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This paper reports on several years of research on the Agora project. Agora is a

pure object-oriented programming language (OOPL) which means that objects

are its only language values and message passing is its only control structure.

This is quite exceptional as OOPLs either allow a wide range of language values

such as primitive values, objects, classes and interfaces, or, they only feature

objects but then de�ne many operations on them such as message passing,

parent assignment, adding a slot to an object, cloning and so on. When we

started the Agora project, we felt that such constructions were often chosen ad-

hoc and have no general `theory' behind them. That is why the Agora project

was started with a minimal OOPL in which nothing but objects and messages

where incorporated. We planned to add richer features on top of this model in

1

This paper discusses the design and implementation of the Agora lan-

guage. Many ideas behind Agora come from Scheme, to our opinion, still

one of the pearls of programming languages.

The most prominent ideas of Scheme are 1) Everything is a �rst class

value, 2) Scheme programs look the same as Scheme data structures, 3)

Function application and special form application are the only control

structures, and 4) The language can be extended by writing new special

forms.

One of the contributions of Agora is to transform these features into

object-orientation. 1) In Agora, everything is an object. 2) Agora pro-

grams themselves are nothing but objects, the data structures of Agora.

3) The only control structures of Agora are messages and `rei�er mes-

sages', the object-oriented analogue of special forms. 4) Agora can be

easily extended by writing new rei�er messages.

We will show that all these Agora characteristics are an immediate

consequence of its extremely simple meta-object protocol (MOP).
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2 Research Criteria

To reify means `to become a thing', `to materialize'.

is

pragmatic point of view

language-theoretical point of view

prototype-based language

re
ective language

order to study the semantic relationships between these features and the basic

message passing model. To our own surprise however, it was perfectly possible

to add these features to Agora without having to change the initial model at

all. Agora showed us that it possible to construct a layered language in which

the bottom layer solely consists of objects and messages, and onto which new

layers de�ning inheritance, cloning and re
ection can be added independently,

without having to change the original notions of objects and message passing.

Although this may sound like a trivial outcome, we will show that it is not.

Generally speaking, there are two ways of studying programming languages:

The studies languages from a programmer's per-

spective. The main issue here is how a language can improve the way

programmers think about their problems and structure their systems.

The studies programming languages

from a conceptual angle. Issues such as orthogonality, semantic simplicity

and regularity are the main concerns.

In conceiving Agora, we were strongly inspired by Scheme because we think

Scheme is an excellent combination of both points of view. On the one hand,

Scheme is conceptually well-understood and an easy-to-read formal description

of it exist [3]. On the other hand, Scheme is designed with su�cient pragmatism

in mind such that it can be used to write realistic software.

Several papers on Agora have already been published. These vary from

object-oriented calculi [11, 12, 10] and denotational semantics [15] that underly

Agora, towards more pragmatic explanations of how its constructions can be

used to structure programs [8, 14, 4]. In this paper, we follow the approach

taken in [13] and try to explain the big picture behind Agora, much in the

spirit of the famous Abelson and Sussman course [1] that explains the entire

Scheme story in one book. However the paper is not just a reformulation of

other papers, but explains material that has never been published before, such

as the re
ective architecture of Agora. Still, the paper contracts the ideas of

earlier Agora publications in one general philosophy.

In order to conduct our search for a minimal OOPL, we used a number of criteria

that naturally in
uenced the outcome of the research:

Although OOPLs come in several variants [19], the main thing they have in

common are objects and messages. While classes and inheritance are often

considered inherent to object-orientation, they merely give us the ability

to group several objects together. Hence we started with the hypothesis

of making a [17, 16, 2].

We chose to design a . One of the reasons for making

Agora re
ective was to enforce a well-designed semantics for it. Indeed,

by making a language re
ective, it becomes possible to alter its interpreter

from within itself. Thus, one has to reify the implementation details into
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3 The Agora Language

3.1 Agora Message Categories

(define

x 2)

x 2

x 2 define

3 + 4 + 3 4

x VARIABLE:3

VARIABLE: x 3

So far, Agora has been implemented in Scheme, Smalltalk, C++ and Java.

the modular interpreters approach

to stick as close to Scheme as possible

the language, and so the properties of the interpreter become very im-

portant because they eventually become visible to the programmer. After

implementing Agora several times , we still think that adding re
ection

operators to a language is a good research methodology to enforce its

simplicity, orthogonality and consistency.

We used [7], in which programming lan-

guages are constructed starting with an empty language and adding fea-

tures one by one. Adding new features often requires additional semantic

structures which sometimes require a complete redesign of the existing se-

mantics because they interact with the existing ones in a non-orthogonal

way. The modular interpreters approach favors a layered way of designing

languages such that the interactions between the di�erent layers can be

easily detected and studied. We used the same methodology: our goal

was to start with nothing but objects and messages and to investigate

how adding other features in
uenced this basic paradigm.

The �nal hypothesis is that, in resolving the design alternatives for Agora,

we tried . Hence, Agora can be re-

garded as the Scheme of object-orientation. We could not follow Scheme

when designing Agora's re
ective facilities, because Scheme is not re
ec-

tive. In these cases, the object-oriented transposition of Brown [18] was

chosen. Brown is a fully re
ective `closure' of Scheme.

This section introduces Agora without taking re
ection into account. In this

vanilla variant, the emphasis is completely on objects and messages. Section 3.1

explains Agora messages, sections 3.2, 3.3 and 3.4 show the nature of objects.

