Split-Ordered Lists - Lock-free Resizable Hash Tables

Ori Shalev

Tel Aviv University

and

Nir Shavit

Tel-Aviv University and Sun Microsystems Laboratories

We present the first lock-free implementation of an extensible hash table running on current
architectures. Our algorithm provides concurrent insert, delete, and search operations with an
expected O(1) cost. It consists of very simple code, easily implementable using only load, store,
and compare-and-swap operations. The new mathematical structure at the core of our algorithm is
recursive split-ordering, a way of ordering elements in a linked list so that they can be repeatedly
“split” using a single compare-and-swap operation. Though lock-free algorithms are expected
to work best in multiprogrammed environments, empirical tests we conducted on a large shared
memory multiprocessor show that even in non-multiprogrammed environments, the new algorithm
performs as well as the most efficient known lock-based resizable hash-table algorithm, and in high
load cases it significantly outperforms it.

OContact author is Nir Shavit: shanir@cs.tau.ac.il. This work was performed while Nir
Shavit was at Tel-Aviv University supported by a Collaborative Research Grant from Sun Mi-
crosystems. A preliminary version of this paper appeared in the Proceedings of the Twenty-second
Annual ACM Symposium on Principles of Distributed Computing, pages 102—111, Boston, Mas-
sachusetts (2003).

1. INTRODUCTION

Hash tables, and specifically extensible hash tables, serve as a key building block of
many high performance systems. A typical extensible hash table is a continuously
resized array of buckets, each holding an expected constant number of elements, and
thus requiring an expected constant time for insert, delete and search operations
[2]. The cost of resizing, the redistribution of items between old and new buckets,
is amortized over all table operations, thus keeping the average complexity of any
one operation constant. In this paper, “resizing” means extending the table. It has
been shown elsewhere [13] that as a practical matter, hash tables need only increase
in size.

We are concerned in implementing the hash table data structure on multiproces-
sor machines, where efficient synchronization of concurrent access to data structures
is essential. Lock-free algorithms have been proposed in the past as an appealing
alternative to lock-based schemes, as they utilize strong primitives such as CAS
(compare-and-swap) to achieve fine grained synchronization. However, lock-free al-
gorithms typicaly require greater design efforts, being conceptually more complex.

This paper presents the first lock-free extensible hash table that works on current
architectures, that is, uses only loads, stores and CAS (or LL/SC [23]) operations.
In a manner similar to sequential linear hashing [17] and fitting real-time applica-
tions, resizing costs are split incrementally to achieve expected O(1) operations per
insert, delete and search. It is simple to implement, leading us to hope it will be
of interest to practitioners as well as researchers. As we explain shortly, it is based
on a novel recursively split-ordered list structure. Our empirical testing shows that
in a concurrent environment, even without multiprogramming, our lock-free algo-
rithm performs as well as the most efficient known lock-based resizable hash-table
algorithm due to Lea [15], and in high load cases it significantly outperforms it.

1.1 Background

There are several lock-based concurrent hash table implementations in the litera-
ture. In the early eighties, Ellis proposed an extensible concurrent hash table for
distributed data based on a two level locking scheme, first locking a table direc-
tory and then the individual buckets [3; 4]. Michael [20] has recently shown that
on shared memory multiprocessors, simple algorithms using a reader-writer lock
[19] per bucket have reasonable performance for non-resizable tables. However, to
resize one would have to hold the locks on all buckets simultaneously, leading to
major overheads. A recent algorithm by Lea [15], proposed for java.util.concurrent,
the Java™ Concurrency Package, is probably the most efficient known extensible
hash algorithm. It is based on a more sophisticated locking scheme that involves
a small number of high level locks rather than a lock per bucket, and allows con-
current searches while resizing the table, but not concurrent inserts or deletes. In
general, lock-based hash-table algorithms are expected to suffer from the typical
drawbacks of blocking synchronization: deadlocks, long delays, and priority inver-
sions [6]. These drawbacks become more acute when performing a resize operation,
an elaborate “global” process of redistributing the elements in all the hash table’s
buckets among new added buckets. Designing a lock-free resizable hash table is
thus a matter of both practical and theoretical interest.

Michael, in [20], builds on the work of Harris [8] to provide an effective compare-
and-swap (CAS) based lock-free linked-list algorithm (which we will elaborate upon
in the following section). He then uses this algorithm to design a lock-free hash

1

2 . Shalev and Shavit

structure: a fixed size array of hash buckets with lock-free insertion and deletion
into each. He presents empirical evidence that shows a significant advantage of this
hash structure over lock-based implementations in multiprogrammed environments.
However, this structure is not resizable: if the number of elements grows beyond the
predetermined size, the time complexity of operations will no longer be constant.

As part of his “two-handed emulation” approach, Greenwald [7] provides a lock-
free hash table that can be resized based on a double-compare-and-swap (DCAS)
operation. However, DCAS, an operation that performs a CAS atomically on two
non-adjacent memory locations, is not available on current architectures. Moreover,
Greenwald’s hash table is resizable, but is not a true resizable hash table since the
average number of steps per operation is not constant: it involves an elaborate
“checking” scheme in which every process independently traverses a linear number
of buckets to guarantee the lock-free progress property.

Independently of our work, Gao et. al [5] have developed a resizable and “almost
wait-free” hashing algorithm based on an open addressing hashing scheme and using
only CAS operations. Their algorithm maintains the dynamic size by periodically
switching to a global resize state in which multiple processes collectively perform
the migration of items to new buckets. They suggest to perform migration using
a write-all algorithm [12]. Theoretically, each operation in their algorithm requires
more than constant time on average because of the complexity of performing the
write-all [12], and so it is not a true resizable hash-table. However, the non-constant
factor is small, and the performance of their algorithm in practice will depend on
the yet-untested real-world performance of algorithms for the write-all problem [12;
14].

1.2 The Lock-free Resizing Problem

What is it that makes lock-free resizable hashing hard to achieve? The core prob-
lem is that even if individual buckets are lock-free, when resizing the table, several
items from each of the “old” buckets must be relocated to a bucket among “new”
ones. However, in a single CAS operation, it seems impossible to atomically move
even a single item, as this requires one to remove the item from one linked list and
insert it in another. If this move is not done atomically, elements might be lost,
or to prevent loss, will have to be replicated, introducing the overhead of “replica-
tion management”. The lock-free techniques for providing the broader atomicity
required to overcome these difficulties imply that processes will have to “help” oth-
ers complete their operations. Unfortunately, “helping” requires processes to store
state and repeatedly monitor other processes’ progress, leading to redundancies
and overheads that are unacceptable if one wants to maintain the constant time
performance of hashing algorithms.

1.3 Split-Ordered Lists

To implement our algorithm, we thus had to overcome the difficulty of atomically
moving items from old to new buckets when resizing. To do so, we decided to,
metaphorically speaking, flip the linear hashing algorithm on its head: our algo-
rithm will not move the items among the buckets, rather, it will move the buckets
among the items. More specifically, as shown in Figure 1, the algorithm keeps all
the items in one lock-free linked list, and gradually assigns the bucket pointers to
the places in the list where a sublist of “correct” items can be found. A bucket is
initialized upon first access by assigning it to a new “dummy” node (dashed con-
tour) in the list, preceding all items that should be in that bucket. A newly created

Split-Ordered Lists . 3

00000000 01000001 10010001 11000000
00010001 10000000 10110001 11100001

f;LTi Lo D@D s I D

wWN [~ |O

Fig. 1. A Split-Ordered Hash Table

bucket splits an older bucket’s chain, reducing the access cost to its items. Our
table uses a modulo 2¢ hash (there are known techniques for “pre-hashing” before
a modulo 2% hash to overcome possible binary correlations among values [15]). The
table starts at size 2 and repeatedly doubles in size.

