
Advanced DTrace
Tips, Tricks and Gotchas
Bryan Cantrill, Mike Shapiro and
Adam Leventhal
Team DTrace

Advanced DTrace
● Assumption that the basics of DTrace

are understood – or at least familiar
● You need not have used DTrace to

appreciate this presentation...
● ...but the more you have, the more

you'll appreciate it
● In no particular order, we will be

describing some tips, some tricks and
some gotchas

DTrace Tips
● Tips are pointers to facilities that are

(for the most part) fully documented
● But despite (usually) being well-

documented, they might not be well-
known...

● This presentation will present these
facilities, but won't serve as a tutorial
for them; see the documentation for
details

DTrace Tricks
● There are a few useful DTrace

techniques that are not obvious, and
are not particularly documented

● Some of these “tricks” are actually
workarounds to limitations in DTrace

● Some of these limitations are being (or
will be) addressed, so some tricks will
be obviated by future work

DTrace Gotchas
● Like any system, DTrace has some

pitfalls that novices may run into – and
a few that even experts may run into

● We've tried to minimize these, but
many remain as endemic to the
instrumentation problem

● Several of these are documented, but
they aren't collected into a single place

Tip: Stable providers
● Allow meaningful instrumentation of

the kernel without requiring knowledge
of its implementation, covering:
– CPU scheduling (sched)
– Process management (proc)
– I/O (io)
– Some kernel statistics (vminfo, sysinfo,
fpuinfo, mib)

– More on the way...
● If nothing else, read the documentation

chapters covering them!

Tip: Speculative tracing
● DTrace has a well-known predicate

mechanism for conditional execution
● This works when one knows at probe-

firing whether or not one is interested
● But in some cases, one only knows

after the fact
● Speculative tracing is a mechanism for

speculatively recording data,
committing it or discarding it at a later
time

Tip: Normalizing aggregations
● Often, one wishes to know not absolute

numbers, but rather per-unit rates (e.g.
system calls per second, I/O operations
per transaction, etc.)

● In DTrace, aggregations can be turned
into per-unit rates via normalization

● Format is “normalize(@agg, n),”
where agg is an aggregation and n is
an arbitrary D expression

Tip: clear and tick probes
● clear zeroes an aggregation's values
● With tick probes, clear can be used

to build custom monitoring tools:

io:::start
{
 @[execname] = count();
}

tick-1sec
{
 printa(“%40s %@d\n”, @);
 clear(@);
}

Trick: Valueless printa
● printa takes a format string and an

aggregation identifier
● “%@” in the format string denotes the

aggregation value
● This is not required; you can print only

the aggregation tuple
● Can be used as an implicit uniq(1)
● Can be used to effect a global ordering

by specifying max(timestamp) as the
aggregating action

Tip: stop
● One may wish to stop a process to

allow subsequent investigation with a
traditional debugger (e.g. DBX, MDB)

● Do this with the stop destructive
action:
#pragma D option destructive

io:::start
/execname == “java”/
{
 printf(“stopping %d...”, pid);
 stop();
}

Trick: Conditional breakpoints
● Existing conditional breakpoint

mechanisms are limited to pretty basic
conditions

● The stop action and the pid provider
allow for much richer conditional
breakpoints

● For example, breakpoint based on:
– Return value
– Argument value
– Latency
– ...

Gotcha: stop gone haywire
● Be very careful when using stop – it's

a destructive action for a reason!
● If you somehow manage to stop every

process in the system, the system will
effectively be wedged

● If a stop script has gone haywire, try:
– Setting dtrace_destructive_disallow

to 1 via kmdb(1)/OBP
– Waiting for deadman to abort DTrace enabling,

then remotely logging in (hoping that inetd
hasn't been stopped!)

Gotcha: Running into limits
● If you try to enable very large D scripts

(hundreds of enablings and/or
thousands of actions), you may find
that DTrace rejects it:

●

dtrace: failed to enable './biggie.d': DIF
program exceeds maximum program size

● This can be worked around by tuning
dtrace_dof_maxsize in
/etc/system or via “mdb -kw”

● Default size is 256K

Tip: Verbose error messages
● For a more verbose error message when

DOF is rejected by the kernel, set
dtrace_err_verbose to 1

● A more verbose message will appear on
the console and in the system log:

./biggie.d
dtrace: failed to enable './biggie2.d': DIF
program exceeds maximum program size

tail -1 /var/adm/messages
Feb 9 17:55:57 pitkin dtrace: [ID 646358
kern.warning] WARNING: failed to process DOF:
load size exceeds maximum

Gotcha: Enabling pid123:::
● When using the pid provider, one

usually wants to instrument function
entry and return

● The pid provider can instrument every
instruction

● If you specify “pid123:::” it will
attempt to instrument every instruction
in process 123!