Scheme distinguishes between `ordinary functions' and `special forms'. Whereas

Scheme normally uses applicative order evaluation for its `ordinary' functions,

special forms are evaluated in a di�erent way. Consider for example the

expression. When encountering it, Scheme will apply the `de�ne' procedure

onto an unevaluated parameter and an evaluated parameter. The fact that

is not evaluated and that is evaluated depends on . Each special

form uses its own evaluation order.

Likewise, Agora knows two kinds of messages: ordinary messages and rei�er

messages. Ordinary messages correspond to ordinary function applications. An

example is where is sent to the evaluated with the evaluated as

argument. Rei�er messages correspond to the special forms of Scheme. An

example is which is used to de�ne a variable in Agora by sending

the message to the identi�er with the expression as parameter.

Hence, as in Scheme, the essential di�erence between ordinary messages and

rei�er messages is their evaluation order. Agora rei�er messages always consist

of completely capitalized identi�ers.
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Example:

�

receiverless; receiverful

ordinary; reifier unary; operator; keyword

Note that this is just a lexical problem that does not change the fundamental ideas of

Agora.

+

3 + 4

3 abs

dict at:"key"

message SUPER

myVariable VARIABLE: 4

- 5

myVariable

at:key put:athing

SELF

CURRENTLY:not IN:use

compute:value

compute:value METHOD: ((SELF try:value) + (5 abs))

METHOD:

compute:value

value

METHOD:

Besides the distiction between ordinary and rei�er message expressions,

Agora distinguishes between receiverful and receiverless message expressions.

Receiverless message expressions are exactly the same as `receiverful' message

expressions except that their receiver is syntactically missing. If we wouldn't

have them, it would be impossible to write realistic programs because the only

way to write programs using messages and objects is to write down messages to

messages to . . . to messages to objects. Although orthogonal and simple, this is

too much -calculus like to be of any use for writing real programs: it would

not even be possible to declare a variable since the name of the variable is not

an object, nor a message. At this point in the paper, the meaning of receiverless

message expressions is not yet important but it is not wrong to think of them

as function calls.

As a �nal note on Agora's syntax we mention that all messages come in

unary, operator and keyword form, just like in Smalltalk. Hence, Agora features

12 kinds of messages that vary along the dimensions ,

and . The complete system of

messages is summarized in �gure 1. We do not give an example of operator

rei�er messages, since there is no capitatised analogue of things like . Until

now we did not need them in our text-based variants of Agora. In a decent Agora

environment (like the Smalltalk implementation), rei�ers are denoted boldfaced

instead of capitalized, and then rei�er operators are perfectly possible .

Receiverful Operator

Ordinary Unary

Keyword

Operator

Rei�er Unary

Keyword

Receiverless Operator

Ordinary Unary

Keyword

Operator

Rei�er Unary

Keyword

Figure 1: Agora Syntactic Message Categories

The following expression elaborates on the Agora syntax. The in-

formal meaning of the expression is to install a method in the

object in which the expression occurs.

This is a rei�er keyword message . Its receiver is the receiverless or-

dinary keyword message expression , here acting as a formal

pattern. The argument is a receiverless ordinary unary message expres-

sion. The argument of the message is an ordinary operator message
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3.3.1 Variables

3.3.2 Methods

3.2 Agora Objects

3.3 Basic Agora Rei�ers

The exact technicalities of the rei�ers discussed here come from Agora98, the most recent

instantiation of Agora in Java [5].

+ 5 abs

SELF try:value SELF

SELF

null

lambda

[ ...; ...; ...; ... ]

x

VARIABLE:4

define-macro

VARIABLE:

VARIABLE:

x x

VARIABLE: 5 x x:

x

x:

METHOD:

METHOD:

expression with as argument. The receiver of the operator message is an

ordinary keyword message expression with as receiver.

is a receiverless rei�er unary message expression.

The simplest way to create an Agora object is to denote it by means of a

literal. Agora supports integer literals, 
oat literals, character literals, string

literals, boolean literals and . The corresponding objects are native and

the evaluator automatically creates them upon encountering a literal.

Besides these built-in objects, the Agora programmer can also create her own

objects by simply writing them down, similar to the way Scheme programmers

can make a new function by simply writing it down using the special

form. In Agora, such an `ex nihilo' created object is constructed by listing the

slots of the object between square brackets, separated by semicolons.

The entries of the object must be valid Agora message expressions. This in-

cludes ordinary and rei�er messages. Using rei�er message expressions like

, the programmer can install attributes in the object.

A particular variant of Scheme is de�ned by the implemented special forms.

This property is often used (using ) in programming language

courses, where Scheme is enriched with new constructions. Likewise, variants

of Agora are de�ned by the implemented rei�er messages. Therefore, Agora is

a language family instead of a language. This section explains the elementary

rei�er messages de�ned in most members of the family . Most of these rei�ers

install new attributes in the slots of ex nihilo created objects.

The simplest kind of attributes one can install in an object's slots are variables.

Variables are created by sending the rei�er message to an identi�er

with the initial value of the variable as argument. The message

installs two slots. Whenever a variable is declared by sending the message

, a reading slot named and a writing slot named are installed.

These slots are accessor methods to the variable. As in Self, users of the object

can read the variable by sending to the object. They can modify the variable

by sending with the new value as an argument.

