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Introduction

In the last year or two, unwelcome email has grown to the extent that it is inconve-
nient, annoying and wasteful of computer resources. More significantly, its volume
threatens to overwhelm our ability to recognize welcome messages. An automatic
spam filter can mitigate these problems, provided that it acts in a reliable and
predictable manner.

We evaluate ten spam detection methods embodied in six popular open-source
spam filters by applying each method sequentially to all of the e-mail received by one
individual (X) from August 2003 through March 2004. These 49,086 messages were
originally judged in real-time by X. The messages and judgements were recorded,
and reproduced so as to provide the same evaluation suite for all the methods. Five
of the methods are derived from Spamassassin [spamassassin.org 2004], a hybrid
system which includes both static spam-detection rules and a Bayesian statistical
learning component. The purpose of intra-Spamassassin comparison is evaluate the
relative contributions of the static and learning components in various configura-
tions. The other methods are all “pure” statistical learning systems, in that they
contain essentially no spam-detection rules. We compare these – Bogofilter [Ray-
mond 2004], CRM-114 [Yerazunis 2004a], DSPAM [Zdziarski 2004], SpamBayes
[Peters 2004], and Spamprobe [Burton 2002a] – against each other and against the
learning component of Spamassassin. Recent evaluations have reported very high
accuracies – some higher than 99.9% – for several of these filters [Zdziarski 2004;
Yerazunis 2004a; Louis 2004; Yerazunis 2004b; Holden 2004; Burton 2002b]. We
contrast these studies and others [Sahami et al. 1998; Androutsopoulos et al. 2000;
Tuttle et al. 2004] with ours following the presentation of our results.

Our study’s objective is to provide a controlled, realistic, statistically meaningful
evaluation of several common filters and the methods they embody. While our
study is limited to the extent that X’s email is typical, and to the extent that the
ten subject methods represent the state of the art, we present our methods and
analysis in sufficient detail that they may be reproduced with other email streams
and filter implementations. In addition, we have archived our evaluation suite so
that we may use it to evaluate future spam detection methods1.

Spam filtering may be effected in a number of configurations, which we categorize
as: manual, static, unsupervised, and supervised. With manual filtering (see figure
1), the task falls to the email recipient who must examine and classify each mes-
sage that is received. As mentioned above, this process is tedious and error-prone,
especially as the volume of unwanted email (spam) approaches or exceeds the vol-
ume of wanted email (ham). With static filtering (see figure 2), an automatic filter

1As it contains X’s private email, we are not at liberty to publish our evaluation suite.
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Fig. 1. Manual Configuration

examines each message and sends it to one of two outputs: a ham file consisting
of messages likely to be ham, and a spam file consisting of messages likely to be
spam. In the normal course of reading email, the recipient consults only the ham
file, performing the same process as for manual filtering, but with a much-reduced
volume of spam. The recipient may (or may not) occasionally consult the spam
file in an effort to recover ham that may have been misclassified by the automatic
filter. Unsupervised filtering (see figure 3) differs from static filtering only in that
the automatic filter has memory ; in addition to classifying email messages, the fil-
ter records characteristics of these messages and uses this recorded information to
aid in classifying subsequent messages. Supervised filtering (see figure 4) involves
the filter and recipient in a closed loop; the recipient regularly examines the ham
and spam files and reports misclassifications back to the filter, which updates its
memory accordingly.

A spam filter can be considered effective to the extent that two undesirable
aspects are minimized: the amount of spam that the filter fails to identify, and
the end-to-end probability of losing important email. The first aspect is aptly
characterized as a proportion that may be estimated from a sample. The second
aspect – the end-to-end probability of loss – is more complex to characterize and to
estimate. Important email may be lost if the filter misclassifies it as spam and the
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Fig. 2. Static Configuration

recipient fails to retrieve it from the spam file, or if the filter classifies it correctly and
the recipient fails to notice it in the ham file. Both eventualities must be considered
in assessing the end-to-end probability of loss. Minimizing the filter’s proportion
of misclassified ham is one component of this effort. In addition we must consider
the effect of spam misclassification on the recipient’s ability to identify important
messages in the ham file, characteristics of ham messages that might cause them
to be misclassified, characteristics of misclassified ham messages that might affect
the recipient’s likelihood of retrieving them from the spam file, and characteristics
of misclassified ham messages that determine their importance to the recipient.

Method

Test Suite

X has had the same userid and domain name for 20 years; variants of X’s email
address have appeared on the Web, and in newsgroups. X has accounts on sev-
eral machines which are forwarded to a common spool file, where they are stored
permanently in the order received.

X began using a spam filter in 2002 when the proportion of spam in his email
began to exceed 20%, causing X to overlook two important messages which arrived
amongst bursts of spam. Since August 2003, X has used Spamassassin 2.60 in a
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Fig. 3. Unsupervised Configuration

supervised configuration to classify this incoming mail. It was necessary to modify
Spamassassin to incorporate this use, as Spamassassin was designed to be used
primarily in the unsupervised configuration. User feedback was facilitated by two
macros (No, it’s Spam, and No, it’s Ham) added to X’s mail client. Spamassassin
records every judgement (whether automatic or due to user feedback) in its learning
database, so it was possible to recover preliminary gold standard judgements from
this database.

Algorithm 1 Supervised Email Filtering
filterinit()

Foreach msgi in Archive
resulti, scorei ← filtereval(msgi)
if goldstandardi = ham & resulti �= ham

filtertrain(msgi,ham)
if goldstandardi = spam & resulti �= spam

filtertrain(msgi, spam)
end.
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Fig. 4. Supervised Configuration

Algorithm 2 Train on everything Email Filtering
procedurefiltereval(msg)

result, score ← localfiltereval(msg)
filtertrain(msg, result)
return result, score

end.

Each trial run is an idealized2 reproduction of X’s behaviour since August 2003,
with a different filter in place of Spamassassin 2.60. As shown in algorithm 1, the
subject filter is presented with each message from the spool in the original order
of arrival. Each filter was encapsulated using three common interface procedures:
filterinit, filtereval, and filtertrain. filterinit sets the filter’s memory to a clean
initial state; filtereval is given an email message and returns a pair consisting of
a classification and a score; filtertrain is given an email message and a new clas-
sification, if the gold standard differs from the result of filtereval. We note that
this interface implements a train only on errors strategy; filters requiring a train

2Idealized in that feedback to the filter is immediate and completely accurate.
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on everything strategy were accommodated by incorporating self-training into the
implementation of the filtereval access function as shown in algorithm 2.

We conducted one pilot run using a static configuration of Spamassassin 2.63
(i.e. with the learning feature disabled). This run allowed us to double-check the
veracity of X’s original judgements. All messages in which the original judgements
disagreed with those of the pilot were checked again. The vast majority of spam
misclassifications were resolved in favour of Spamassassin (i.e. X had neglected
to classify a spam message as such), and the gold standard was corrected. All
subsequent disagreements between the gold standard and later runs were also man-
ually adjudicated, and all runs were repeated with the updated gold standard. The
results presented here are based on this revised standard, in which all cases of
disagreement have been vetted manually.

After the runs were complete, each misclassified ham message was examined
and assigned one of seven genres that we believed might be associated with the
likelihood of misclassification and the importance of the email to the recipient. We
also assigned a genre to each of a random sample (n = 352)of all incoming ham.
Similarly, we assigned one of five different genres to each spam message misclassified
by one or more of the four best-performing systems, and also to a random sample
of spam messages (n = 100) misclassified by each of the other systems. We also
assigned a genre to each of a random sample (n = 142) of all incoming spam.

