A Partial Tour Through the UNIX T Shell

Geof Collyer

Department of Statistics
University of Toronto
Toronto, Ontario, Canada
M5S 1A1
ut zoo! ut st at ! geof f
geof f @it stat.toronto. edu

ABSTRACT

We haverecently completed protracted surgery on tingX command interpreter
or ‘shell’ [Bournel978a] to makit use the standardNIX memory allocatorrfialloc(3)
and relatves) for its internal memory management instead of the original scheme (catch-
ing its own memory faults, using tlsbrk(2) system call to gre its memory allocation
and restarting faulting instructions)Ve dso fixed some ugs, lint (1) complaints and
suboptimal performance. This paper describes the lessons learned about the internal
workings of the shell. Much of this information is oral folklore or is simply not generally
known, and requires a determined effort to learn, yet is essential to correct understanding
and maintenance of the shell.

1. Introduction

A very sletchy overview of the shell is that it parses its input into a parse tree, then
walks the tree, xecuting the tree nodes by creating pipésking, redirecting 1/0O
descriptorsgxecing commands, and the &k Intervoven with this are macroxpansion;
honouring quoting; coping withepboard, alarm clock, and other interrupts (via signals);
and maintaining variables and functions. One can think of the shell as a macro processor
which also interprets commands.

The original Seenth Edition shell had to run in a small address space (64k bytes of
instructions and 64k bytes of data, including stack segment), yet places no arbitrary limits
on lengths of strings or input lines (which may explain some of the contortions in the
code). Wth the exceptions oéval and quoting, which are incompletely specified, the
external specification of the shell is simple, rational, and clédm.comments in this
paper should be taken as denigrating these \ahents.

The shell source code is opaque and wedermented in spots, which causes main-
tainers to attempt only minimal changes anddixTheshell was the last program ported
to the Interdata during the origineNIX port, [Johnson1978a] due to the difficulty of
getting the details of restarting faulting instructions just right, which i tivd Seenth
Edition (also known asV7’’) distribution tape includegbi n/ osh, the Sixth Edition
shell. [Ritchie1987a] One cliched complaint about the original shell source, thas it w
written in a dialect of the C language resembling Algol 68, is not a problem once one gets

T UNIX is a trademark of Bell Laboratories.

used to it, particularly if one has a reading knowledge of Algol 68. yncase, recent
System V shells are written in ordinary C. Hawr this is the least of the problems.

Upon attempting to mak the Ninth Edition shell (dered from the System V
Release 2 shell) run on a Sun-3 under SunOS 3.x, we ran into trouble with the shell’
peculiar internal memory management. The shell often failed in a spectacular apd anno
ing way: it grev its stack segment to maximum size and then dumped ¥dgedscov-
ered maw previously-undocumented characteristics of the shell in the processw@ton
ing the shell to usmalloc(3) and relaties. Theresult of this werk is referred to through-
out this paper as “the meshell”, for lack of a better name. This paper discusses only the
parts of the shell visited in the course of makingatkvcorrectly on the Sun-3; the rest
of the shell is relately straightforward.

The rest of the paper consists of six sections: section 2 describes the design of the
old shell, section 3 the problems in implementation of the old shell, section 4ethevéx
applied to produce the weshell, section 5 our methods, section 6 our conclusions, and
section 7 acknsledgements. Thoseeaders interested only in the internals of the old
shell may safely skip sections 4 and 5.

2. Design

2.1. Memory Management

The first subtlety encountered by most shell maintainers is thesshtdfnal mem-
ory management, which has been characterised as ‘extremgintelbut a house of
cards’. Theshell contains its own memory allocatarvariant of the Seenth Edition
malloc, which maintains tw distinct kinds of storagéheap storage, which has an indefi-
nite lifetime and resembles ordinanalloced memory; antistak” storage (so spelled to
distinguish it from the shefi’dack sgment) which is allocated and deallocated in strict
last-in, first-out order Heap andstak storage blocks are intermingled in the datg- se
ment.