As illustrated before, sending the rei�er message installs a method in an

object. The receiver of that message must be a receiverless message expression

acting as the formal pattern of the new method. The argument of

can be any expression serving as the body of the method. If more than one

5



5

5

f

g

3.3.3 Cloning Methods

3.3.4 Views

These views are also called `functional mixin-methods' in previous versions of Agora.

SELF

CLONING:

new

listnode new listnode next

elmt null

SELF

listnode VARIABLE:

[ next VARIABLE: null;

elmt VARIABLE: null;

new CLONING:

{ SELF next:null;

SELF elmt:null

}

]

circle: point

point VARIABLE:

[ x VARIABLE:0;

y VARIABLE:0;

circle:r VIEW:

{ radius VARIABLE:r;

inCircle:p METHOD:

{ ((p x) sqr + (p y) sqr) sqrt <= (SELF radius) }

}

]

expression determines the body, they may be grouped between curly braces (as

in Java) and separated by semicolons.

Following the object-oriented tradition, recursive methods are programmed

by sending messages to . Evaluation of this receiverless rei�er unary message

expression always returns the `current' receiver.

Agora does not support a primitive cloning operator because we did not want to

augment our message passing language by additional built-in operators. Instead,

a speci�c kind of attribute, called a cloning method, must be used to clone

objects. A cloning method is installed by sending the message to

a pattern, just like an ordinary method is declared. Upon invocation of an

installed cloning method, its body is executed in the context of a clone of the

receiver instead of the context of the receiver itself. The following example

illustrates this. In the example, a cloning method is installed in the ex

nihilo created object. Upon sending to the , the

and variables in the copy are initialised to . By default, the result of

a cloning method is the copy of the receiver to which the `cloning message' was

sent. Note that the evaluation of in a cloning method returns the copy of

the receiver.

Agora does not feature built-in operators to add or delete slots to and from

objects. Instead, a special kind of attribute, called a view, can be installed in

an object . A view is a method whose body contains a group (between and

) of expressions which will be evaluated in a new object that has the receiver

as parent link. The following expression gives an example of a point onto which

circle views can be laid by sending messages to the object.

6
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3.3.5 Mixins

3.3.6 Other Rei�ers

In previous papers, these mixins where termed `imperative mixin-methods' as they really

change the receiving object.

circle:

point point

circle: point radius

inCircle:

radius inCircle:

point VARIABLE:

[ x VARIABLE:0;

y VARIABLE:0;

circle:r MIXIN:

{ radius VARIABLE:0;

inCircle:p METHOD:

{ ((p x) sqr + (p y) sqr) sqrt <= (SELF radius) }

}

]

SUPER

TRY:CATCH:

RAISE

IFTRUE:IFFALSE:

WHILETRUE:

UNTILTRUE:

FOR:TO:DO:

A view does not destructively change the receiving object. When a

message is sent to the , a new object is created with the receiver ( )

as parent-of link. The slots of this extension are determined by evaluating the

body of the view in the context of the extension. The extension is the result of

sending the `view message'.

While views do not destructively change their receiver, mixins do . In the

following example, sending to the object, really adds a

variable and an method to the original point. All objects that can

access the point, can now also access and .

It is important to understand the di�erence between views and mixins. While

views only put an extra inheriting layer around an object, with the original ob-

ject as parent, mixins really change the object. Everyone refering to the object,

including views, will notice that the object has been destructively extended.

Mixins thus allow one to change an entire object hierarchy in one stroke.

It is important to notice from sections 3.3.1, 3.3.2, 3.3.3, 3.3.4 and 3.3.5

that Agora is a full-
edged OOPL with inheritance and cloning. Nevertheless,

objects are its only language values and message passing is its only built-in

operation.

Although many rei�ers exist, �gure 2 gives an overview and a short description

of a few frequently used ones. See the language manual [5] for more details.

Forwards a message to the parent object.

Tries an expression and catches an exception when needed.

Raises an exception.

Tests a conditional and evaluates one of the branches.

Leading-condition loop.

Trailing-condition loop.

Bounded loop.

Figure 2: Frequently Used Rei�ers
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4 Evaluating Agora Expressions

3.4 Local and Public Attributes

4.1 General

msg:arg

msg:

msg:

SELF

SELF SELF

VARIABLE: METHOD: CLONING: VIEW: MIXIN:

LOCAL elmt

next

listnode VARIABLE:

[ elmt VARIABLE: null; // same as elmt PUBLIC VARIABLE:null

next LOCAL VARIABLE: null

]

PUBLIC

id:x PUBLIC LOCAL METHOD: x id:

SELF id:4

id:4

Up until now we have explained what ordinary and rei�er messages are good

for. The semantics of receiverless messages has not yet been explained.

Agora objects actually consist of a local part and a public part. The public

part can be accessed by anyone. The local part can only be accessed by the

object itself, and this is what receiverless messages are good for: receiverless

messages are messages to the local part of the object in which they occur.

Thus, when encountering a message there are two possibilities. If the

message is receiverless, then there must be a message in the local part of

the object. The other possibility is that it concerns a receiverful message. Then,

there must be a message in the public part of the receiver of the message.

Inside an object, this receiver will be . As such, an object can send two

kinds of messages to itself. Receiverless messages are sent to its local part, while

receiverful messages to are sent to its public part. is a receiverless

unary rei�er message expression that always returns the current receiver.

Declaring an attribute using , , , or ,

by default installs that attribute in the public part of the object in which the

declaring expression occurs. In order to de�ne an attribute locally, the unary

message can be used. In the following example, the variable is ac-

cessible to everyone while the variable is only visible to methods declared

inside the list node.