Subject Configurations

We chose to evaluate open-source systems representing best practice in spam de-
tection. Two systems [mozilla.org 2004; Graham-Cumming 2004] were initially
chosen for evaluation but later excluded because a prohibitive effort would have
been required to isolate the interfaces necessary to conform to the interface defined
in algorithm 1.

Ten runs were conducted. Five of the runs evaluated different configurations of
Spamassassin; five of the runs evaluated the other systems. In addition, X’s in situ
judgements were evaluated as if they had been the results of an eleventh run. For
evaluation purposes, this “eleventh run” is grouped with the Spamassassin runs.

The Spamassassin Runs

Spamassassin’s static component uses a database of user-submitted patterns and
procedures that recognize mail features likely to indicate spam. Through a dis-
tributed statistics-gathering effort, scores are deduced for the features. These scores
are fixed for a particular release of Spamassassin. Although most of the scores may
be specified as configuration parameters, no adjustment (and hence no training)
occurs as a consequence of filtering incoming messages.

In classifying a particular message, the scores for the features found in the mes-
sage are added to yield an overall score, which is compared to a threshold. In all
runs, the default value of 5.0 was used for this threshold.

Spamassassin 2.5 introduced a Bayes filter based on Graham’s A Plan for Spam
[2002; 2004]. Spamassassin 2.6 incorporated improvements due to Robinson [2004;
2003]. Spamassassin’s Bayes filter operates independently of the other tests, and
contributes a (possibly negative) value which is added to the overall score in clas-
sifying a message.
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By default, Spamassassin’s Bayes filter is configured in a conservative manner
appropriate for unsupervised learning as might occur in a mail server. It self-trains
only on messages which receive an extreme score from the static component alone,
excluding the contribution of the Bayes filter. Furthermore, training takes place
only if there are three body hits and three header hits from among the scores,
and only if the Bayes filter did not already classify the message correctly. These
exclusions from self-training are hard-coded into Spamassassin and cannot be over-
ridden by user parameters. For the runs that used supervised learning, we modified
Spamassassin to self-train on every message, as in algorithm 2.

The Spamassassin runs are enumerated below.

(1) SA-Nolearn - Spamassassin 2.63 with the learning component disabled.
(2) SA-Standard - Spamassassin 2.63 with default unsupervised learning param-

eters.
(3) SA-Supervised - Spamassassin 2.63 with supervised learning, modified as de-

scribed above to self-train on every judgement. Run in the context of algorithm
1, so as to retrain the system for each misclassified message.

(4) SA-Unsupervised. Spamassassion 2.63 with train on everything unsuper-
vised learning. The system was used as modified for SA-Supervised, but no
retraining was done for misclassified messages.

(5) SA-Bayes - Spamassassin 2.63 learning component only. The system was
modified and used as for SA-Supervised, but the scores for all static rules were
set to 0, and the threshold value was set to 0. Any positive score was deemed
to indicate spam.

(6) SA-Human - X, aided by Spamassassin. The judgements originally rendered
by X, in the normal course of reading email and supervising Spamassassin 2.60
(modified to train on everything, as for SA-Supervised). The judgements were
captured from the memory of the system (c.f. figure 4).

Pure Learning Filter Runs

Except as noted, the learning filters were installed using default threshold and
tuning parameters. Prior training was not used; filterinit initialized the filter’s
memory to the empty state.

(1) CRM114 - The Controllable Regex Mutilator, version 20040328-Blame St.
Patrick-auto.1. CRM114 uses Markov modelling and a sliding window to find
the features in messages must likely to indicate spam. CRM114 classifies each
message by computing a score which it compares to a threshold. CRM114 does
not self-train; we trained the system only after misclassifications, as suggested
in the documentation. We did not use the whitelist or blacklist facilities sup-
plied with CRM114. Filter memory size was set at 10000001 buckets for both
ham and spam.

(2) DSPAM - The DSPAM Project: Statistical SPAM Protection, version 2.8.3.
DSPAM is a Statistical-Algorithmic Hybrid filter whose designer strives for
simplicity. DSPAM 2.8.3 self-trains on every message it classifies, and anno-
tates the message with a signature that contains information necessary for it
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to reverse this self-training. We augmented algorithm 1 to supply this anno-
tated message, rather than the original, to filtertrain. We did not use the purge
facility, which reduces the size of the statistical table maintained by DSPAM.

(3) Bogofilter - Bogofilter, version 0.17.5. Bogofilter, due to Eric Raymond, is a
Bayes filter, like Spamassassin’s, modelled after the proposals by Graham and
Robinson. Bogofilter emphasizes simplicity and speed.

(4) SpamProbe - SpamProbe version 0.9h. A C++ Bayes filter inspired by Gra-
ham’s proposal.

(5) SpamBayes - Spambayes version 1.061. A Python Bayes filter inspired by the
proposals of Graham and Robinson.

Analysis

A contingency table (table I) enumerates the possible outcomes of applying a filter
to a mail stream. The primary measures of interest are the ham misclassification
fraction, hm = c

a+c , and the spam misclassification fraction sm = b
b+d . We also

report the (overall) misclassification fraction, m = b+c
a+b+c+d , because it is equivalent

Gold Standard

F
il
te

r

ham spam

ham a b

spam c d

Table I. Contingency Table

to accuracy (m = 1 − accuracy)3, which is commonly reported.
The result of applying a filter to a spam message is a dichotomous variable

result taking on the value ham or spam. In our primary analysis, we estimate the
probability of each outcome as a function of true, the true classification, also a
dichotomous value taking on the value ham or spam. In particular, hm estimates
Pr(result = spam | true = ham) and sm estimates Pr(result = ham | true =
spam). m, on the other hand, estimates Pr(result �= true). These estimates are the
result of three separate sets of Bernoulli trials; one for ham messages (true = ham),
one for spam messages (true = spam), and one for all messages.

Each set of trials consists of n observations, x of which exhibit the truth value
whose probability P is to be estimated. Given P and n, the probability of any
particular value of x is determined exactly by the binomial distribution. The cu-
mulative probability over all t ≤ x is the sum of x+1 discrete binomial probabilities.
Since x ≤ n < 50, 000 for each of the three sets, we were able to calculate cumulative
probabilities with minimal computational cost.

Given n and x, the maximum likelihood estimate for P is simply x
n . 95% confi-

dence limits are computed as follows. When x = 0, the lower confidence limit is 0

3We quantify misclassifications rather than accuracy so as to avoid presenting nearly equal num-
bers that represent large differences in performance. Graphical results are displayed using the
logistic transformation, logit(p) = log( p

1−p
), which maps the range [0 : 1]symmetrically to the

range −∞ : ∞.
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and the upper confidence limit is the smallest P such that the cumulative binomial
probability over all t ≤ x is less than 0.05. When x > 0, the lower confidence limit
is the largest P such that the cumulative binomial probability over all t ≥ x is less
than 0.025; the upper confidence limit is the smallest P such that the cumulative
binomial probability over all t ≤ x is less than 0.025. Each P was computed using
binary search.

