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“Shotgun parser”, the 
deadliest of patterns

• Input data checking, handling interspersed 
with processing logic
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Dispatches from the Beagle

• Travel to the past

• Collect specimens of vulns

• Build a cladistics

Wednesday, November 6, 13



“Darwin’s Rootshell 
Finches”

• Complex software written by 
experts

• Subtle bugs that took a while to 
find & exploit

• Critical: remote code exec, 
pre-auth, core protocols/stacks

• Underlying data format 
complexity reason why bugs 
happened
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A Brief Recap of LangSec

• Recognizer handles input, enforces expectations of 
subsequent code, paranoid is good. 

• Processing code gets the job done, less paranoid 
(but “might need more sanity checks”).

Input Recognizer
Processor“Contract”/

Expectations

mlp
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“Bringing the Wrong Weapon 
to a Fight”

• Nearly every Rails bug so far, 2013

• IE8 anti-XSS filters fiasco, 
Pwnie for Most Epic Fail 2010

Recognizer is your system’s 
weapon against programming 

by crafted input 
(“weird machines”) 

“Tool-using Finch”
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The Lulziest Myths of 
Input Handling (I)

• Input sanitization:  “you can suppress 
‘bad stuff ’ in input to make it safe” 

• Reality:  Safety is a property of your input as a 
language.  Only recognition assures it. 

Sergey
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The Lulziest Myths of 
Input Handling (II)

• Escaping is “just string replacement” 

• Reality:  Proper escaping is a language 
property.  Only recognition assures it.
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The Lulziest Myths of 
Input Handling (III)

• Input sanitization:  “you can suppress ‘bad 
stuff ’ in input+output to make it safe” 

• Reality:  Halting problem. Deal with it. 
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IE8 Anti-XSS Epic Fail
• IE8 deploys RegExp rewriting of 

server responses to suppress XSS

• Renders “safe” sites vulnerable: 
“Abusing IE8s XSS Filters”,  Vela Nava & Lindsay, 
http://p42.us/ie8xss/

• Google saves: 

<OB{J}ECT[ /+\t].*?((type)|(codetype)|(classid)|
(code)|(data))[ /+\t]*=

<LI{N}K[ /+\t].*?href[ /+\t]*=

<[i]?f{r}ame.*?[ /+\t]*?src[ /+\t]*=

X-XSS-Protection: 0
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“Have substitution, 
will compute”

• Substitution is computation, too, 
especially when some component will do it 
repeatedly for you

• Best ex.: Mario Heiderich’s “Got your Nose”: 
no-JS CSS-only HTML password recovery

• password manager brings the loop

• SVG elements bring the “if”

• suddenly, it’s a party in your browser
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“Ruby off Rails” 
CVE-2013-0333
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Convert_json_to_yaml

“The problem with the Yaml backend is that 
its convert_json_to_yaml method is 
incredibly naive ... [it] uses StringScanner to 
walk through the JSON string, replacing 
JSON tokens with their YAML equivalents.”       
                   http://ronin-ruby.github.com/blog/2013/01/28/new-rails-poc.html TQ
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“The method does not fully parse 
JSON in order to emit proper YAML...”

• In other words, a finite state transducer

• But we know JSON and YAML are both 
context-free

• This never had to happen :(
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“...nor does it validate that the 
input is actually valid JSON.”

--- !ruby/hash:ActionController...

Not actually JSON
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“RootShell Finches”

• OpenSSH 3.3 Pre-auth 
challenge-response, 
by GOBBLES, 2002

• BIND 8.2 NXT record remote 
buffer overflow, 
by ADM [horizon/plaguez], 1999

• OpenBSD 4.0 remote IPv6 
mbuff overflow, 
by Core [ortega, gera], 2007

Sergey
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Your data format is a language. 
Treat it as such.

• Make elements validatable on their own.

• Avoid having to validate complex 
relationships between multiple elements 
(“context sensitivity”) in input data

• The more context you need, the more the 
devil has you. 
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OpenSSH 3.3 Pre-Auth 
remote buffer overflow

• Challenge-response vuln, exploited by 
GOBBLES (sshutuptheo.tar.gz)

• “Heap-based overflow resulting from an 
integer overflow”

• Reasonable-looking byte-buffer parser 
    -- but something went awry

2002
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“Just us shotgun bytes here”

Consumes 4 bytes off 
&incoming_packet

Consumes 4 bytes off 
&incoming_packet, 
then so many bytes

Aborts packet 
if trailing bytes
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How did it work?

input_userauth_info_response(bad_packet)

xmalloc(nresp * sizeof(char*)) // too-big nresp -> too little memory

packet_get_string(NULL)

buffer_get_string(bad_packet, length_ptr)

buffer_get_int(bad_packet) // len > 256K -> jump to error handling

fatal(...)

fatal_cleanup()

(*cu->proc)(cu->context) // stomp on *cu->proc and you win!
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Where did it go wrong?

• * operator manipulates user-supplied value

• The result of the arithmetic is not checked!

