Is large-scale DNS over TCP practical?

Baptiste Jonglez
PhD student, Univ. Grenoble Alpes, France

14-18 May 2018
RIPE 76

1/24



DNS over UDP

Issues with DNS over UDP

Well-known issues:

> no source address validation: huge DDoS attacks by
reflection/amplification

» requires IP fragmentation for large messages (DNSSEC)
> no privacy

» unreliable transport

Each individual issue can be worked-around: RRL, Ed25519 for
DNSSEC, DTLS or DNSCurve for privacy. ..

Solution to all four problems: TCP+TLS (see DPRIVE, RFC 7858)

2/24



Switch to DNS over TCP by default?

Scenario

Use persistent TCP connections between home routers and
recursive resolvers, for all customers of an ISP.

Persistent
TCP connections

Customers

DNS resolver
(ISP)

3/24



Switch to DNS over TCP by default?

Persistent
TCP connections

DNS
queries

Customers

DNS resolver
Home router (IsP)

Why is this situation useful to study?

» The resolver could stop supporting UDP queries (no reflection
attacks possible!)

» First step towards TCP+TLS for privacy

» Using persistent TCP connections can improve responsiveness
on lossy networks (not shown here)

4/24



Switch to DNS over TCP by default?

D\I i

V-

Persistent
TCP connections

— K
= DNS
queries

Customers

DNS resolver
Home router (ISP)

“But wait, our recursive resolvers won’t handle that much load!”

Goals: performance analysis

» Develop a methodology to measure resolver performance

» Experiment with lots of clients (millions) to assess whether a
recursive resolver can handle that much TCP connections

» See if resolver performance depends on the number of clients

5/24



Challenges

Why would performance depend on the number of clients?

» performance of select-like event notification facilities
(bitmap of file descriptors, linear search)

» the kernel has to manage millions of timers (retransmission on
each TCP connection)

» memory usage, CPU cache

6/24



Experimental challenges

Practical challenges

» How to spawn millions of DNS clients?

» Realistic query generator?

» Use Grid’5000: a “Hardware-as-a-Service” research platform,
with lots of powerful servers: 32 cores, 128 GB RAM, 10G
NICs;

» One dedicated server for unbound on Linux, everything served
from cache;

» Lots of Virtual Machines acting as clients;

» On each VM, open 30k persistent TCP connections towards
the server and send DNS queries with custom client in C with
libevent;

7/24



Experimental setup: high-level

Grid'5000 network

- . ~.
e / ~.

Grid'5000
servers

DNS resolver

8/24



Methodology: how to measure performance?

20180502_lille-chetemi-1thread-24VM_1000tcp_1500qps_gps—increase-85-50s

100-

7 K”"vm
o
0 10

Query rate (black) / answer rate (red) in kQPS

20 30 40 50
Time (seconds)

9/24



Methodology: how to measure performance?

20180502_lille-chetemi-1thread-24VM_175tcp_1500qps_gps—increase-95-45s

S
3

Query rate (black) / answer rate (red) in kQPS

0 10 20 30 40
Time (seconds)

10/24



UDP/TCP comparison

300 -
@
5
v 200-
Q
(5]
g
E mode
o
E tcp
=% —A— udp
[
>
9 100-
X
<
]
o
0-

0 5000 10000 15000 20000 25000
Number of TCP or UDP connections

11/24



UDP/TCP comparison

Interpretation

Resolver performance analysis

» settings: unbound runs on 1 thread

» UDP performance does not really depend on the number of
clients, as expected (stateless)

» performance over TCP is good with very few clients, but then
drops rapidly

» it then reaches a plateau: stable 50k to 60k qgps even for 6.5
million TCP clients!

Hypotheses for performance drop

» more clients — lower query rate per client, so less potential for
aggregation (in TCP, select(), ...)

» TCP data structures may not fit anymore in CPU cache?

12/24



Large-scale experiment

Experimented with up to 6.5 million TCP clients:
> required 216 client VM running on 18 physical machines
» each VM opened 30k TCP connections to resolver

» server had 128 GB of RAM, peak usage: 51.4 GB (kernel +
unbound)

» server performance: around 50k queries per second

Memory usage breakdown per connection: 4 KB for unbound
buffer, 3.7 KB for the rest (unbound, libevent, kernel)

13/24



What about client query delay?