Unlike moving an item, the operation of directing a bucket pointer can be done
in a single CAS operation, and since items are not moved, they are never “lost”.
However, to make this approach work, one must be able to keep the items in the
list sorted in such a way that any bucket’s sublist can be “split” by directing a new
bucket pointer within it. This operation must be recursively repeatable, as every
split bucket may be split again and again as the hash table grows. To achieve this
goal we introduced recursive split-ordering, a new ordering on keys that keeps items
in a given bucket adjacent in the list throughout the repeated splitting process.

Magically, yet perhaps not surprisingly, recursive split-ordering is achieved by
simple binary reversal: reversing the bits of the hash key so that the new key’s
most significant bits (MSB) are those that were originally its least significant!. In
Figure 1 the split-order key values are written above the nodes. The dashed-line
nodes are the special dummy nodes corresponding to buckets with original keys
that are 0,1,2, and 3 modulo 4. The split-order keys of regular (non-dashed) nodes
are exactly the bit-reverse image of the original keys after turning on their MSB (in
the example we used 8-bit words). For example, items 9 and 13 are in the “1 mod
4” bucket, which can be recursively split in two by inserting a new node between
them.

To insert (respectively delete or search for) an item in the hash table, hash its
key to the appropriate bucket using recursive split-ordering, follow the pointer to
the appropriate location in the sorted items list, and traverse the list until the key’s
proper location in the split-ordering (respectively until the key or a key indicating
the item is not in the list is found). As we show, because of the combinatorial
structure induced by the split-ordering, this will require traversal of no more than
an expected constant number of items. A detailed proof appears in Section 3.

We note that our design is modular: to implement the ordered items list, one
can use one of several non-blocking list-based set algorithms in the literature. Po-
tential candidates are the lock-free algorithms of Harris [8] or Michael [20], or the
obstruction-free algorithms of Valois?[24] or Luchangco et. al [18]. We chose to
base our presentation on the algorithm of Michael [20], an extension of the Harris
algorithm [8] that fits well with memory management schemes [9; 21] and performs

1As detailed in the next section, some additional bit-wise modifications must be made to make
things work properly.
2Valois’ algorithm was labeled “lock-free” by mistake. It is livelock-prone.

4 . Shalev and Shavit

well in practice.

1.4 Complexity

When analyzing the complexity of concurrent hashing schemes, there are two adver-
saries to consider: one controlling the distribution of item keys, the other controlling
the scheduling of thread operations.

As we show in Section 3, if we make the standard assumption of a hash function
with a uniform distribution, then under any scheduling adversary our new algorithm
provides a lock-free extensible hash table with average O(1) cost per operation. The
complexity improves to expected constant time if we assume a constant extendibility
rate, meaning that the table is never extended (doubled in size) a non-constant
number of times while a thread is delayed by the scheduler. Constant expected
time is an improvement over average expected time since it means that given a
good hash function, the adversary cannot cause any single operation to take more
than a constant number of steps.

One feature in which the new algorithm is similar in flavor to sequential linear
hashing algorithms [17] (in contrast to all the above algorithms [5; 7; 15]) is that
resizing is done incrementally and only bad distributions (ones that have very low
probability given a uniform hash function) or extreme scheduling scenarios can
cause the cost of an operation to exceed constant time. This makes the algorithm
better suited for real-time applications.

1.5 Performance

We tested our new split-ordered list hash algorithm versus the most-efficient known
lock-based implementation due to Lea [15]. We created an optimized C++ based
version of the algorithm and compared it to split-ordered lists using a collection of
tests executed on a 72-node shared memory machine. Though lock-free algorithms
are expected to benefit systems especially in multiprogrammed environments, our
experiments, presented in Section 4, show that split-ordered lists perform as well as
Lea’s algorithm even in the less favorable non-multiprogrammed test cases. Under
high loads they significantly outperform Lea’s algorithm, exhibiting up to four
times higher throughput. They also exhibit greater robustness, for example, in
experiments where the hash function is biased to create non-uniform distributions.

The remainder of this paper is organized as follows. In the next section we
describe the background and the new algorithm in depth. In Section 3 we bring the
full correctness proof. In Section 4 the preliminary empirical results are presented
and discussed.

2. THE ALGORITHM IN DETAIL

Our hash table data structure consists of two interconnected sub-structures (see
Figure 1): a linked list of nodes containing the stored items and keys, and an
expanding array of pointers into the list. The array entries are the logical “buckets”
typical of most hash tables. Any item in the hash table can be reached by traversing
down the list from its head, while the bucket pointers provide shortcuts into the
list in order to minimize the search costs per item.

The main difficulty in maintaining this structure is in managing the continuous
coverage of the full length of the list by bucket pointers as the number of items
in the list grows. The distribution of bucket pointers among the list items must
remain dense enough to allow constant time access to any item. Therefore, new
buckets need to be created and assigned to sparsely covered regions in the list.

Split-Ordered Lists . 5

The bucket array initially has size 2, and is doubled every time the number of
items in the table exceeds size - L, where L is a small integer denoting the load
factor, the maximum number of items one would expect to find in each logical
bucket of the hash table. The initial state of all buckets is uninitialized, except
for the bucket of index 0, which points to an empty list, and is effectively the
head pointer of the main list structure. Each bucket goes through an initialization
procedure when first accessed, after which it points to some node in the list.

When an item of key k is inserted, deleted, or searched for in the table, a
hash function modulo the table size is used, i.e. the bucket chosen for item k
is k mod size. The table size is always equal to some power 2%, i > 1, so that the
bucket index is exactly the integer represented by the key’s i least significant bits
(LSBs). The hash function’s dependency on the table size makes it necessary to
take special care as this size changes: an item that was inserted to the hash table’s
list before the resize must be accessible, after the resize, from both the buckets it
already belonged to and from the new bucket it will logically belong to given the
new hash function.

2.1 Recursive split-ordering

The combination of a modulo-size hash function and a 2’ table size is not new. It
was the basis of the well known sequential resizable Linear Hashing scheme proposed
by Litwin [17], was the basis of the two-level locking hash scheme of Ellis [3], and
was recently used by Lea in his concurrent resizable hashing scheme [15]. The
novelty here is that we use it as a basis for a combinatorial structure that allows
us to repeatedly “split” all the items among the buckets without actually changing
their position in the main list.

When the table size is 27, a logical table bucket b contains items whose keys k
maintain k mod 2 = b. When the size becomes 2/*!, the items of this bucket
are split into two buckets: some remain in the bucket b, and others, for which
k mod 2iT1 = b4 2!, migrate to the bucket b+ 2°. If these two groups of items
were to be positioned one after the other in the list, splitting the bucket b would
be achieved by simply pointing bucket b + 2° after the first group of items and
before the second. Such a manipulation would keep the items of the second group
accessible from bucket b as desired.

Looking at their keys, the items in the two groups are differentiated by the i’th
binary digit (counting from right, starting at 0) of their items’ key: those with 0
belong to the first group, and those with 1 — to the second. The next table doubling
will cause each of these groups to split again into two groups differentiated by bit
i+ 1, and so on. This process induces recursive split-ordering, a complete order on
keys, capturing how they will be repeatedly split among logical buckets. Given a
key, its order is completely defined by its bit-reversed value.