The default modifying unary message is . One can also use both modi�ers

such as in . In this case, the method is

accessible from the outside. From the inside, it is accessible by

because it is public, as well as by because it is local.

In order to completely understand Agora, it is necessary to have a look at its

semantics. Again the parallel with Scheme will be drawn.

Looking at the internal details of a Scheme evaluator [1], it essentially consist

of the following ingredients:

A memory of cons cells containing Scheme data structures and programs.

Both are internally represented as Scheme lists.

A procedure that can be applied to any Scheme list. dispatches

over its argument list and calls the appropriate evaluation rule for it.

An environment system binding names to their values. is parame-

terised by an environment parameter with which it evaluates the expres-

sion at hand. The environment is recursively passed down the evaluator.
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apply

eval

apply

eval apply

eval

eval

eval

eval

send

send apply

eval apply

eval send

send eval

apply

apply

getLexicalEnv getFormals getBody

apply

Notice that we have also created an evaluator in Scheme, but still, closures were used to

implement the implementation structures. Closures can be regarded as objects.

In denotational semantics terminology, one says that the evaluator must be fully abstract.

A procedure to apply a function onto a suite of arguments. When

this happens, the body of the function is evaluated with which might

again consist of function applications that are handled by . This re-

cursive game between and ends when basic syntax like numbers

is evaluated.

An Agora evaluator is implemented in an object-oriented language and this

is part of the de�nition of Agora, just like functional list processing (i.e. applying

procedures on lists) is an inherent part of a Scheme evaluator. But besides this

di�erence, each of the above ingredients can be found back in Agora, albeit

translated into its object-oriented equivalent:

A memory of objects. These objects represent data structures (i.e. Agora

objects) and parse trees (i.e. Agora programs). Hence, just as in Scheme,

programs and data structures are represented in the same way.

All Agora parse tree objects understand the message . While the

Scheme dispatches over the expressions it has to evaluate, this dis-

patching is automatic in the Agora implementation: is sent to a parse

tree such that the message automatically arrives at the right implementa-

tion.

The message is parameterised by a context object that represents

the environment in which the expression is evaluated. This context object

recursively travels through the evaluator. It contains a reference to the

`current' lexical scope, the `current' self, the `current' parent etc.

Each Agora object is internally represented by an implementation level

object. This implementation level object understands a message

which takes a message and a list of arguments and produces another Agora

object. We consider as the object-oriented analogue of .

In the same way that the execution of a Scheme program can be considered

as a recursive game between and , the execution of Agora programs

can be seen as an alternating interaction of and . This is a very

fundamental notion which forms the basis for all the language design decisions

that have been made for Agora. The following properties further elaborate on

the fundamentality of and :

Seen through the eyes of the Scheme evaluator, functions are represented

as an abstract data type onto which is the operation. Once

is called on a function, it can access the internal details of the func-

tion consisting of its formal parameters, its lexical environment and its

body code. However, these constituents are invisible outside the func-

tion concept. It would not be a good idea to de�ne operations like

and and on functions, since this

would reveal the internal representation of functions . Therefore, Scheme

only de�nes on functions. In the same way, seen through the eyes

9
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4.2 Agora Abstract Syntax

4.3 Object Structures

send

apply apply

send send

send

eval

b

e ; : : : ; e

e ; : : : ; e

e:m e ; : : : ; e

e:M e ; : : : ; e

m e ; : : : ; e

M e ; : : : ; e

send send

of the Agora evaluator, is the only message on Agora objects. De�n-

ing more meta messages on objects would reveal more information about

objects than necessary [15].

In Scheme, takes a function and a list of arguments. evaluates

the body of the function using the environment of de�nition, augmented

with new bindings of arguments to formal parameters. The same is true

for the message in Agora. takes the name of the message to be

sent together with a list of actual arguments. It uses hidden arguments

like self references, environments or whatsoever, but evaluates the method

corresponding to the message in the context of the receiving object and

the actual arguments.

The remainder of section 4 will discuss these notions in depth. Section

4.2 summarizes the abstract syntax of Agora. Section 4.3 elaborates on the

way Agora objects are constructed and what looks like in detail. Finally,

sections 4.4 and 4.5 focus on .

Figure 3 gives an overview of the Agora syntax. It consists of basic

literals, ex-nihilo created objects, groups of expressions in methods, ordinary

messages, rei�er messages and their receiverless equivalents. The di�erence

between operator, unary and keyword messages exists only at a lexical level and

does not in
uence Agora's abstract syntax because a unary message is nothing

but a message with zero parameters and an operator message is just a message

whose pattern is made up of special operator symbols.

Basic Literals

Ex-nihilo Objects [ ]

Grouped Expressions

Ordinary Message Expressions ( )

Rei�er Message Expressions ( )

Ordinary Receiverless Message ( )

Rei�er Receiverless Message ( )

Figure 3: Agora Abstract Syntax

As already explained, an Agora object consists of a local part and a public

part. Internally, these are tied together by an object identity. Hence, every ex

nihilo created object (a `self') has a reference to an object identity. The object

identity has a reference to the public part and the local part of the self (i.e. the

object). An example of such a typical object structure can be found in �gure

4. The reason for making a distinction between objects and their identities will

be given in section 4.5.