Because all filters are applied to the same messages, we are able to use exact
paired tests to evaluate differences that might not be apparent from comparing
misclassification proportions. For a pair of filters, A and B, we count each of the
four possible pairs of results when A and B are applied to the same message. Table
II illustrates the four possible outcomes: a is the number of times that the filters
both return ham; d is the number of times they both return spam; b is the number
of times A returns spam while B returns ham; c is the number of times A returns
ham while B returns spam. a and d, the cases of agreement, do not differentiate the
systems and may be ignored. b and c, the cases of disagreement, are the cases of
interest. The disagreement cases constitute a set of Bernoulli trials with n = b + c,

Filter A

F
il
te

r
B ham spam

ham a b

spam c d

Table II. Matched-Pair Result Table

x = b. Under the null hypothesis (that A and B exhibit the same performance),
P = 0.5, and E(x) = n

2 . Any non-zero difference |x − n
2 | > 0 must be due either

to chance or to the falsity of the null hypothesis. p, the chance probability, is
computed as the sum of binomial probabilities for all t such that |t− n

2 | ≥ |x− n
2 |.

In this study, we test several hypotheses. For those that are amenable to statisti-
cal inference we state confidence intervals and declare significant differences based
on the error probability α = 0.05. As for any set of statistical inferences, whether
from the same or separate studies, we must be aware that some results reported as
significant will in fact be due to chance. According to Streiner [1986]:

Of course, most statistical analysis uses an α-level of 0.05, which means
that there is one chance in 20 that they will conclude there is some
difference when there isn’t. This also means that of every 20 “significant”
differences reported in the literature, one is wrong. Wonder which one
it is!

That said, we shall avoid a discussion of the philosophy of statistics and defer to
common practice.

A fallacy not admitted by common practice is to perform several hypothesis tests
and to report only those yielding a “significant” result. If we perform n tests, we
expect about αn of them to show p < α, even if the null hypothesis holds in every
case. On the other hand, only α of the tests would show n · p < α under the
null hypothesis; in other words, the chance of some test showing n · p < α is α.
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Bonferroni correction captures this effect: when selected from a set of n tests, any
test showing n · p < α is significant with (Bonferroni corrected) p < α. Bonferroni
correction may be applied repeatedly using Holm’s stepdown method [Holm 1979]:
the result with smallest p is selected from the set; if it is significant after Bonferroni
correction, the test is removed from the set and the process repeated with the
remaining n − 1 tests. If the result with the smallest p is not significant, none
of the remaining results is considered significant. When we rank the results of
n tests, we are in effect performing n(n−1)

2 paired tests, which we correct using
Holm-Bonferroni stepdown method.

Receiver operating characteristic (ROC) analysis [Park et al. 2004] is used to
evaluate the trade-off between ham and spam misclassification probabilities. Using
each of the numerical scores returned by a given filter, we conduct a hypothetical run
to determine the ham and spam misclassification fractions that would have resulted
had that score been used as a threshold. The set of pairs (hm, 1-sm) resulting from
the hypothetical runs define a monotone non-decreasing function that is plotted as
an ROC curve. As a summary measure of the relationship between ham and spam
misclassification fractions over all possible thresholds, we present 1 − ROCAC,
where ROCAC is the area under the ROC curve. 1 − ROCAC estimates the
probability that a random spam message is (incorrectly) given a lower score than
a random ham message. ROCAC estimates and 95% confidence intervals were
computed using SPSS 12.

Logistic regression [Agresti 1996] is used to evaluate the effect of the number
n of messages processed on the probability P of ham or spam misclassification
(i.e. the learning curve). P and n are assumed to be related by the formula
logit(P ) =def log( P

1−P ) = α + nβ (alternatively, P
1−P = eαenβ) for some α and

β. Maximum likelihood estimates for α and β, 95% confidence limits, and p-values
(for the null hypothesis that β = 0) were computed using SPSS 12. P

1−P is the
odds (as opposed to the probability) of misclassification; i.e. the ratio of incorrect
to correct classifications. eα is the initial odds when n = 0, and enβ is the odds
ratio; for every n messages the odds increase (or decrease) by a factor of enβ . For
small P, odds and probability are nearly equal, so we may consider enβ also to be
the risk ratio; for every n messages the probability of misclassification changes by
this same constant factor.

A piecewise graphical estimate of logit(P ) vs. n is juxtaposed with the logistic
regression curve as a visual indicator of the appropriateness of the logistic model.
Estimates of initial and final misclassification rates, as well as the odds ratio, are
tabulated with 95% confidence limits.

Within each genre of ham identified in our post-hoc classification, we estimated
the proportion of incoming ham messages and, for each filter, the proportion mes-
sages misclassified by that filter. The ratio of these proportions provides an estimate
the relative difficulty that each filter has in classifying messages of different genres,
and an estimate of the maximum likely confounding effect due to each particular
genre.
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Results

The test sequence contained 49,086 messages. Our gold standard classified 9,038
(18.4%) as ham and 40,048 (81.6%) as spam. The gold standard was derived from
X’s initial judgements, amended to correct errors that were observed as the result
of disagreements between these judgements and the various runs.

Classification Performance - Spamassassin Variants

Table III and figure 5 report the performance of our Spamassassin subject runs.

Filter Ham Misc. (%) Spam Misc. (%) Overall Misc. (%) 1-ROC Area (%)

SA-Supervised 0.07 (0.02-0.14) 1.51 (1.39-1.63) 1.24 (1.15-1.35) 0.06 (0.04-0.07)
SA-Bayes 0.17 (0.09-0.27) 2.10 (1.96-2.24) 1.74 (1.63-1.86) 0.15 (0.11-0.18)

SA-Nolearn 0.19 (0.11-0.30) 9.49 (9.21-9.78) 7.78 (7.54-8.02) 0.80 (0.74-0.86)

SA-Standard 0.07 (0.02-0.14) 7.49 (7.23-7.75) 6.12 (5.91-6.34) 1.00 (0.93-1.06)
SA-Unsupervised 0.11 (0.05-0.20) 8.11 (7.84-8.38) 6.63 (6.41-6.86) 0.82 (0.76-0.88)

SA-Human 0.09 (0.04-0.18) 1.06 (0.97-1.17) 0.88 (0.80-0.97) -

Table III. Filter Misclassification - Spamassassin Components
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Fig. 5. ROC Curves for Spamassassin Variants

SA-Supervised, our baseline run, misclassifies 6 of 9,038 ham messages (0.07%) and
605 of 40,048 spam messages (1.51%). Overall, SA-Supervised misclassifies 611 of
49,086 messages (1.24%). The area under the ROC curve, ROCAC, is 0.9994 which
we report as 1-ROCAC (%) or 0.06.

The SA-Supervised filter is a committee of two distinct components: SA-Nolearn,
a static rule-based filter, and SA-Bayes, a pure learning filter. Taken separately,
each component shows inferior performance to the baseline according to all four
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measures. We note in particular that SA-Supervised shows 2.5 times fewer ham
misclassifications than either SA-Bayes (p < .004) or SA-Nolearn (p < .035), two-
thirds as many spam misclassifications as SA-Bayes (p < 10−10) and 6 times fewer
spam misclassifications than SA-Nolearn (p < 10−10).

SA-Standard uses Spamassassin’s default configuration: the same static and
learning filter, but with the filter trained only on errors, as adjudicated by the
difference in results between the learning filter and a separate (more conservative)
internal invocation of the static filter. In contrast, SA-Unsupervised trains on every
judgement returned by filtereval. Both runs are unsupervised in that they oper-
ate autonomously with no human intervention. As with SA-Supervised, both runs
show fewer ham and spam misclassifications than either SA-Bayes or SA-Nolearn
taken separately. Of the differences in ham misclassifications only the difference
between SA-Standard and SA-Nolearn may be interpreted as significant (p < .035).
All differences in spam misclassification are significant (p < 10−10).