Let us now return to the main picture: an exponentially growing array of (pos-
sibly uninitialized) buckets maps to a linked list ordered by the split-order values
of inserted items’ keys, values that are derived by reversing the bits of the orig-
inal keys. Buckets are initialized when they are accessed for the first time. List
operations such as insert, delete or find are implemented via a linearizable lock-
free linked list algorithm. However, having additional references to nodes from the
bucket array introduces a new difficulty: it is non-trivial to manage deletion of
nodes pointed to by bucket pointers. Our solution is to add an auxiliary dummy
node per bucket, preceding the first item of the bucket, and to have the bucket
pointer point to this dummy node. The dummy nodes are not deleted, which helps

6 . Shalev and Shavit

so_key_t so_regularkey(key_t key) {
return REVERSE(key OR 0x8000...0000);
}

so_key_t so_dummykey(key_t key) {
return REVERSE(key)
}

Fig. 2. The Split-Ordering Transformation

us keep things simple.

In more detail, when the table size is 2/t the first time bucket b+ 27 is accessed,
a dummy node is created, holding the key b+ 2°. This node is inserted to the list
via bucket b, the parent bucket of b + 2°. Under split-ordering, b + 2¢ precedes all
keys of bucket b + 27, since those keys must end with ¢ + 1 bits forming the value
b+ 2'. This value also succeeds all the keys of bucket b that do not belong to b+ 2%:
they have identical ¢ LSBs, but their bit numbered ¢ is “0”. Therefore, the new
dummy node is positioned in the exact location in the list that separates the items
that belong to the new bucket from other items of bucket b. In order to distinguish
dummy keys from regular ones we set the most significant bit of regular keys to
“1”, and leave the dummy keys with “0” at the MSB. Figure 2 defines the complete
split-ordering transformation?.

Figure 3 describes a bucket initialization caused by an insertion of a new key to
the set. The insertion of key 10 is invoked when the table size is 4 and buckets 0,1
and 3 are already initialized.

2.2 The Continuously Growing Table

We can now complete the presentation of our algorithm. We use the lock-free
ordered linked-list algorithm of Michael [20] to maintain the main linked list with
items ordered based on the split-ordered keys. This algorithm is an improved
variant, including improved memory management, of an algorithm by Harris [8].
Our presentation will not discuss the various memory reclamation options of such
linked-list schemes, and we refer the interested reader to [8; 9; 20; 21]. To keep
our presentation self contained, we provide in Appendix A the code of Michael’s
linked list algorithm. This implementation is linearizable, implying that each of
these operations can be viewed as happening atomically at some point within its
execution interval.

Our algorithm decides to double table size based on the average bucket load.
This load is determined by maintaining a shared counter that tracks the number
of items in the table. The final detail we need to deal with is how the array of
buckets is repeatedly extended. To simplify the presentation, we keep the table
buckets in one continuous memory segment as depicted in Figure 4. This approach
is somewhat impractical, since table doubling requires one process to reallocate a
very large memory segment while other processes may be waiting. The practical
version of this algorithm, which we used for performance testing, actually employs
an additional level of indirection for accessing buckets: a main array points to
segments of buckets, each of which is a bucket array. A segment is allocated only

3An efficient implementation of the REVERSE function utilizes a 28 or 216 lookup table holding the
bit-reversed values of [0..28 — 1] or [0..216 — 1] respectively.

Split-Ordered Lists . 7

00010001 10010001 11000000
00000000 10000000 1 11100001

0110001
Co b D—0) OB I D

(a) Buckets 0,1 and 3 are initialized. Bucket 2 is uninitialized

00010001 10010001 11000000
00000000 10000000 10110001 11100001

@er : /fl SO D@D A D

01000000

(b) Insert(10) is invoked, requiring bucket 2’s initialization.
A new dummy node is inserted, with split—order key of 2.

00010001 10010001 11000000

00000000 01000000 10000000 1 1 11100001

011000
Co L8 D2 Tt B DHs D03 [D

(c) Bucket 2 is assigned to the new dummy node

00010001 01010001 10010001 11000000
00000000 01000000 10000000 10110001 11100001

oL D2 Lo D01 IO DB D3 TE D

(d) The split—order regular key 10 is inserted to bucket 2

Fig. 3. Insertion into the split-ordered list

on the first access to some bucket within it. The code for this dynamic allocation
scheme appears in Section 2.4.

Finally, the reader may have noticed that based on the approach described above,
when an uninitialized bucket is accessed in a table of size size, one might need to
recursively initialize (i.e. split) all O(log size) of its parent buckets to allow insertion
of a new item. Though the total complexity in such a case is logarithmic, not
constant, our algorithm still works. This is because given a uniform distribution
of items, the chances of the above scenario happening are low, and in fact, the
expected length of such a bad sequence of parent initializations is constant.

8 . Shalev and Shavit

struct MarkPtrType {
<mark, next>: <bool, NodeType *>
I

struct NodeType {

so_key_t key;

MarkPtrType <mark, next>;
};

MarkPtrTypex T[1; // buckets
unsigned int count; // total item count
unsigned int size; // current table size

/* thread-private variables */
MarkPtrType *prev;

MarkPtrType <pmark, cur>;
MarkPtrType <cmark, next>;

Fig. 4. Types and Structures

2.3 The Code

We now provide the code of our algorithm. Figure 4 specifies some type definitions
and global variables. The accessible shared data structures are the array of buckets
T, a variable size storing the current table size, and a counter count denoting the
number of regular keys currently inside the structure. The counter is initially
0, and the buckets are set as uninitialized, except the first one, which points to a
node of key 0, whose next pointer is set to NULL. Three private variables serve each
one of the running threads: prev, cur and next. Those variables have the same
functionality as in Michael’s algorithm [20], as they are set by list_find to point
at the nodes around the searched key, and subsequently used by the same thread
inside other functions. In Figure 5 we show the implementation of the insert,
search and delete operations. The fetch-and-inc operation is implemented in a
lock-free manner via a simple repeated loop of CAS operations, which as we show,
given the low access rates, has a negligible performance overhead.

The function insert creates a new node and assigns it a split-order key. The
bucket is computed as key mod size. If the bucket has not been initialized yet,
initialize bucket is called. Then, the node is inserted to the bucket by using
list_insert. If the insertion is successful, one can proceed to increment the item
count using a fetch-and-inc operation (fetch-and-inc can be implemented in a
lock-free manner [22]). A check is then performed to test whether the load factor
has been exceeded. If so, the table size is doubled, causing a new segment of
uninitialized buckets to be appended.

The function search ensures that the appropriate bucket is initialized, and then
calls 1ist_find on key after marking it as regular and inverting its bits. 1ist_find
ceases to traverse the chain when it encounters a node containing a higher or equal
(split-ordered) key. Notice that this node may also be a dummy node marking the
beginning of a different bucket.

The function delete also makes sure that the key’s bucket is initialized. Then
it calls 1ist_delete to delete key from its bucket after it is translated to its split-
order value. If the deletion succeeds, an atomic decrement of the total item count
is performed.