● This will work – but you may be waiting
a while...

Gotcha: Too many pid probes
● pid probes are created on-the-fly as

they are enabled
● To avoid denial-of-service, there is a

limit on the number of pid probes that
can be created

● This limit (250,000 by default) is low
enough that it can be hit for large
processes:

●

dtrace: invalid probe specifier pid123:::: failed
to create probe in process 123: Not enough space

Tip: Allowing more pid probes
● Increase fasttrap-max-probes

in /kernel/drv/fasttrap.conf
● After updating value, either reboot or:
– Make sure DTrace isn't running
– Unload all modules (“modunload -i 0”)
– Confirm that fasttrap is not loaded

(“modinfo | grep fasttrap”)
– Run “update_drv fasttrap”
– New value will take effect upon subsequent

DTrace use

Gotcha: Misuse of copyin
● copyin can copy in an arbitrary

amount of memory; it returns a pointer
to this memory, not the memory itself!

● This is the incorrect way to dereference
a user-level pointer to a char *:

●

trace(copyinstr(copyin(arg0,
curpsinfo->pr_dmodel == PR_MODEL_ILP32 ? 4 : 8))

● This is what was meant:
●

trace(copyinstr(*(uintptr_t *)copyin(arg0,
curpsinfo->pr_dmodel == PR_MODEL_ILP32 ? 4 : 8)

Gotcha: Buffer drops
● There is always the possibility of

running out of buffer space
● This is a consequence of instrumenting

arbitrary contexts
● When a record is to be recorded and

there isn't sufficient space available,
the record will be dropped, e.g.:

●

dtrace: 978 drops on CPU 0
dtrace: 11 aggregation drops on CPU 0

Tip: Tuning away buffer drops
● Every buffer in DTrace can be tuned on

a per-consumer basis via -x or
#pragma D option

● Buffer sizes tuned via bufsize and
aggsize

● May use size suffixes (e.g. k, m, g)
● Drops may also be reduced or

eliminated by increasing switchrate
and/or aggrate

Gotcha: Dynamic variable drops
● DTrace has a finite dynamic variable

space for use by thread-local variables
and associative array variables

● When exhausted, subsequent
allocation will induce a dynamic
variable drop, e.g.:

●

dtrace: 103 dynamic variable drops

● These drops are often caused by failure
to zero dead dynamic variables

● Must be eliminated for correct results!

Tip: Tuning away dynamic drops
● If a program correctly zeroes dead

dynamic variables, drops must be
eliminated by tuning

● Size tuned via the dynvarsize option
● In some cases, “dirty” or “rinsing”

dynamic variable drops may be seen:
●

dtrace: 73 dynamic variable drops with non-empty
dirty list

● These drops can be eliminated by
increasing cleanrate

Trick: ftruncate and trunc
● ftruncate truncates standard output

if output has been redirected to a file
● Can be used to build a monitoring

script that updates a file (e.g.,
webpage, RSS feed)

● Use with trunc on an aggregation
with a max(i++) action and a
valueless printa to have “last n”
occurences in a single file

Trick: Tracking object lifetime
● Assign timestamp to an associative

array indexed on memory address upon
return from malloc

● In entry to free:
– Predicate on non-zero associative array element
– Aggregate on stack trace
– quantize current time minus stored time

● Note: eventually, long-lived objects will
consume all dynamic variable space

Trick: Rates over time
● For varying workloads, it can be useful

to observe changes in rates over time
● This can be done using printa and
clear out of a tick probe, but
output will be by time – not by
aggregated tuple

● Instead, aggregate with lquantize of
current time minus start time (from
BEGIN enabling) divided by unit time

Tip: Using system
● Use the system action to execute a

command in response to a probe
● Takes printf-like format string and

arguments:
●

#pragma D option quiet
#pragma D option destructive

io:::start
/args[2]->fi_pathname != “<none>” &&
args[2]->fi_pathname != “<unknown>”/

{
system(“file %s”, args[2]->fi_pathname);

}

Gotcha: Using system
● system is processed at user-level –

there will be a delay between probe
firing and command execution,
bounded by the switchrate

● Be careful; it's easy to accidentally
create a positive feedback loop:

●

dtrace -n 'proc:::exec
{system(“/usr/ccs/bin/size %s”, args[0])}'