A fundamental abstraction of the shell is a stacktak storage, in which the top
item on the stack is typically a gvong string. The top item may be nel at he con-
venience of the memory allocai@o it ould (in theoryif not aways in practice) only
be referred to by the functions and macrostodk. h; keeping pwate pointers into the
top item is forbidden. Once the top item has beewgro its maximum extent, it may
be made permanent and imvable, and a ng, empty top item is begun.

The interface to thetak storage manipulatorst ak. h, declares seeral functions
and macros, notablyushstak(byte)which appends ayte to the top item and adwces
the top past it, acquiring more memory fraIX as neededrelstak() yields the intger
offset of the top of the togtak item, i.e. the size of the top itemabsstak(offsetyields a
temporary pointer to the top iterffset bytes in; this pointer must not be retainesbt-
stak(offset)sets the top of the top item to b#set bytes in. zerostak()stores a zero on
the top of the top itemub does not mee the top. curstak() yields the a temporary
pointer to the top of the top item; this pointer must not be retaingestak()calls loc-
stak() and ignores the resulfixstak() calls endstakwith a pointer to the top of the top
item.

locstak() returns a temporary pointer of the bottom of the tag stak item, which
will be big enough for anstructure used in the shell (notakdy ruct fil ebl k or
2*CPYSI Z from i 0. ¢); this pointer may be used until one mishstak endstak or
fixstak is called. endstak(argp)terminates the top item atgp with a zero byte, mas
the top item permanent, starts aviep item, and returns the address of the terminated
and nov permanent itemgetstak(n) returns a permanent item of sizdytes by graing
the current top itemsavstak()asserts that the top item is empty and returns the address
of the bottom of the top itemtdystak(ptr) removes temporary files (e.g. from here docu-
ments) described by structures on skek down to addresgtr, and pops thestak down
to but not includingptr. stakchk() reduces the data break if possiblsystak(string)
copies thestring to a ne&v permanent item and returns its address.

The memory allocator and other parts of the old shell assume that the address of
newly-allocatedstak storage will be greater than the addresses of all other stikacti
stak storage. (Thiss not true of storage obtained from arbitrargllocs.) Thisproperty
is exploited by tricks such as recording a singleatermark’ pointer, to mark the points
in several intertwined stacks oftak storage abee which data may beventually dis-
carded, then later popping the top items from the stacks by popping each stack until its
stack pointer reaches the watermark pojmedops belw it.

Heap storage is allocated lajloc (also known agnalloc in the old shell). The
shell assumes fundamentally tifigte will ignore attempts to free the address zerulf
pointers’), addresses in the shell'Yack segment (automatic variables, command-line
arguments, and environmenanables), and addressessték storage not yet made per
manent and immobile; the shelfree is meant to free only heap storage and permanent
stak storage.

The old shell catches its own memosults (via the SIGSEGV signal, typically
caused by heap allocationyleed the data break or growth of the curretdk item
beyond the data break), grows the data segment sbtk(2) by brkincr bytes, and
returns control, thus resuming the faulting instruction.

2.2. Nouse of C library

The shell makes no use of the C library beyond system calls, perhaps because the C
library was not well-decloped when the shell was written, perhaps toerta& shell self-
contained, or perhaps tead dangerous interactions among the shell, the smadlloc,
the C library and the C librarys malloc(3). Theeffect has been to makhe shell fragile
and less portable than if it did rely on the C libraFpr example, the shed’memory
allocator does not co-exist with the C librasg it is not safe to call thealirectory(3)
directory-reading routines, which catlalloc(3).