Split-Ordered Lists . 9

The role of initialize bucket is to direct the pointer in the array cell of the
index bucket. The value assigned is the address of a new dummy node containing
the dummy key bucket. First, the dummy node is created and inserted to an
existing bucket, parent. Then the cell is assigned the node’s address. If the parent
bucket is not initialized, the function is called recursively with parent. In order to
control the recursion we maintain the invariant that parent< bucket. It is also
wise to choose parent to be as close as possible to bucket in the list, but still
preceding it. Formally, the following constraints define the algorithm’s choice of

int insert(KeyType key) {

I1: node = new_node(so_regularkey(key));
I2: bucket = key % size;

I3: if (T[bucket] == UNINITIALIZED)

14: initialize_bucket (bucket);
I5: if ('list_insert(&(T[bucket]), node)) {
16: delete_node(node) ;
I7: return 0;
}

I8: «csize = size;
I9: if (fetch-and-inc(&count) / csize > MAX_LOAD)

I10: CAS(&size, csize, 2 * csize);
I11: return 1;
}

int search(KeyType key) {

S1: bucket = key % size;

S2: if (T[bucket] == UNINITIALIZED)

S3: initialize_bucket (bucket) ;

S4: return list_find(&(T[bucket]),
so_regularkey(key));

int delete(KeyType key) {

D1: bucket = key % size;

D2: if (T[bucket] == UNINITIALIZED)

D3: initialize_bucket (bucket);

D4: if ('list_delete(&(T[bucket]),
so_regularkey(key)))

D5: return O;

D6: fetch-and-dec(&count);

D7: return 1;

}

void initialize_bucket(uint bucket) {

Bl: parent = GET_PARENT (bucket);

B2: if (T[parent] == UNINITIALIZED)

B3: initialize_bucket (parent) ;

B4: dummy = new node(so_dummykey (bucket)) ;
B5: if (!list_insert(&(T[parent]), dummy)) {

B6: delete dummy;
B7: dummy = cur;
}
B8: CAS(&(T[bucket]), UNINITIALIZED, dummy);
}

Fig. 5. Our split-order based hashing algorithm

10 . Shalev and Shavit

parent uniquely (the split-order is denoted by <):

Vk # parent, k < bucket = parent > k
parent < bucket
parent < bucket

This value is achieved by unsetting bucket’s most significant turned-on bit. If the
exact dummy key already exists in the list, it may be the case that some other
process tried to initialize the same bucket, but for some reason has not completed
the second step. In this case, list_insert will fail, but the private variable cur
will point to the node holding the dummy key. The newly created dummy node
can be freed and the value of cur used.

As we will show in the proof, traversing the list through the appropriate bucket
and dummy node will guarantee the node matching a given key will be found, or
declared not-found in an expected constant number of steps.

2.4 Dynamic Sized Array

Our presentation so far simplified the algorithm by keeping the buckets in one
continuous memory segment. This approach is somewhat impractical, since table
doubling requires one process to reallocate a very large memory segment while
other processes may be waiting. In practice, we avoid this problem by introducing
an additional level of indirection for accessing buckets: a “main” array points to
segments of buckets, each of which is a bucket array. A segment is allocated only
on the first access to some bucket within it.

Applying this variation is done by defining T as an array of bucket segments, and
accessing the table by calls to get_bucket and set_bucket as defined in Figure 6.

typedef MarkPtrType [SEGMENT_SIZE] segment_t;
segment_t T[];

MarkPtrType * get_bucket(T, bucket) {
segment = bucket / SEGMENT_SIZE;
if (T[segment] == NULL)
return UNINITIALIZED;
return &T[segment] [bucket) SEGMENT_SIZE];
}

void set_bucket(T, bucket, head) {
segment = bucket / SEGMENT_SIZE;
if (T[segment] == NULL) {
new_segment = new segment_t;
new_segment [0..SEGMENT_SIZE-1] =
UNINITIALIZED;
if (!CAS(&T[segment], NULL, new_segment))
free(new_segment) ;
}
T[segment] [bucket % SEGMENT_SIZE] = head;

Fig. 6. Dynamic Sized Array

Split-Ordered Lists . 11

3. CORRECTNESS PROOF

This section contains a formal proof that our algorithm has the desired properties
of a resizable hash table. Our model of multiprocessor computation follows [11],
though for brevity, we will use operational style arguments.

Our linearizable hash table data structure implements an abstract set object in
a lock-free way so that all operations take an expected constant number of steps
on average. Our correctness proof will thus have to prove that our concurrent
implementation is linearizable to a sequential set specification, that it is lock-free,
and that given a “good” class of hash functions, all operations take an expected
constant number of steps on average.

3.1 Correct Set Semantics

We begin by proving that the algorithm complies with the abstract set semantics.
We use the sequential specification of a “dynamic set with dictionary operations”
as defined in [2], including the three functions insert, delete and search. The insert
operation returns 1 if the key was successfully inserted to the set, and 0 if that key
already existed in the table. The search operation returns 1 if the key is in the set,
0 otherwise. The delete operation returns 1 if the key was successfully deleted from
the set and 0 if it was not found.

Given a sequential specification of a set, our proof will provide specific lineariza-
tion points mapping operations in our concurrent implementation to sequential
operations so that the histories meet the specification.

Let list refer to the non-blocking ordered linked list of all items, pointed to by the
buckets of the hash table. Execution histories of our algorithm include sequences
of list_find, list_insert, and list_delete operations on this list. Though we
argue about these as operations on the shared list and not as abstract set operations,
our proof will treat these operations as atomic operations. This is a valid approach
since they are linearizable by definition of the list-based set algorithms [8; 20]. We
do however need to make additional claims about properties of operations on the
list, since we will apply them to various “midpoints” pointed to by buckets, and
not only to the start of the list as in the original use of these algorithms of [8; 20].
To this end we present the following invariant which refers to the structure of the
list in any state in the execution history of our algorithm.

INVARIANT 1. In any state:

—all keys in the list starting at T[0] are sorted in an ascending order.

—for every 0 < i < size if T[1i] is initialized, then the node pointed by T[i]
holds the key so_dummykey[i] and is reachable from T[0] by traversing the list
following the nodes’ next pointers.

ProoOF. Initially, the invariant holds. We will show that every operation that
modifies the data structure preserves the invariant. Lines 19 and D6 manipulate the
shared counter, but have no impact on the invariant. Line I10 doubles size, which
adds news buckets, but since size only grows, those new buckets are uninitialized,
and the invariant is unaffected.

Assuming that the invariant is true just before line I5, we will show that it is
preserved. If list_insert fails, the shared state has not changed. Otherwise,
we use the induction assumption that T[bucket] points to a node holding the
key so_dummykey(bucket), and that node is in the list beginning at T[0]. The
procedure 1ist_insert inserts node to the list T[bucket]. This trivially preserves

12 . Shalev and Shavit

the second condition of the invariant for the bucket. The new node’s key is the
bit reverse of key OR 0x800...0. The array index bucket has the same log size
less significant bits as key, and all of its remaining bits are 0. Therefore, the
new node’s key is ordered after the first node of T[bucket], whose key is the
bit reverse of bucket. The first part is also preserved, that is, the list reachable
from T[0] remains sorted since all keys before T[bucket] are by the inductive
assumption ordered and have lower keys than so_dummykey(bucket) and so are
properly positioned before the new node, and all other keys are positioned properly
by the inductive assumption and the correctness of the list_insert operation,
since they are a part of the list pointed to by T [bucket].

The 1list_delete operation of line D4 only deletes a key, and thus cannot affect
the order. The deleted node cannot be the first node of T[bucket], since the least
significant bit of its key is 0 and the deleted key’s least significant bit is 1.

The function list_insert in line B5 inserts a node with key so_dummykey (bucket)
to the sublist T [parent], starting with a node holding so_dummykey (parent). The
key parent is defined by turning off the index bucket’s most significant “1” bit, so
the insertion is not before the first node of the sublist starting at T [parent], and
as in the above proof for the case of 15, the invariant is preserved.

Finally, the CAS at B8 sets T [bucket] to either the dummy node created at B4,
or the one assigned at B7. In the first case, since a dummy node created in line B4
is inserted, the second condition of the invariant follows immediately from the cor-
rectness of the 1ist_insert operation. The first condition follows since the dummy
node is inserted in order after its parent node which is necessarily ordered before
it. In the second case, list_insert failed because the key so_dummykey(bucket)
was in the list and cur was by the definition of list_insert set to the node holding
that key, so both parts of the invariant follow. [

We now define the set H of keys whose items are in the hash table in any given
state.

