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We present fast strongly universal string hashing families: they can process
data at a rate of 0.2 CPU cycle per byte. Maybe surprisingly, we find that
these families—though they require a large buffer of random numbers—are often
faster than popular hash functions with weaker theoretical guarantees. Moreover,
conventional wisdom is that hash functions with fewer multiplications are faster.
Yet we find that they may fail to be faster due to operation pipelining. We
present experimental results on several processors including low-power processors.
Our tests include hash functions designed for processors with the Carry-Less
Multiplication (CLMUL) instruction set. We also prove, using accessible proofs,

the strong universality of our families.
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1. INTRODUCTION

For 32-bit integers, random hashing with good
theoretical guarantees can be just as fast as popular
alternatives [1]. In turn, these guarantees ensure the
reliability of various algorithms and data structures:
set intersection [2], frequent-item mining [3], count
estimation [4, 5], and hash tables [6, 7, 8]. We want to
show that we can also get good theoretical guarantees
over larger objects (such as strings) without sacrificing
speed. For example, we consider variable-length strings
made of 32-bit characters: all data structures can be
represented as such strings, up to some padding.

We restrict our attention to hash functions mapping
strings to L-bit integers, that is, integers in [0, 2L)
for some positive integer L. In random hashing, we
select a hash function at random from a family [9,
10]. The hash function can be chosen whenever
the software is initialized. While random hashing is
not yet commonplace, it can have significant security
benefits [11] in a hash table: without randomness,
an attacker can more easily exploit the fact that
adding n keys hashing to the same value typically
takes quadratic time (Θ(n2)). For this reason, random
hashing was adopted in the Ruby language as of
version 1.9 [12] and in the Perl language as of
version 5.8.1.

A family of hash functions is k-wise independent (or
k-independent) if the hash values of any k distinct
elements are independent. For example, a family is

pairwise independent—or strongly universal—if given
any two distinct elements s and s′, their hash values
h(s) and h(s′) are independent:

P (h(s) = y|h(s′) = y′) = P (h(s) = y)

for any two hash values y, y′. (Some authors prefer the
terms 2-independent or 2-universal to describe strongly
universal hash families.) When a hashing family is
not strongly universal, it can still be universal if the
probability of a collision is no larger than if it were
strongly universal: P (h(s) = h(s′)) ≤ 1/2L when 2L is
the number of hash values. If the collision probability is
merely bounded by some ε larger than 1/2L but smaller
than 1 (P (h(s) = h(s′)) ≤ ε < 1), we have an almost
universal family. However, strong universality might be
more desirable than universality or almost universality:

• We say that a family is uniform if all hash values
are equiprobable (P (h(s) = y) = 1/2L for all y
and s): strongly universal families are uniform,
but universal or almost universal families may
fail to be uniform. To see that universality fails
to imply uniformity, consider the family made of
the two functions over 1-bit integers (0,1): the
identity and a function mapping all values to zero.
The probability of a collision between two distinct
values is exactly 1/2 which ensures universality
even though we do not have uniformity since
P (h(0) = 0) = 1.
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• Moreover, if we have strong universality over
L bits, then we also have it over any subset of bits.
The corresponding result may fail for universal
and almost universal families: we might have
universality over L bits, but fail to have almost
universality over some subset of bits. Consider the
non-uniform but universal family {h(x) = x} over
L-bit integers: if we keep only the least significant
L′ bits (0 < L′ < L), universality is lost since
h(0) mod 2L

′
= h(2L

′
) mod 2L

′
.

There is no need to use slow operations such as
modulo operations, divisions or operations in finite
fields to have strong universality. In fact, for short
strings having few distinct characters, Zobrist hashing
requires nothing more than table look-ups and bitwise
exclusive-or operations, and it is more than strongly
universal (3-wise independent) [13, 14]. Unfortunately,
it becomes prohibitive for long strings as it requires the
storage of nc random numbers where n is the maximal
length of a string and c is the number of distinct
characters.

A more practical approach to strong universality is
Multilinear hashing (§ 2). Unfortunately, it normally
requires that the computations be executed in a finite
field. Some processors have instructions for finite fields
(§ 4) or they can be emulated with a software library
(§ 5.3). However, if we are willing to double the
number of random bits, we can implement it using
regular integer arithmetic. Indeed, using an idea from
Dietzfelbinger [15], we implement it using only one
multiplication and one addition per character (§ 3). We
further attempt to speed it up by reducing the number
of multiplications by half. We believe that these families
are the fastest strongly universal hashing families on
current computers. We evaluate these hash families
experimentally (§ 5):

• Using fewer multiplications has often improved per-
formance, especially on low-power processors [16].
Yet trading away the number of multiplications
fails to improve (and may even degrade) per-
formance on several processors according to our
experiments—which include low-power processors.
However, reducing the number of multiplications is
beneficial on some processors (e.g., AMD V120).

• We also find that strongly universal hashing
may be computationally inexpensive compared
to common hashing functions, as long as we
ignore the overhead of generating long strings of
random numbers. In effect—if memory is abundant
compared to the length of the strings—the strongly
universal Multilinear family is faster than many of
the commonly used alternatives.

• We consider hash functions designed for hardware
supported carry-less multiplications (§ 4). This
support should drastically improve the speed of
some operations over binary finite fields (GF (2L)).
Unfortunately, we find that the carry-less hash

functions fail to be competitive (§ 5.4).

2. THE MULTILINEAR FAMILY

The Multilinear hash family is one of the simplest
strongly universal families [9]. It takes the form of
a scalar product between random values (sometimes
called keys) and string components, where operations
are over a finite field:

h(s) = m1 +

n∑
i=1

mi+1si.

The hash function h is defined by the randomly
generated valuesm1,m2, . . . It is strongly universal over
fixed-length strings. We can also apply it to variable-
length strings as long as we forbid strings ending with
zero. To ensure that strings never end with zero, we can
append a character value of one to all variable-length
strings.

An apparent limitation of this approach is that
strings cannot exceed the number of random values. In
effect, to hash 32-bit strings of length n, we need to
generate and store 32(n+ 1) random bits using a finite
field of cardinality 232. However, Stinson [17] showed
that strong universality requires at least 1+a(b−1) hash
functions where a is the number of strings and b is
the number of hash values. Thus, if we have 32-
bit strings mapped to 32-bit hash values, we need at
least ≈ 232(n+1) hash functions: Multilinear is almost
optimal.

Hence, the requirement to store many random
numbers cannot be waived without sacrificing strong
universality. Note that Stinson’s bound is not affected
by manipulations such as treating a length n string of
W -bit words as a length n/2 string of 2W -bit words.

If multiplications are expensive and we have long
strings, we can attempt to improve speed by reducing
the number of multiplications by half [18, 19]:

h(s) = m1 +

n/2∑
i=1

(m2i + s2i−1)(m2i+1 + s2i). (1)

Indeed, this new form follows from the fact that we
can rewrite the scalar product m2is2i + m2i+1s2i−1
as a single multiplication (m2i + s2i−1)(m2i+1 + s2i)
minus two terms, one that does not depend on the
string (m2im2i+1) and one that does not depend on the
random keys ( s2i−1s2i). While this new form assumes
that the number of characters in the string is even, we
can simply pad the odd-length strings with an extra
character with value zero. With variable-length strings,
the padding to even length must follow the addition of
a character value of one.