3. Implementation Problems

3.1. Memory Management

The heap allocatpm bl ok. ¢ (a modified V7malloc(3)), and thestak allocator in
st ak. c, together form the shef’'memory allocatar They are intimate with each other’
internals, in part because the heap allocator muser@ top item on thetak when
allocating heap storage, in order to keep the top itestasifstorage at the top of the data

segment.

alloc moves the topstak item to abwe the nev top of the heap arena when the
arena is grown, and promotes otls¢aik items tofreeable permanent storage, chained
together. bl ok. ¢ rounds the number of bytes to allocatevddoy anding it with the
complement oflfrkincr minus one); this only works correctlyhbfkincr is a power of 2,
yetst ak. ¢ adds 256 tdorkincr, which starts dfat 512! Thusthe rounded-downalue
will be too lage, which only hurts performance, fortunatet ak. ¢ should probably
doublebrkincr instead.

The shells dlocator cannot co-exist with sormealloc implementations because it
assumes that only it allocates storage, and soal®cs do ikewise. [Korn1985a] Fur
ther, the shell containmalloc andfree definitions, but not &alloc definition, so uses of
realloc in the C library will drag in the C librargtrealloc, which will refer to the wrong
malloc and free. More subtly because the old shell allocates storagevahts data
break,t gen a blerantmalloc(3) which tried to co-operate with programs which do their
own dlocation viabrk(2) or sbrk(2) would be misled and would bky step on the old
shell's dorage abee its data break.Perhaps due in part to this problem, the old shell
goes to great pains tea@d using the C libraryexcept to &ecute system calls, necessitat-
ing reinvention of parts of it, notably the string function$he nev shell relaxes this
restriction and so can use the C library freely.

The assumption that faulting instructions can be (and are) restarted by return from
the appropriate signal handler does not hold on all machines of interest. In patheular
Sun-2, Sun-3, [Shannon1988a] and Crayefnkl-and-hardare combination are kam
not to correctly restarafilting instructions, which can lead to failure to initialise memory
and thus to use of the address zero. Furthermore, on the Sun-3, and other machines
which do not permit reference to address zero, the oldshailfe sssumption that gue-
ing the heap will cure a memory fault does not hold for references to address zero, and
the strategy of growing the heap on each fault merely grows the heap indefufiésly
until swap or page space is exhausted, when the oldsshrelthory allocator blows an
assertion and dumps core, slowly.

Unfortunately thest ak. h macros, especiallpushstak were not usedverywhere
that the should hae been used, and in places the &gleint code was written out in-line,
or other internal programming ocamtions were violatedCray Research found andduk
the most troublesome of theuses ofpushstak and these fixes found their way into the
Ninth Edition shell. We found and fixed the rest.

3.2. Here Documents

Here documentsare a means of supplying standard input to a command from a
script and are denoted by<’.

Here documents appear tovedeen added to the original \&ath Edition shell at
the last moment. The code is localised, but careless about error-checking and

T Thedata beak or justbreak is the address of the lowest-numbered byte of the data segment not
allocated to @&JNIX process. Thereay be accessible memory between the break and the bottom
of the stack segment, but touching it is bad form and may result in a meautir{f§egmentation
violation”).

performance. Herdocuments are implemented by copying lines from the shmgtiut to

a temporary file during parsing until a line containing only the delimiter is seen; then
later, during execution of the command, if the delimiter was not quoted, copying the first
temporary file to a second temporary file while processing macros (ggnding
$DMVD). If the second temporary fileas created, it is opened as the comnmsaddhdard

input and unlinkd, so it will not hae © be emoved later; otherwise the first temporary

file will be opened as the commasdtandard input.In either case, the first temporary

file will have be wlinked latey but the shell may not get the chance if it is killed first or

if the block containing the command with the here document was terminated via the
exec built-in command, which replaces the shell with the command.

write system calls to the first temporary file were unchecked, so creating a here doc-
ument when the file system containihgnp is full may lead to odd behaviour and no
diagnostic from the old shell(writes to the second temporary file use a more general
mechanismflush in macr o. ¢, and are still unchedd in the ne shell. Oops!) Alsojn
the old shell, when cgng input to the first temporary file, lines are collected until at
least CPYSIZ (512) bytes are present, then are written to disk as whole lines, so
CPYSIZ+ bytes are written at a time, causimgites to be ualigned with file system
block boundaries, and contributing to thevstess of here documents and thus to the
slowness of unbundling of shell “bundlest ‘‘archives”. [Kernighan1984a]