● To avoid this, add a predicate to above:
●

/!progenyof($pid)/

Trick: system(“dtrace”)
● In DTrace, actions cannot enable probes
● However, using the system action,

one D script can launch another
● If instrumenting processes, steps can

be taken to eliminate lossiness:
– stop in parent
– Pass the stopped process as an argument to the

child script
– Use system to prun(1) in a BEGIN clause in

the child script

Tip: -c option
● To observe a program from start to

finish, use “-c cmd”
● $target is set to target process ID
● dtrace exits when command exits
●

dtrace -q -c date
-n 'pid$target::malloc:entry{@ = sum(arg0)}'
-n 'END{printa(“allocated %@d bytes\n”, @)}'

Fri Feb 11 09:09:30 PST 2005
allocated 10700 bytes

#

Gotcha: Stripped user stacks
● When using the ustack action,

addresses are translated into symbols
as a postprocessing step

● If the target process has exited, symbol
translation is impossible

● Result is a stripped stack:
●

dtrace -n syscall:::entry'{ustack()}'
CPU ID FUNCTION:NAME
 0 363 resolvepath:entry
 0xfeff34fc
 0xfefe4faf
 0x80474c0

Tip: Avoiding stripped stacks
● With the “-p pid” option, dtrace

attaches to the specified process
● dtrace will hold the target process on

exit, and perform all postprocessing
before allowing the target to continue

● Limitation: you must know a priori
which process you're interested in

Trick: Using stop and ustack
● If you don't know a priori which

processes you're interested in, you can
use a stop/system trick:
– stop in syscall::rexit:entry
– system(“prun %d”, pid);

● Any user stacks processed before
processing the system action will be
printed symbolically

● This only works if the application calls
exit(2) explicitly!

Gotcha: Slow user stacks
● If neither -p or -c is specified, process

handles for strack symbol translation
are maintained in an LRU grab cache

● If more processes are being ustack'd
than handles are cached, user stack
postprocessing can be slowed

● Default size of grab cache is eight
process handles; can be tuned via
pgmax option

Tip: Ring buffering and -c/-p
● Problem: program repeatedly crashes,

but for unknown reasons
● Use ring buffering by setting
bufpolicy to ring

● Ring buffering allows use on long-
running processes

● For example, to capture all functions
called up to the point of failure:

●

dtrace -n 'pid$target:::entry'
-x bufpolicy=ring -c cmd

Gotcha: Deadman
● DTrace protects against inducing too

much load with a deadman that aborts
enablings if the system becomes
unresponsive:

dtrace: processing aborted: Abort due to systemic
unresponsiveness

● Criteria for responsiveness:
– Interrupt can fire once a second
– Consumer can run once every thirty seconds

● On a heavily loaded system, a deadman
timeout may not be due to DTrace!

Tip: Tuning the deadman
● If the deadman is due to residual load,

the deadman may simply be disabled
by enabling destructive actions

● Alternatively, the parameters for the
deadman can be explicitly tuned:
– dtrace_deadman_user is user-level

reponsiveness expectation (in nanoseconds)
– dtrace_deadman_interval is interrupt

responsiveness expectation (in nanoseconds)
– dtrace_deadman_timeout is the permitted

length of unresponsiveness (in nanoseconds)

Trick: Stack filtering
● Often, one is interested in a probe only

if a certain function is on the stack
● DTrace doesn't (yet) have a way to filter

based on stack contents
● You can effect this by using thread-local

variables:
– Set the variable to “1” when entering the

function of interest
– Predicate the probe of interest with the thread-
– Don't forget to clear the thread-local variable!

Trick: Watchpoints via pid
● Problem: you know which data is being

corrupted, but you don't know by
whom

● Potential solution: instrument every
instruction, with stop action and
predicate that data is incorrect value

● Once data becomes corrupt, process
will stop; attach a debugger (or use
gcore(1)) to progress towards the
root-cause...

Trick: Measuring DTrace
● Can exploit two properties of DTrace:
– Clause-local variables retain their values across

multiple enablings of the same probe in the
same program

– The timestamp variable is cached for the
duration of a clause, but not across clauses

● Requires three clauses:
– Assign timestamp to clause-local in 1st clause
– Perform operation to be measured in 2nd clause
– Aggregate on difference between timestamp

and clause-local in 3rd clause

Trick: Iterating over structures
● To meet safety criteria, DTrace doesn't

allow programmer-specified iteration
● If you find yourself wanting iteration,

you probably want to use aggregations
● In some cases, this may not suffice...
● In some of these cases, you may be

able to effect iteration by using a
tick-n probe to increment an
indexing variable...

Gotcha: Unsporting libraries
● Regrettably, on x86 there are compiler

options that cause the compiler to not
store a frame pointer

● This is regrettable because these
libraries become undebuggable: stack
traces are impossible

● Library writers: don't do this!
– gcc: Don't use -fomit-frame-pointer!
– Sun compilers: avoid -xO4; it does this by

default!

