
From “shotgun parsers”
to more secure stacks

Sergey Bratus
Meredith L. Patterson

Dan ‘TQ’ HirschSergey

Wednesday, November 6, 13

“Shotgun parser”, the
deadliest of patterns

• Input data checking, handling interspersed
with processing logic

Wednesday, November 6, 13

Dispatches from the Beagle

• Travel to the past

• Collect specimens of vulns

• Build a cladistics

Wednesday, November 6, 13

“Darwin’s Rootshell
Finches”

• Complex software written by
experts

• Subtle bugs that took a while to
find & exploit

• Critical: remote code exec,
pre-auth, core protocols/stacks

• Underlying data format
complexity reason why bugs
happened

Wednesday, November 6, 13

A Brief Recap of LangSec

• Recognizer handles input, enforces expectations of
subsequent code, paranoid is good.

• Processing code gets the job done, less paranoid
(but “might need more sanity checks”).

Input Recognizer
Processor“Contract”/

Expectations

mlp

Wednesday, November 6, 13

A Brief Recap of LangSec

• Recognizer handles input, enforces expectations of
subsequent code, paranoid is good.

• Processing code gets the job done, less paranoid
(but “might need more sanity checks”).

Input Recognizer
Processor“Contract”/

Expectations

Wednesday, November 6, 13

A Brief Recap of LangSec

• Recognizer handles input, enforces expectations of
subsequent code, paranoid is good.

• Processing code gets the job done, less paranoid
(but “might need more sanity checks”).

Input Recognizer
Processor“Contract”/

Expectations

Wednesday, November 6, 13

A Brief Recap of LangSec

• Recognizer handles input, enforces expectations of
subsequent code, paranoid is good.

• Processing code gets the job done, less paranoid
(but “might need more sanity checks”).

Input Recognizer
Processor“Contract”/

Expectations

Wednesday, November 6, 13

“Bringing the Wrong Weapon
to a Fight”

• Nearly every Rails bug so far, 2013

• IE8 anti-XSS filters fiasco,
Pwnie for Most Epic Fail 2010

Recognizer is your system’s
weapon against programming

by crafted input
(“weird machines”)

“Tool-using Finch”
Wednesday, November 6, 13

The Lulziest Myths of
Input Handling (I)

• Input sanitization: “you can suppress
‘bad stuff ’ in input to make it safe”

• Reality: Safety is a property of your input as a
language. Only recognition assures it.

Sergey

Wednesday, November 6, 13

The Lulziest Myths of
Input Handling (II)

• Escaping is “just string replacement”

• Reality: Proper escaping is a language
property. Only recognition assures it.

Wednesday, November 6, 13

The Lulziest Myths of
Input Handling (III)

• Input sanitization: “you can suppress ‘bad
stuff ’ in input+output to make it safe”

• Reality: Halting problem. Deal with it.

Wednesday, November 6, 13

IE8 Anti-XSS Epic Fail
• IE8 deploys RegExp rewriting of

server responses to suppress XSS

• Renders “safe” sites vulnerable:
“Abusing IE8s XSS Filters”, Vela Nava & Lindsay,
http://p42.us/ie8xss/

• Google saves:

<OB{J}ECT[/+\t].*?((type)|(codetype)|(classid)|
(code)|(data))[/+\t]*=

<LI{N}K[/+\t].*?href[/+\t]*=

<[i]?f{r}ame.*?[/+\t]*?src[/+\t]*=

X-XSS-Protection: 0

Wednesday, November 6, 13

http://p42.us/ie8xss/
http://p42.us/ie8xss/

“Have substitution,
will compute”

• Substitution is computation, too,
especially when some component will do it
repeatedly for you

• Best ex.: Mario Heiderich’s “Got your Nose”:
no-JS CSS-only HTML password recovery

• password manager brings the loop

• SVG elements bring the “if”

• suddenly, it’s a party in your browser

Wednesday, November 6, 13

“Ruby off Rails”
CVE-2013-0333

Wednesday, November 6, 13

Convert_json_to_yaml

“The problem with the Yaml backend is that
its convert_json_to_yaml method is
incredibly naive ... [it] uses StringScanner to
walk through the JSON string, replacing
JSON tokens with their YAML equivalents.”
 http://ronin-ruby.github.com/blog/2013/01/28/new-rails-poc.html TQ

