

Improving TCP/IP Security Through

Randomization Without Sacrificing Interoperability

Michael J. Silbersack

5/13/2006

http://www.silby.com/bsdcan06/

What does that title mean?

● TCP was not designed with an eye towards
security

● There are many attacks against TCP which can
be prevented without resorting to encryption or
keyed hashes

● Sometimes the obvious fix to a TCP security
problem leads to interoperability problems

Topics to discuss

● IP ID values
● Ephemeral Port Randomization
● TCP Initial Sequence Numbers
● TCP Timestamps

IP ID Values

● IP ID values are used for the purpose of IP
fragment reassembly

● If IP ID values are repeated too quickly, two
different packets can be reassembled together,
creating a corrupt packet

● Operating systems traditionally use a single
system-wide counter which increments by one
for each packet sent

● This leaks information about a host's level of
traffic and a host's identity

IP ID Fixes

● Use a ID value of 0 on fragments with the DF
(don't fragment) bit set
– Tried by Linux, some firewalls / NAT machines were

found to strip DF bits, causing a stream of
fragmented packets that all had the same ID value

● Store per-IP state and use a separate counter
for each IP (Linux)

● Use a LCG to generate psuedo-random ID
values that have a relatively long time between
repeats (OpenBSD)

IP ID fixes - simpler

● At EuroBSDCon I stated that the danger of
quickly repeated ID values has been overstated

● I have been informed that empirical tests have
shown that the TCP/UDP checksum is not
strong enough to detect all cases of corruption
if two packets with the same IP ID are
reassembled together.

TCP Connections: A Quick Review

● A TCP connection is identified by a 4-tuple:
– Source IP
– Source Port
– Destination IP
– Destination Port

● The destination port is usually a well known
port such as port 80 on a web server

● The source port is usually chosen from the
ephemeral port range by the operating system

TCP Sequence Numbers

● TCP uses 32-bit sequence numbers to track
how much data has been transmitted
– The SYN and FIN flags also count as a byte in the

data stream
● Each direction's sequence number is

independent, and is chosen by the operating
system at that end of the connection

● A sliding window is used, typically around 32K
in size. Packets with sequence numbers that
fall into this window are accepted.

A Sample Connection

IP 10.1.1.9.65500 > 10.1.1.237.80: S 2766364594:2766364594(0) win 65535 <mss
 1460,sackOK,wscale 1,timestamp 146016542 0>
IP 10.1.1.237.80 > 10.1.1.9.65500: S 4027082585:4027082585(0) ack 2766364595
 win 5792 <mss 1460,sackOK,timestamp 80799562 146016542,wscale 2>
IP 10.1.1.9.65500 > 10.1.1.237.80: . ack 4027082586 win 33304

<timestamp 146016542 80799562>
IP 10.1.1.9.65500 > 10.1.1.237.80: P 2766364595:2766364664(69) ack 4027082586

win 33304 <timestamp 146016542 80799562>
IP 10.1.1.237.80 > 10.1.1.9.65500: . ack 2766364664 win 1448 <timestamp
 80799563 146016542>
IP 10.1.1.237.80 > 10.1.1.9.65500: P 4027082586:4027083050(464) ack
 2766364664 win 1448 <timestamp 80799565 146016542>
IP 10.1.1.9.65500 > 10.1.1.237.80: F 2766364664:2766364664(0) ack 4027083050
 win 33304 <timestamp 146016542 80799565>
IP 10.1.1.237.80 > 10.1.1.9.65500: F 4027083050:4027083050(0) ack 2766364665
 win 1448 <timestamp 80799566 146016542>
IP 10.1.1.9.65500 > 10.1.1.237.80: . ack 4027083051 win 33303

<timestamp 146016542 80799566>

Cases of Security Breaking
Interoperability

● Implementation of OpenBSD ISN scheme in
FreeBSD

● Implementation of zeroed IP ID values in Linux
● Implementation of port randomization in