Gotcha: Unsporting functions
● Some compilers put jump tables in-line

in program text
● This is a problem because data

intermingled in program text confuses
text processing tools like DTrace

● DTrace always errs on the side of
caution: if it becomes confused, it will
refuse to instrument a function

● Most likely to encounter this on x86
● Solution to this under development...

Gotcha: Unsporting apps
● Some applications have stripped

symbol tables and/or static functions
● Makes using the pid provider arduous
● Can still use the pid provider to

instrument instructions in stripped
functions by using “-” as the probe
function and the address of the
instruction as the name:

●

dtrace -n pid123::-:80704e3
dtrace: description 'pid123::-:80704e3' matched 1
probe

Trick: sizeof and profiling
● sizeof historically works with types

and variables
● In DTrace, sizeof(function) yields

the number of bytes in the function
● When used with profile provider,

allows function profiling:
profile-1234hz
/arg0 >= `clock &&
 arg0 <= `clock + sizeof (`clock)/
{
 ...
}

Trick: Using GCC's preprocessor
● -C option uses /usr/ccs/lib/cpp by

default, a cpp from Medieval Times
● Solaris 10 ships gcc in /usr/sfw/bin so

a modern, ANSI cpp is available with
some limitations (#line nesting broken)

● To use GCC's cpp:
dtrace -C -xcpppath=/usr/sfw/bin/cpp -Xs -s a.d

● Needed when .h uses ANSI-isms like ##
● Also useful for M4 propeller-heads

Gotcha: $target evaluation
● When using the -c option, the child

process is created and stopped, the D
program is compiled with $target set
appropriately, and the child is resumed

● By default, the child process is stopped
immediately before the .init sections
are executed

● If instrumenting the linker or a library,
this may be too late – or too early

Tip: Tuning $target evaluation
● Exact “time” of D program evaluation

can be tuned via the evaltime option
● evaltime option may be set to one of

the following:
– exec: upon return from exec(2) (first instruction)
– preinit: before .init sections run (default)
– postinit: after .init sections run
– main: before first instruction of main() function

Gotcha: Data model mismatch
● By default, D compiler uses the data

model of the kernel (ILP32 or LP64)
● This may cause problems if including

header files in instrumenting 32-bit
applications on a 64-bit kernel

● Alternate data model can be selected
using -32 or -64 options

● If alternate model is specified, kernel
instrumentation won't be allowed

Gotcha: Enabled probe effect
● When enabled, DTrace (obviously) has a

non-zero probe effect
● In general, this effect is sufficiently

small as to not distort conclusions...
● However, if the time spent in DTrace

overwhelms time spent in underlying
work, time data will be distorted!

● For example, enabling both entry and
return probes in a short, hot function

Tip: Sample with profile
● When honing in on CPU time, use the
profile provider to switch to a
sample-based methodology

● Running with high interrupt rates
and/or for long periods allows for much
more accurate inference of cycle time

● Aggregations allow for easy profiling:
– Aggregate on sampled PC (arg0 or arg1)
– Use “%a” to format kernel addresses
– Use “%A” (and -p/-c) for user-level addresses

Trick: Higher-level profiling
● In interrupt-driven probes, self->

denotes variables in the interrupt
thread, not in the underlying thread

● Can't use interrupt-driven probes and
predicate based on thread-local
variables in the underlying thread

● Do this using an associative array keyed
on curlwpsinfo->pr_addr

● Can use this to profile based on higher-
level units (e.g. transaction ID)

Gotcha: vtimestamp
● vtimestamp represents the number

of nanoseconds that the current thread
has spent on CPU since some arbitrary
time in the past

● vtimestamp factors out time spent in
DTrace – the explicit probe effect

● There is no way to factor out the
implicit probe effect: cache effects, TLB
effects, etc. due to DTrace

● Use the absolute numbers carefully!

Gotcha: Fixed-length strings
● D string type behaves like this C type:

typedef struct {
● char s[n]; /* -xstrsize=n, default=256 */

} string;

● Implications:
– You always allocate the maximum size
– You always copy by value, not by reference
– String assignment silently truncates at size limit

● Using strings as an array key or in an
aggregation tuple is suboptimal if other
types of data are available

Tip: Demo DTrace scripts
● /usr/demo/dtrace contains all of

the example scripts from the
documentation

● index.html in that directory has a
link to every script, along with the
chapter that contains it

● DTrace demo directory is installed by
default on all Solaris 10 systems

Team DTrace
Bryan Cantrill
Mike Shapiro
Adam Leventhal
dtrace-core@kiowa.eng.sun.com