Could we reduce the number of multiplications
further? Not in general: the computation of a scalar
product between two vectors of length n requires at
least dn/2e multiplications [20, Corollary 4]. However,
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we could try to avoid generic multiplications altogether
and replace them by squares [16]:

h(s) = m1 +

n∑
i=1

(mi+1 + si)
2.

Indeed, squares can be sometimes be computed faster.
Unfortunately, this approach fails in binary finite fields
(GF (2L)) because

(mi+1 + si)
2 = m2

i+1 +mi+1si +mi+1si + s2i

= m2
i+1 + s2i

since every element is its own additive inverse. Thus,
we get

h(s) = m1 +

n∑
i=1

m2
i+1 +

n∑
i=1

s2i

which is a poor hash function (e.g., h(ab) = h(ba)).
There are fast algorithms to compute multiplica-

tions [21, 22, 23] in binary finite fields. Yet these opera-
tions remain much slower than a native operation (e.g.,
a regular 32-bit integer multiplication). However, some
recent processors have support for finite fields. In such
cases, the penalty could be small for using finite fields,
as opposed to regular integer arithmetic (see § 4 and
§ 5.4). (Though they are outside our scope, there are
also fast techniques for computing hash functions over
a finite field having prime cardinality [24].)

3. MAKING MULTILINEAR STRONGLY
UNIVERSAL IN THE RING Z/2KZ

On processors without support for binary finite fields,
we can trade memory for speed to essentially get the
same properties as finite fields on some of the bits using
fast integer arithmetic. For example, Dietzfelbinger [15]
showed that the family of hash functions of the form

hA,B(x) =
(
Ax+B mod 2K

)
÷ 2L−1

where the integers A,B ∈ [0, 2K) and x ∈ [0, 2L) is
strongly universal for K > L − 1. (To reduce the
number of parentheses used, we adopt the convention
that Ax+B mod 2K ≡ (Ax+B) mod 2K . The symbol
÷ denotes integer division: x ÷ y = bx/yc for positive
integers.) We generalize Dietzfelbinger hashing from
the linear to the multilinear case.

The main difference between a finite field and
common integer arithmetic (in the integer ring Z/2KZ)
is that elements of fields have inverses: given the
equation ax = b, there is a unique solution x = a−1b
when a 6= 0. However, the same is “almost” true in
integer rings used for computer arithmetic as long as
the variable a is small. For example, when a = 1, we
can solve for ax = b exactly (x = b). When a = 2,
then there are at most two solutions to the equation

ax = b. We build on these observations to derive a
stronger result.

We let τ = trailing(a) be the number of trailing zeros
of the integer a in binary notation. For example, we
have that trailing(2j) = j.

Proposition 3.1. Given integers K,L satisfying
K ≥ L− 1 ≥ 0, consider the equation(

ax+ c mod 2K
)
÷ 2L−1 = b

where a is an integer in [1, 2L), b is an integer in
[0, 2K−L+1) and c an integer in [0, 2K). Given a, b and
c, there are exactly 2L−1 integers x in [0, 2K) satisfying
the equation.

Proof. Let τ = trailing(a). We have τ ≤ L − 1 since
a ∈ [1, 2L). Because a is non-zero, we have that
a′ = a÷ 2τ is odd and a = 2τa′.

We have(
(ax+ c) mod 2K

)
÷ 2L−1

=
(
(2τa′x+ c) mod 2K

)
÷ 2L−1

= (2τ [a′x+ (c÷ 2τ )]

+
(
c mod 2τ ) mod 2K

)
÷ 2L−1.

We show that the term (c mod 2τ ) can be removed.
Indeed, consider that the τ least significant bits of
2τ [a′x+(c÷2τ )]+(c mod 2τ ) are those of c mod 2τ , and
the more significant bits are those of 2τ [a′x+ (c÷ 2τ )].
The final division by 2L−1 will dismiss the L − 1 least
significant bits, and τ ≤ L − 1, so that the term
(c mod 2τ ) can be ignored.

Hence, we have(
ax+ c mod 2K

)
÷ 2L−1

= (2τ [a′x+ (c÷ 2τ )] mod 2K)÷ 2L−1

=
(
2τ
[
a′x+ (c÷ 2τ ) mod 2K−τ

])
÷ 2L−1

=
(
a′x+ (c÷ 2τ ) mod 2K−τ

)
÷ 2L−1−τ

=
(
a′(x mod 2K−τ )

+
(
c÷ 2τ ) mod 2K−τ

)
÷ 2L−1−τ .

Setting x′ = x mod 2K−τ and c′ = c ÷ 2τ , we finally
have(

ax+ c mod 2K
)
÷ 2L−1

=
(
a′x′ + c′ mod 2K−τ

)
÷ 2L−1−τ .

Let z be an integer such that z÷ 2L−1−τ = b. Consider
a′x′ + c′ mod 2K−τ = z. We can rewrite it as
a′x′ mod 2K−τ = z−c′ mod 2K−τ . Because a′ is odd, a′

and 2K−τ are coprime (their greatest common divisor
is 1). Hence, there is a unique integer x′ ∈ [0, 2K−τ )
such that a′x′ mod 2K−τ = z − c′ mod 2K−τ [25, Cor.
31.25].

Given b, there are 2L−1−τ integers z such that z ÷
2L−1−τ = b. Given x′, there are 2τ integers x in [0, 2K)
such that x′ = x mod 2K−τ . It follows that there are
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2L−1−τ × 2τ = 2L−1 integers x in [0, 2K) such that(
a′x′ + c′ mod 2K−τ

)
÷ 2L−1−τ = b holds.

Example 1. Consider, for instance, the equation
(6x + 10 mod 64) ÷ 4 = 5. By Proposition 3.1, there
must be exactly 4 solutions to this equation (setting
K = 6, L = 3). We can find them using the proof of
the lemma. The integer 6 has 1 trailing zero in binary
notation (110) so that τ = 1. We can write 6 = 2×3 so
that a′ = 3. Similarly, c′ = 10÷ 2 = 5. Hence we must
consider the equation 3x′+5 mod 25 = z for values of z
such that z ÷ 2 = 5. There are two such values: z = 10
and z = 11. We have that

3x′ + 5 mod 32 = 10⇒ 3x′ mod 32 = 5⇒ x′ = 23;
3x′ + 5 mod 32 = 11⇒ 3x′ mod 32 = 6⇒ x′ = 2.

It remains to solve for x in x′ = x mod 32 with the
constraint that x is an integer in [0, 64). When x′ = 2,
we have that x ∈ {2, 34}. When x′ = 23, we have that
x ∈ {23, 55}. Hence, the solutions are 2, 23, 34 and 55.

Using Proposition 3.1, we can show that fast
variations of Multilinear are strongly universal even
though we use regular integer arithmetic, not finite
fields.

Theorem 3.1. Given integers K,L satisfying K ≥
L− 1 ≥ 0, consider the families of (K −L+ 1)-bit hash
functions

• Multilinear:

h(s) =
((
m1 +

n∑
i=1

mi+1si

)
mod 2K

)
÷ 2L−1

• Multilinear-HM:

h(s) =
((
m1 +

n/2∑
i=1

(m2i + s2i−1)(m2i+1 + s2i)
)

mod 2K
)
÷ 2L−1

which assumes that n is even.