FreeBSD

Ephemeral Port Randomization

● Ephemeral ports have traditionally been
allocated in a sequential fashion, making it easy
for an attacker to figure out the next port to be
used
– One positive property of this behavior is that the

period of time before ephemeral port reuse was
maximized

● Ephemeral port randomization makes spoofing
attacks more difficult, nearly 2^16 times more
difficult if a large ephemeral port space is used
– But as a result, ports can be reused a few

milliseconds later

Port Randomization Problems

● After FreeBSD enabled port randomization, one
user with a FreeBSD machine running squid in
front of a FreeBSD machine running Apache
started to notice that some connections were
failing

● Disabling port randomization solved the
problem for him

● One of the failure cases was caught; a port was
being reused in 3ms

One Troubled Connection

23.606609 Client > Server: S 1670850402:1670850402(0)
23.606730 Server > Client: S 1392685077:1392685077(0) ack 1670850403
23.606742 Client > Server: . ack 1392685078
23.606751 Client > Server: P 1670850403:1670850611(208) ack 1392685078
23.609936 Server > Client: . 1392685078:1392686526(1448) ack 1670850611
23.609938 Server > Client: P 1392686526:1392687580(1054) ack 1670850611
23.609939 Server > Client: F 1392687580:1392687580(0) ack 1670850611
23.609957 Client > Server: . ack 1392687580
23.609960 Client > Server: . ack 1392687581
23.609995 Client > Server: F 1670850611:1670850611(0) ack 1392687581
23.610440 Server > Client: . ack 1670850612
23.641734 Client > Server: S 1670903298:1670903298(0)
23.641931 Server > Client: R 1392687581:1392687581(0) ack 1670850612
23.641939 Server > Client: R 0:0(0) ack 1670903299

Port Randomization Problems
Continued

● The glitch is a bug in the FreeBSD TCP stack –
but it is one that would never happen without
port randomization
– May be due to the sequence number landing within

the previous connection's window; a check that
should not be running for TIME_WAIT sockets

● Do other operating systems have lingering bugs
like this that port randomization will expose?

● For now, FreeBSD turns off port randomization
when the connection rate exceeds a certain
threshold

Classes of Initial Sequence
Numbers

● Time based – specified in RFC 793
– Compatible, but very insecure

● Random Positive Increments
– Compatible, with slightly better security

● Random
– Secure, but incompatible

● RFC 1948
– A good compromise between the two

IP Spoofing

● An exact guess at the ISN in a SYN-ACK
allows you to spoof a connection

● As you can only send data, this can be used to
attack rsh/rlogin with IP-based authentication
– Sending anonymous e-mails and other types of

attacks should be possible as well
● This attack was easy when time-based

sequence numbers were used
● Random positive increments make this attack

more difficult, but not impossible

Connection corruption

● Attacks well described in “Slipping in the
Window” by Paul Watson

● The following attacks work because TCP stacks
generally accept packets that have a seq #
value that is anywhere in the sliding window
– RST attacks
– SYN attacks
– Data injection attacks

How to defeat these attacks

● Ensure that the sequence numbers of each
connection are entirely independent of one
another
– Attackers will have to spoof the entire sequence

space
● Implement the countermeasures described in

tcpsecure so that not just any sequence
number in the window is accepted

Interoperability concerns

● Initial sequence numbers can be randomized...
– Except when the same 4-tuple is reused within a

short period of time
● Theoretical reasoning: If the same 4-tuple is

reused and the same sequence space is
overlapped, old duplicate packets may corrupt
the connection

● Practical reason: TIME_WAIT socket recycling
rules

The Time Wait State

● During a normal TCP socket close, the side of
the connection that starts to close the
connection will enter the time wait state for two
minutes (RFC 793)

● The purpose of the time wait state is to ignore
any old (or duplicate) packets still in the
network

● BSD-derived TCP/IP stacks will recycle a
TIME_WAIT socket only if the ISN in the SYN
packet is greater than the sequence number at
the end of the previous connection