Definition 1. For any pointer p, let S(p) be the set of keys in the sorted linked
list beginning with the pointer p. Let the hash table set

H = {k | so_regularkey(k) € S(T[0])}

The set H defines the abstract state of the table. For each one of the hash table
operations, we will now show that one can pick a linearization point within its
execution interval, so that at this point it has modified the abstract state, that is,
the set H, according to the specified operation’s semantics. Specifically, we will
choose the following linearization points:

—the insert operation is linearized in line I5, at the 1list_insert operation,
—the search operation is linearized in line S4, at the 1ist_find operation, and
—the delete operation is linearized in line D4, at the 1ist_delete operation.

We start with the following helpful lemma.

LEMMA 1. In lines 15, S4, and D4, T[bucket] is already initialized, and at B5
T[parent] is already initialized.

PRroOF. All of the lines above follow a validation that T [bucket] is initialized. If
T [bucket] is not initialized, initialize _bucket is called, and initialize bucket
must execute line B8 before it returns. In line B8, if the bucket is uninitialized,
the CAS succeeds and the bucket initialization is executed. O

Split-Ordered Lists . 13

Note that in the proof above we were not interested in whether the initialization
sequence (where initializing a bucket causes initialization of the parent) actually
terminates, but rather that if it did terminate then all parents of a bucket were
initialized.

LEMMA 2. If key is in H in line I5, then insert fails and if it is not, insert
succeeds and key joins H.

PRrOOF. If keyisin H, so_regularkey(key) € S(T[0]). According to Lemma 1,
T [bucket] is initialized, and using Invariant 1 we conclude that the node pointed
by T[bucket] has the key so_dummykey(bucket) and it is a part of the list. The
list is sorted, and

so_dummykey (bucket) = REVERSE (bucket) =
REVERSE (key mod size) < REVERSE (key OR 0x800..0) = (1)
so_regularkey (key).

Thus, the searched key is in the sublist, S(T[bucket]). The list_insert at I5
will fail and so will insert. If key is not in H, it is also not in S(T [bucket]), and
list_insert inserts so_regularkey(key) in the bucket’s sublist. From that state
on, so_regularkey € S(T[0]), i.e. key isin H. O

LEMMA 3. If key is in H at line S4, the search succeeds, and otherwise the
search fails.

ProoF. If when line S4 is executed key is in H, then so_regularkey(key)
is in S(T[0]). T[bucket] is assigned to a node in that list, holding the key
so_dummykey (bucket). Using Equation 1, we conclude that the searched key is
in S(T[bucket]), so list_find succeeds an so does search. If in line S4 key is not
in H, it cannot be in S(T[bucket]), so 1list_find fails. [

LEMMA 4. Ifkey is in H in line D}, delete succeeds and removes key from H,
and otherwise delete fails.

PROOF. If key is in H, then so_regularkey(key) is in S(T[0]). T[bucket] is
assigned to a node inside that list, and this node is holding the key so_dummykey (bucket).
Using Equation 1, we conclude that the searched key is in S(T[bucket]), so
list_delete removes it. If key is not in H, it cannot be in S(T[bucket]), so
list_delete fails. O

From Lemma 2, Lemma 3, and Lemma 4 it follows that:

THEOREM 1. The split-ordered list algorithm of Figure 5 is a linearizable imple-
mentation of a set object.

3.2 Lock Freedom

Our algorithm uses loads and stores together with implementations of a list-based
set and a shared counter as primitive objects/operations. As we will show, in terms
of these primitive operations the algorithm’s implementation is wait-free, that is,
each thread always completes in a finite number of operations. This implies that its
overall progress condition in terms of primitive machine operations will be exactly
that of the underlaying implementation of these objects. Since in this presentation
we used use as building blocks the lock-free list-based sets of [8; 20] and a lock-
free shared counter, our implementation will also be lock-free. As noted in the

14 . Shalev and Shavit

introduction, in some cases there are advantages in using the obstruction free list-
based set algorithm of [18]. If [18] is used together with a lock-free shared counter,
our hash table will be obstruction free [10].

THEOREM 2. The split-ordered list algorithm of Figure 5 is a wait-free implemen-
tation of a set object in terms of load, store, fetch-and-inc, fetch-and-dec,
list_find, list_insert and list_delete operations.

PRrROOF. The functions insert, search, delete and initialize bucket all take
a finite number of steps, each of which is a machine level load or store oper-
ation or an operation on the list based set object or the shared counter. The
initialize bucket procedure is the only one with a recursive call. However,
the recursion of initialize_bucket is limited, since each step is executed on the
parent of a bucket, which satisfies parent < bucket. Since bucket 0 is initialized
from the start, the recursion is finite, and the implementation is wait-free. O

The lock-freedom property means that a thread executing the hash table opera-
tion completes in a finite number of steps unless other threads are infinitely making
progress. Thus, it is a weaker requirement than wait-freedom, and by combining
implementations the following is a corollary of Theorem 2:

COROLLARY 1. The split-ordered list algorithm of Figure 5 with lock-free imple-
mentations of list _find, list_insert, list_delete, fetch-and-inc, fetch-and-dec
operations is lock-free.

COROLLARY 2. The split-ordered list algorithm of Figure 5 with obstruction-free
implementations of fetch-and-inc, fetch-and-dec, list_find, list_insert and
list_delete operations is obstruction-free.

The fetch-and-inc and fetch-and-dec operations have known lock-free imple-
mentations [22].

3.3 Complexity

The most important property of a hash table is its expected constant time perfor-
mance. When analyzing the complexity of hashing in a concurrent environment
there are two adversaries one needs to consider: one controlling the distribution of
hash values of keys by the hash function (i.e. how good is the hash), the other con-
trolling the scheduling of thread operations. We will follow the standard practice
of modelling the hash function as a uniform distribution over keys [2].

We will use the term expected time to mean the expected number of machine
instructions in the worst case scheduling scenario, assuming a hash function of
uniform distribution. The term average time will refer to the average number of
machine instructions an operation takes in the average case scheduling scenario,
also assuming uniform hashing.

We will show that under any scheduling adversary, our algorithm performs all
hash table operations in constant average time. The complexity improves to ex-
pected constant time if we assume a constant extendibility rate, meaning that the
table is never extended a non-constant number of times while a thread is delayed by
the scheduler. This is an improvement since it means that given a good hash func-
tion, the adversary cannot cause any single operation to take more than a constant
number of steps unless it delays its progress through more than a constant numbers
of global resize operations. Formally, when there are n items in the data structure,
a thread must complete a single operation before n - 2/(") successful insertions of

Split-Ordered Lists . 15

elements by other threads were completed, where f(n) € w(1). We believe this is
the common situation in practice.

Two algorithmic issues require a detailed proof: one is the complexity of list
operations, which is essentially the complexity of executing a list_find, and the
other is the complexity of initialize _bucket, which involves recursive calls.

Denote by n the total number of items in the table, and by s the number of
buckets, which is assumed to be larger than the number of threads. Let L denote
the load factor MAX_LOAD in our code, typically a small constant.

LEMMA 5. For any number p of threads, at all times the following condition
holds:

PROOF. Focus on the successful completed insert and delete operations. Each
successful insertion incremented count by 1, and each successful deletion decre-
mented it. In any state there are no more than p concurrent operations. Every one
of the “already completed” insert operations checked, when executing line 19, that
the ratio of count and csize is not more than L, and doubled the size if the gap
was exceeded. There are no more than p currently executing insert operations, so
in a state a resize must be executed since n/s > L, no more than p new keys can
be inserted to the data structure before the resize takes place. [

LEMMA 6. Assuming a hash function of uniform distribution, the probability that

a bucket is not accessed during the time where the table size s > p, is bounded by
_L/2
e .