Wednesday, November 6, 13

https://github.com/rails/rails/blob/v3.0.19/activesupport/lib/active_support/json/backends/yaml.rb
https://github.com/rails/rails/blob/v3.0.19/activesupport/lib/active_support/json/backends/yaml.rb
https://github.com/rails/rails/blob/v3.0.19/activesupport/lib/active_support/json/backends/yaml.rb#L29-L96
https://github.com/rails/rails/blob/v3.0.19/activesupport/lib/active_support/json/backends/yaml.rb#L29-L96
http://rubydoc.info/stdlib/strscan/StringScanner
http://rubydoc.info/stdlib/strscan/StringScanner

“The method does not fully parse
JSON in order to emit proper YAML...”

• In other words, a finite state transducer

• But we know JSON and YAML are both
context-free

• This never had to happen :(

Wednesday, November 6, 13

“...nor does it validate that the
input is actually valid JSON.”

--- !ruby/hash:ActionController...

Not actually JSON

Wednesday, November 6, 13

“RootShell Finches”

• OpenSSH 3.3 Pre-auth
challenge-response,
by GOBBLES, 2002

• BIND 8.2 NXT record remote
buffer overflow,
by ADM [horizon/plaguez], 1999

• OpenBSD 4.0 remote IPv6
mbuff overflow,
by Core [ortega, gera], 2007

Sergey

Wednesday, November 6, 13

Your data format is a language.
Treat it as such.

• Make elements validatable on their own.

• Avoid having to validate complex
relationships between multiple elements
(“context sensitivity”) in input data

• The more context you need, the more the
devil has you.

Wednesday, November 6, 13

OpenSSH 3.3 Pre-Auth
remote buffer overflow

• Challenge-response vuln, exploited by
GOBBLES (sshutuptheo.tar.gz)

• “Heap-based overflow resulting from an
integer overflow”

• Reasonable-looking byte-buffer parser
 -- but something went awry

2002

Wednesday, November 6, 13

“Just us shotgun bytes here”

Consumes 4 bytes off
&incoming_packet

Consumes 4 bytes off
&incoming_packet,
then so many bytes

Aborts packet
if trailing bytes

Wednesday, November 6, 13

How did it work?

input_userauth_info_response(bad_packet)

xmalloc(nresp * sizeof(char*)) // too-big nresp -> too little memory

packet_get_string(NULL)

buffer_get_string(bad_packet, length_ptr)

buffer_get_int(bad_packet) // len > 256K -> jump to error handling

fatal(...)

fatal_cleanup()

(*cu->proc)(cu->context) // stomp on *cu->proc and you win!

Wednesday, November 6, 13

Where did it go wrong?

• * operator manipulates user-supplied value

• The result of the arithmetic is not checked!

• Not enough memory allocated

• Read nresp strings ... all copies of shellcode

• Since buffer’s too small, stomps memory

• Specifically, (cu->proc)

• Read too-long string --> fatal()

• Pointer to cu->proc dereferenced == you win!
Wednesday, November 6, 13

How to do it right:

h_sequence(h_length_value(h_uint32(),

 h_length_value(h_uint32(),

 h_char())),

 h_end_p());

Wednesday, November 6, 13

The syntax-semantics boundary
is a boundary of competence

• “Special cases” in code are either features
of the input data language
-- and must be treated as such --
or are violations of syntax-semantics
boundary, and should be avoided

• “Code smells” may signal problems with
data design, or worse.

Wednesday, November 6, 13

BIND 8.2 ADM-NXT
remote buffer overflow

• Representing a definite negative is hard

• NXT: Signable DNS record type
containing the interval containing a
non-existent name:
 a.foo.com. NXT c.foo.com.

• Added in RFC 2065, updated by RFC 2535

1999

Wednesday, November 6, 13

NXT query scheme

t666.c

Wednesday, November 6, 13

Recap: DNS & its RRs

Wednesday, November 6, 13

“When you have a shotgun
parser, Mr. Length Field is no

longer your friend”

Wednesday, November 6, 13

“Context sensitive is not a
safe place to be”

• Domain name is compressed

• Can only be checked after expanded with
offsets to substrings in preceding packet

• The expanded length must be
consistent/expected by the result buffer

Wednesday, November 6, 13

“Oh where did we go wrong...”