3.3. Directory Reading and Wildcard Expansion

The Seenth Edition shell reads directories to expand wildcargerierate file-
names), using theread system call to read 16 bytes at a time and assumingeatSe
Edition directory layout. The Ninth Edition (and presumably System V Release 2) shell
used some of thdirectory(3) routines from the C librajjout used pnate versions of
others. Thiswas done so that memory allocation would be under the control of the
shell's private opendir and closedir. Unfortunately it did require the shell to kno
details of hliffer allocation in thedirectory(3) routines, and those details changed
between 4BSD and SunOS 3.0, faample. (V¢ kelieve BSD used a staticuffer but
SunOS 3.0 allocates the buffer dynamically.)

3.4. 1/O Redirection

When the old shelb@cutes a redirected built-in command sucls es, it saves the
redirected descriptor by usinyp2(2) to male a duplicate descriptoon a fked descrip-
tor, USERIO, which is typically 10 and must be abdhe shells useraccessible descrip-
tor range (0-9).Unfortunately the old shell isrt’prepared to deal with multiple redirec-
tors of built-in commands, seet </etc/passwd >/dev/null causesset to
execute and then causes the old shell to festdc/ passwd(!).

When applied to ancommand, built-in or not<” ° and>"’ have ro dfect in the
old shell. This appears to be a relic from the days b&brand$@t

T This undocumented misfeature of the shedlswdiscwered by a naie axd serendipitous user
who was pleasantly surprised to find tk&tl in a shell script ‘did the right thing’ whether the
script was imoked with no arguments or with one, and commented upon this surprise.

3.5. Name-to-i-numbertranslations

The code to run den $PATH looking for a commandxecuted more system calls
which translate file names to i-numbers than necessary; upon finding a command, it
would accesg?2) the file, therstat(2) it.

3.6. Exit

On maiy (by intent, all)JUNIX systems, a program which does not use the standard
I/O library (stdio) [Kernighan1979a] will not cause yapart of stdio to be loaded with
it. Thisis not true on SunOS 3.0, foxample; a program such as the shell which does
not usestdio still gets some o$tdio loaded with it, due t@xt calling fflush, and that in
turn causes sonmmaalloc to be loaded.Sun’smalloc includes 8,192 bytes of BSS (unini-
tialised data segment) containing its initial free block head€&hss seems eessve,
given that programs often usealloc in an attempt teonservememory.

4. Fixesin the new shell

4.1. Memory Management

Our original fix to the memory allocatido make it co-exist with the C library and
work in general, was to delebd ok. c thus irvoking malloc(3) and to rerite st ak. c
from scratch to usenalloc(3). Muchlater we disceered that an alternat, less clean
and less robust fix is to just deletevate directory(3) functions, maé chkid reject zero
addresses, and provide avgte realloc in bl ok. ¢ which implements the semantics of
realloc (3) using the pxiate malloc andfree, though one must also increase the values of
BRKI NCR andBRKMAX to at least the page size on some systerhss apparently wrks
by causing wery memory fault to increase the data segment enoughv tee lagest
allocation request normally seen inside the shell. Theshell does not use this fix.

The nav shell usespushstakand the other interface macros and functions where
needed, angushstaknow arranges to g the top item oftak storage as neededhe
performance impact of this has not been measurtddifpears to be insignificant; inyan
case, this checking is necessasy ak. ¢ has been completely rewritten from scratch
(see the Appendix).

We row dmulate the single pointer to\sal interwoven gacks ofstak storage by
attaching a pointer to the preus stak item to each ng stak item as it is allocated, and
retaining one watermark pointer per stack.