Here the mi’s are random integers in [0, 2K) and the
string characters si are integers in [0, 2L). These two
families are strongly universal over fixed-length strings,
or over variable-length strings that do not end with the
zero character. We can apply the second family to
strings of odd length by appending an extra zero element
so that all strings have an even length.

Proof. We begin with the first family (Multilinear).
Given any two distinct strings s and s′, consider the
equations h(s) = y and h(s′) = y′ for any two hash
values y and y′. Without loss of generality, we can
assume that the strings have the same length. If
not, we can pad the shortest string with zeros without
changing its hash value. We need to show that P (h(s) =
y ∧ h(s′) = y′) = 22(L−K−1). Because the two strings

are distinct, we can find j such that sj 6= s′j . Without

loss of generality, assume that s′j − sj ∈ [0, 2L).
We want to solve the equations(

(m1 +
∑n
i=1mi+1si) mod 2K

)
÷ 2L−1 = y, (2)(

(m1 +
∑n
i=1mi+1s

′
i) mod 2K

)
÷ 2L−1 = y′ (3)

for integers m1,m2, . . . in [0, 2K).
Consider the following equation

(m1 +
∑n
i=1mi+1si) mod 2K = z.

There is a bijection between m1 and z ∈ [0, 2K). That
is, for every value of m1, there is a unique z, and vice
versa. Specifically, we have

m1 = z −
n∑
i=1

mi+1si mod 2K .

If we choose z such that z ÷ 2L−1 = y, we effectively
solve Equation 2. By substitution in Equation 3, we
have(

mj+1(s′j − sj) + z +
∑n
i 6=j,i=1mi+1(s′i − si)

mod 2K
)
÷ 2L−1 = y′.

This equation is independent of m1. By Proposition 3.1,
there are exactly 2L−1 solutions mj+1 to this
last equation. (Indeed, in the statement of
Proposition 3.1, substitute mj+1 for x, s′j − sj for a,

z +
∑n
i 6=j,i=1mi+1(s′i − si) mod 2K for c and y′ for b.)

Meanwhile, there are 2L−1 possible values z such that
z ÷ 2L−1 = y. Because there is a bijection between m1

and z, there are also 2L−1 possible values for m1.
So, focusing only on m1 and mj+1, there are 2L−1 ×

2L−1 values satisfying h(s) = y and h(s′) = y′. Yet
there are 2K × 2K possible pairs m1,mj+1. Thus the
probability that h(s) = y and also that h(s′) = y′ is
2L−1×2L−1

2K×2K = 22(L−K−1), which completes the proof for
the first family.

The proof that the second family (Multilinear-
HM) is strongly universal is similar. As before, set z in
[0, 2K) such that z ÷ 2L−1 = y. Solve for m1 from the
first equation:

m1 =
(
z −

n/2∑
i=1

(m2i + s2i−1)(m2i+1 + s2i)
)

mod 2K .

Then by substitution, we get((∑n/2
i=1(m2i + s′2i−1)(m2i+1 + s′2i)−

(m2i + s2i−1)(m2i+1 + s2i)

+ z
)

mod 2K
)
÷ 2L−1 = y′.

We can rewrite this last equation—if j is even, as
((mj(s

′
j − sj) + ρ + z mod 2K) ÷ 2L−1 = y′; if j is
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odd, as ((mj+2(s′j − sj) + ρ+ z mod 2K)÷ 2L−1 = y′,
where ρ is independent of either mj (when j is even) or
mj+2 (when j is odd). As before, by Proposition 3.1,
there are exactly 2L−1 solutions for mj (j even) or
mj+2 (j odd) if z is fixed. As before, there are
2L−1 distinct possible values for z, and 2L−1 distinct
corresponding values for m1. Hence, the pair m1,mj

can take 2L−1 × 2L−1 distinct values out of 2K × 2K

values, which completes the proof.

To apply Theorem 3.1 to variable-length strings, we
can append the character value one to all strings so
that they never end with the character value zero, as in
§ 2. If we use Multilinear-HM, we should add the
character value one before padding odd-length strings
to an even length.

Theorem 3.1 is both more general (because it includes
strings) and more specific (because the cardinality of
the set of hash values is a power of two) than a similar
result by Dietzfelbinger [15, Theorem 4]. However, we
believe our proof is more straightforward: we mostly
use elementary mathematics.

While Dietzfelbinger did not consider the multilinear
case, others proposed variations suited to string
hashing. Pǎtraşcu and Thorup [26] state without proof
that Multilinear-HM over strings of length two is
strongly universal for K = 64, L = 32. They extend
this approach to strings, taking characters two by two:

h(s) =
(( n/2⊕

i=1

(m3i−2 + s2i−1)(m3i−1 + s2i) +m3i

)
mod 2K

)
÷ 2L

where
⊕

is the bitwise exclusive-or operation and
n is even. Unfortunately, their approach uses more
operations and requires 50% more random numbers
than Multilinear-HM. They also refer to an earlier
reference [27] where a similar scheme was erroneously
described as universal, and presented as folklore:

h(s) =
(( n/2⊕

i=1

(m2i+1 + s2i+1)(m2i+2 + s2i+2)
)

mod 2K
)
÷ 2L

where n is even. To falsify the universality of this
last family, we can verify numerically that the strings
0, 0 and 2, 6 collide with probability 576

4096 > 1
23 , for

K = 6, L = 3. In any case, we see no benefit to this last
approach for long strings because Multilinear-HM is
likely just as fast, and it is strongly universal.

3.1. Implementing Multilinear

If 32-bit values are required, we can generate a large
buffer of 64-bit unsigned random integers mi. The

computation of either

h(s) =
(
m1 +

n∑
i=1

mi+1si mod 264
)
÷ 232

or

h(s) =
(
m1 +

n/2∑
i=1

(m2i + s2i−1)(m2i+1 + s2i)

mod 264
)
÷ 232

is then a simple matter using unsigned integer
arithmetic common to most modern processors. The
division by 232 can be implemented efficiently by a right
shift (>>32).

One might object that according to Theorem 3.1, 63-
bit random numbers are sufficient if we wish to hash
32-bit characters to a 32-bit hash value. The division
by 232 should then be replaced by a division by 231.
However, we feel that such an optimization is unlikely
to either save memory or improve speed.

Multilinear is essentially an inner product and
thus can benefit from multiply-accumulate CPU
instructions: by processing the multiplication and the
subsequent addition as one machine operation, the
processor may be able to do the computation faster
than if the computations were done separately. Several
processors have such integer multiply-accumulate
instructions (ARM, MIPS, Nvidia and PowerPC).
Comparatively, we do not know of any multiply-xor-
accumulate instruction in popular processors.

Unfortunately, some languages—such as Java—fail to
support unsigned integers. With a two’s complement
representation, the de facto standard in modern
processors, additions and multiplications give identical
results, up to overflow flags, as long as no promotion is
involved: e.g., multiplying 32-bit integers using 32-bit
arithmetic, or 64-bit integers using 64-bit arithmetic.
However, we must still be careful: promotions and
divisions differ when we use signed integers:

• If we store string characters using 32-bit integers
(int) and random values as 64-bit integers (long),
Java will sign-extend the 32-bit integer to a 64-
bit integer when computing mi+1 ∗ si, giving an
unintended result for negative string characters.
Use mi+1 ∗ (si&0xFFFFFFFFl) instead.