Wednesday, November 6, 13

Beware of context-sensitive
data formats

• Elements that must add up across a span of
data are danger

• “I’ll go parsing until the packet makes
sense, then discard the allocs” is danger

• The more context you need, the more the
devil has you.

Wednesday, November 6, 13

Recognize!

const HParser* init_character_string() {
 static const HParser *cstr = NULL;
 if (cstr)
 return cstr;

 cstr = h_length_value(h_uint8(), h_uint8());

 return cstr;
}

H_ARULE(cstr, init_character_string());

H_ARULE(txt, h_many1(cstr));

Wednesday, November 6, 13

Action!
const HParsedToken *act_txt(const HParseResult *p) {
 dns_rr_txt_t *txt = H_ALLOC(dns_rr_txt_t);

 const HCountedArray *arr = H_CAST_SEQ(p->ast);

 uint8_t **ret = h_arena_malloc(arr->arena,
 sizeof(uint8_t*)*arr->used);

 for (size_t i=0; i<arr->used; ++i) {
 size_t len = h_seq_len(arr->elements[i]);
 uint8_t *tmp = h_arena_malloc(arr->arena,
 sizeof(uint8_t)*len);
 for (size_t j=0; j<len; ++j)
 tmp[j] = H_INDEX_UINT(arr->elements[i], j);
 ret[i] = tmp;
 }
 txt->count = arr->used;
 txt->txt_data = ret;
 return H_MAKE(dns_rr_txt_t, txt);
}

Wednesday, November 6, 13

OpenBSD 4.0 remote
kernel mbuf overflow

• Found by Core’s ortega, gera Apr ’07

• Kernel remote exploitable IPv6 buffer
overflow via ICMPv6 fragmentation

• Interacts complexly with mbuf packet
buffer allocation scheme of OpenBSD

2007

Wednesday, November 6, 13

IPv6

Wednesday, November 6, 13

Chaining headers by NH type

Wednesday, November 6, 13

mbufs

Wednesday, November 6, 13

What happens with mbufs

• Packets are stored in chains of mbufs

• Headers get parsed & turned into memory
representation one at a time

• mbufs get copied and changed in place,
depending on previous mbufs in the chain

• Very context-sensitive

Wednesday, November 6, 13

Ensuring mbuf bytes are
contiguous in memory

Wednesday, November 6, 13

Wednesday, November 6, 13

What does
this code
smell like?

/* 451 lines omitted */

mlp

Wednesday, November 6, 13

What does this code smell like?

• Code smells are hints, not certainties

• Pragmatism dictates: look deeper.

Wednesday, November 6, 13

Wednesday, November 6, 13

What were they trying to do?

• You’d think one layer of the network stack
would be one layer of abstraction

• But its syntax and semantics are different
layers

Wednesday, November 6, 13

Design has been
about code patterns;

it should also be
about data patterns

• What do we mean when we say “offset”?

Wednesday, November 6, 13

What We Talk About When
We Talk About Offsets
• Packet offsets

• Where in the packet does data start?

• Buffer offsets

• Where in the buffer does an item start?

• 1 packet == 1 buffer == same value

• otherwise, not necessarily!

Wednesday, November 6, 13

How did they fix it?

Wednesday, November 6, 13

What does this code smell like?

Wednesday, November 6, 13

Stinky.

Wednesday, November 6, 13

You expected magic
bullets?

• OSVDB 23199: The TENEX Password Bug

• TENEX?

• Disclosure date:
1972-01-01

• Yes, really

Vampire Finch

TQ

Wednesday, November 6, 13

The evidence
// Kernel mode

// Note: originally written in PDP-10 assembly

int check_password(const char* user, const char* pwd) {

 const char* real_pwd = get_user_password(user);

 int i;

 for (i=0; pwd[i] != 0 && real_pwd[i] != 0; i++)

 if (pwd[i] != real_pwd[i])

 return 0;

 return 1;

}

sw0rdf!5h

Wednesday, November 6, 13

Take-away

• Your data format is a language. Treat it as such.

• Beware of context-sensitive data formats

• Design has been about code patterns; it
should be also about data patterns - actually,
data languages

• “The syntax-semantics boundary is a
boundary of competence.”
Protect it with correct recognizers.

Wednesday, November 6, 13