We layer another functiorsbfree), on top offree(3), and the ne shell is compiled
with #define free shfree and without the old shed’#define alloc
mal | oc, alloc being the name by which the heap allocator v®kad. shfree rejects
attempts to free the address zero, addresses in the stack segmerstair stbrage;
free(3) is used directly to frestak storage. ® distinguish heap storage frostak stor-
age, the n@ shell’s dlocator attaches an integer containing a magic nunaiféerent for
heap andtak storage, to each item of storage allocated. This costs a little bit of memory
but experiments on a PDP-11 suggest that this is not a serious problem.

We smply usemalloc(3) and related functions, and thus require none of the compli-
cated machinery for restartinguiting instructions. This has the pleasant side-effect that
a huggy shell wielding a wild pointer typically dumps core immediatelgtead of

growing its stack segment until the kernel kills it (producing a mulggbgte core
dump) minutes later.

4.2. Here Documents

We haverepaired both of the here documengb, with one minor loss of generality:
the here document delimiter must not exceed CPYSIZ bytes. CPYSIZ bytesware no
written to the first temporary file (until end-of-file is read), and the remaining fractional
line is copied back to the start of the copying bufidrich is 2*CPYSIZ bytes long.

4.3. Directory Reading and Wildcard Expansion

We olved the messy problems of reading directories by deleting thatepfunc-
tions and using only the C libradirectory(3) functions to read directories’he shell
was modified to call the n& functionopenqdirinstead of callingopendir directly; open-
gdir passes topendir a opy of the file name with the 0200 bit, used by the shell inter
nally to mark quoted characters (e.g. the first character of a comntamdest such as
\?*), stripped from each character.

We dso discoered that the code that implementedyaied character classes (for
example,[! a- z]) in the old shell vas incorrect and had onlyornked by chance; Henry
Spencer replaced the incorrect code with robust, working code.

4.4. 1/0 Redirection

The nev shell is prepared to sa multiple standard descriptors by duplicating them
to whichever descriptors abee the normal range are free.

I/O redirections nar behave & ane would expect: since the empty filename refers to
the current directory’ * will open the current directory on some systems,>dridwill,
one hopes, fail with an error message.

4.5. Name-to-i-numbertranslations

Use ofaccessis inappropriate in the shell, as onants to check against the shell’
effective ids, and unnecessags me can easily check the permission bits obtained from
the stat. This is faster because each system call, sudtesssor stat, which takes a
filename as a parameter must translate it to thedqgl@umberi-number) pair used inter
nally by UNIX to refer to files. This translation is reladly slow because it typically
requires disk accessesger on ystems withnamei caches. Stilfaster would be to sim-
ply try to exec(2) each filename in turn, angaemineerrno afterward; this will not vork
for thetype (a.k.a. whatis) built-in, though, and we & ot done this.

4.6. Exit

malloc is not an issue in the weshell, but unwanted statistdio buffers do tak
quite a bit of data spacd®efiningexit(n) { _exit(n); } to avoid stdio signifi-
cantly reduces the shall'sze, thus reducing the time neededfdok(2) and speeding
command eecution.

5. Methods

Dehugging the shell is more iiult than one might>gect. Initialdehugging was
largely by inspired guesses and tedious experimentation, due to the difficukgnoihe
ing multi-megabyte core dumps, which tend to be uninforranyway.

Once the shell was made to stop catching SIGSHGVAsS possible to use daip
gers to ®amine core dumps produced by buggy shells and produce stack traces, but lack-
ing a truly useful debugger (such@¢9.1)), [Cagill1986a] we resorted, in the main, to
printing interesting variables (with the shelfrs and prn, not printf(3)) and thinking
about the output. One other helpful technique was to insert magic numbers into each
instance of each ralant data structure when the instance was created, then check period-
ically for the presence of the numpend clear the number upon destruction of the
instance. Thissimple technique aloneas a great help in keeping the shell sane by
detecting corruption and confusion earlife dso linked the shell with a debuggingrv
sion of malloc supplied by Sun/(usr/Ii b/ debug/ mal | oc. o), which checks the
arena for consistegic

6. Conclusions

Dehlugging would certainly hae keen easier if the assumptions in the old shell code
had been documented; we hope that this paper wdl gell maintainers manhours.
The nev shell appears to be quite portable and has been run on the DEC PDP-11 under
V7, Sun-3 under SunOS 3.x, Sun-4 under SunOS 4.0, and MIPS M/1000.