Empirical TIME_WAIT recycling
results

● In order to verify the monotonically increasing
sequence number requirement, a FreeBSD
machine was modified so that it would generate
monotonically decreasing sequence numbers

● The results showed types of behavior that were
not expected

Empirical TIME_WAIT results

● Cisco IOS 12.3: All connections accepted
● FreeBSD: All connections delayed / failed
● Linux 2.6.11-FC4: All connections accepted

due to timestamp heuristic & tcpsecure
behavior also implemented

● NetBSD 2.0.2: tcpsecure behavior
● OpenBSD 3.7: tcpsecure behavior
● Windows XP SP2: All connections delayed /

failed

The tcpsecure Behavior

59.515622 IP Server > Client: F 993959099:993959099(0) ack 4086058688
59.515742 IP Client > Server: . ack 993959100
65.657308 IP Client > Server: S 4078507753:4078507753(0)
65.657610 IP Server > Client: . ack 4086058688
65.657741 IP Client > Server: R 4086058688:4086058688(0)
68.655831 IP Client > Server: S 4078507753:4078507753(0)
68.655914 IP Server > Client: S 2006422470:2006422470(0)

Connection Failures due to
randomized SYN ISNs: test setup

● Server: FreeBSD 4.11
● Client: FreeBSD 6.1 with Randomized ISN

patch, ephemeral port range 1024-65535
● Test tool: modified netrate, 25 threads, 5

second connection timeout
– In reality, most of these connections would never

have completed, but letting that happen would
cause all 25 threads to get stuck waiting at times

Connection Failures due to
randomized SYN ISNs: results

0 25 50 75 100 125 150 175 200 225 250
0

100

200

300

400

500

600

700

800

900

1000

Requested Connections / Second

T
ot

al
 E

rr
or

s
in

 3
00

 s
ec

on
d

s

Connection rate falloff due to
randomized SYN ISNs: test setup

● Client: FreeBSD 6.1 with Randomized ISN
patch, ephemeral port range 1024-65535

● Server: OpenBSD 3.8 Server
● Test tool: modified netrate, 25 threads, 50

second connection timeout
– No errors were reported during this test

● Caveat: Test not run with normal sequence
numbers

Connection rate falloff due to
randomized SYN ISNs: results

0 25 50 75 100 125 150 175 200 225 250
0

10

20

30

40

50

60

70

80

90

100

110

Requested Connections/Second

A
ct

ua
l C

on
ne

ct
io

ns
/S

ec
on

d

Who is negatively affected by
randomized SYN ISNs?

● Benchmarking tools
● Front-end web caches
● NAT boxes who have clients who all visit the

same sites

RFC 1948

● Steven Bellovin describes a near-perfect
solution to this problem in RFC 1948

● A system-wide secret is generated and stored
at boot time

● A system-wide time counter is incremented at a
constant rate

● Initial sequence numbers are generated as
follows:

● ISN = time + MD5(srcip, srcport, dstip, dstport,
secret)

One Flaw In RFC 1948

● For a certain tuple, sequence numbers are fully
predictable until the system reboots

● Example:
– A SMTP server uses RFC 1948 for all ISNs
– Spammer uses an AOL account to connect to that

SMTP server, records ISN values
– Spammer can now spoof connections from that

AOL IP to the SMTP server until it reboots
● If the hash is rekeyed, then monotonicity is

broken – so we can't fix it that way

TCP Security / Interoperability
Summary

● For security purposes, sequence numbers must
be unrelated to the sequence numbers of any
other connection

● For interoperability purposes, ISNs in SYN
packets must be monotonically increasing
– If this principle is violated, connection establishment

may stall whenever a TCP connection is reused
– If port randomization is used, port reuse may be a

common occurrence

A Sequence Number Survey

● Many ISN surveys have been done, but they
generally do not consider
– How RFC 1948 works
– That OSes may generate SYN and SYN-ACK

packets in different manners
● This survey focuses on a small range of

ephemeral ports and watches how they behave

The Graphs

● The graphs you're about to see were generated
by running a http benchmark utility against a
web server