• Unsigned and signed divisions differ. Correspond-
ingly, for the division by 232—to retrieve the
32 most significant bits—the unsigned right-shift
operator (>>>) must be used in Java, and not the
regular right shift (>>).

Because we assume that the number of bits is a con-
stant, the computational complexity of Multilinear
is linear (O(n)). Multilinear uses n multiplications,
n additions, and one shift, whereas Multilinear-HM
uses n/2 multiplications, 3n/2 additions, and one shift.
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In both cases we use 2n+ 1 operations, although there
may be benefits to having fewer multiplications. (Ad-
mittedly, Single Instruction, Multiple Data (SIMD) pro-
cessors can do several instructions at once, making an
analysis based solely on the number of operations mis-
leading.)

Consider that we need at least ≈ 32(n + 1) random
bits for strongly universal 32-bit hashing of 32n bits [17]
according to Stinson’s bound. That is, we must
aggregate ≈ 64n + 32 bits into a 32-bit hash value.
Assume that we only allow unary and binary operations.
A 32-bit binary operation maps 64 bits to 32 bits, a
reduction of 32 bits. Hence, we require at least 2n 32-bit
operations for strongly universal hashing. Alternatively,
we require at least n 64-bit operations. Hence, for
n large, Multilinear and Multilinear-HM use at
most twice the minimal number of operations.

3.2. Word size optimization

The number of required bits is application dependent:
for a hash table, one may be able to bound the
maximum table size. In several languages such as Java,
32-bit hash values are expected. Meanwhile the key
parameters of our hash functions Multilinear and
Multilinear-HM are L (the size of characters) and
K (the size of the operations), and these two hash
functions deliver K − L+ 1 usable bits.

However, both K and L can be adjusted given a
desired number of usable random bits. Indeed, a length
n string of L-bit characters can be reinterpreted as a
length ndL/L′e string of L′-bit characters, for any non-
zero L′. Thus, we can either grow L and K or reduce
L and K, for the same number of usable bits.

To reduce the need for random bits, we should use
large values of K. Consider a long input string that we
can represent as a string of 32-bit or 96-bit characters.
Assume we want 32-bit hash values. Assume also that
our random data only comes in strings of 64-bit or 128-
bit characters. If we process the string as a 32-bit string,
we require 64 random bits per character. The ratio of
random strings to hashed strings is two. If we process
the string as a 96-bit string, we require 128 random
bits per character and the ratio of random strings to
hashed strings is 128/96 = 4/3 ≈ 1.33. What if we
could represent the string using 224-bit characters and
have random bits packaged into characters of 256 bits?
We would then have a ratio of 8/7 ≈ 1.14.

We can formalize this result. Suppose we require
z pairwise independent bits and that we have M input
bits. Stinson [17] showed that this requires at least
1+2M (2z−1) hash functions. Equivalently, this requires
log(1 + 2M (2z − 1)) random bits. Thus, given any
hashing family, the ratio of its required number of
random bits to the Stinson limit (henceforth Stinson
ratio) must be greater or equal to one. The M input
bits can be represented as an L-bit n-character string
for M = nL. Under Multilinear (and Multilinear-
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FIGURE 1: For large inputs, Multilinear requires an
almost optimal number of random bits when arbitrary
word sizes (K) are allowed. It has lower efficiency when
the word size is constrained. The plot was generated for
32-bit hash values (z = 32).

HM), we must have z = K − L + 1. Thus we use
K(n + 1) = (z + L − 1)(dM/Le + 1) random bits. We
have that (z+L−1)(dM/Le+1) ≤ (z+L−1)(M/L+2)
which is minimized when

L =

√
(z − 1)

M

2
. (4)

Rounding L =
√

(z − 1)M/2 up and substituting
it back into (z + L − 1)(dM/Le + 1), we get an
upper bound on the number of random bits required
by Multilinear. This bound is nearly optimal
when dM/Le ≈ M/L, that is, when M is large.
Unfortunately, this estimate fails to consider that word
sizes are usually prescribed. For example, we could
be required to choose K ∈ {8, 16, 32, 64}. That is,
we have to choose L ∈ {9 − z, 17 − z, 33 − z, 65 − z}.
Fig. 1 shows the corresponding Stinson ratios. When
there are many input bits (M � 1), the ratio of
Multilinear converges to one. That is, as long as
we can decompose input data into strings of large
characters (having approximately

√
(z − 1)M/2 bits),

Multilinear requires almost a minimal number of
bits. This may translate into an optimal memory usage.
(The result also holds for Multilinear-HM except
that it is slightly less efficient for strings having an odd
number of characters.) If we restrict the word sizes
to common machine word sizes (K ∈ {8, 16, 32, 64}),
the ratio is ≈ 2 for large input strings. We also
consider the case where we could use 128-bit words
(with K ∈ {8, 16, 32, 64, 128}). It improves the ratio
noticeably (≈ 1.33), as expected.

We can also choose the word size (K) to optimize
speed. On a 64-bit processor, setting K = 64 would
make sense. We can compare this default with two
alternatives:

1. We can try to support much larger words using
fast multiplication algorithms such as Karatsuba’s.
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We could merely try to minimize the number of
random bits. However, this ignores the growing
computation cost of multiplications over many
bits, e.g., Karatsuba algorithm is in Ω(K1.58).
For simplicity, suppose that the cost of K-bit
multiplication costs Ka time for a > 1. To hash
M bits, we require dM/Le multiplications with
Multilinear. When we have long strings (i.e.,
M � L), we can simplify dM/Le ≈ M/L. If
we desire z-bit hash values, then we need to use
multiplication on K = z + L − 1 bits. Thus, the
processing cost can be (roughly) approximated as
M(z+L−1)a

L . Starting from L = 1, this function
initially decreases to a minimum at

L =
z − 1

a− 1
(5)

before increasing again as La−1. (When a = 1.5
and z = 32, we have z−1

a−1 = 62.) See Fig. 2. Hence,
while we can minimize the total number of random
bits by using many bits per character (L large), we
may want to keep L relatively small to take into
account the superlinear cost of multiplications.

2. We can support 128-bit words on a 64-bit
processor, with some overhead. (Recent GNU
GCC compilers have the uint128 type, as
a C-language extension.) A single 128-bit
multiplication may require up to three 64-
bit multiplications. However, it processes
more data: with z = 32 hashed bits, each
128-bit multiplication hashes 97 input bits.
Comparatively, setting K = 64, we require a single
64-bit multiplication, but we process only 32 bits of
data. (Formally, we could process 33 bits of data,
but for convenient implementation, we process data
in powers of two.) Hence, it is unclear which
approach is faster: three 64-bit multiplications and
128 bits of random data to process 97 input bits, or
a single 64-bit multiplication and 64 bits of random
data, to process 33 input bits. However, the 128-bit
approach will use 33% fewer random bits. Going to
256-bit word sizes would only reduce the number of
random bits by 14%: using larger and larger words
leads to diminishing returns.

We assess these two alternatives experimentally in
§ 5.5.

