolically

* This only works iIf the application calls
exit(2) explicitly!

Gotcha: Slow user stacks

e If neither —p or —c Is specified, process

handles for strack symbol translation
are maintained in an LRU grab cache

e |f more processes are being ustack'd
than handles are cached, user stack

nostprocessing can be slowed

e Default size of grab cache is eight

brocess handles; can be tuned via

pgmax option

Tip: Ring buffering and -c/-p

e Problem: program repeatedly crashes,

ut for unknown reasons

e Use ring buffering by setting
bufpolicy to ring

e Ring buffering allows use on long-
running processes

* For example, to capture all functions
| called up to the point of failure:

dtrace -n 'pidStarget:::entry’
-x bufpolicy=ring -c cmd

Gotcha: Deadman

e DTrace protects against inducing too
much load with a deadman that aborts
enablings If the system becomes
unresponsive:

dtrace: processing aborted: Abort due to systemic
unresponsiveness

e Criteria for responsiveness:
— Interrupt can fire once a second
— Consumer can run once every thirty seconds

 On a heavily loaded system, a deadman
timeout may not be due to DTrace!

Tip: Tuning the deadman

e |f the deadman Is due to residual load,
the deadman may simply be disabled
by enabling destructive actions

e Alternatively, the parameters for the

deadman can be explicitly tuned:

- dtrace deadman user Is user-level
reponsiveness expectation (in nanoseconds)

- dtrace deadman interwval isinterrupt
responsiveness expectation (in nanoseconds)

- dtrace deadman timeout Isthe permitted
length of unresponsiveness (in nanoseconds)

Trick: Stack filtering

e Often, one Is Interested in a probe only
If a certain function is on the stack

e DTrace doesn't (yet) have a way to filter
based on stack contents

* You can effect this by using thread-local

variables:

— Set the variable to “1” when entering the
function of interest

— Predicate the probe of interest with the thread-
— Don't forget to clear the thread-local variable!

Trick: Watchpoints via pid

e Problem: you k
corrupted, but you don't know by
whom

e Potential solution: instrument every

Instruction, wit
bredicate that ¢

now which data Is being

n stop action and
ata Is incorrect value

e Once data beco

mes corrupt, process

will stop; attach a debugger (or use
gcore(l)) to progress towards the

root-cause...

Trick: Measuring DTrace

e Can exploit two properties of DTrace:

— Clause-local variables retain their values across
multiple enablings of the same probe in the
same program

— The timestamp variable is cached for the
duration of a clause, but not across clauses

e Requires three clauses:

— Assign timestamp to clause-local in 1* clause

— Perform operation to be measured in 2™ clause
— Aggregate on difference between timestamp

and clause-local in 3" clause

Trick: Iterating over structures

 To meet safety criteria, DTrace doesn't
allow programmer-specified iteration

e If you find yourself wanting iteration,
you probably want to use aggregations

e [n some cases, this may not suffice...

e In some of these cases, you may be
able to effect iteration by using a
tick-n probe to Increment an

Indexing variable...

Gotcha: Unsporting libraries

e Regrettably, on x86 there are compiler
options that cause the compiler to not
store a frame pointer

e This Is regrettable because these
libraries become undebuggable: stack
traces are impossible

e Library writers: don't do this!

— gcc: Don't use —-fomit-frame-pointer!

— Sun compilers: avoid -x04; It does this by
default!

Gotcha: Unsporting functions

 Some compilers put jump tables in-line
In program text

e This Is a problem because data
Intermingled in program text confuses
text processing tools like DTrace

 DTrace always errs on the side of
caution: If It becomes confused, it will
refuse to Instrument a function

e Most likely to encounter this on x86
e Solution to this under development...