• Not enough memory allocated

• Read nresp strings ... all copies of shellcode

• Since buffer’s too small, stomps memory

• Specifically, (cu->proc)

• Read too-long string --> fatal()

• Pointer to cu->proc dereferenced == you win!
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How to do it right:

h_sequence(h_length_value(h_uint32(),

           h_length_value(h_uint32(),

                          h_char())),

           h_end_p());
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The syntax-semantics boundary 
is a boundary of competence

• “Special cases” in code are either features 
of the input data language 
-- and must be treated as such -- 
or are violations of syntax-semantics 
boundary, and should be avoided

• “Code smells” may signal problems with 
data design, or worse.
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BIND 8.2 ADM-NXT 
remote buffer overflow

• Representing a definite negative is hard 

• NXT:  Signable DNS record type 
containing the interval containing a 
non-existent name:
 a.foo.com. NXT c.foo.com.

• Added in RFC 2065, updated by RFC 2535

1999
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NXT query scheme

t666.c
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Recap: DNS & its RRs

Wednesday, November 6, 13



“When you have a shotgun 
parser, Mr. Length Field is no 

longer your friend”
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“Context sensitive is not a 
safe place to be”

• Domain name is compressed

• Can only be checked after expanded with 
offsets to substrings in preceding packet

• The expanded length must be 
consistent/expected by the result buffer 
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“Oh where did we go wrong...”
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Beware of context-sensitive 
data formats

• Elements that must add up across a span of 
data are danger 

• “I’ll go parsing until the packet makes 
sense, then discard the allocs” is danger 

• The more context you need, the more the 
devil has you. 
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Recognize!

const HParser* init_character_string() {
  static const HParser *cstr = NULL;
  if (cstr)
    return cstr;

  cstr = h_length_value(h_uint8(), h_uint8());

  return cstr;
}

H_ARULE(cstr, init_character_string());

H_ARULE(txt, h_many1(cstr));
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Action!
const HParsedToken *act_txt(const HParseResult *p) {
  dns_rr_txt_t *txt = H_ALLOC(dns_rr_txt_t);

  const HCountedArray *arr = H_CAST_SEQ(p->ast);

  uint8_t **ret = h_arena_malloc(arr->arena,
                        sizeof(uint8_t*)*arr->used);
  
  for (size_t i=0; i<arr->used; ++i) {
    size_t len = h_seq_len(arr->elements[i]);
    uint8_t *tmp = h_arena_malloc(arr->arena,
                               sizeof(uint8_t)*len);
    for (size_t j=0; j<len; ++j)
      tmp[j] = H_INDEX_UINT(arr->elements[i], j);
    ret[i] = tmp;
  }
  txt->count = arr->used;
  txt->txt_data = ret;
  return H_MAKE(dns_rr_txt_t, txt);
}
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OpenBSD 4.0 remote 
kernel mbuf overflow

• Found by Core’s ortega, gera  Apr ’07 

• Kernel remote exploitable IPv6 buffer 
overflow via ICMPv6 fragmentation

• Interacts complexly with mbuf packet 
buffer allocation scheme of OpenBSD

2007
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IPv6
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Chaining headers by NH type
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mbufs
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What happens with mbufs

• Packets are stored in chains of mbufs

• Headers get parsed & turned into memory 
representation one at a time

• mbufs get copied and changed in place, 
depending on previous mbufs in the chain

• Very context-sensitive
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Ensuring mbuf bytes are 
contiguous in memory
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What does 
this code 
smell like?

/* 451 lines omitted */

mlp
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What does this code smell like?

• Code smells are hints, not certainties

• Pragmatism dictates: look deeper.
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What were they trying to do?

• You’d think one layer of the network stack 
would be one layer of abstraction

• But its syntax and semantics are different 
layers
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Design has been 
about code patterns; 

it should also be 
about data patterns

• What do we mean when we say “offset”?
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What We Talk About When 
We Talk About Offsets
• Packet offsets

• Where in the packet does data start?

• Buffer offsets

• Where in the buffer does an item start?

• 1 packet == 1 buffer == same value

• otherwise, not necessarily!
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How did they fix it?
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What does this code smell like?
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Stinky.
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You expected magic 
bullets?

• OSVDB 23199: The TENEX Password Bug

• TENEX?

• Disclosure date: 
1972-01-01

• Yes, really

Vampire Finch

TQ
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The evidence
// Kernel mode

// Note: originally written in PDP-10 assembly

int check_password(const char* user, const char* pwd) {

  const char* real_pwd = get_user_password(user);

  int i;

  for (i=0; pwd[i] != 0 && real_pwd[i] != 0; i++)

    if (pwd[i] != real_pwd[i])

      return 0;

  return 1;

}

sw0rdf!5h
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Take-away

• Your data format is a language. Treat it as such.

• Beware of context-sensitive data formats

• Design has been about code patterns; it 
should be also about data patterns - actually, 
data languages

• “The syntax-semantics boundary is a 
boundary of competence.” 
Protect it with correct recognizers.
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