SA-Human uses essentially the same configuration as SA-Supervised, but the sys-
tem was supervised by X in real-time. That is, for every misclassification observed
by X, the system was retrained and the human-corrected classification was recorded
as the result for SA-Human. While SA-Human resulted in two more ham misclassi-
fications than SA-Supervised (i.e. 8 vs. 6) no significant difference can be inferred.
SA-Human resulted in two-thirds as many spam misclassifications (p < 10−10).

We note that ham, spam, and overall misclassification rates rank the six runs in
the same order. ROCAC inverts SA-Standard and SA-Unsupervised, and is inap-
plicable to SA-Human. Nevertheless, ROCAC ranking is consistent with the overall
effect: that all tested combinations of static and learning filters outperform these
individual components in isolation. The ROC curves show that SA-Supervised dom-
inates the other runs, performing better than SA-Bayes when ham misclassification
is minimized and as well when spam misclassification is minimized. SA-Supervised
and SA-Bayes both dominate the remaining runs. These runs, SA-Nolearn, SA-
Standard, and SA-Unsupervised, show ROC curves that intersect many times, in-
dicating that their relative ROCAC scores are likely to be uninformative.

Classification Performance - Pure Learning Filters

Table IV and figure 6 show the classification performance of six pure learning

Filter Ham Misc. (%) Spam Misc. (%) Overall Misc. (%) 1-ROC Area (%)

Bogofilter 0.08 (0.03-0.16) 6.63 (6.39-6.88) 5.43 (5.23-5.63) 0.08 (0.05-0.10)
SpamBayes 0.17 (0.09-0.27) 5.86 (5.63-6.10) 4.81 (4.63-5.01) 0.16 (0.12-0.20)
SA-Bayes 0.17 (0.09-0.27) 2.10 (1.96-2.24) 1.74 (1.63-1.86) 0.15 (0.11-0.18)

SpamProbe 0.34 (0.23-0.49) 1.03 (0.93-1.14) 0.90 (0.82-0.99) 0.09 (0.05-0.13)
DSPAM 1.28 (1.06-1.54) 1.98 (1.84-2.12) 1.85 (1.73-1.97) 1.03 (0.90-1.17)
CRM-114 3.26 (2.91-3.65) 0.99 (0.90-1.09) 1.41 (1.31-1.52) 1.10 (0.94-1.27)

Table IV. Filter Misclassification - Pure Learning Filters

filters (including SA-Bayes, the learning component of Spamassassin, also reported
above). For this group of runs we have no baseline, and wish instead to evaluate
their relative performance. The columns labelled ham misclassification and spam
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Fig. 6. ROC Curves for Supervised Learning Filters

misclassification show nearly opposite effects. Bogofilter offers the least number
of ham misclassifications and the greatest number of spam misclassifications, while
CRM shows the opposite.

To divide the filters into groups separated by significant differences in classifica-
tion performance, we considered ham and spam separately; for each we performed
a paired test between every pair of runs. Each column in table V summarizes the
results of these 30 tests, corrected using Holm’s stepdown method. Every pair of
runs from different boxes shows a significant different difference (p < 0.05), while
every pair in the same box does not. We see that the runs are divided into four
groups with respect to ham classification performance, and four (different) groups
with respect to spam classification performance. Although ham and spam mis-
classification performance yields nearly opposite rankings, we note that Bogofilter,
SpamBayes, and SA-Bayes are distinguished by their spam performance but not
by their ham performance. Similarly, CRM-114 and SpamProbe; and also DSPAM
and SA-Bayes, are distinguished by their ham performance but not by their spam
performance.
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Overall Misclassification results are largely reflective of spam misclassification
results, and are not analyzed further. The ROC curves show that the curves
for Bogofilter, SpamProbe, and SA-Bayes intersect one another in many places
throughout the operating range, but SA-Bayes and Bogofilter appear to have a
lower spam misclassification proportion when the ham misclassification proportion
is low (i.e. less than 0.3%). All three dominate SpamBayes by a narrow mar-
gin and dominate DSPAM and CRM-114 by substantial margins. ROCAC scores
largely reflect the major differences observable in the curves, but fail to provide a
meaningful distinction among Bogofilter, SpamProbe, SA-Bayes, and SpamBayes.

Effects of Learning on Classification Performance

Table VI summarizes the fraction of spam received by X as a function of the number

Initial Spam % Final Spam % Odds Ratio p

75.7 (75.0, 76.6) 86.6 (86.0, 87.1) 2.07 (2.04, 2.10) 0.00

Table VI. Spam as a fraction of incoming messages

of messages received. Although the overall spam fraction is 81.6%, logistic regres-
sion indicates that this fraction increased from 75.7% to 86.6% (an odds ratio of
2.07, p < .001) over the eight months during which our email stream was collected.
Figure 7 shows a piece-wise approximation of this function juxtaposed with the
regression line.

Tables VII and VIII summarize the ham and spam misclassification fractions

Filter Initial Misc. (%) Final Misc. (%) Odds Ratio p

Bogofilter 0.19 (0.06, 0.62) 0.02 (0.00, 0.17) 0.08 (0.00, 1.98) 0.12
CRM-114 4.53 (3.71, 5.52) 2.08 (1.56, 2.75) 0.45 (0.29, 0.69) 0.00
DSPAM 1.52 (1.09, 2.12) 1.03 (0.67, 1.58) 0.68 (0.35, 1.33) 0.26
SA-Bayes 0.31 (0.13, 0.72) 0.06 (0.02, 0.26) 0.21 (0.03, 1.52) 0.12

SA-Human 0.01 (0.00, 0.09) 0.45 (0.15, 1.38) 54 (2, 1222) 0.01
SA-Nolearn 0.32 (0.14, 0.71) 0.09 (0.02, 0.31) 0.27 (0.04, 1.72) 0.17
SA-Standard 0.38 (0.12, 1.19) 0.00 (0.00, 0.07) 0.00 (0.00, 0.40) 0.02

SA-Supervised 0.19 (0.06, 0.66) 0.01 (0.00, 0.15) 0.05 (0.00, 1.80) 0.10
SA-Unsupervised 0.39 (0.15, 0.98) 0.01 (0.00, 0.10) 0.02 (0.00, 0.47) 0.01

SpamBayes 0.23 (0.10, 0.58) 0.10 (0.03, 0.37) 0.44 (0.07, 2.96) 0.40
SpamProbe 0.96 (0.56, 1.65) 0.05 (0.01, 0.17) 0.05 (0.01, 0.26) 0.00

Table VII. Ham Learning Performance

as functions of the number of messages processed. Each row estimates the initial
misclassification proportion, the final misclassification proportion, and the odds
ratio between the two. 95% confidence limits and p-values are given for each.
Figures 8 through 18 provide graphical representations of these functions.