Our nev shell nov contains comments which describe most of thelyeliscovered
assumptions which had been hidden in the old shell.

Unfortunately this version is not generallyalable, as it is devied from Ninth Edi-
tion code. The ne version ofst ak. c, howevae, is ot licensed and is reprinted in the
Appendix to this paper.

7. Acknowledgements

Henry Spencer of the Urarsity of Torontos Department of Zoology hired the
author to perform the erk described abhv@®, commented on drafts of this papean \ari-
ous versions of the meshell as/ bi n/ sh on his machines while we disewed nev
undocumented properties of the shell, and was patient while bugs were foundednd fix
The Department funded this work.

Cray Research found some of the places in wpigdhstakshould hae been used
in the old shell and repaired them, anadipushstak in order to mak the shell run on
Crays, at least some models of which are incapable of restarting instructions which abort
due to memory faults.

Dennis Ritchie incorporated Crayfixes into the Ninth Edition shell, and ged the
author to continue attempting to fix the shell rather thamihigit out and reimplement-
ing it. (He was of course right, in part due to the subtleties of getting details such as
guoting andeval just right. Nevertheless, a future reimplementation of the sheluld
benefit by using more of the toolsadable in the C library and elsewhere, possibly
includingyacc andlex.) Dennisalso pra@ided very helpful comments on a draft of this
paper.

lan Darwin, B&erly Erlebacher anddm Glinos proof-read drafts of this paper and
contributed helpful suggestions.

Any errors remaining in this paper are the responsibility of the author.

References

Bournel978a.
S. R. Bourne,'UNIX Time-Sharing System: TheNwX Shell; Bell Sys. &h. J,
vol. 57, no. 6, pp. 1971-1990, 1978.

Cargill1986a.
T. A. Cargill, “The Feel of Pi, Proc. Winter Usenix Conf986, 1986.
Johnson1978a.
S. C. Johnson and D. M. RitchielJNix Time-Sharing System: Portability of C
Programs and theNUx Systent, Bell Sys. &h. J, vol. 57, no. 6, pp. 2021-2048,
1978.
Kernighan1979a.
Brian W. Kernighan and Dennis M. Ritchie, “UNIX Programming — Second Edi-
tion,” UNIX Programmers Manual, Seventh Editiodanuary 1979.
Kernighan1984a.
Brian W Kernighan and Rob RékThe UNIX Pogramming Erironment,Prentice-
Hall, 1984.
Korn1985a.
David G. Korn and Kiem-Phong Vo, “In Search of a Better Mafloéroc. Summer
Usenix Conf1985, pp. 489-506, June 1985.
Ritchie1987a.
Dennis Ritchieprivate communicatiqril987.
Shannon1988a.
Bill Shannon private communicatioriNovember 1988.

Appendix: the new stak.c, minus debugging #ifdefs
This code was all written by the author; it is not subject yosaarce licences.

/* replaces @(#)stak.c1.4 */

/*
*UNIX shell
*

* Stacked-storage allocation.
*

* M aintains a linked stack (of mostly character strings), the top (most

* recently allocated item) of which is a growing string, which pushstak()
*inserts into and grows as needed.

*

* Each item on the stack consists of a pointer to the previous item

* (the "stakbsy" pointer; stakbsy points to the top item on the stack), an
* optional magic numbeend the data. There may be mallo@dead storage
*on top of this.

*

* Pointers returned by these routines point to the first byte of the data
*in a stack item; users of this module should beware of the "stakbsy"

* pointer and the magic numbefo confuse matters, stakbsy points to the
* " stakbsy" linked list pointer of the top item on the stack, and the

* " stakbsy" linked list pointers each point to the corresponding pointer
*in the next item on the stack. This all comes to a head in tdystak().