PRroOF. Focus on a growing table, from size s/2 to s and then to 2s. According
to Lemma 6, in the state in which line 110 doubled the table from s/2 to s, the
number of items in the table was less or equal to p + Ls/2. When later in line 110
the table doubled in size to 2s, the condition of line 19 implies that the number of
items was at least Ls. The last two observations imply that during the set of states
in which size was s, the item count increased in at least Ls/2 — p, i.e. line 19 was
executed at least Ls/2 — p times. Considering at most p processes that began the
insert operation when size was less than s, during the same period line 12 was
executed at least Ls/2 — 2p times.

Assuming a uniform distribution of the keys, the probability of a bucket b not
to be accessed during this period is at most (£52)£%/2=2P_asymptotically equal to
e~L/2. 0O

LEMMA 7. For any key k, when the table size is s and the bucket k mod size is
initialized, there is no dummy node with key d such that k mod size < d < k, that
is, d’s split-order is between those of k mod size and k.

PROOF. Assume by way of contradiction that d is the key of a node such that:
k mod size < d < k. It is the case that d < size because d is in the list, and bucket
indices are always smaller than the table size. Therefore, d has less than log,(size)
non-zero bits. The keys k and k mod size have at least log,(size) — 1 identical less
significant bits. Key d’s split-order value is between them, so it must have the same
low loga(size) — 1 bits, that actually constitute all of its non-zero bits. This implies
that d = k mod size under the split-order, a contradiction to the assumption that
d > k mod size. O

LEMMA 8. If the hash function distributes the keys uniformly,

16 . Shalev and Shavit

—In any execution history, the list traversal of 1ist_find takes constant time on
average.

— Under the constant extendibility rate assumption, the traversal of lList_find takes
expected constant time.

PROOF. For a table of size s, the expected number of uninitialized buckets among
the first s/2 buckets is no more than s/2 - e~ %/2, by Lemma 6. For each of the
initialized buckets, there is a dummy node in the list holding the bucket index as the
split-order value. Therefore, there are at least s/2- (1 — e~%/?) dummy nodes with
keys from 0..s/2 — 1. Those values divide the integer range to s/2 equal segments,
while the missing items are distributed evenly. There are on average less than

n < Ls+p 2L +2p/s
s/2-(1—eL/2) = /2. (1 —e L/2) 1 —eL/2

(2)

nodes between every two dummy nodes. The operation list_find is called to
search for a key k from the bucket k mod size, so using Lemma 7 we conclude that
in the state in which it was called there were no dummy nodes between the bucket’s
dummy node and the node at which the search would be completed. We have just
computed that dummy nodes are distributed each i“’?%; nodes, implying that
if the table size does not change, the search will take no more than a constant
expected number of steps.

We will now show that if the search took more than constant time, there were
enough successful inserts to maintain a constant number of steps on average. If
list_find took Q(r) steps, Q(r) dummy nodes must have been traversed, since
at any time the expected distance between them is constant. All of these dummy
nodes were inserted to the list after 1ist_find started. The number of dummy
nodes in the original bucket doubles each time the table is extended, so there were
Q(logr) table resize events. Since there were exactly n items in the table when
the list_find operation started, the number of items had to rise by Q(rn), i.e.
Q(rn) successful insert operations were completed. There can be no more than p
delayed threads, causing overhead of O(r) steps, while Q(rn) successful operations
complete. The amortized effect is of O(rp/rn) = O(p/n) time, which is constant.
Under the constant extendibility rate assumption, rn < 27" . n implying that
log r is constant, and so is r. [

LEMMA 9. Given a hash function with expected uniform distribution, the number
of steps performed by the function initialize bucket is constant on average. Un-
der the constant extendibility rate assumption, the complexity is expected constant
time.

PROOF. Recursive calls to initialize_bucket terminate when the parent bucket
is initialized. To have m recursive calls, m uninitialized ancestor buckets are needed.
Applying Lemma 6, this may happen with probability less than e~ “("=1/2 making
the expected number of recursive calls constant. By Lemma 8, the list_insert
call inside initialize bucket costs a constant number of steps on average. If we
assume constant extendibility rate (threads are not delayed while the table is dou-
bled a non-constant number of times), a recent ancestor of every bucket is always
initialized, and the recursion depth is constant. Also, according to Lemma 8, the
execution of list_insert is of expected constant time. [J

THEOREM 3. Given a hash function with expected uniform distribution, all hash
table operations complete within a constant number of steps on average. Assum-

Split-Ordered Lists . 17

ing a constant extendibility rate, all hash table operations complete within expected
constant time.

PROOF. Beside executing a constant number of simple instructions, all hash
operations call a list traversing routine twice at most (actually only hash delete
may cause 1list_find to run twice). By Lemma 8 the list traversals cost a constant
average number of steps, and by Lemma 9 the initialize _bucket operation also
completes within a constant average number of steps. Both of the above lemmas
imply that under the constant extendibility rate assumption, the time complexity
is constant in the worst case execution assuming a uniform distribution. O

4. PERFORMANCE

We ran a series of tests to evaluate the performance of our lock-free algorithm. Since
our algorithm is the first lock-free resizable hash table, it needs to be proven effi-
cient in comparison to existing lock-based resizable hash algorithms. We have thus
chosen to compare our algorithm to the resizable hash table algorithm of Lea [15]
(revision 1.3), originally suggested as a part of util.concurrent. ConcurrentHashMap,
the proposed Java™ Concurrency Package, JSR-166.

Lea’s algorithm is based on an exponentially growing table of buckets, doubled
when the average bucket load exceeds a given load factor. Access to the table
buckets is synchronized by 32 locks (on default), dividing the bucket range to 32
interleaved regions, i.e. lock i is obtained when bucket b is accessed if b mod 32 = 1.
Insert and delete operations always acquire a lock, but find operations are first
attempted without locking, and retried with locking upon failure. When a process
decides to resize the table, it locks all 32 locks, allocates a larger array and rehashes
the buckets’ items to their new buckets, utilizing the simplicity of power-of-two
hashing. This scheme offers good performance, in comparison to simpler schemes
that separately lock each bucket, by significantly reducing the number of locks
that need to be acquired when resizing. Figure 11 illustrates the effect of different
concurrency levels on Lea’s algorithm performance.

We translated the Java™ programming language code by Lea to C++ and sim-
plified it to handle integer keys that also serve as values, exactly as in our new
algorithm’s code. There is in this algorithm a trade-off, the more locks used, the
lower the contention on them, but the higher the global delay when resizing. We
thus ran an experiment to confirm that in the translated algorithm there is no
significant advantage to using more or less than 32 locks as originally chosen by
Lea.

We compared our split-ordered hashing algorithm to Lea’s algorithm using a
collection of experiments on a 72 node Sun Fire™ 15K, a cache-coherent NUMA
machine formed from 18 boards of four 900MHz UltraSPARC® processors, con-
nected by an 18 x 18 crossbar. The C/C++ code was compiled with a Sun cc
compiler 5.3, with the flags -x05 and -xarch=v8plusa.

Lea’s algorithm has significant vulnerability in multiprogrammed environments
since whenever the resizing processor is swapped out or delayed, the algorithm as
a whole grinds to a halt. The significant latency overhead while resizing would
also make it less of a fit for real-time environments. However, our tests here are de-
signed to compare the performance of the algorithms in the currently more common
environments without multiprogramming or real-time requirements.