Of particular interest is the “learning” performance of SA-Nolearn; as this system
has no learning component, its performance may be used to gauge any change in
‘difficulty’ of the spam messages over the eight months. Table VIII shows that SA-
Nolearn’s spam misclassification fraction increases from 7.73% to 11.37% (p < .001),
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Filter Initial Misc. (%) Final Misc. (%) Odds Ratio p

Bogofilter 7.95 (7.41, 8.53) 5.50 (5.10, 5.94) 0.68 (0.59, 0.77) 0.00
CRM-114 1.90 (1.61, 2.24) 0.45 (0.35, 0.57) 0.23 (0.16, 0.33) 0.00
DSPAM 7.02 (6.33, 7.77) 0.23 (0.18, 0.30) 0.03 (0.02, 0.04) 0.00
SA-Bayes 2.51 (2.21, 2.85) 1.74 (1.52, 2.00) 0.69 (0.55, 0.87) 0.00

SA-Human 1.67 (1.40, 1.98) 0.64 (0.52, 0.79) 0.38 (0.27, 0.53) 0.00
SA-Nolearn 7.73 (7.25, 8.25) 11.37 (10.76, 12.02) 1.53 (1.37, 1.72) 0.00
SA-Standard 16.07 (15.22, 16.96) 2.67 (2.43, 2.92) 0.14 (0.13, 0.16) 0.00

SA-Supervised 1.68 (1.44, 1.96) 1.36 (1.16, 1.59) 0.81 (0.61, 1.07) 0.13

SA-Unsupervised 18.03 (17.13, 18.98) 2.67 (2.44, 2.92) 0.12 (0.11, 0.14) 0.00
SpamBayes 5.91 (5.46, 6.39) 5.82 (5.38, 6.29) 0.99 (0.85, 1.14) 0.82
SpamProbe 1.29 (1.08, 1.56) 0.81 (0.67, 1.00) 0.63 (0.45, 0.88) 0.01

Table VIII. Spam Learning Performance
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Fig. 7. Spam Growth

indicating that the nature of spam has changed so as to make it ‘more difficult.’
Figure 8 confirms this trend, but also shows anomalous spikes in misclassifications
centred at about 6,000 and 17,000 messages. SA-Nolearn’s ham misclassification
fraction shows no significant slope over the eight-month interval.

All learning filters show a reduction in both ham and spam misclassification
fractions as more messages are processed, though not all reductions are large or
significant. In particular, confidence intervals for the ham misclassification odds
ratio are very large, due to the fact that the curve is fitted to few points – of the
order of ten for the better-performing runs. Subject to this caveat, The plotted
curves show a good fit between piecewise approximation and logistic regression.
Possible exceptions are DSPAM, SA-Standard, and SA-Unsupervised. DSPAM’s
spam misclassification curve, shown in figure 16, has a piecewise approximation
that appears to be more concave than the regression curve. SA-Standard and
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Fig. 8. SA-Nolearn Spam Misclassification as a function of Messages Processed
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Fig. 9. SA-Standard Misclassification as a function of Messages Processed

SA-Unsupervised (figures 9 and 11) both indicate substantially lower spam mis-
classification rates prior to the virus-induced anomaly at message 6,000, followed
by consistent improvement notwithstanding the backscatter anomaly at message
17,000. We observe that the initial misclassification fraction of a number of sys-
tems is substantially better than the final misclassification fraction of others.

For completeness, we included SA-Human in our analysis. SA-Human’s ham mis-
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Fig. 10. SA-Supervised Misclassification as a function of Messages Processed
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Fig. 11. SA-Unsupervised Misclassification as a function of Messages Processed

classification fraction shows a large significant increase with a huge confidence in-
terval [odds ratio 54 (2, 1222)], indicating that this measurement is unstable, rather
than that X suffered some degeneration in discriminatory ability. Further investi-
gation reveals that the positive odds ratio may be accounted for entirely by three
automated (but legitimate) messages received the same day from the same source.
SA-Human’s apparent decrease in spam misclassification may also be accounted for
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Fig. 12. SA-Bayes Misclassification as a function of Messages Processed
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Fig. 13. SA-Human Misclassification as a function of Messages Processed

by the anomalous spike at 17,000 messages.

Misclassification by Genre

In the course of examining the misclassified messages, we identified several message
genres that we suspect might be associated with the filters’ performance. Ham
messages were classified into seven genres:
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Fig. 14. Bogofilter Misclassification as a function of Messages Processed
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Fig. 15. CRM114 Misclassification as a function of Messages Processed

(1) Advertising. Messages from companies or organizations having a relationship
with the recipient.

(2) Cold Call. Messages from individuals with whom X had no prior correspon-
dence or relationship.

(3) Delivery. Messages from an email server pertaining to the delivery of an email
message.
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Fig. 16. DSPAM Misclassification as a function of Messages Processed
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Fig. 17. SpamBayes Misclassification as a function of Messages Processed

(4) List. Mailing list messages, broadly defined. This genre includes automated
mailing lists, service messages from mailing lists, and ad hoc messages consisting
of general information copied to a large number of recipients.

(5) News. News clipping and digest services to which X is subscribed.
(6) Personal. Mail specifically addressed to X by an individual; the equivalent of

first class mail.
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Fig. 18. SpamProbe Misclassification as a function of Messages Processed
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SA-Standard 4 2 0 0 0 0 0 6
SA-Super 1 0 0 1 1 0 3 6
Bogofilter 1 0 0 2 1 0 3 7
SA-Human 0 0 0 3 4 0 1 8
SA-Unsuper 5 0 0 1 0 1 3 10
SA-Bayes 1 0 0 4 1 1 8 15

SpamBayes 1 0 2 5 1 3 3 15
SA-Nolearn 1 0 4 0 3 9 0 17
SpamProbe 3 2 4 5 1 8 8 31

DSPAM 15 5 9 28 6 35 18 116
CRM-114 7 15 13 78 10 135 37 295

Incoming Ham 0% 1% 17% 13% 14% 51% 4% 9038

Table IX. Ham Misclassification by Genre

(7) Transaction. Responses to electronic internet transactions, such as receipts,
travel itineraries, shipping information, passwords, acknowledgements, or sta-
tus information.

Spam messages were classified into five genres:

(1) Advertising. Messages sent indiscriminately to X aimed at acquiring some or
all of X’s wealth.

(2) Backscatter. Delivery messages from a third-party server, rejecting a message
not sent by X, but forged to appear to have been sent by X. These messages
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CRM-114 72% 8% 12% 4% 4% 397
SA-Human 14% 66% 10% 7% 4% 413
Spamprobe 48% 17% 17% 7% 12% 421
SA-Super 28% 36% 22% 5% 9% 605
DSPAM 58% 8% 17% 3% 14% 791
SA-Bayes 45% 19% 17% 8% 11% 840

SpamBayes 50% 16% 25% 7% 2% 2348
Bogofilter 68% 14% 10% 2% 6% 2656

SA-Standard 17% 29% 5% 0% 49% 2999

SA-Unsupervised 9% 31% 7% 1% 52% 3246
SA-Nolearn 51% 24% 5% 0% 20% 3802

Incoming Spam 92% 1% 0% 0% 8% 40048

Table X. Spam Misclassification by Genre

are deemed to be spam (as opposed to Delivery ham messages) because they
are a direct consequence of spam.

(3) Demographic. Advertising messages for goods and services of marginal value
sent to a specific demographic group to which X belongs.

(4) Targeted. Messages addressed to X for no reason other than X’s membership
in a broad identifiable group (profession, geographic location, appearance on a
subject-related web-page, etc.).

(5) Virus. Messages that contain malware.

Table IX shows the number of misclassified ham messages, by genre, for each filter.
Also shown is an estimate of the proportion of all ham represented by each genre.
Four of the runs have no personal misclassifications, a much lower fraction than
would be suggested by the fact that this genre comprises 51% of all ham. At the
other end of the spectrum, CRM-114 misclassifies 135 personal ham messages, or
about 3% of all such messages. DSPAM also misclassifies a high number of personal
messages: 35, or about 0.75% of the total.