4. FAST MULTILINEAR WITH CARRY-
LESS MULTIPLICATIONS

To help support fast operations over binary finite fields
(GF (2L)), AMD and Intel introduced the Carry-less
Multiplication (CLMUL) instruction set [28]. If we
are given the binary representations of two numbers,
a =

∑L
i=1 ai2

i−1 and b =
∑L
i=1 bi2

i−1, the carry-

less multiplication is given by c =
∑2L−1
i=1 ci2

i−1,

where ci =
⊕2L−1

j=1+i ajbj−i. Henceforth, we write
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FIGURE 2: Modeled computational cost per bit as a

function of the number of bits per character ( (z+L−1)a
L )

for 32-bit hashing values (z = 32) and a = 1.5.

a ? b = c. If we represent the two L-bit integers a
and b as polynomials in GF(2)[x], then the carry-less
multiplication is equivalent to the usual polynomial
multiplication:(

L∑
i=1

aix
i−1

)(
L∑
i=1

bix
i−1

)
=

2L−1∑
i=1

cix
i−1.

With a fast carry-less computation, we can com-
pute Multilinear efficiently. Given any irreducible poly-
nomial p(x) of degree L, the field GF(2)[x]/p(x) is
isomorphic to GF(2L). Hence, we want to compute
h(s) = m1+

∑n
i=1mi+1si over GF(2)[x]/p(x). Comput-

ing all multiplications over GF(2)[x]/p(x) would still be
expensive given fast carry-less multiplication. Instead,
we first compute m1 +

∑n
i=1mi+1si over GF(2)[x] and

then return the remainder of the division of the final
result by p(x). Indeed, think of the values m1,m2, . . .
and s1, s2, . . . as polynomials of degree at most L in
GF(2)[x]. Each of the n multiplications in GF(2)[x] is
equivalent to a carry-less multiplication over L-bit in-
tegers which results in a 2L − 1-bit value. Similarly,
each of the n additions in GF(2)[x] is an exclusive-or
operation. That is, we want to compute the 2L− 1-bit
integer

h̄(s) = m1 ⊕

(
n⊕
i=1

mi+1 ? si

)
. (6)

Finally, considering h̄(s) as an element of GF(2)[x],
noted q(x), we must compute q(x)/p(x). The remainder
(as an L-bit integer) is the final hash value h(s).

If done naively, computing the remainder of the
division by an irreducible polynomial may remain
relatively expensive, especially for short strings since
they require few multiplications. A common technique
to quickly compute the remainder is the Barrett
reduction algorithm [29]. The adaptation of this
reduction to GF(2)[x] is especially convenient [30] when
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we choose the irreducible polynomial p(x) such that
degree(p(x) − xL) ≤ L/2, that is, when we can write

it as p(x) =
∑bL/2c
i=0 aixi + xL. (There are such

irreducible polynomials for L ∈ {1, 2, . . . , 400} [31] and
we conjecture that such a polynomial can be found for
any L [32].) In this case, the remainder of q(x)/p(x) is
given by

((((q ÷ 2L) ? p)÷ 2L) ? p)⊕ q) mod 2L

where q and p are the 2L− 1-bit and L+ 1-bit integers
representing q(x) and p(x). (See Appendix B for
implementation details.) We expect the two carry-
less multiplications to account for most of the running
time of the reduction. Yet we expect that even a
fast implementation of the Barrett reduction is much
slower than merely selecting the left-most L bits as in
Multilinear.

Unfortunately, in its current Intel implementation,
carry-less multiplications have significantly reduced
throughput compared to regular integer multiplications.
Indeed, with pipelining, it is possible to complete one
regular multiplication per cycle, but only one carry-
less multiplication every 8 cycles [33]. However, using
a result from § 2, we can reduce the number of
multiplications by half if we compute

h̄(s) = m1 ⊕

n/2⊕
i=1

(m2i + s2i−1) ? (m2i+1 + s2i)


instead. (Henceforth, we refer to this last variation as
GF Multilinear-HM, whereas we refer to the version
based on Equation 6 as GF Multilinear.)

However, irrespective of its speed, the carry-less
approach might still be preferable to the schemes
described in § 3 (e.g., Multilinear) because fewer
random bits are required. Indeed, to generate L-
bit hash values from n-character strings, the carry-
less scheme uses (n + 1)L random bits, whereas
Multilinear requires 2L+ n(2L− 1) random bits.

5. EXPERIMENTS

Our experiments show the following results:

• It is best to implement Multilinear with loop un-
rolling. With this optimization, Multilinear is
just as fast (on Intel processors) as Multilinear-
HM, even though it has twice the number of
multiplications. In general, processor microarchi-
tectural differences are important in determining
which method is fastest. (§ 5.2)

• In the absence of processor support for carry-less
multiplication (see § 4), hashing using Multilinear
over binary finite fields is an order of magnitude
slower than Multilinear even when using a
highly optimized library. (§ 5.3)

• Even with hardware support for carry-less multipli-
cation, hashing using Multilinear over binary finite

fields remains several times slower than Multilin-
ear. (§ 5.4)

• Given a 64-bit processor, it is noticeably faster to
use a word size of 64 bits even though a larger
word size (128 bits) uses fewer random bits (33%
less). Use of multiprecision arithmetic libraries can
further reduce the overhead from accessing random
bits, but they also fail to be competitive with
respect to speed, though they can halve the number
of required random bits. (§ 5.5)

• Multilinear is generally faster than popular
string-hashing algorithms. (§ 5.6)

5.1. Experimental setup

We evaluated the hashing functions on the platforms
shown in Table 1. Our software is freely available
online [34]. For Intel and AMD processors, we used the
processor’s time stamp counter (rdtsc instruction [35])
to estimate the number of cycles required to hash each
byte. Unfortunately, the ARM instruction set does not
provide access to such a counter. Hence, for ARM
processors (Apple A4 and Nvidia Tegra), we estimated
the number of cycles required by dividing the wall-clock
time by the documented processor clock rate (1 GHz).

For the 64-bit machines, 64-bit executables were
produced and all operations were executed using 64-
bit arithmetic except where noted. All timings were
repeated three times. For the 32-bit processors, 32-
bit operations were used to process 16-bit strings.
Therefore, results between 32- and 64-bit processors
are not directly comparable. Good optimization flags
were found by a trial-and-error process. We note that
using profile-guided optimizations did not improve this
code any more than simply enabling loop unrolling
(-funroll-loops). With (only) versions 4.4 and higher
of GCC, it was sometimes important for speed to forbid
use of SSE2 instructions when compiling Multilinear
and Multilinear-HM (hence the -mno-sse2 flags in
Table 1). Moreover, we determined that versions 4.6
and 4.7 of GCC gave incorrect compiled code when
vectorizing Multilinear and related functions: as
an alternative to the -mno-sse2 flag, we found that
the -fno-tree-vectorize flag was sufficient to ensure
correct results.

We found that the speed is insensitive to the content
of the string: in our tests we hashed randomly generated
strings. We reuse the same string for all tests. Unless
otherwise specified, we hash randomly generated 32-bit
strings of 1024 characters.

In addition to Multilinear and Multilinear-
HM we also implemented Multilinear (2-by-2)
which is merely Multilinear with 2-by-2 loop
unrolling. (See Appendix A for representative C
implementations.)

Our timings should represent the best possible
performance: the performance of a function may
degrade [23] when it is included in an application
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TABLE 1: Platforms used.

