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DNS over UDP

Issues with DNS over UDP

Well-known issues:

> no source address validation: huge DDoS attacks by
reflection/amplification

» requires IP fragmentation for large messages (DNSSEC)
> no privacy

» unreliable transport

Each individual issue can be worked-around: RRL, Ed25519 for
DNSSEC, DTLS or DNSCurve for privacy. ..

Solution to all four problems: TCP+TLS (see DPRIVE, RFC 7858)
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Switch to DNS over TCP by default?

Scenario

Use persistent TCP connections between home routers and
recursive resolvers, for all customers of an ISP.
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Switch to DNS over TCP by default?
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Why is this situation useful to study?

» The resolver could stop supporting UDP queries (no reflection
attacks possible!)

» First step towards TCP+TLS for privacy

» Using persistent TCP connections can improve responsiveness
on lossy networks (not shown here)
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Switch to DNS over TCP by default?
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“But wait, our recursive resolvers won’t handle that much load!”

Goals: performance analysis

» Develop a methodology to measure resolver performance

» Experiment with lots of clients (millions) to assess whether a
recursive resolver can handle that much TCP connections

» See if resolver performance depends on the number of clients
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Challenges

Why would performance depend on the number of clients?

» performance of select-like event notification facilities
(bitmap of file descriptors, linear search)

» the kernel has to manage millions of timers (retransmission on
each TCP connection)

» memory usage, CPU cache
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Experimental challenges

Practical challenges

» How to spawn millions of DNS clients?

» Realistic query generator?

» Use Grid’5000: a “Hardware-as-a-Service” research platform,
with lots of powerful servers: 32 cores, 128 GB RAM, 10G
NICs;

» One dedicated server for unbound on Linux, everything served
from cache;

» Lots of Virtual Machines acting as clients;

» On each VM, open 30k persistent TCP connections towards
the server and send DNS queries with custom client in C with
libevent;
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Experimental setup: high-level

Grid'5000 network
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Methodology: how to measure performance?
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Methodology: how to measure performance?
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UDP/TCP comparison
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UDP/TCP comparison

Interpretation

Resolver performance analysis

» settings: unbound runs on 1 thread

» UDP performance does not really depend on the number of
clients, as expected (stateless)

» performance over TCP is good with very few clients, but then
drops rapidly

» it then reaches a plateau: stable 50k to 60k qgps even for 6.5
million TCP clients!

Hypotheses for performance drop

» more clients — lower query rate per client, so less potential for
aggregation (in TCP, select(), ...)

» TCP data structures may not fit anymore in CPU cache?
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Large-scale experiment

Experimented with up to 6.5 million TCP clients:
> required 216 client VM running on 18 physical machines
» each VM opened 30k TCP connections to resolver

» server had 128 GB of RAM, peak usage: 51.4 GB (kernel +
unbound)

» server performance: around 50k queries per second

Memory usage breakdown per connection: 4 KB for unbound
buffer, 3.7 KB for the rest (unbound, libevent, kernel)
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What about client query delay?

Medium-high load: 43 kQPS from 4.3M TCP clients
DNSServerExperiment_20180228_nancy-grisou-1thread-216VM_30000TCP_fail_144VM
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What about client query delay?
Increasing to overload, 360k TCP clients
20180503_lille-chifflet-1thread-24VM_15000tcp_1000qgps_gps-increase-85-30s
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What about multi-threading?

Impact of resolver threads on peak performance (300 TCP/VM, 48 VM, dual 10-core server)
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Assumptions and outlooks

Some assumptions we made

» everything was served from static zone in unbound (= cache)

» we currently open all TCP connections beforehand — cost of
client churn? what about TLS?

» client queries modelled as Poisson processes — any better
model?

» could we somehow experiment with constant query rate per
client?
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Setup

Detailed setup

» Linux 4.9 (Debian stretch)

» Unbound 1.6.7, with 4 KB of buffer per TCP connection, and
no disconnection timeout

» custom libevent-based client:
https://github.com/jonglezb/tcpscaler

» experiment orchestration:
https://github.com/jonglezb/dns-server-experiment

» Grid'5000: https://www.grid5000.fr

» Hardware details (mostly used Chetemi, Chifflet, Grisou):
https:
//www.grid5000.fr/mediawiki/index.php/Hardware
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Conclusions

DNS-over-TCP is feasible on a large scale

» with 6 million TCP clients, unbound can still handle around
50k queries per second per CPU core

» apparently unlimited number of TCP clients (requires OS
tweaking and enough RAM)

» better understanding of the server performance drop
» measure impact of client churn

» performance when not serving from DNS cache?

» apply methodology to more recursive resolver software
» experiment with TLS, QUIC, SCTP
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Bonus slides
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Aside: unreliable transport?

Queries or responses can be lost.

Retransmission timeout

Large retransmission timeout when a DNS query is lost!

Retransmission timeouts in stub resolvers:
» Linux/glibc: 5 seconds, configurable down to 1 second
» Android/bionic: identical (but there is a local cache)

» Windows: 1 second (since Vista)
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Why not just lower retransmission timeouts?
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Experimental setup, details
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Experimental setup, more details

» all queries are answered directly by unbound (100% cache hit)

» unbound was modified to allow infinite connections (very large
timeout)

» everything scripted with execo, fully reproducible:
https://github.com/jonglezb/dns-server-experiment
https://github.com/jonglezb/tcpscaler

> generating queries according to a fast Poisson process is tricky!

» epoll() has very low timeout resolution compared to poll()
or select()...

» Linux has several limits regarding the number of file
descriptors, but they can all be configured at runtime (thanks
Google. ..)
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