In general, advertising, cold call, and delivery messages each represent a small
proportion of overall ham and a disproportionately large number of misclassifica-
tions. Personal messages represent disproportionately few misclassifications, while
transaction, list, and news fall in between.

Table X shows the estimated fraction of misclassified spam messages, by genre,
for each filter, as well as the fraction of all spam represented by each genre. The vast
majority of spam messages are advertising, with backscatter representing a mere
1%. Yet nearly as many backscatter messages are misclassified. In particular, we
note that SA-Human and SA-Super misclassify a fraction of backscatter messages
approaching or exceeding 50%. Three-fifths of all of SA-Human’s misclassifications
are attributable to misclassified backscatter. The reason for this is that X was
overwhelmed by the burst of backscatter occurring at 17,000, and skipped over
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many of these messages without recording a judgement4.

Discussion and Comparison

Evaluation Measures

Although widely reported, accuracy has little value in evaluating and comparing
spam filters. The consequences of ham and spam misclassification are materially
different, while measurements of accuracy conflate them. The computation of ac-
curacy depends directly on the ratio of ham to spam messages in the incoming
email, and also on the threshold parameter used by the filter to transform scores
into judgements. For a given filter, the problem of optimizing accuracy reduces to
the decision-theoretic problem of picking the best threshold [Lewis 1995] for the
anticipated ham-to-spam ratio (hs = a+c

b+d ; a, b, c, d from table I). Tables III and IV
include overall misclassification fraction (1-accuracy) which reflect influence of the
systems’ default threshold parameters. Every system in this study, had its thresh-
old been set to optimize accuracy5, would have yielded an unacceptably high level
of ham misclassification (see table XI).

Filter Ham Misc. Spam Misc. Overall Misc.

SpamProbe 0.94 0.44 0.54
SA-Super 1.62 0.49 0.69
SA-Bayes 1.97 0.40 0.69
Bogofilter 1.25 0.59 0.71

SpamBayes 1.60 0.61 0.79
DSPAM 1.90 1.03 1.19
CRM-114 3.95 0.75 1.34

SA-Nolearn 5.53 2.77 3.28
SA-Standard 2.98 3.88 3.71
SA-Unsuper 10.64 1.67 3.32

Table XI. Effect of Optimizing Accuracy

Hidalgo [2002] discusses the use of cost-sensitive evaluation to mitigate these
difficulties:

The main problem in the literature on [spam] cost-sensitive categoriza-
tion is that the [ham-spam cost ratios] used do not correspond to real
world conditions, unknown and highly variable. No evidence supports
that classifying a legitimate message as [spam] is 9 nor 999 times worse
than the opposite mistake.

This criticism – dependence on highly variable external factors, arbitrary filter pa-
rameters, and arbitrary evaluation weights – applies to a large class of combined
evaluation measures (cf. Sebastiani[2002]). To this criticism we add a note of cau-
tion with respect to the statistical power of filter evaluations. Ham misclassification

4X subsequently deployed an ad-hoc filter to identify backscatter messages and to record a judge-
ment automatically.
5The results presented here are the result of a hypothetical run for which the optimal threshold

was known in advance. Lewis discusses automatic methods of adjusting the threshold so as to

optimize error rate (i.e. 1 − accuracy) and other measures.
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rates for good filters are exceptionally low, amounting to only a handful of mes-
sages in our sample of nearly 50,000. These rates are even lower when stratified
by genre, often yielding 0 occurrences (e.g. four of the runs misclassified no per-
sonal email messages). The statistical uncertainty due to these small numbers will
dominate any weighted score, potentially masking significant differences in spam
misclassification rates for filters with comparable ham misclassification rates.

Hidalgo suggests the use of ROC curves, originally from signal detection theory
and used extensively in medical testing, as better capturing the important aspects
of spam filter performance. In the event that the ROC curve for one filter is uni-
formly above that of another, we may conclude that there is a parameter setting
such that its performance exceeds the other for any combination of external factors
and evaluation weights. The area under the ROC curve serves to quantify this
difference and, perhaps surprisingly, represents a meaningful quantity: the proba-
bility that a random spam message will receive a higher score than a random ham
message. In the event that the ROC curves intersect, one may consider the area
under only a subset, the normal operating region. For a spam filter, this operating
region would likely be the fragment of the curve above the range of acceptable ham
misclassification fraction values.

Tuttle et al [2004] present spam filter effectiveness using a tabular representation
of an ROC curve: hm vs. (1− sm). Further, they choose 1% hm as a proxy for the
normal operating region and report sm at this value. More broadly, ROC-based
evaluation for machine learning and information retrieval is of current interest. We
found that ROC analysis provided us with valuable insight to our results, comple-
menting but not obviating distinct ham and spam misclassification analyses. With
one inversion (SA-Standard vs. SA-Unsupervised) ROCAC values agreed with our
subjective ranking of the systems. The ROC curves for these two runs intersect; SA-
Standard demonstrates superior performance within the normal operating region
(small hm) while SA-Unsupervised overtakes it for large hm.

Like the measures described above, recall, precision, and precision-recall curves
evaluate the tension between ham and spam classification performance. Precision
and recall originate with information retrieval, in which the objective is to discover
relevant documents from a collection. The measures are asymmetric, predicated on
the general assumption that there are many fewer relevant than non-relevant doc-
uments in the collection. Recall is the fraction of all relevant documents retrieved
by the system; precision is the fraction of retrieved documents that are relevant.
Within the context of spam classification, it is necessary to consider either the ham
or the spam messages as relevant, and the others as not relevant. This labelling
is arbitrary, but must be identified. Ham precision (hp = a

a+b ) and ham recall
(hr = a

a+c ), in which ham messages are deemed to be relevant, have perhaps the
more intuitive meaning within the context of spam filtering. The complementary
measures are spam precision (sp = d

c+d ) and spam recall (sr = d
b+d ).

Ham recall is the same thing as ham accuracy (1 − hm). Spam recall is the
same thing as spam accuracy (1 − sm). But these two measures are not used as
a pair in information retrieval evaluation, which assumes a consistent labelling of
relevant and non-relevant documents. Instead, ham precision and ham recall (or
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spam precision and spam recall) are used together6. Ham precision depends on
sm but depends also on hr and hs: hp = r

1+r where r = hs · hr
sm . r, the ratio of

ham to spam delivered to the mail file, is proportional to the incoming ham-spam
ratio. Ham precision simply recasts r as a fraction as opposed to a ratio. Thus
we conclude that precision and recall, taken as a pair, exhibit the same essential
shortcoming as accuracy. Average precision, the analog of ROCAC, is similarly
influenced by hs.

The medical diagnostic testing literature (cf. [Rothman and Greenland 1998])
casts the problem as one of testing a population of patients for a particular disease.
The test offers a diagnosis of diseased or disease-free. To apply diagnostic testing
metaphors to spam, we (arbitrarily but with some support from connotation) la-
bel spam to be diseased and ham to be disease-free. The variables a, b, c, d from
table I are known as true negatives, false negatives, false positives, and true posi-
tives respectively. Ham accuracy is specificity, while spam accuracy is sensitivity 7.
The literature also discusses negative predictive value and positive predictive value.
Negative predictive value is the probability that a random patient, on receiving a
negative diagnosis, is really disease-free. Positive predictive value is the probability
that a random patient, on receiving a positive diagnosis, is really diseased. Predic-
tive values use Bayesian inference to combine two distinct estimates: specificity (or
sensitivity), which is a property of the diagnostic test, and prevalence, which is a
property of the population being tested. Negative predictive value is exactly ham
precision as described above, while positive predictive value is spam precision.