Processor Bits GCC version Flags, besides -O3 -funroll-loops

64-bit processors

Intel Core 2 Duo 64 GNU GCC 4.6.2 -march=core2 -mno-sse2
Intel Xeon X5260 64 GNU GCC 4.1.2 -march=nocona
Intel Core i7-860 64 GNU GCC 4.6.2 -march=corei7 -mno-sse2
Intel Core i7-2600 64 GNU GCC 4.6.3 -march=corei7-avx -ftree-no-vectorize
Intel Core i7-2677M 64 GNU GCC 4.6.2 -march=corei7 -mno-sse2
AMD Sempron 3500+ 64 GNU GCC 4.4.3 -march=k8 -mno-sse2
AMD V120 64 GNU GCC 4.4.3 -march=amdfam10 -mno-sse2
AMD FX8150 64 GNU GCC 4.6.3 -march=bdver1 -ftree-no-vectorize

32-bit processors

Intel Atom N270 32 GNU GCC 4.5.2 -march=atom
Apple A4 32 GNU GCC 4.2.1 -march=armv7
Nvidia Tegra 2 32 GNU GCC 4.4.3a

VIA Nehemiah 32 GNU GCC 3.3.4 -march=i686

aFrom the Android NDK, configured for the android-9 platform, and used on a Motorola XOOM.

because of bandwidth and caching.

5.2. Reducing the multiplications or unrolling
may fail to improve the speed

We ran our experiments over both the 32-bit and 64-
bit processors. For the 32-bit processors, we generated
both 16-bit and 32-bit hash values. Our experimental
results are given in Table 2.

We see that over 64-bit Intel processors (except for
the i7-2600), there is little difference between Mul-
tilinear, Multilinear (2-by-2) and Multilinear-
HM, even though Multilinear and Multilinear (2-
by-2) have twice the number of multiplications. We
believe that Intel processors use aggressive pipelining
techniques well suited to these computations. On the
AMD processors, Multilinear-HM is the clear win-
ner, being at least 33% faster.

For the 32-bit processors, we get vastly different
results depending on whether we generate 16-bit or 32-
bit hash values.

• As expected, it is roughly twice as expensive to
generate 32-bit hash values than to generate 16-bit
values.

• For the VIA processor, Multilinear-HM is 45%
faster than Multilinear and Multilinear (2-
by-2). We suspect that the computational cost is
tightly tied to the number of multiplications.

• When the 32-bit ARM-based processors generate
32-bit hash values, Multilinear (2-by-2) is
preferable. We are surprised that Multilinear-
HM is the worse choice. We believe that
this is related to the presence of a multiply-
accumulate instruction in ARM processors. When
generating 16-bit hash values, Multilinear (2-by-
2) becomes the worse choice. There is no significant
benefit to using Multilinear-HM as opposed to
Multilinear.

• The Intel Atom processor benefits from
Multilinear-HM when generating 32-bit
hash value, but Multilinear is preferable to gen-
erate 16-bit hash values. As with the ARM-based
processors, Multilinear (2-by-2) is a poor choice
for generating 16-bit hash values.

5.3. Binary-finite-field libraries are not com-
petitive

We obtained the mpFb library from INRIA. This code
is reported [36] to be generally faster than popular
alternatives such as NTL and Zen, and our own tests
found it to be more than twice as fast as Plank’s
library [37].

We computed Multilinear in GF (232), using the
version with half the number of multiplications (see
Equation 1) because the library does much more
work in multiplication than addition. Even so, on a
Core 2 Duo, hashing 32-bit strings of 1024 characters
was an order of magnitude slower than Multilinear:
averaged over a million attempts, the code using mpFb
required an average of 7.69µs per string, compared with
0.78µs for Multilinear. While our implementation
of Multilinear uses twice as many random bits as
Multilinear in GF (232), this gain is offset by the
memory usage of the finite-field library.

5.4. Hardware-supported carry-less multiplica-
tions are not fast enough

Intel reports a throughput of one carry-less product
every 8 cycles [33] on a processor such as the Intel Core
i7-2600. Consider GF Multilinear-HM: it uses one
carry-less multiplication for every two 32-bit characters.
Hence, it requires at least 4 cycles to process each
character. Therefore, in the best scenario possible,
GF Multilinear-HM will be almost four times slower
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TABLE 2: Estimated CPU cycles per byte for fast Multilinear hashing

Multilinear 2-by-2 Multilinear-HM

64-bit processors and 32-bit hash values and characters

Intel Core 2 Duo 0.54 0.52 0.52
Intel Xeon X5260 0.50 0.50 0.50
Intel Core i7-860 0.42 0.42 0.42
Intel Core i7-2600 0.35 0.27 0.28

Intel Core i7-2677M 0.25 0.20 0.20
AMD Sempron 3500+ 0.63 0.60 0.40

AMD V120 0.63 0.63 0.40
AMD FX8150 0.88 1.00 0.51

64-bit arithmetic and 32-bit hash values and characters on 32-bit processors

Intel Atom N270 4.2 4.2 3.6
Apple A4 3.0 2.7 3.3

Nvidia Tegra 2 3.3 3.0 4.9
VIA Nehemiah 12 12 8.2

32-bit processors and 16-bit hash values and characters

Intel Atom N270 2.1 3.5 2.6
Apple A4 1.9 2.6 1.7

Nvidia Tegra 2 1.8 2.2 1.9
VIA Nehemiah 5.2 5.2 3.6

than Multilinear-HM which requires only 1.1 cycles
per 32-bit character (0.28 cycle per byte).

To assess the actual performance, we implemented
both GF Multilinear and GF Multilinear-HM in
C (§ Appendix B). We also implemented a variation on
GF Multilinear-HM (henceforth GF Multilinear-
HM-Fast) that loads data in blocks of four 32-bit
integers.

• Of the Intel processors we tested, only the i7-
2600 has support for the CLMUL instruction
set. If we use the flags -O3 -funroll-loops

-corei7-avx, we get 9.6 CPU cycles per 32-
byte character with GF Multilinear, 5.8 CPU
cycles with GF Multilinear-HM and only
4.3 CPU cycles with GF Multilinear-HM-Fast.
That is 2.4 cycles, 1.5 cycles and 1.1 cycles
per byte respectively: about 4–9 times slower
than Multilinear-HM on the same platform
(0.27 cycle per byte). We might be able
to improve our implementation. However, the
throughput of the carry-less multiplication limits
the character throughput of GF Multilinear and
GF Multilinear-HM to 8 and 4 cycles.

• One of our AMD processors (AMD FX8150)
also supports the CLMUL instruction set. With
the flags -O3 -funroll-loops -march=bdver1, it
fares slightly better than the Intel counterpart:
6.8 CPU cycles per 32-byte character with
GF Multilinear, 4.1 CPU cycles with GF
Multilinear-HM and only 3.5 CPU cycles
with GF Multilinear-HM-Fast. That is
1.7 cycles, 1.0 cycle and 0.9 cycle per byte
respectively. However, the same AMD processor
can process each 32-bit character in 2.05 cycles
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FIGURE 3: Microseconds to hash 4 kB using various
word sizes and GMP.

(0.51 cycle per byte) with Multilinear (2-by-2).
Hence, Multilinear (2-by-2) is almost 2 times
faster than the best carry-less approach (GF
Multilinear-HM-Fast).