*

* Geoff Collyer
*

/* see also stak.h */
#include "defs.h"

#undef free * refer to free(3) here */
#define STMAGICNUM 0x1235

#define HPMAGICNUM 0x4276
#define MAGICSIZE BYTESPEWRORD

/* stak item magic */
/* heap item magic */
/* was ance zero */

/* imports from libc */
extern char *malloc(), *realloc();
extern char *memcpy(), *strcpy();

/* forwards */

char *stalloc(), *growstak(), *getstak();

unsigned brkincr = BRKINCR; /* used in stak.h only */

static char *

tossgraving() /* free the growing stack */

if (stakbsy = 0) { [* aty growing stack? */
register struct blk *nextitem;

/* verify magic before freeing */

if (((int *)Rcheat(stakbsy))[1] '= STMAGICNUM)
error("tossgrowing: bad magic on stack");

((int *)Rcheat(stakbsy))[1] = 0; /* erase magic */

/* about to free the ptr to next, so gaipfirst */
nextitem = stakbsy->word;

free((char *)Rcheat(stakbsy));

stakbsy = nextitem;

}

static char *
stalloc(asize)
int asize;

{

lallocate requested stack space (no frills) */

register char *newstack;
register int size = asize;

newstack = malloc((unsigned)(sizeof(struct blk) + MAGICSIZE + size));
if (newstack == 0)
error(nostack);

/* stack this item */

*((struct blk *)Rcheat(newstack)) = stakbsy; /* point back at old stack top */
stakbsy = (struct blk *)Rcheat(nwstack); /*male this nev stack top */
newstack += sizeof(struct blk); [* point at the data */

/* add magic number for verification */

*((int *)Rcheat(newstack)) = STMAGICNUM;
newstack += MAGICSIZE;

return newstack;

}

static char *
grostalloc()

{

/*allocate growing stack */

register int size = BRKINCR;

/* fiddle global variables to point into this (growing) stack */
staktop = stakbot = stakbas = stalloc(size);
stakend = stakbas + size - 1;

}

1
* allocate requested stack.

* staknam() assumes that getstak just readlé growing stack,
* 50 we nust do just that. Grump.

*

char *

getstak(asize)

int asize;

{
register char *newstack;
register int staklen;

/* + 1 is because stakend points at the last byte of the growing stack */
staklen = stakend + 1 - stakbas; /* # of usable bytes */

newstack = growstak(asize - staklen); /*wgrgrowing stack to asize */
grostalloc(); /*allocate n& growing stack */

return newstack;

}

/*

* set up stack for local use (i.e. neai big).
* should be followed by ‘endstak’

*/

char *
locstak()

if (stakend + 1 - stakbot < BRKINCR)
(void) growstak(BRKINCR - (stakend + 1 - stakbot));
return stakbot;

}

/*

*return an address to be used by tdystak later,

*s0 it must be returned by getstak because it may not be
* a part of the growing stack, which is subject to moving.
*

char *

savstak()

assert(staktop == stakbot);
return getstak(1);

/* assert empty stack */

}

/*
*tidy up after ‘locstak’.
* make the current growing stack a semi-permanent item and
* generate a netiny growing stack.
*
/

char *
endstak(argp)
register char *argp;

register char *oldstak;

argp++ = 0; / terminate the string */
oldstak = growstak(-(stakend + 1 gp}); /* reduce growing stack size */
grostalloc(); /*alloc. nev growing stack */
return oldstak; /* perm. addof old item */
}

1
*Try to bring the "stack” back tosa
*and bring iotemps gack back to iosa
*
tdystak(sa, iosav)
register char *sg * returned by growstak(): points at data */
register struct ionod *iosa /* an old cog of iotemp (may be zero) */
{
rmtemp(ios&); /* pop temp files */
if (sav != 0 && ((int *)Rcheat(sav))[-1] '= STMAGICNUM) /* sa-> data */
error("tdystak: bad magic in argument");

*
* pop stack to sa(if zero, pop eerything).