Precision, like predictive value, is very useful in predicting the in situ performance
of a filter. We believe it should, like predictive value, be computed post-hoc by
combining separate measurements of filter performance and incoming ham-spam
ratio, rather than used as a fundamental measure of filter performance.

Previous Studies

Sahami et al [1998] conducted an early study that indicated the utility of Bayesian
classifiers for spam filtering. One experiment used a corpus of 1789 actual e-mail
messages (11.8% ham; 88.2% spam), split chronologically into 1538 training mes-
sages and 251 test messages. Both ham and spam precision/recall curves were
calculated. The best-performing system achieved ham recall of 100% and spam
recall of 98.3%. From these values and the test sample size we may compute
hm = 0%(0% − 9.5%) and sm = 1.7% (0.4% − 4.6%). A second experiment clas-
sified the spam component of a similar corpus into two genres: pornographic and
non-pornographic. The genres were used in an evaluation of ternary classification,
but not for a stratified evaluation of binary classification. A third experiment most
closely resembles those which we conducted: an individual’s email messages were
captured over one year, classified manually, and used as training data. The filter
was applied to further week’s email received by the same individual. The resulting
classification table, shown in table XII, demonstrates hm = 1.7% (0.3% − 4.9%),

6The information retrieval literature defines fallout, which in this context would be the same as
sm and therefore equivalent to spam recall. Recent evaluations often report precision and recall;

rarely fallout.
7To our knowledge, no analog of overall accuracy exists in medical diagnostic testing.
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sm = 20% (9.6% − 34.6%). Sahami et al further examine the three misclassified

Contingency table % Ham Misc. % Spam Misc. % Misc.

ham spam

ham 174 9

spam 3 36

1.7% (0.3%-4.9%) 20% (9.6%-34.6%) 5.41 (2.82-9.25)

Table XII. Sahami et al

ham messages, observing two to be newsletter messages and one to be a personal
message that includes a spam message as an attachment.

Androutsopoulos et al [2000] contribute Ling Spam, a publicly available corpus
for evaluating spam filters. Ling Spam consists of 2412 ham messages from a
mailing list, combined with 481 spam messages received by an individual. Ling
Spam provides a common evaluation suite for autonomous studies, subject to the
caveat that it does not include chronological or other header information that might
disclose the source of the messages, and the ham messages may not resemble typical
email.

In their experiments, Androutsopoulos et al use ten-fold cross validation [Kohavi
1995], in which a corpus of size n is divided randomly into 10 subsets of size n

10 . Each
subset is used as the test set with the remaining nine subsets combined for training.
The combined sets of results are treated as one set of n Bernoulli trials. Spam
precision, spam recall, and weighted accuracy are reported for three different values
of the parameter λ which was used both as a threshold value and evaluation weight.
The authors suggest total cost ratio (TCR) as a measure to distinguish the weighted
accuracy of a filter from that of a simplistic baseline approach with classifies every
message as ham. Table XIII recasts these results in terms of contingency tables
and misclassification probability estimates.

λ Contingency table % Ham Misc. % Spam Misc. % Overall Misc.

1
2410 83

2 398
0.08 (0.01-0.30) 17.3 (14.0-20.9) 2.94 (2.35-3.62)

9
2410 104

2 377
0.08 (0.01-0.30) 21.6 (18.0-25.6) 3.67 (3.01-4.41)

999
2412 168

0 313
0 (0-0.12) 34.9 (30.7-39.4) 5.81 (4.98-6.72)

Table XIII. Androustopoulos et al

Tuttle et al [2004] evaluate three common machine-learning algorithms – naive
Bayesian classifiers, support vector machines, and boosted decision trees – within
the context of an enterprise mail system. They deployed a novel architecture to
capture email messages and judgements from several users, keeping this information
private and under the control of the users to whom the messages belonged. Test
runs were “pushed” to the users’ corpora, and only statistics were reported back to
the central system. Seven users participated in the study, and corpora consisting
of up to 800 messages per user were subject to ten-fold cross-validation. Results
for each of the seven corpora were computed and the mean of these results was
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reported. The primary experiment used individual corpora with 400 messages each,
approximately 62% spam, and reported piece-wise ROC curves (see table XIV) for
hm ∈ {0.0%, 0.5%, 1.0%, 2.0%, 5.0%}. Other experiments fixed hm = 1.0% as a
proxy for the operating range. Confidence intervals are not reported but we note the

%Ham Misc. % Spam Misc.
Naive Bayes SVM AdaBoost

0.0 5.9 6.2 10.5

0.5 4.1 4.4 8.1

1.0 2.8 3.5 5.6

2.0 2.0 2.2 2.6

5.0 1.1 0.5 1.3

Table XIV. Tuttle

overall sample size of 2800 suggests that they would be comparable in magnitude to
those for Sahami et al and Androutsopoulos et al. Tuttle et al perform a 2-factor
analysis of variance and conclude that there is a significant difference in results
among the seven corpora, but not among the three filters.

Holden [2004] conducted five experiments to compare seven open-source spam
filters, including Bogofilter 0.13.7.2, SpamProbe 0.8b, and Spamassassin 2.55 (with
Bayes filter disabled). As training and test corpora, Holden used various combi-
nations of personal email received during July and the first week of August 2003.
The most comprehensive experiment uses 1270 messages (200 ham; 1070 spam).
Ten-fold cross validation is used to compute spam precision and spam recall sep-
arately for each of the runs; the mean and standard deviation over the ten runs
are reported for each measure. In addition, the weighted accuracy and TCR are
computed, for various λ, considering all ten runs to be one set of Bernoulli trials.
From these reported summary values, we reproduced the contingency tables8 and
estimated hm and sm, reported in table XV. Holden provides a qualitative descrip-
tion of the few misclassified ham messages, observing a preponderance of messages
like welcome advertising, news clippings, mailing lists, etc.

Yerazunis [2004b] reports the results of applying various configurations of the
CRM-114 filter to the Spamassassin Public Mail Corpus [spamassassin.org 2003] –
4,147 messages (2750 ham; 1397 spam) hand-selected from various email sources.
Evaluation was based on a method similar to ten-fold cross validation. Ten random
permutations of the corpus were generated and the filter was run in supervised
configuration on each permutation. Accuracy was computed using the combined
results from only the last 500 messages in each run, for a total of 5000 messages.
We note that these 5000 results do not constitute Bernoulli trials, as they are not
independent. In particular, we expect only 1 − (1 − 1

4743 )5000 of the messages in
the corpus (65% or 3083 messages) to be represented in these results. That is,
1917 of the results will be based on applying the filter to a repeated messages.
We would expect the results for a repeated message to be strongly correlated and

8Mean recall and mean precision as a pair yield insufficient information to reproduce the contin-

gency table. While the mean of recalls for the subsets equals overall recall, the mean of precisions

does not equal overall precision. Overall accuracy, in place of mean precision, suffices.
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Filter Contingency % Ham Misc. % Spam Misc. % Misc.