Gotcha: Unsporting apps

e Some app
symbol ta

e Makes usi

Ications have stripped
vles and/or static functions

ng the pid provider arduous

e Can still use the pid provider to

Instrument instructions In stripped
functions by using “-" as the probe

function and the address of the
Instruction as the name:

dtrace

-n pidi123::-:80704e3

dtrace: description 'pid123::-:80704e3' matched 1

probe

Trick: sizeof and profiling

e sizeof historically works with types
and variables

e In DTrace, sizeof (function) yields
the number of bytes in the function

« When used with profile provider,
allows function profiling:

profile-1234hz
/arg0 >= “clock &&
arg0 <= "clock + sizeof (clock)/

{

}

Trick: Using GCC's preprocessor

e —C option
default, a cpp from Medieval Times

e Solaris 10 ships gcc in /usr/sfw/bin so

a modern,

uses /usr/ccs/lib/cpp by

ANSI cpp 1s available with

some limitations (#line nesting broken)
e To use GCC's cpp:

dtrace -C -xcpppath=/usr/sfw/bin/cpp -Xs -s a.d

e Needed w
e Also usefu

nen .h uses ANSI-isms like #i#

| for M4 propeller-heads

Gotcha: S$target evaluation

 When using the —c option, the child

process Is created and stopped, the D
program Is compiled with Starget set

appropriately, and the child Is resumed

e By default, the child process Is stopped
Immediately before the . init sections

are executed

 [f Instrumenting the linker or a library,
this may be too late - or too early

Tip: Tuning $target evaluation

e Exact “time” of D program evaluation
can be tuned via the evaltime option

e evaltime option may be set to one of

the following:

— exec: upon return from exec(2) (first instruction)
— preinit: before .init sections run (default)

— postinit: after . init sections run

— main: before first instruction of main () function

Gotcha: Data model mismatch

e By default, D compiler uses the data
model of the kernel (ILP32 or LP64)

e This may cause problems if including
header files Iin instrumenting 32-bit
applications on a 64-bit kernel

e Alternate data model can be selected
using —32 or —64 options

e |If alternate model Is specified, kernel
Instrumentation won't be allowed

Gotcha: Enabled probe effect

« When enabled, DTrace (obviously) has a
non-zero probe effect

e In general, this effect is sufficiently
small as to not distort conclusions...

 However, If the time spent in DTrace
overwhelms time spent In underlying
work, time data will be distorted!

e For example, enabling both entry and
return probes in a short, hot function

Tip: Sample with profile

 When honing in on CPU time, use the
profile provider to switch to a

sample-based methodology

 Running with high interrupt rates
and/or for long periods allows for much
more accurate inference of cycle time

e Aggregations allow for easy profiling:

— Aggregate on sampled PC (arg0 or argi)

— Use “%a” to format kernel addresses
— Use “%A” (and -p/—-c) for user-level addresses

Trick: Higher-level profiling

e In Interrupt-driven probes, self->

denotes variables In the interrupt
thread, not in the underlying thread

e Can't use interrupt-driven probes and
predicate based on thread-local
variables in the underlying thread

e Do this using an associative array keyed
on curlwpsinfo->pr addr

e Can use this to profile based on higher-
level units (e.g. transaction ID)

Gotcha: vtimestamp

« vtimestamp represents the number

of nanoseconds that the current thread
has spent on CPU since some arbitrary
time 1n the past

e vtimestamp factors out time spent in
DTrace - the explicit probe effect

 There Is no way to factor out the
iImplicit probe effect: cache effects, TLB
effects, etc. due to DTrace

e Use the absolute numbers carefully!

Gotcha: Fixed-length strings
e D string type behaves like this C type:

typedef struct {

char s[n]; /* -xstrsize=n, default=256 */

} string;
e Implications:
— You always allocate the maximum size
— You always copy by value, not by reference
— String assignment silently truncates at size limit
e Using strings as an array key or in an
aggregation tuple Is suboptimal if other
types of data are available

Tip: Demo DTrace scripts

e /usr/demo/dtrace contains all of

the example scripts from the
documentation

e index.html in that directory has a
link to every script, along with the
chapter that contains it

 DTrace demo directory Is installed by
default on all Solaris 10 systems

“‘%‘
Team DTrace
Bryan Cantrill

Mike Shapiro
Adam Leventhal

dtrace-core@kiowa.eng.sun.com

{ Yy

microsystems