* sav is a pinter to data, not magic nor stakbsy link.
* stakbsy points at the ptr before the data & magic.
*

while (stakbsy != 0 && (sa==0 |
(char *)stakbsy != sa- sizeof(struct blk) - MAGICSIZE))
tossgraving(); /* toss the stack top */
grostalloc(); /*new growing stack */

}
stakchk() /*reduce growing-stack size if feasible */

if (stakend - staktop > 2*BRKINCR) /* lots of unused stack headroom */
(void) growstak(-(stakend - staktop - BRKINCR));
}

char * /* address of cgpof newstak */
cpystak(newstak)
char *newstak;

{
}

char * /* nev address of grown stak */
growstak(incr) I*grow the growing stack by incr */
intincr;

{

return strcpy(getstak(strlen(newstak) + 1), newstak);

register char *oldbsy;
unsigned topoff, botoff, basoff;
int staklen;

if (stakbsy == 0) [* paranoia */
grostalloc(); /*male a tivial stack */

/* paranoia: during realloc, point at previous item in case of signals */
oldbsy = (char *)stakbsy;
stakbsy = stakbsy->word;

topoff = staktop - oldbsy;
botoff = stakbot - oldbsy;
basof = stakbas - oldbsy;

/* + 1 is because stakend points at the last byte of the growing stack */
staklen = stakend + 1 + incr - oldbsy;

if (staklen <= sizeof(struct blk) + MBICSIZE) /*paranoia */
staklen = sizeof(struct blk) + MAGICSIZE;

if (incr < 0) {
7

* V7 realloc wastes the memorygn back when
* asked to shrink a block, so we malloasngpace
*and copy into it in the hope of later reusing the old
* space, then free the old space.
*

/
register char *ne& = malloc((unsigned)staklen);

if (new == NIL)
error(nostack);

(void) memcpy(ne, ddbsy, staklen);

free(oldbsy);

oldbsy = new;

}else{

/* get realloc to grav the stack to match the stack top */

if ((oldbsy = realloc(oldbsy(unsigned)staklen)) == NIL)
error(nostack);

stakend = oldbsy + staklen - 1;
staktop = oldbsy + topoff;
stakbot = oldbsy + botoff;
stakbas = oldbsy + basoff;

/* see? points at the last byte */

I* restore stakbsy after realloc */
stakbsy = (struct blk *)Rcheat(oldbsy);
return stakbas; /* addr of 1st usable byte */

}

/* ARGSUSED reqd */
addblok(reqd)
unsigned reqd;

Itcalled from main at start only */

if (stakbot == 0) /* called from main, 1st time */
grostalloc(); /*allocate initial arena */
/* else wont happen */

}

/*
* Heap allocation.
*/

char *
alloc(size)
unsigned size;
{
register char *p = malloc(MAGICSIZE + size);

if (p == NIL)
error(nospace);

*(int *)Rcheat(p) = HPMAGICNUM;
p += BYTESPERVORD; /* fiddle ptr for the user */
return p;

}

/*

*the shells private “free” - frees only heap storage.

* only works on non-null pointers to heap storage

* (below the data break and stamped with HPMAGICNUM).
*so it is "okay" for the shell to attempt to free data on its

* (real) stack, including its command line arguments and environment,
*orits fale gak.

* this permits a quick'n’dirty style of programming to "work".
* the use of sbrk is relagly slow, but effective.

*

shfree(p)

register char *p;

extern char *sbrk();

if (p =0 && p < sbrk(0)) { /* plausible data sgptr? */
register int *magicp = (int *)Rcheat(p) - 1;

/* ignore attempts to free non-heap storage */

if (*magicp == HPMAGICNUM) {
magicp = 0; / erase magic */
p -= BYTESPERNORD; /* get orig. ptr back */
free(p);