We ran a series of experiments measuring the change in throughput as a function
of concurrency under various synthetic distributions of insert, delete and find. We

18 . Shalev and Shavit

@
£
2
S
0 0
© & g 8 8 8 8 © & < 8 8 8 8
threads threads
Fig. 7. Throughput with work = 0 (left) and work = 500 (right)
8000 T T 8000 T T
New, work=0 —— Lea, work=0 —e—
New, work=500 - Lea, work=500 -—-e—-
7000 - New, work=1000 - 1 7000 - Lea, work=1000 e~ 1
New, work=2000 & Lea, work=2000 e
6000 |- New, work=3000 ---#--- 4 6000 | Lea, work=3000 ---e-- 4
5000 - 5000 -
g g
g g 400
=] =]
3000 - 3000 -
w00 [
g e
1000 e ok "
x " s o a
(=} f=}
B g 8 8 8 8 8
threads

Fig. 8. Throughput of the new algorithm (left) and Lea’s algorithm (right)

also varied the workload work in various tests by choosing a delay uniformly at
random from [0. .. work].

To capture performance under typical hash-table usage patterns [16] we first look
at a mix that consists of about 88% find operations, 10% inserts and 2% deletes.
Our first graph, in Figure 7, shows the results of comparing the algorithms under
such a pattern. The hash table load factor (the number of items per bucket) for
both tested algorithms was chosen as 3. In the presented graph we show the change
in throughput as a function of concurrency. As can be seen, at high loads the lock-
free split-ordered hashing algorithm significantly outperforms Lea’s algorithm at all
concurrency levels. In the right hand side of Figure 7, we show the performance of
both algorithms when the threads perform a (bounded) random amount of work
between operations. Figure 8 illustrates the behavior of both algorithms separately,
emphasizing the effect of work between operations.

—Wohen work = 0, Lea’s algorithm reaches peak performance at about 20 threads
and at the same concurrency level, our new algorithm has two times higher
throughput. When work = 500, Lea’s algorithm performs slightly worse. Both
algorithms exhibit an almost linear speedup up to 60 threads.

—Our algorithm reaches peak performance at 44 threads when work = 0, where it
is almost four times faster than Lea’s. When work = 500, it peaks at 56 threads,
having 30% higher throughput.

—Our algorithm’s performance fluctuates after reaching peak performance because

Split-Ordered Lists . 19

8000 T T T T T T T
New, load factor=1 ——

New, load factor=2 ----x---
7000 - a b New, load factor=4 -
New, load factor=6 =
New, load factor=8 ---=--
New, load factor=12 ---=--
Lea, load factor=1 ---o---
Lea, load factor=2 -
Lea, load factor=4 —-e--

2 Lea, load factor=6 —e—
E Lea, load factor=8 ----o---
S Lea, load factor=12 -----o----
Fig. 9. Varying load factor
3500 T T T T T T T T T
New, 8 threads —+—
New, 16 threads --—-----
3000 -, 1 New,32threads -
', New, 64 threads =
Lea, 8 threads ---o---
2500 - $o e) Lea, 16 threads -----
B e - Lea, 32 threads -~
@ 2000 f o e e Lea, 64 threeds —-o--
£ Tk *7
=
%' 1500 #--.___ ° 8 Ko ;' a 4
-y o
T .
1000 ¢
500 g

10;0;90

20;0;80 r
30;0;,70
50;0;50 r
60;0;40
90;0;10
90;10,0 -
80;20,0

Q
©
(=}
g

% of insert; % of delete; % of find

Fig. 10. Varying operation distribution

it involves significantly higher concurrent communication and is thus much more
sensitive to the specific layout of threads on the machine and to the load on the
shared crossbar. It reaches peak performance at 44 threads when work = 0 and
scales better to a peak at 56 threads with work = 500, that is, when threads
perform work between hash table accesses.

—In both cases the performance of our algorithm deteriorates after the peak be-
cause of the cost of concurrent communication over the shared crossbar. This
contrasts with Lea’s algorithm which suffers a much milder deterioration because
it never reaches high concurrency levels and its overall performance is limited by
the bottlenecks introduced by the shared locks.

—We also measured the performance of both algorithms under low load, when
work = 3000. Under these conditions Lea’s algorithm performed just slightly
worse than ours, probably because of our more efficient manipulation of list items
and not because of any synchronization related factor.

Figure 10 shows the results of an experiment varying the chosen distribution of

20 . Shalev and Shavit

inserts, deletes, and finds, where work = 0. Note that our algorithm consis-
tently outperforms Lea’s algorithm throughout the full range of tested distributions.
We also ran an experiment that varies the load factor in our algorithm. As seen
in Figure 9 for the case work = 0, the load factor does not affect the performance
significantly, and its effect is in any case minimal when compared to those of the
thread layout and the overall communication overhead.

Additionally, we tested the robustness of the algorithms under a biased hash
function, mimicking conditions in case of a bad choice of a hash function relative
to the given data. To do so we generated keys in a non-uniform distribution by
randomly turning off 0 to 3 LSBs of randomly chosen integers. Our empirical
data shows that our algorithm shows greater robustness: it was slowed down by
approximately 7%, while Lea’s algorithm’s performance decreased by more than
30%. The reason for this is that a biased hash function causes some number of
buckets to have many more items than the average load. The locks controlling these
buckets in Lea’s algorithm are thus contended, causing a performance degradation.
This does not happen in the lock-free list used by the new algorithm.

3000 T T T T T T
Lea, 8locks —+—
- e ., Lea, 16 locks ----x--
Lea, 32 locks -
2500 Lea, 64 locks = 1
a
2000 | R 1
w s ke g
@ ST R,
7 1500 | 9 « T B
8_ LN T
1000 |
500
0

Fig. 11. Lea’s algorithm with different concurrency levels

Based on the above results, we conclude that in low-load non-multiprogrammed
environments both algorithms offer comparable performance, while under medium
to high loads, split-ordered hashing scales better than Lea’s algorithm and is thus
the algorithm of choice.

5. CONCLUSION

Our paper introduces split-ordered lists and shows how to use them to build re-
sizable concurrent hash tables. We believe the split-order list structure may have
broader applications. It might also be interesting to test empirically if a sequential
variation of split-ordered hashing will offer an improvement over linear hashing in
the sequential case. This follows since splitting buckets in split-ordered hash tables
does not require redistribution of individual items among buckets, but rather only
the insertion of a dummy node, and in the sequential case the need for the dummy
nodes might be avoidable altogether.

Split-Ordered Lists . 21

6. ACKNOWLEDGMENTS

We thank Mark Moir, Victor Luchangco and Paul Martin for their help and patience
in accessing and running our tests on several of Sun’s large multiprocessor machines.
This paper could not have been completed without them. We also thank Victor
Luchangco, Mark Moir, Maged Michael, Sivan Toledo, and the anonymous PODC
2003 referees for their helpful comments and insights.

REFERENCES

(1]

2]

3]

(10]

(11]

(12]

(13]

(14]

(15]

(16]
(17]

(18]

AGESEN, O., DETLEFS, D., FLooD, C., GARTHWAITE, A., MARTIN, P., MOIR, M., SHAVIT,
N., AND STEELE, G. DCAS-based concurrent deques. Theory of Computing Systems 35,
3 (2002), 349-386.

CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN, C. Introduction to Algorithms,
Second Edition. MIT Press, Cambridge, Massachusetts, 2001.

ELLis, C. S. Extendible hashing for concurrent operations and distributed data. In Proceed-
ings of the 2nd ACM SIGACT-SIGMOD symposium on Principles of database systems
(1983), ACM Press, pp. 106-116.

ELLis, C. S. Concurrency in linear hashing. ACM Trans. Database Syst. 12, 2 (1987), 195—
217.