Medium-high load: 43 kQPS from 4.3M TCP clients
DNSServerExperiment_20180228_nancy-grisou-1thread-216VM_30000TCP_fail_144VM

8000~

6000 -

4000~

rtt_us

2000~

2'0
timestamp - rtt_us/1e+06 - start_time

40

14/24



What about client query delay?
Increasing to overload, 360k TCP clients
20180503_lille-chifflet-1thread-24VM_15000tcp_1000qgps_gps-increase-85-30s

6e+06 -

4e+06 -

rtt_us

2e+06-

0e+00-
10 20
- rtt_us/1e+06 - start_time

0
timestamp
15/24



What about multi-threading?

Impact of resolver threads on peak performance (300 TCP/VM, 48 VM, dual 10-core server)

800- -
2 o=
a =
O 600- .
é ’
@ e
[} ’
5 2
£ T
o .
@ rad
S 400- -
@
= Lo
3 .
<l P
% .
S .
a e
200- .
.
.
-
7
,
.
-
0 5 10 15 20

Resolver threads

16/24



Assumptions and outlooks

Some assumptions we made

» everything was served from static zone in unbound (= cache)

» we currently open all TCP connections beforehand — cost of
client churn? what about TLS?

» client queries modelled as Poisson processes — any better
model?

» could we somehow experiment with constant query rate per
client?

17/24



Setup

Detailed setup

» Linux 4.9 (Debian stretch)

» Unbound 1.6.7, with 4 KB of buffer per TCP connection, and
no disconnection timeout

» custom libevent-based client:
https://github.com/jonglezb/tcpscaler

» experiment orchestration:
https://github.com/jonglezb/dns-server-experiment

» Grid'5000: https://www.grid5000.fr

» Hardware details (mostly used Chetemi, Chifflet, Grisou):
https:
//www.grid5000.fr/mediawiki/index.php/Hardware

18/24


https://github.com/jonglezb/tcpscaler
https://github.com/jonglezb/dns-server-experiment
https://www.grid5000.fr
https://www.grid5000.fr/mediawiki/index.php/Hardware
https://www.grid5000.fr/mediawiki/index.php/Hardware

Conclusions

DNS-over-TCP is feasible on a large scale

» with 6 million TCP clients, unbound can still handle around
50k queries per second per CPU core

» apparently unlimited number of TCP clients (requires OS
tweaking and enough RAM)

» better understanding of the server performance drop
» measure impact of client churn

» performance when not serving from DNS cache?

» apply methodology to more recursive resolver software
» experiment with TLS, QUIC, SCTP

19/24



Bonus slides

20/24



Aside: unreliable transport?

Queries or responses can be lost.

Retransmission timeout

Large retransmission timeout when a DNS query is lost!

Retransmission timeouts in stub resolvers:
» Linux/glibc: 5 seconds, configurable down to 1 second
» Android/bionic: identical (but there is a local cache)

» Windows: 1 second (since Vista)

21/24



Why not just lower retransmission timeouts?

DNS over UDP

DNS over TCP
Stub Recursive Stub Recursive
resolver resolver resolver resolver
Query 1 Query 1
DNS ACK DNS .
resolution resolution
Response 1 delay

Response 1 delay

Query 2 Loss

Large

retransmission
timeout

\Faster
Query 2

\ retransmission

22/24



Experimental setup, details

Virtual Machine

Physical server
(one thread)

unbound
select /
epoll
TCP
connections

23/24



Experimental setup, more details

» all queries are answered directly by unbound (100% cache hit)

» unbound was modified to allow infinite connections (very large
timeout)

» everything scripted with execo, fully reproducible:
https://github.com/jonglezb/dns-server-experiment
https://github.com/jonglezb/tcpscaler

> generating queries according to a fast Poisson process is tricky!

» epoll() has very low timeout resolution compared to poll()
or select()...

» Linux has several limits regarding the number of file
descriptors, but they can all be configured at runtime (thanks
Google. ..)
24/24


https://github.com/jonglezb/dns-server-experiment
https://github.com/jonglezb/tcpscaler