Overall, the hardware-supported carry-less Multilinear
schemes are several times slower. On the bright side,
GF Multilinear and GF Multilinear-HM require
half the number of random bits.

5.5. The sweet-spot for multiprecision arith-
metic is not sweet enough

To implement the techniques of § 3.2, we used the GMP
library [38] version 5.0.2 to implement Multilinear (2-
by-2). As usual, we are hashing 4 kB of data, though
data to be hashed are read in large chunks (up to 2048
bits). The hash output is always 32 bits (z = 32).
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Results show a benefit as the chunk size L goes from
32 to 512 bits, but thereafter the situation degrades.
See Fig. 3. In the best case, using 512-bit arithmetic,
we require almost 13µs per string on a Core 2 Duo
platform. For comparison, we find that the fewest
random bits would be needed when L = 1024 (§ 3.2).
As expected, the running time is minimized for a
lower value of L to account for the superlinear cost of
multiplication.

Unfortunately, we can do 12 times better without the
GMP library (0.78µs for 64-bit Multilinear), so it is
not practical to use 512-bit arithmetic—even though it
uses fewer random bits (nearly half as many).

As a lightweight alternative to a multiprecision
library, we experimented with the uint128 type
provided as a GCC extension for 64-bit machines.
We used 128-bit random numbers and processed three
32-bit words with each 128-bit operation. Since
uint128 multiplications are more expensive than
uint128 additions, we tested the Multilinear-HM

scheme. On the Core 2 Duo machine, the result
was 38% slower than Multilinear (2-by-2) using 64-
bit operations. This poor results is mitigated by
the fact that we use 128 random bits per 96 input
bits, versus 64 random bits per 32 input bits (a
saving of nearly 33% for long strings). Investigation
using hardware performance counters showed many
“unaligned loads” from retrieving 128-bit quantities
when we step through memory with 96-bit steps. To
reduce this, we tried processing only two 32-bit words
with each 128-bit operation, since we retrieved aligned
64-bit quantities. However, the result was 61% slower
than Multilinear (2-by-2) using 64-bit operations.

5.6. Strongly universal hashing is inexpensive?

In a survey, Thorup [1] concluded that strongly
universal hash families are just as efficient, or even
more efficient, than popular hash functions with weaker
theoretical guarantees. However, he only considered 32-
bit integer inputs. We consider strings.

In Table 3, we compare the fastest Multilinear
(Multilinear-HM) with two non-universal fast 32-
bit string hash functions, Rabin-Karp [39] and
SAX [40]. (They are similar to hash functions found
in programming languages such as Java or Perl.) Even
though these functions were designed for speed and
lack strong theoretical guarantees, they are far slower
than Multilinear on desktop processors (AMD and
Intel). Only for ARM processors (Apple A4 and Nvidia
Tegra 2) with 32-bit hash values are they much faster.
We suspect that this good result on ARM processors
is due to the multiply-accumulate instruction. Clearly,
such a multiply-accumulate operation greatly benefits
simple hashing functions such as Rabin-Karp and SAX.

Crosby and Wallach [11] showed that almost
universal hashing could be as fast as common
deterministic hash functions. One of their most

competitive almost universal schemes is due to Black
et al. [19]. Their fast family of hash functions is called
NH:

h(s) =

n/2∑
i=1

(
m2i−1 + s2i−1 mod 2L/2

)
×
(
m2i + s2i mod 2L/2

)
mod 2L.

NH is almost universal over fixed-length strings, or over
variable-length strings that do not end with the zero
character; we can apply it to strings having odd length
by appending a character with value zero. It fails to be
uniform: the value

(m1 + s1 mod 2L/2)(m2 + s2 mod 2L/2)

is zero whenever either m1 + s1 mod 2L/2 is zero or
m2+s2 mod 2L/2 is zero, which occurs with probability
2L/2+1−1

2L
> 1

2L
over all possible values of m1,m2.

Moreover, the least significant bits may fail to be almost
universal: e.g., for L = 6, there are 96 pairs of distinct
strings colliding with probability 1 over the least two
significant bits. When processing 32-bit characters, it
generates 64-bit hash values with collision probability
of 1/232. Hence, in our tests over 32-bit characters, NH
generates 64-bit hash values whereas the Multilinear
families generate 32-bit hash values, but both have a
collision probability bounded by 1/232. Thus, while NH
saves memory because it uses nearly half the number of
random bits compared to our fast Multilinear families,
Multilinear families may save memory in a system that
stores hash values because their hash values have half
the number of bits. Table 4 shows that the 64-bit NH on
64-bit processors runs at about the same speed as the
best Multilinear on most processors. Only on two Intel
Core i7 processors (2600 and 2677M), NH’s running
time is 60% of Multilinear’s when we enable SSE
support. On only one AMD processor (AMD FX8150),
NH is 3 times faster. In other words, sacrificing
theoretical guarantees does not always translate into
better speed.

6. DISCUSSION

Overall, these numbers indicate that strongly universal
string hashing is computationally inexpensive on most
Intel and AMD processors. To get good results
with older 64-bit and AMD processors, we recommend
the use of Multilinear-HM. On more recent Intel
processors (i7-2600 and i7-2677M), Multilinear (2-
by-2) is just as fast.

Unfortunately—over long strings—strongly universal
hashing requires many random numbers. Generating
and storing these random numbers is the main difficulty.
Whether this is a problem depends on the memory
available, the CPU cache, the application workload and
the length of the strings. (Intel researchers reported
the generation of true random numbers in hardware at
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TABLE 3: A comparison of estimated CPU cycles per byte
between fast Multilinear hashing and common hash functions

Rabin-Karp SAX best Multilinear

32-bit hash values and characters on 64-bit processors

Intel Core 2 Duo 1.3 1.3 0.52
Intel Xeon X5260 1.4 1.6 0.50
Intel Core i7-860 1.4 1.6 0.42
Intel Core i7-2600 0.89 1.1 0.27

Intel Core i7-2677M 0.64 0.82 0.20
AMD Sempron 3500+ 1.0 1.5 0.40

AMD V120 1.0 1.5 0.40
AMD FX8150 0.86 1.3 0.51

32-bit hash values and characters on 32-bit processors

Intel Atom N270 1.1 2.0 4.2
Apple A4 0.88 1.2 2.7

Nvidia Tegra 2 0.85 1.2 3.0
VIA Nehemiah 2.0 3.0 8.2

16-bit hash values and characters on 32-bit processors

Intel Atom N270 2.1 4.1 2.2
Apple A4 1.8 2.1 1.8

Nvidia Tegra 2 1.6 2.4 1.7
VIA Nehemiah 5.0 6.6 3.6

TABLE 4: A comparison of estimated CPU cycles
per byte between fast Multilinear hashing and the
almost universal hash function NH from Black et
al. [19] for 32-bit hash values using 64-bit arithmetic.
When running NH tests, we remove the -mno-sse2

and -fno-tree-vectorize flags, where present, to get
better results.

NH [19] best Multilinear

Intel Core 2 Duo 0.53 0.52
Intel Xeon X5260 0.50 0.50
Intel Core i7-860 0.42 0.42
Intel Core i7-2600 0.16 0.27

Intel Core i7-2677M 0.12 0.20
AMD Sempron 3500+ 0.38 0.40

AMD V120 0.38 0.40
AMD FX8150 0.17 0.51

high speed (4 Gbps) [41].) In practice, unexpectedly
long strings may require the generation of new random
numbers while hashing a given string [11]. This
overhead should be relatively inexpensive if we know
the length of each string before we process it.

