
©	2017	Arm	Limited	

Who	guards	the	guards?	
Formal	validation	of	the	Arm	v8-M	

Architecture	Specification

Arm	Research

@alastair_d_reid

OOPLSA	2017

Alastair	Reid

©	2017	Arm	Limited	2

Uses	of	formal	processor	specifications

Writing	compilers,	operating	systems,	…	

Formally	verifying	compilers,	operating	systems,	…	

Program	synthesis	

Security	analysis	

Malware	analysis	

Formally	verifying	processor	implementations

©	2017	Arm	Limited	3

The	state	of	most	processor	specifications

Large	(1000s	of	pages)	

Broad	(10+	years	of	implementations,	multiple	manufacturers)	

Complex	(exceptions,	weak	memory,	…)	

Informal	(mostly	English	prose)	

We	are	all	just	learning	how	to	(retrospectively)	formalize	specifications

©	2017	Arm	Limited	4

Arm	Processor	Specifications

A-class	(phones,	tablets,	servers,	…) M-class	(microcontrollers,	IoT)

6,000	pages	
40,000	line	formal	specification		

Instructions	(32/64-bit)	
Exceptions	/	Interrupts	
Memory	protection	
Page	tables	
Multiple	privilege	levels	
System	control	registers	
Debug	/	trace

1,200	pages	
15,000	line	formal	specification		

Instructions	(32-bit)	
Exceptions	/	Interrupts	
Memory	protection	
Page	tables	
Multiple	privilege	levels	
System	control	registers	
Debug	/	trace

	

©	2017	Arm	Limited	5

Is	my	specification	correct?

©	2017	Arm	Limited	5

Is	my	specification	correct?

Testing

©	2017	Arm	Limited	5

Is	my	specification	correct?

Formal	
Validation	
of	CPUs

Testing

©	2017	Arm	Limited	5

Is	my	specification	correct?

Formal	
Validation	
of	CPUs

Multiple	
Users

Testing

©	2017	Arm	Limited	6

Executable	Specification

Defines	what	is	allowed	

Animation			→ Check	spec	matches	expectation	

Testable							→ 	Compare	spec	against	implementation	

©	2017	Arm	Limited	6

Executable	Specification

Defines	what	is	allowed	

Animation			→ Check	spec	matches	expectation	

Testable							→ 	Compare	spec	against	implementation	

Does	not	define	what	is	not	allowed	

e.g.,	Impossible	states,	impossible	actions/transitions,		security	properties	

No	redundancy	

Problem	when	extending	specification

©	2017	Arm	Limited	7

Creating	a	specification	of	disallowed	behaviour

Where	to	get	a	list	of	disallowed	behaviour?	

How	to	formalise	this	list?	

How	to	formally	validate	specification	against	spec	of	disallowed	behaviour?	

(This	may	look	familiar	from	formal	specification	of	software)

©	2017	Arm	Limited	8

Execute

©	2017	Arm	Limited	8

Execute

Debug	
Halt

Halted	=	FALSE

Halted	=	TRUE

©	2017	Arm	Limited	8

Execute

Debug	
Halt

Halted	=	FALSE

Halted	=	TRUE

Lockup

LockedUp	=	FALSE LockedUp	=	TRUE

©	2017	Arm	Limited	8

Execute

Debug	
Halt

Halted	=	FALSE

Halted	=	TRUE
Debug	
Lockup

Lockup

LockedUp	=	FALSE LockedUp	=	TRUE

©	2017	Arm	Limited	8

Execute

Debug	
Halt

Halted	=	FALSE

Halted	=	TRUE
Debug	
Lockup

Lockup

LockedUp	=	FALSE LockedUp	=	TRUE

©	2017	Arm	Limited	8

Execute

Debug	
Halt

Halted	=	FALSE

Halted	=	TRUE
Debug	
Lockup

Lockup

LockedUp	=	FALSE LockedUp	=	TRUE

©	2017	Arm	Limited	9

Rule JRJC
Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

©	2017	Arm	Limited	9

Rule JRJC
Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

State	Change	X				
Event	A													
Event	B															
State	Change	C																
Event	D																																																																																												

R									

©	2017	Arm	Limited	9

Rule JRJC
Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

State	Change	X				
Event	A													
Event	B															
State	Change	C																
Event	D																																																																																												

R									

And	cannot	happen	any	other	way

©	2017	Arm	Limited	9

Rule JRJC
Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

State	Change	X				
Event	A													
Event	B															
State	Change	C																
Event	D																																																																																												

R									

Rule	R:				X	→	A	∨	B	∨	C	∨	D

And	cannot	happen	any	other	way

©	2017	Arm	Limited	10

State	Change	X Exit from lockup Fell(LockedUp)