The self is the only part of the object users are allowed to see. It is the entity

on which the message is implemented. Internally is implemented by

10
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pub

priv

pub
self

1 n

generators

eval

send

send

delegate

delegate

send

m o a ; : : : ; a o

id

g

do

c

do

Figure 4: Agora Object's Structure

forwarding the message through the chains of parts the object contains from

successive applications of views and mixins. Once the attribute corresponding

to the message is found, it is processed. While forwarding messages through

the object structure, a context object is built that contains the internal parts of

the object. This context is necessary to evaluate a method. Indeed, we saw in

section 4.1 that is parameterised by a context object. This context consists

of the information of the object in which the method to be evaluated occurs.

Now we are ready to explain the di�erence between message passing and del-

egation in Agora. Message passing is used to send messages to objects using the

operation that is only parameterised by the message pattern and the argu-

ments. Delegation in Agora consists of implicitely traversing the di�erent parts

of the object structure (following parent-of links formed by succesive invocation

of view and/or mixin attributes) until the method is found. The distinguish-

ing thing between message passing and delegation is the context object. In an

object, nothing is allowed to enter but the message pattern and the arguments.

Delegation on the other hand, juggles around lots of extra `hidden' arguments

in a context object [9].

In order to stay consistent with the terminology used in [15], the internal

parts of the object (the identity, the public and local parts) will henceforth be

called . Hence, objects understand the message while generators

implement the message . Apart from the message pattern and the pa-

rameters, is parameterised by a context object containing the internal

parts of the object that received the message through .

The Agora message passing operator is summarised in �gure 5. When a

message is sent to an object with arguments , refers to its

own identity generator (notice that is only visible for the object). From this

identity, it references the public part generator and delegates the message to it.

In each generator , delegating the message consist of looking up the message

in the method table. If it is there, the corresponding attribute is invoked by

sending it . If it is not there, the message is delegated to the following

generator in the chain. In this delegation process, a context object is passed

around that contains references to the object itself, the identity generator, the

public generator and the local generator. This context is used in in order to

evaluate the body code of the found attribute. Note that all the semantic rules

in this paper are given in an imaginary OOPL. As we have said before, the fact

that Agora is implemented in an OO medium is inherent to the de�nition of

Agora. We will explain this further in section 5.
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0
BBBB@

1
CCCCA

�

0
BBBB@

1
CCCCA

!

h i

h i

h i h i h i

hf gi h i h i

h i h i h i h i

h i h i h i

h i h i h i h i

h i h i h i

�

�

o:send m; a ; : : : ; a o:id:pub:delegate m; c; a ; : : : ; a

c

g:delegate m; c; a ; : : : ; a

att:do c parent g:parent ; a ; : : : ; a att g:lookup m

g:parent:delegate m; c; a ; : : : ; a

literal :eval c send

e : : : e :eval c e :eval c : : : e :eval c

c

loc c:loc:addFrame

pub rootPublic:addFrame

id pub; loc

parent rootPublic

self id

e : : : e :eval c e :eval c : : : e :eval c

e:m e ; : : : ; e :eval c e :eval c :send m; e :eval c ; : : : ; e :eval c

m e ; : : : ; e :eval c c:loc:delegate m; c; e :eval c ; : : : ; e :eval c

e:M e ; : : : ; e :eval c adHocEval c; e ;M; e ; : : : ; e

M e ; : : : ; e :eval c adHocEval c;M; e ; : : : ; e

send

( ) = ( )

where =

self = o

loc = o.id.loc

pub = o.id.pub

id = o.id

parent = o.id.pub.parent

( ) =

( [ ] ) if = ( )

( ) otherwise

Figure 5: Agora Message Passing Operator

Let us now turn to the evaluation rules for the syntax outlined in �gure 3. These

rules are given in �gure 6, in which we use angular brackets and to surround

parse tree objects.

( ) Create new basic object understanding

[ ; ; ] ( ) ( ); ; ( ) where

=

= ()

= ()

= new Identity( )

=

= new Object( )

; ; ( ) ( ); ; ( )

( ) ( ) ( ) ( ( ) ( ))

( ( ) ( ( ) ( ))

( ) ( ) ( )

( ) ( ) ( )

Figure 6: Evaluation Rules (part 1)

The evaluation rule for basic literals consists of creating a new basic object

which is also supposed to understand as its only implementation level

message.

Ex nihilo created objects are constructed by creating new generators for

the public and the local parts. From the semantics we see that this is

accomplished by attaching a frame (i.e. a generator with a parent-of link)

to the public of the unique Agora root object such that ex nihilo created

objects understand all the messages of the root. The local generator of the

newly created object consists of a frame attached to the local generator

of the context (i.e. the local generator of the object in which the

12
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4.5 The power of attributes

VARIABLE:

x VARIABLE:3

circle LOCAL VIEW: ...

e:m e ; : : : ; e

send

send

delegate do c; a ; : : : ; a

c

do

send

do

c c

do

expression occurs). Hence, the local part of objects is lexically scoped:

an object can access the attributes from the local part of the context in

which it occurs.

Evaluating a group of expressions in a context simply consists of evaluating

all the expressions from left to right in that context.

Evaluating an ordinary message ( ) is accomplished by evalu-

ating the receiver and the actual arguments in the same context, and then

sending the message using .

As explained in section 3.4, receiverless messages are looked up in the

local generator of the object. This local generator can be read from the

evaluation context, since it was put there when was invoked.