7. CONCLUSION

Over moderately long 32-bit strings (≈1024 characters),
current desktop processors can achieve strongly
universal hashing with no more than 0.5 CPU cycle
per byte, and sometimes as little as 0.2 CPU cycle
per byte. Meanwhile, at least twice as many cycles are
required for Rabin-Karp hashing even though it is not
even universal.

While it uses half the number of multiplications,
we have found that Multilinear-HM is often no
faster than Multilinear on Intel processors. Clearly,
Intel’s pipelining architecture has some benefits. For
AMD processors, Multilinear-HM is faster (≈ 33%),
as expected because it uses fewer multiplications.
Yet another alternative, Multilinear (2-by-2), was
slightly faster (≈ 15%) for 32-bit hashing on the mobile
ARM-based processors even though it requires twice
as many multiplications as Multilinear-HM. These
mobile ARM-based processors also computed 32-bit
Rabin-Karp hashing with fewer cycles per byte than
many desktop processors. We believe that this is related
to the presence of a multiply-accumulate in the ARM
instruction set.
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APPENDIX A. IMPLEMENTATIONS IN C

We implemented the following hash functions:

• Multilinear:
h(s) = m1 +

∑n
i=1mi+1si

• Multilinear (2-by-2):

h(s) = m1 +
∑n/2
i=1m2is2i−1 + s2im2i+1

• Multilinear-HM:
h(s) = m1 +

∑n/2
i=1(m2i + s2i−1)(s2i +m2i+1)

For simplicity we assume that the number of characters
(n) is even. Following a common convention, we write
the unsigned 32-bit and 64-bit integer data types as
uint32 and uint64. The variable p is a pointer
to the initial value of the string whereas endp is

a pointer to the location right after the last 32-bit
character of the string. The variable m is a pointer
to the 64-bit random numbers. (When using 63-
bit random numbers as allowed by Theorem 3.1, the
right shifts should be by 31 instead. In practice,
we use 64-bit numbers.) On some compilers and
processors, it was useful to disable SSE2: under
GNU GCC we can achieve this result with function
attributes (e.g. by preceding the function declaration
by __attribute__ ((__target__ ("no-sse2")))).

Multilinear

uint32 hash ( uint64 ∗ m, uint32 ∗ p ,
uint32 ∗ endp) {

uint64 sum = ∗(m++);
for ( ; p != endp ; ++m, ++p)

sum+= ∗m ∗ ∗p ;
return sum >> 32 ;

}

Multilinear (2-by-2)

uint32 hash ( uint64 ∗ m, uint32 ∗ p ,
uint32 ∗ endp) {

uint64 sum = ∗(m++);
for ( ; p != endp ; m += 2 , p += 2)

sum += (∗m ∗ ∗p) + (∗ (m+1) ∗ ∗(p+1) ) ;
return sum >> 32 ;

}

Multilinear-HM

uint32 hash ( uint64 ∗ m, uint32 ∗ p ,
uint32 ∗ endp) {

uint64 sum = ∗(m++);
for ( ; p != endp ; m += 2 , p += 2) {

sum += (∗m + ∗p) ∗ (∗ (m+1) + ∗(p+1) ) ;
}
return sum >> 32 ;

}

APPENDIX B. CODE WITH CLMUL

We implemented Multilinear in GF (232) in C using the
Carry-less Multiplication (CLMUL) instruction set [28]
supported by recent Intel and AMD processors. We
also implemented the counterpart to Multilinear-
HM which executes half the number of multiplications.

We use the same conventions as in Appendix A
regarding the variables p and m except that the
latter is a pointer to 32-bit random numbers. We
wrote our C programs using SSE intrinsics: they
are functions supported by several major compilers
(including GNU GCC, Intel and Microsoft) that
generate SIMD instructions.

The Barrett reduction algorithm is adapted from
Knežević et al. [30]. The variable C contains the chosen

http://code.google.com/p/variablelengthstringhashing/
http://code.google.com/p/variablelengthstringhashing/
http://web.eecs.utk.edu/~plank/plank/papers/CS-07-593.html
http://web.eecs.utk.edu/~plank/plank/papers/CS-07-593.html
http://gmplib.org
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irreducible polynomial. We initialize it as

C = mm set epi64x(0,1UL+ (1UL<<2)+ (1UL<<6)

+ (1UL<<7)+ (1UL<<32));.

Barrett reduction

uint32 b a r r e t t ( m128i A) {
m128i Q1 = mm sr l i ep i 64 (A, n) ;
m128i Q2 = mm clmulepi64 s i128 ( Q1, C,

0x00 ) ;
m128i Q3 = mm sr l i ep i 64 (Q2, n) ;
m128i f = mm xor si128 (A,

mm clmulepi64 s i128 ( Q3, C, 0x00 ) ) ;
return mm cvts i128 s i64 ( f ) ;

}

GF Multilinear

uint32 hash ( uint32 ∗ m, uint32 ∗ p ,
uint32 ∗ endp) {

m128i sum = mm set epi64x (0 , ∗(m++)) ;
for ( ; p != endp ; ++m, ++p ) {

m128i t = mm set epi64x (∗m, ∗p) ;
m128i c

= mm clmulepi64 s i128 ( t , t , 0x10 ) ;
sum = mm xor si128 ( c , sum) ;

}
return bar r e t (sum) ;

}

GF Multilinear-HM

uint32 hash ( uint32 ∗ m, uint32 ∗ p ,
uint32 ∗ endp) {
m128i sum = mm set epi64x (0 , ∗(m++)) ;

for ( ; p != endp ; m += 2 , p += 2 ) {
m128i t1 = mm set epi64x (∗m, ∗ (m+1) ) ;
m128i t2 = mm set epi64x (∗p , ∗ (p+1) ) ;
m128i t = mm xor si128 ( t1 , t2 ) ;
m128i c = mm clmulepi64 s i128 ( t , t ,

0x10 ) ;
sum = mm xor si128 ( c , sum) ;

}
return bar r e t (sum) ;

}

GF Multilinear-HM-Fast

uint32 hash ( uint32 ∗ m, uint32 ∗ p ,
uint32 ∗ endp) {

// assume m, p , endp are 128− b i t a l i g n e d
m128i z = mm setze ro s i128 ( ) ;
m128i sum = mm set epi64x (0 , ∗m) ;

m += 4 ;
m128i t , u , t1 , t2 , ts , c1 , c2 ;

for ( ; p != endp ; m += 4 , p += 4 ) {
t1 = mm load si128 ( ( m128i ∗) m) ;
t2 = mm load si128 ( ( m128i ∗) p) ;
t s = mm xor si128 ( t1 , t2 ) ;
t = mm unpacklo epi32 ( ts , z ) ;
c1 = mm clmulepi64 s i128 ( t , t , 0 x10 ) ;
sum = mm xor si128 ( c1 ,sum) ;
u = mm unpackhi epi32 ( ts , z ) ;
c2 = mm clmulepi64 s i128 (u , u , 0 x10 ) ;
sum = mm xor si128 ( c2 ,sum) ;

}
return bar r e t (sum) ;

}
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