GAao, H., GROOTE, J., AND HESSELINK, W. Efficient almost wait-free parallel accessible dy-
namic hashtables, March 2003. Unpublished manuscript.

GREENWALD, M. Non-Blocking Synchronization and System Design. PhD thesis, Stanford
University Technical Report STAN-CS-TR-99-1624, Palo Alto, CA, 8 1999.

GREENWALD, M. Two-handed emulation: How to build non-blocking implementations of
complex data-structures using dcas. In Proceedings of the 21st ACM Symposium on
Principles of Distributed Computing (July 2002), pp. 260—-269.

Harris, T. L. A pragmatic implementation of non-blocking linked-lists. In Proceedings of
15th International Symposium on Distributed Computing (DISC 2001) (2001), pp. 300—
314.

HERLIHY, M., LUCHANGCO, V., AND MOIR, M. The repeat offender problem: A mechanism for
supporting dynamic-sized, lock-free data structures. In Proceedings of 16th International
Symposium on Distributed Computing (DISC 2002) (October 2002), pp. 339-353.

HERLIHY, M., LUCHANGCO, V., MOIR, M., AND SCHERER, III, W. N. Software transactional
memory for dynamic-sized data structures. In Proceedings of the twenty-second annual
symposium on Principles of distributed computing (2003), ACM Press, pp. 92-101.

HEerLIHY, M. P., AND WING, J. M. Linearizability: a correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems (TOPLAS) 12, 3
(1990), 463-492.

HEeSSELINK, W., GROOTE, J., MAUW, S., AND VERMEULEN, R. An algorithm for the asyn-
chronous write-all problem based on process collision. Distributed Computing 14, 2
(2001), 75-81.

Hsu, M., AND YANG, W. Concurrent operations in extendible hashing. In VLDB’86 Twelfth
International Conference on Very Large Data Bases, August 25-28, 1986, Kyoto, Japan,
Proceedings (1986), W. W. Chu, G. Gardarin, S. Ohsuga, and Y. Kambayashi, Eds.,
Morgan Kaufmann, pp. 241-247.

KANELLAKIS, P. C., AND SHVARTSMAN, A. Fault-Tolerance and Efficiency in Massively Par-
allel Algorithms. Kluwer Academic Publishers, 1994.

LEA, D. Hash table util.concurrent.concurrenthashmap, revision 1.3, in JSR-166, the pro-
posed Java Concurrency Package. http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/-
src/main/java/util/concurrent,/.

LEA, D. Personal communication, Jan. 2003.

LitwiN, W. Linear hashing: A new tool for file and table addressing. In Sizth International
Conference on Very Large Data Bases, October 1-3, 1980, Montreal, Quebec, Canada,
Proceedings (1980), IEEE Computer Society, pp. 212-223.

LucnaNGco, V., MOIR, M., AND SHAVIT, N. Nonblocking k-compare-single-swap. In Proceed-
ings of the fifteenth annual ACM symposium on Parallel algorithms and architectures
(2003), ACM Press, pp. 314-323.

22 . Shalev and Shavit

[19] MELLOR-CRUMMEY, J. M., AND ScoTT, M. L. Scalable reader-writer synchronization for
shared-memory multiprocessors. In Proceedings of the third ACM SIGPLAN symposium
on Principles & practice of parallel programming (1991), ACM Press, pp. 106-113.

[20] MICHAEL, M. M. High performance dynamic lock-free hash tables and list-based sets. In
Proceedings of the fourteenth annual ACM symposium on Parallel algorithms and archi-
tectures (2002), ACM Press, pp. 73-82.

[21] MicHAEL, M. M. Safe memory reclamation for dynamic lock-free objects using atomic reads
and writes. In Proceedings of the twenty-first annual symposium on Principles of distri-
buted computing (2002), ACM Press, pp. 21-30.

[22] MicHAEL, M. M., AND ScoTT, M. L. Nonblocking algorithms and preemption-safe locking on
multiprogrammed shared — memory multiprocessors. Journal of Parallel and Distributed
Computing 51, 1 (1998), 1-26.

[23] MoOIR, M. Practical implementations of non-blocking synchronization primitives. In Proceed-
ings of the 15th Annual ACM Symposium on the Principles of Distributed Computing
(Aug. 1997).

[24] VaLors, J. D. Lock-free linked lists using compare-and-swap. In Symposium on Principles of
Distributed Computing (1995), pp. 214-222.

APPENDIX
A. ADDITIONAL CODE

For the purpose of being self contained, this appendix provides the code for the
lock-free CAS based ordered list algorithm of Michael [20].

The difficulty in implementing a lock-free ordered linked list is in ensuring that
during an insertion or deletion, the adjacent nodes are still valid, i.e. they are still
in the list and are still adjacent. Both the implementation of Harris [8] and that of
Michael [20] do so by “stealing” one bit from the pointer to mark a node as deleted,
and performing the deletion in two steps: first marking the node, and then deleting
it. This bit and the next pointer are set atomically by the same CAS operation®.
The list_find operation is the most complicated: it traverses through the list,
and stops when it reaches an item that is equal-to or greater-than the searched
item. If a marked-for-deletion node is encountered, the deletion is completed and
the traversal continues. The list_find in Michael’s scheme thus improves on that
of Harris since by completing the deletion immediately when a marked node is
encountered it prevents other operations from traversing over marked nodes, that
is, ones that have been logically deleted.

The following is a simple lock-free implementation of a shared incrementable (or
decrementable) counter using CAS.

4Stealing one bit in a pointer in such a manner is straightforward assuming properly aligned

memory, and can be achieved with indirection using a “dummy bit node” [1] in languages like the

JavaT™ programming language where stealing a bit in a pointer is a problem. The new JavaT™

Concurrency Package proposes to eliminate this drawback by offering “tagged” atomic variables.

Split-Ordered Lists

struct MarkPtrType {
<mark, next>: <bool, NodeType *>
I

struct NodeType {

key_t key;

MarkPtrType <mark, next>;
};

/* thread-private variables */
MarkPtrType *prev;

MarkPtrType <pmark, cur>;
MarkPtrType <cmark, next>;

int list_insert(MarkPtrType *head,
NodeType *node) {
key = node->key;
while (1) {
if (list_find(head, key) return O;
node-><mark,next> = <0,cur>;
if (CAS(prev, <0,cur>, <0,node>))
return 1;

int list_delete(MarkPtrType *head,
so_key_t key) {
while (1) {

if (!list_find(head, key))
return O;

if ('CAS(&(cur-><mark,next>), <0,next>,

<1,next>))

continue;

if (CAS(prev, <0,cur>, <0,next>))
delete_node(cur);

else list_find(head, key);

return 1;

int list_find(NodeType **head, so_key_t key) {
try_again:
prev = head;
<pmark,cur> = *prev;
while (1) {
if (cur == NULL) return O;
<cmark,next> = cur-><mark,next>;
ckey = cur->key;
if (*prev != <0,cur>)
goto try_again;
if (!cmark) {
if (ckey >= key)

return ckey == key;
prev = &(cur-><mark,next>);
}
else {

if (CAS(prev, <0,cur>, <0O,next>))
delete_node(cur);
else goto try_again;
}

<pmark,cur> = <cmark,next>;

Fig. 12. Michael’s lock free list based sets

23

24 . Shalev and Shavit

int fetch-and-inc(int *p) {
do {
old = *p;
} while (!CAS(p, old, old+1);
return old;

}
int fetch-and-dec(int *p) {
do {
old = *p;

} while (!CAS(p, old, old-1);
return old;

}

Fig. 13. Lock free atomic counter implementation