The �nal syntactic category to be evaluated are rei�er messages and re-

ceiverless rei�er messages. As explained, rei�er messages are the object-

oriented analogue of special forms. They are thus handled in an ad-hoc

manner. Let us elaborate on this by looking at the rei�er

message. If this rei�er message is sent (e.g. ), the ad-hoc

evaluation strategy will evaluate the initial value in the given context, and

will install a read and a write slot in the public generator that resides in

the context. Likewise, evaluating gives rise to

a view slot being installed in the local generator of the object in which

the expression occurs, that is, the local generator of the context.

As we have seen in �gure 5, a message to an Agora object is sent by looking it

up using . Once the message has been found, ( ) is sent

to the corresponding attribute. This attribute can be a variable accessor slot, a

method, a view, a mixin or a cloning method. This is pretty much the power of

the Agora paradigm: instead of de�ning all kinds of operators on objects such as

cloning, slot addition and deletion, parent assignment and so on, attributes of an

object are evaluated in the context containing the internal details of the object

in which the attribute was found. Each kind of attribute knows what to with

these details. Stated otherwise, Agora objects are strongly encapsulated (due

to ) but upon invocation of a message, attributes can access the internal

generators of the object they reside in [15]. Based on these internal generators,

extensions and clones of the receiver can be returned from the attributes.

Let us brie
y go through �gure 7 which gives the semantics for each kind

of attribute discussed in section 3.3. Apart from the variable accessor methods,

the technique used is always the same. When is sent to an attribute object

with a given context , a new context is constructed to evaluate the body

expression of the attribute. In each case, the local generator is extended to

contain the formals-actuals bindings.

In the for cloning methods, a copy of all the generators is created and a

new object is made with the copies. The body of the method is evaluated in

the context of the copied generators.

Particularly interesting is the di�erence between mixins and views. In both

cases, generators are extended. In the case of views, a new object is created

13
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4.6 Discussion

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA

variableGet:do c

variableSet:do c; a a

method:do c; a ; : : : ; a method:bodyCode:eval c

c

loc c:loc:addFrame a ; : : : ; a

pub c:pub

id c:id

parent c:parent

self c:self

cloning:do c; a ; : : : ; a

c

loc c:loc:copy :addFrame a ; : : : ; a

pub c:pub:copy

id pub; loc

parent c:parent:copy

self id

view:do c; a ; : : : ; a

c

loc c:loc:addFrame a ; : : : ; a

pub c:id:addFrame

id pub; loc

parent c:id

self id

mixin:do c; a ; : : : ; a

c

loc c:loc:addFrame a ; : : : ; a

pub c:pub:addFrame

id c:id:assign pub; loc

parent c:pub

self c:self

id

send

( ) return contents of the variable

( ) assign variable to

( ) ( ) with

=

= ( )

=

=

=

=

( ) cloning.bodyCode.eval(c') with

=

= () ( )

= ()

= new Identity( )

= ()

= new Object( )

( ) view.bodyCode.eval(c') with

=

= ( )

= ()

= new Identity( )

=

= new Object( )

( ) mixin.bodyCode.eval(c') with

=

= ( )

= ()

= ( )

=

=

Figure 7: Agora Attribute Invocation

in which the body expression is evaluated. A view frame is attached to the

such that later mixins on the parent will a�ect that view. In the case of

a mixin, the given object identity is provided with the extended public and

local generator, but the object and the object identity stay the same. Thus,

the di�erence between views and mixins is the main motivation for making a

distinction between objects and object identities.

In Agora, objects are strongly encapsulated and only understand . Nev-

ertheless, by cleverly using their internal structure, special purpose attributes

enable extension and cloning. The more complex the internal structure of ob-

jects, the more information contexts carry around and thus the more kinds of

attributes we can handle. This is the way we added inheritance and cloning

to Agora, without changing the basic paradigm of objects and messages. To

the best of our knowledge, Agora is the only language in which this is possible.

Other prototype-based languages add these features by enriching their MOP

with several operators such as cloning and slot addition and deletion. In [15],

this was called a `change in object model'. Seen from the modular interpreters

14
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5 Rei�cation and Absorption

5.1 Rei�cation of Primitives

do

send

send

up :up

send send

up

send

send

approach, Agora is a layered language: a new layer can be added to the lan-

guage by making objects and contexts richer and adding extra attributes that

use the additional information in their speci�c implementation of . But no

matter how rich the internal structure of objects might become, the evaluator

only uses such that the basic object model always stays the same.

A common criticism against Agora is that, although it is a nice theoreti-

cal model, it does not work in practice because all possible cloning methods,

view and mixin methods are installed the object upon creation of the

object. As such, it is not possible to reuse objects written by other people. For

cloning, this is not a big problem as one can always install a cloning method

in the root of the Agora hierarchy such that all decendants at

least understand . Extending objects `from the outside' is also possible, but

this requires a few additional constructs that will be de�ned in the next section.

This section extends Agora with re
ection operators. Re
ection can be modelled

as a combination of reifying implementation level structures into Agora, and

absorbing Agora objects back into the evaluator. This treatment of re
ection

is mainly due to Wand and Friedman [18] who investigated re
ection in the

context of Brown, a fully re
ective variant of Scheme. In Agora, this research

was transposed to object-orientation.

In order to talk about re
ection, it is necessary to distinguish two levels in the

Agora semantics. The `down' level is the level of the (object-oriented) imple-

mentation language such as Java, Smalltalk or C++. The `up' level is the Agora

level being evaluated by the `down' level. Using more standard terminology, the

`down' level is the meta level and the `up' level is the base level.