Bayesian Mail
Filter

188 12

12 1058
6.00 (3.14-10.25) 1.12 (0.58-1.95) 1.89 (1.21-2.80)

Bogofilter
199 60

1 1010
0.50 (0.01-2.75) 5.61 (4.31-7.16) 4.80 (3.69-6.13)

Quick Spam
Filter

165 112

35 958
17.5 (12.5-23.5) 10.5 (8.7-12.5) 11.6 (9.9-13.5)

SPASTIC
139 577

61 493
30.5 (24.2-37.4) 53.9 (50.9-56.9) 50.2 (47.5-53.0)

SpamAssassin
199 214

1 856
0.50 (0.01-2.75) 20.0 (17.6-22.5) 16.9 (14.9-19.1)

SpamProbe
189 11

11 1059
5.50 (2.78-9.63) 1.03 (0.51-1.83) 1.73 (1.09-2.61)

dbacl
194 223

6 847
3.00 (1.11-6.42) 20.8 (18.4-23.4) 18.0 (15.9-20.3)

Table XV. Holden

therefore contribute little new information. Weighting them equally affords them
undue influence in the overall score. This consideration introduces no bias, but
does affect the effective sample size. We use a first-order approximation of 3083
for the sample size in reporting the misclassification probability estimates in table
XVI.

CRM-114 Configuration % Misc.

Train on Everything 2.98 (2.41-3.65)
Train on Error 1.39 (1.01-1.87)

Train until No Error 1.07 (0.74-1.50)

Pure Bayesian 1.85 (1.40-2.39)
Peak Window Value 1.59 (1.18-2.10)

Token Sequence Sensitive 1.56 (1.15-2.06)
Token Grab Bag 1.43 (1.04-1.91)

Sparse Binary Polynomial Hash 1.39 (1.01-1.87)
Markovian Matching 1.14 (0.79-1.58)

Table XVI. Yerazunis - Spamassassin Corpus

Yerazunis [2004a] reports on two experiments using private email corpora. Using
a corpus of approximately 3000 personal messages, he estimated the accuracy of hu-
man classification by having the same individual classify the set of messages on two
distinct occasions. Ten cases of disagreement were observed between these two ef-
forts, from which Yerazunis concludes that human accuracy is 5990

6000 = 99.84%. Table
XVII reports our estimated misclassification rate, based on the (far-reaching) as-
sumption that the individual’s classification efforts were independent. Dependence
between the two efforts would cause the misclassification rate to be underestimated
by an unknown quantity.

Yerazunis also reports the results of applying CRM-114 to private email over
selected time periods since November, 2002, which are recapitulated in table XVIII.
It is our understanding based on correspondence with the author that these results
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Filter Corpus Size % Misc.

Human 3000 0.17 (0.08 - 0.31)

Table XVII. Yerazunis - Human Classification of Private Email

Interval Size (ham,spam) Errors % Misc.

Nov. 1-30, 2002 5849 (3914, 1931) 4 0.07 (0.02-0.18)
Sept. 1-14, 2003 > 2500 0 0.00 (0.00-0.12)

Feb. 1 - Mar 1, 2004 8738 (4498, 4240) 1 0.01 (0.00-0.06)

Table XVIII. Yerazunis - CRM-114 Performance on Private Email

were attained using the methodology akin to cross-validation detailed above, rather
than from the in situ performance of the filter.

Zdziarski [2004] reports 99.95% to 99.991% accuracy for DSPAM based on an
unspecified methodology. Spamassassin, Bogofilter, and SpamBayes have been the
subject of unpublished internal evaluations, the raw results of which may be found
at their respective project sites. Burton [2002b] reports 99.7% accuracy for Spam-
Probe, but cautions:

Finally a word of advice. An individual user evaluating different spam
filters should not give too much weight to the accuracy figures quoted
by the authors. Only a side by side comparison on a single corpus can
be useful as a means of comparison. Different authors compute their
numbers in slightly different ways on their own (unique) email corpus.
A user looking to install a filter should pick one that they are comfortable
installing and be happy with the results. Any of the filters based on Paul
[Graham]’s technique should be extremely accurate for most people.

Conclusions

Supervised spam filters are effective tools for attenuating spam. The best-performing
filters reduced the volume of incoming spam from about 150 messages per day to
about 2 messages per day. The corresponding risk of mail loss, while minimal, is
difficult to quantify. The best-performing filters misclassified a handful of spam
messages early in the test suite; none within the second half (25,000 messages).
A larger study will be necessary to distinguish the asymptotic probability of ham
misclassification from zero.

Most misclassified ham messages are advertising, news digests, mailing list mes-
sages, or the results of electronic transactions. From this observation, and the fact
that such messages represent a small fraction of incoming mail, we may conclude
that the filters find them more difficult to classify. On the other hand, the small
number of misclassifications suggests that the filter rapidly learns the characteris-
tics of each advertiser, news service, mailing list, or on-line service from which the
recipient wishes to receive messages. We might also conjecture that these misclas-
sifications are more likely to occur soon after subscribing to the particular service
(or soon after starting to use the filter), a time at which the user would be more
likely to notice, should the message go astray, and retrieve it from the spam file. In
contrast, the best filters misclassified no personal messages, and no delivery error
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messages, which comprise the largest and most critical fraction of ham.
A supervised filter contributes significantly to the effectiveness of Spamassassin’s

static component, as measured by both ham and spam misclassification probabili-
ties. Two unsupervised configurations also improved the static component, but by
a smaller margin. The supervised filter alone performed better than than the static
rules alone, but not as well as the combination of the two.

The choice of threshold parameters dominates the observed differences in perfor-
mance among the four filters implementing methods derived from Graham’s and
Robinson’s proposals. Each shows a different tradeoff between ham accuracy and
spam accuracy. ROC analysis shows that the differences not accountable to thresh-
old setting, if any, are small and observable only when the ham misclassification
probability is low (i.e. hm < 0.1%).

CRM-114 and DSPAM exhibit substantially inferior performance to the other
filters, regardless of threshold setting. Both exhibit sustained learning throughout
the email stream, leading us to conjecture that their performance might asymptot-
ically approach that of the other filters. From a practical standpoint, this learning
rate would be too slow for personal email filtering as it would take several years at
the observed rate to achieve the same misclassification rates as the other systems.
CRM-114 was designed to be used in a train on error configuration, and does not
self-train. This configuration could account for a slow learning rate as CRM-114
avails itself of the information in only about 1,000 of the 50,000 test messages. In
an effort to ensure that we had not misinterpreted the installation instructions,
we ran CRM-114 in a train-on-everything configuration and, as predicted by the
author, the result was degraded.

Spam filter designers should incorporate interfaces making them amenable for
testing and deployment in the supervised configuration (figure 4). We propose the
three interface functions used in algorithm 1 – filterinit, filtereval, and filtertrain
– as a standardized interface. Systems that self-train should provide an option to
self-train on everything (subject to correction via filtertrain) as in algorithm 2.

Ham and spam misclassification proportions should be reported separately. Ac-
curacy, weighted accuracy, and precision should be avoided as primary evaluation
measures as they are excessively influenced by threshold parameter setting and the
ham-spam ratio of incoming mail. ROC curves provide valuable insight into the
tradeoff between ham and spam accuracy. Area under the ROC curve provides a
meaningful overall effectiveness measure, but does not replace separate ham and
spam misclassification estimates. Each case of ham misclassification should be ex-
amined to ascertain its cause and potential impact.

Caution should be exercised in treating ham misclassification as a simple propor-
tion. Extremely large samples would be needed to estimate it with any degree of
statistical confidence, and even so, it is not clear what effect differences in propor-
tion would have on the overall probability of catastrophic loss. The use of a filter
may mitigate rather than exacerbate this risk, owing to the reduction in classifica-
tion effort required of the user. We advance the proposition that, at the misclassifi-
cation rates demonstrated here, the end-to-end risk of loss is dominated by human
factors and exceptional events, and is comparable to that of other communication
media.
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