● Tests were run in both directions so that the
ISN values in SYN and SYN-ACK packets
could both be observed

● Each line is a series of initial sequence
numbers captured in SYN / SYN-ACK packets
for a certain sip:sport:dip:dport tuple

The Graphs (continued)

● Caveat 1: I used different http test tools, and
didn't keep the connection rate the same during
each test. This should not affect the results...
– Except for random positive increments, which would

change their slope based on the connection rate
● Caveat 2: For OSes that I do not have the

source code to, the algorithm could be different
than it appears to be.

FreeBSD 4.2

Cisco IOS 12.3 SYN

Cisco IOS 12.3 SYN-ACK

FreeBSD SYN

FreeBSD SYN-ACK (no cookies)

FreeBSD SYN-ACK (cookies!)

Linux 2.6.11-FC4 SYN

Linux 2.6.11-FC4 SYN-ACK

NetBSD 2.0.2 SYN

NetBSD 2.0.2 SYN-ACK

OpenBSD 3.7 SYN

OpenBSD 3.7 SYN-ACK

OpenBSD's algorithm

ISN = ((LCG(t)) << 16) + R(t)

LCG(t) = a 15 bit output from a LCG
R(t) = a 15-bit random number generator

Bit 31 is toggled when the LCG is reset,
Bit 15 is always zero

The LCG is reset every 30000 uses or every 7200
seconds, whichever comes first

Windows NT 4 SP3

Windows XP SP2 SYN

Windows XP SP2 SYN-ACK

ISN Summary

● No two OSes are the same
– Why?

● The FreeBSD way best meets the conflicting
requirements of security and interoperability,
but it is not perfect

Improving the FreeBSD algorithm

● Flaws in the FreeBSD algorithm:
– As the ISN values in SYN-ACK packets are

randomized, there exists the possibility that the
same sequence space will be used and a duplicate
packet from the previous incarnation of the
connection will cause problems

– The RFC 1948 generated values in SYN packets
exhibit the inherent weakness in RFC 1948

Improving FreeBSD SYN-ACK ISNs

The dual-hash RFC 1948 variant

Another view of dual hashing

A View With Time Removed

TCP Timestamps

● The TCP Timestamp option was introduced in
RFC 1323

● Timestamps serve two main purposes:
– To allow for more accurate RTT calculations
– For Protection Against Wrapped Sequence

numbers (PAWS)
● All popular Operating Systems implement

Timestamps, although Windows does not like to
use them by default.

Timestamp Information Leakage

● Using a system-wide timestamp counter
reveals a host's uptime

● Using a system-wide timestamp counter
reveals which connections from a NAT machine
originate from the same machine behind NAT.

Quick Fixes to Timestamps

● NetBSD: Start each connection's timestamp at
zero

● OpenBSD: Start each connection's timestamp
randomized

● The problem:
– Timestamps are no longer useful for the purposes

of PAWS
– Linux makes the (reasonable) assumption that

timestamps are monotonic over connection
recycling in a few places

A Better Improvement For
Timestamps

● Use the RFC 1948 algorithm, but use only the
two IP addresses and the system-wide secret
as input.

● Preserves PAWS usage
● Generally obscures uptime
● Does not solve the NAT issue entirely
● Allows for an important security improvement

(next slide)

RFC 1948 Timestamp Security

● When timestamps are generated using RFC
1948, they will be predictable only on a per-IP
basis.

● Hosts can check 32-bit timestamps as well as
32-bit sequence numbers

● Assume that a 16-bit sliding window of
acceptable timestamps is used

● Spoofing packets is now 2^16 times as difficult
● Such a verification algorithm will still work if the

other host does not use RFC 1948 timestamps,
it will just not improve security.

Summary

● Security and Interoperability can coexist
● Significant testing is necessary to make this

happen
● Interoperability is more important than security

to some vendors

Questions?