As can be seen in �gure 6, Agora actually knows two kinds of Agora objects.

The most obvious ones are ex nihilo created objects that consist of chained

generators. But as can be seen in the evaluation rule for basic literals, Agora

also has built-in objects that understand the meta message. These objects

are actually wrapped versions of their corresponding `down' object. For exam-

ple, the Agora literal is represented by wrapping the corresponding (Java,

Smalltalk or C++) object 3. This wrapping process is accomplished by sending

the message to the implementation level object. Hence, 3 () is an Agora

object that understands . The implementation of for upped objects

will map every message onto the corresponding message at the down level. This

is accomplished by bringing both the receiver and the arguments to the down

level. After actually sending the message, the resulting down level object is

brought back to the up level by sending . This augmentation of the mes-

sage passing operator (�gure 5) for upped primitives is shown in �gure 8. The

evaluator therefore knows two kinds of objects with the same interface.

However, due to strong encapsulation (i.e. only is possible), the evaluator

is not able to distuingish between these two kinds of Agora objects: only the

objects know whether they are ex nihilo created or upped implementation level
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5.2 The Evaluator Reconsidered

VARIABLE:

x VARIABLE:3

x VARIABLE:3 VARIABLE:

x 3

VARIABLE:

In each Agora implementation, we had to come up with a di�erent technical trick to make

sure every implementation level object understands .

send

o :send m; a ; : : : ; a o :down :m a :down ; : : : ; a :down :up

o

up

up

literal :eval c literal :up

e:M e ; : : : ; e :eval c e :up :send M; c:up ; e :up ; : : : ; e :up :down

M e ; : : : ; e :eval c c:loc:delegate M; c:up ; e :up ; : : : ; e :up :down

down

variable

objects. They use this knowledge to implement appropriately (i.e. �gure

5 or 8).

( ) = () ( () ()) ()

Figure 8: Agora Message Passing Operator for Upped Primitives

The idea of upping implementation level objects can not only be applied to

primitive literal objects, but to implementation level objects. In each Agora

implementation, all implementation level objects understand the message .

This can be used to give a much cleaner semantics to rei�er messages. Instead

of handling a rei�er message in an ad-hoc manner, the model with treats

rei�er messages as real Agora messages to upped syntax objects. Together with

the treatment of literals as discussed in the previous section, this gives us �gure

9 which is an improved version of the evaluation rules outlined in �gure 6. As

we can see in �gure 9, rei�er messages are no longer implemented in an ad-

hoc fashion. Instead they are really sent to the rei�ed (i.e. upped) versions of

their syntactically appearing receiver. This is why messages like were

called rei�er messages in the �rst place: they are rei�cations of the corresponding

messages de�ned on the implementation level objects that represent parse tree

nodes. The advantage of processing rei�er messages this way is that by the late

binding of rei�er messages (i.e. they are really looked up in the upped object),

we can install our own rei�ers which turns Agora into a re
ective language. This

is also the explanation why Agora must be implemented in an OO medium.

( ) ()

( ) ( ) () ( () () ()) ()

( ) ( ) ( () () ()) ()

Figure 9: Evaluation Rules (part 2)

In �gure 10, we illustrate the computational process induced by sending the

rei�er message . The applied rules are the one for evaluating a

rei�er message (�gure 9) and the one for mapping Agora messages on upped

objects onto their corresponding implementation level message (�gure 8). When

encountering the message , the message is sent to the

upped version of with the upped version of . Of course, the result must

be brought back to the evaluator level by sending it . Because of the

message passing operator outlined in �gure 8, this means that the

Agora message will be mapped onto the implementation level message

de�ned on identi�ers (or more precisely: receiverless unary patterns).
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5.3 Absorbing Ex Nihilo Objects

x:V ARIABLE :eval c

x :up :send V ARIABLE; c:up ; :up :down

x :up :down :variable c:up :down ; :up :down :up :down

x :variable c; :up :down

c:pub :eval c :up :down

:eval c :up :down

:up :up :down

:up :up :down

:up

up

down

down

o :m a o

o :up :send m; a:up :down

send

down

o :m a ; : : : ; a o :up :send m; a :up ; : : : ; a :up :down

(3) ( )

= () ( () 3 ()) ()

= () () ( () () 3 () ()) () ()

= ( 3 ) () ()

= (install slots `x' and 'x:' in bound to 3 ( )) () ()

= (return 3 ( )) () ()

= (return 3 ()) () ()

= 3 () () ()

= 3 () (i.e. the Agora object 3)

Figure 10: Example of Evaluating

One of the distuinguishing features of rei�er messages is that they are dy-

namically scoped: the �rst argument of each rei�er method is the context in

which the rei�er message occurs. This is in contrast to ordinary methods that

are completely lexically scoped. Parameterising rei�er messages with their con-

text of invocation is not some `dirty' trick but completely follows the spirit of

special forms in Scheme. When evaluating the special

form, the expressions have to be evaluated in the context where the special form

occurs, and not in the context of de�nition of the `if' procedure.

In the previous sections we have seen that any `down' level object can be rei�ed

in Agora by sending and that an upped object can always be brought back to

the `down' level by sending it . The �nal step for full re
ection is to extend

the mechanism for ex nihilo created objects as well. This is called absorp-

tion. Absorption allows one to down an ex nihilo created Agora object into the

implementation, such that the implementation can send messages to it. Each

Agora implementation uses its own technical trick to accomplish this, depending

on the implementation language. In Java for example, we have to dynamically

generate class �les in order to wrap an Agora object in a Java object. Each

message sent to this native Java object must be mapped onto the corresponding

message in Agora: if ( ) is sent in Java, and is a downed Agora object,

the message must be resent in Agora yielding () ( ()) ().

Hence, when sending implementation level messages to downed Agora objects,

the receiver and all arguments must be upped. Then the message must be sent

to the Agora object using . The resulting Agora object must be brought

back to the implementation language using . The technique is summarised

in �gure 11. It allows us to replace implementation level objects (i.e. objects of

the evaluator) by our own objects written in Agora. We show how to use this

technique in section 6.

( ) = () ( () ()) ()

Figure 11: Message Passing For Downed Agora Objects
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6 Using Re
ection

down

send down

down

all objects

all Agora objects

5.4 The Agora MOP

6.1 Extension From the Outside

up down

o o

down

o o:up

UpWrapper o o

o o o :down

o send o:down

DownWrapper o o

o o o :up

up send up

down

up down

In Brown, special forms are also called rei�er functions.

Note that implementing directly on Agora objects is not strictly necessary, since we

can replace it by (` ) which is supposed to invoke a `downing method'. However, for

e�ciency reasons we implemented directly on Agora objects.

Combining the message passing operators of �gures 5, 8 and 11 yields the

implementation of and as shown in �gure 12. Upping a downed up

level object consists of returning the original up level object . Upping

a non downed object consists of creating a new up level Agora wrapper for

it. The same mechanism is used for . As already mentioned, each Agora

implementation uses its own technical trick to implement these rules.

: () =

new ( ) if is not a downed one

if = ()

understanding : () =

new ( ) if is not a upped one

if = ()

Figure 12: The Implementation of Up and Down

The system of `upping' and `downing' objects implies that in the

implementation understand , and that understand ,

and . These mechanisms form the meta object protocol of Agora and can

be regarded as the object-oriented analogue of the meta functions used in Brown

[18]. In Brown, function and special form application are seen as the only control

structures , and the operators and are the conversion operations between

the base and the meta level. In the same way, message passing and rei�er

message passing (with hidden context argument) are the only control structures

in Agora. and are used to consistently switch objects between the base

level and the meta level .

The semantic mechanisms outlined in the previous section open up a new scale

of Agora constructions such as extending objects from the outside and re
ective

programming.

Every Scheme programmer knows quoting, a mechanism to transform a program

into a data structure. In Agora, quoting an expression is accomplished by

sending it the rei�er. The result thereof is the expression itself in the
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send

up

quote c

variable c; expression quote

this:up

send

eval

unquote c

this:eval c :down :eval c

QUOTE

UNQUOTE

mySlots LOCAL VARIABLE: ({ ...slots ...} QUOTE);

myObject LOCAL VARIABLE:

{ ...

extend:slots VIEW: (slots UNQUOTE)

};

myObject: (myObject extend:mySlots)

UP DOWN UP

send:args: DOWN

UP QUOTE

UP QUOTE

QUOTE eval: send:args:

DOWN QUOTE DOWN

send:args:

QUOTE

eval: UNQUOTE

form of an Agora object. That is, sending rei�es the underlying parse

tree as an object in Agora (i.e. an object understanding ). Internally,

this is accomplished by sending to the expression. Hence, internally, each

expression object understands the rei�er message ( ), just like identi�ers

understand the message ( ). The implementation of

is to return the receiver as an upped object, i.e. \ ()" yielding an Agora

object that understands .

The opposite of quoting is called unquoting. In Agora, this is accomplished

by sending to an expression. The receiver of this rei�er must evaluate to

an expression object. The resulting expression object will be downed (yielding a

real expression understanding ) which can then be evaluated in the context

of unquoting. Hence, the implementation of the ( ) rei�er on expressions

is \ ( ) () ( )".

These two rei�ers are particularly interesting for extending objects from the

outside. Extension from the outside is accomplished by a view or mixin that

does not list the new slots itself, but takes a parameter being the expression

to be evaluated in the view. By unquoting this parameter, the parameter is

evaluated (yielding a quoted expression), and this expression is then evaluated

in the context of the view or mixin:

But if we can extend objects `from the outside', then what about strong

encapsulation? The answer is that objects are by default strongly encapsulated,

but be extended from the outside if want to. In other prototype-based

languages with a richer MOP, objects avoid that they are subject to

extension. This is important with encapsulation [15] and security [6] in mind.

Several other applications of the re
ective Agora kernel exist.

First, Agora allows us to write our own rei�ers. Although not very di�cult,

this falls beyond the scope of the paper because it requires a more technical

understanding of the evaluator. See the language manual for more details [5].

Finally, it is possible to achieve structural and behavioural re
ection using

the and rei�ers. Sending to an expression evaluates the expres-

sion and returns the result as a meta object (i.e. an object understanding

). evaluates an expression to a meta object, and returns the

object as an ordinary Agora object. The di�erence between and is

that evaluates its receiver while doesn't. The meta level object re-

turned by understands instead of . The di�erence

between and is that evaluating the receiver of must yield a

meta object understanding that can be brought to the down level.

Evaluating the receiver of on the other hand must yield a meta object

understanding that can then be evaluated by the rei�er. In [13],
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