Event	A A Cold reset Called(TakeColdReset)

Event	B A Warm reset Called(TakeReset)

State	Change	C Entry to Debug state Rose(Halted)

Event	D Preemption by a higher
priority processor
exception

Called(ExceptionEntry)

©	2017	Arm	Limited	11

Fell(LockedUp)	→	Called(TakeColdReset)	
																												∨	Called(TakeReset)	
																												∨	Rose(Halted)	
																												∨	Called(ExceptionEntry)

©	2017	Arm	Limited	12

Rule VGNW
Entry to lockup from an exception causes
• Any Fault Status Registers associated with the exception

to be updated.
• No update to the exception state, pending or active.
• The PC to be set to 0xEFFFFFFE.
• EPSR.IT to become UNKNOWN.

In addition, HFSR.FORCED is not set to 1.

Out	of	date
Misleading

Ambiguous
Untestable

©	2017	Arm	Limited	13

Counterexample

v8-M Spec

Rules

ProofZ3	
SMT	
Solver

©	2017	Arm	Limited	14

Fell(LockedUp)	→	Called(TakeColdReset)	
																												∨	Called(TakeReset)	
																												∨	Rose(Halted)	
																												∨	Called(ExceptionEntry)

Temporal	Operators

©	2017	Arm	Limited	14

Fell(LockedUp)	→	Called(TakeColdReset)	
																												∨	Called(TakeReset)	
																												∨	Rose(Halted)	
																												∨	Called(ExceptionEntry)

©	2017	Arm	Limited	14

Fell(LockedUp)	→	Called(TakeColdReset)	
																												∨	Called(TakeReset)	
																												∨	Rose(Halted)	
																												∨	Called(ExceptionEntry)

Event	Operators

©	2017	Arm	Limited	15

Temporal	Operators

Fell(e)	

Past(e)	>	e

Stable(e)	

Past(e)	=	e

Rose(e)	

Past(e)	<	e

©	2017	Arm	Limited	16

Temporal	Operators

__Past_LockedUp = LockedUp;

FunctionUnderTest();

… __Past_LockedUp > LockedUp …

Fell(LockedUp)

©	2017	Arm	Limited	17

Event	Operators

TakeReset()
{
 __Called_TakeReset = TRUE;
 …
}

Called(TakeReset)

©	2017	Arm	Limited	18

Fell(LockedUp)	→	Called(TakeColdReset)	
																												∨	Called(TakeReset)	
																												∨	Rose(Halted)	
																												∨	Called(ExceptionEntry)

Rule JRJC
Exit from lockup is by any of the following:

• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

__Called_TakeColdReset = FALSE;
__Called_TakeReset = FALSE;
__Called_TakeExceptionEntry = FALSE;
__Past_LockedUp = LockedUp;
__Past_Halted = Halted;

assert((__Past_LockedUp > LockedUp)
 ==>
 (__Called_TakeColdReset
 || __Called_TakeReset
 || __Past_Halted < Halted
 || __Called_ExceptionEntry));

©	2017	Arm	Limited	19

Arithmetic	operations	
Boolean	operations	
Bit	Vectors	
Arrays		
Functions	
Local	Variables	
Statements	

Assignments	
If-statements	
Loops	
Exceptions

Arm	Specification	
Language SMT

Arithmetic	operations	
Boolean	operations	
Bit	Vectors	
Arrays		
Functions	
Local	Variables	
Statements	

Assignments	
If-statements	
Loops	
Exceptions

©	2017	Arm	Limited	20

Results	(more	in	paper)

Most	properties	proved	in	under	100	seconds	

Found	12	bugs	in	specification:	
-	debug,	exceptions,	system	registers,	security	

Found	bugs	in	English	prose:	
-	ambiguous,	imprecise,	incorrect,	…

©	2017	Arm	Limited	21

Summary

Formalization	of	large,	complex	specifications	

Executable	specifications	have	a	fatal	flaw	
Need	specification	of	disallowed	behaviour	
Manually	formalized	structured	English	prose	
Used	SMT	checker	to	find	bugs	in	both	spec	and	prose	

Thank	You!	
Danke!	
Merci!	
谢谢!	
ありがとう!	
Gracias!	
Kiitos!

©	2017	Arm	Limited	22

@alastair_d_reid

“Trustworthy	Specifications	of	the	ARM	v8-A	and	v8-M	architecture,”	FMCAD	2016
“End	to	End	Verification	of	ARM	processors	with	ISA	Formal,”	CAV	2016

See	also:

