Assessing the Security of a Clean-Slate
Internet Architecture

Gowtham Boddapati? John Day*

tMetropolitan College

Ibrahim Matta® Lou Chitkushev*

fCollege of Arts & Science

Computer Science, Boston University

{gowtham, day, matta, ltc} @bu.edu

December 2010
An earlier version appears in Technical Report BUCS-TR-2009-021

Abstract—The TCP/IP architecture was originally designed
without taking security measures into consideration. Over the
years, it has been subjected to many attacks, which has led
to many patches to counter them. Our investigations into the
fundamental principles of networking have shown that carefully
following an abstract model of Inter-Process Communication
(IPC) addresses many problems [1]. Guided by this IPC principle,
we designed a clean-slate Recursive InterNetwork Architecture
(RINA) [2]. In this paper, we show how, without the aid of
cryptographic techniques, the bare-bones architecture of RINA
can resist most of the security attacks faced by TCP/IP and
of course is only more secure if cryptographic techniques are
employed. Furthermore, the RINA model indicates specifically
where those security measures reside. We also show how hard
it is for an intruder to compromise RINA. Then, we show how
RINA inherently supports security policies in a more manageable,
on-demand basis, in contrast to the monolithic one-size-fits-all
approach of TCP/IP.

I. INTRODUCTION

The TCP/IP architecture has shown signs of weakness as
the Internet has grown and evolved. These problems are partly
due to changing requirements—including mobility, quality-of-
service, and security—but partly because of the architecture’s
rigid one-size-fits-all structure. In this paper, we focus on the
security properties that are inherent in the Internet architecture.

As is often lamented, the TCP/IP architecture was originally
designed without taking security considerations into account.
Over the years, many vulnerabilities have been discovered
and led to many patches to counter them. Given its rigid
structure, security mechanisms have mostly been inserted into
TCP/IP as “shim” sublayers lacking a comprehensive approach
to security.

Most recently, there have been attempts to design clean-
slate internet architectures. Our own investigations into the
fundamental principles of communication led to a rather
simple, elegant model based on a generalization of Inter-
Process Communication (IPC). However, this model, referred
to as RINA (Recursive InterNetwork Architecture) [2], was
developed from IPC considerations alone, without explicitly
considering security. Hence, it seemed wise to investigate its
security properties at the outset.

Space does not allow us to consider all aspects of the
security of RINA in this paper. (We hope to cover other aspects

in subsequent papers.) Here, after a very brief overview of the
pertinent aspects of RINA, we consider three types of vulnera-
bilities that have been found in TCP/IP: port-scanning attacks,
connection-opening attacks and data-transfer attacks. What we
find is that unlike the TCP/IP architecture, without the aid of
cryptographic techniques, the bare-bones architecture of RINA
is more secure and resistant to these attacks, even if we assume
that a RINA network has been fundamentally compromised.
Though further analysis is to be conducted, this might suggest
that good design is as important to good security as explicit
consideration of security.

We also show how RINA’s model organizes cryptographic
techniques in a way that clearly indicates the proper placement
of security mechanisms, rather than the piecemeal approach of
TCP/IP.

The rest of the paper is organized as follows. Section II re-
views elements of TCP/IP and RINA that are most relevant to
the security aspects discussed in this paper, specifically access
control, addressing, and connection management. Section III
compares the resiliency of TCP/IP and RINA to transport
attacks, namely port-scanning, connection-opening and data-
transfer. Section IV compares the two architectures in terms
of their organizational support for diverse security policies.
Section V concludes the paper.

II. BACKGROUND: TCP/IP vs. RINA

Figure 1 illustrates the TCP/IP architecture. In [2], we
identified the shortcomings of this architecture and attributed
them to: (1) exposing addresses to applications, (2) artificially
isolating functions of the same scope', and (3) artificially
limiting the number of layers (levels).

Figure 2 illustrates our RINA architecture [2], which lever-
ages the inter-process communication (IPC) concept.” In an
operating system, to allow two processes to communicate,
IPC requires certain functions such as locating processes,

Transport and routing/relaying are split into two layers: Data Link and
Physical layers over the same domain/link, and Transport and Network layers
internet-wide.

2We use IPC in its long lost original sense of passing data messages between
processes, rather than the broader current sense used today that encompasses
this as well as all synchronization techniques.

Applications | Web, email, ftp,. Applications

Transport Transport

Network Network Network

b -
Data Link M oL | oL | @ Data Link
A & = A
Physical o PHY | PHY % Physical
Y o

128.10.0.0

Fig. 1.

www.cs.bu.edu
128.197.15.10

128.197.0.!

TCP/IP Architecture

determining permission, passing information, scheduling, and
managing memory. Similarly, two applications on different
end-hosts should communicate by utilizing the services of a
distributed IPC facility (DIF) that provide the same functions
plus those required by the lack of a common memory. A DIF is
an organizing structure—what we generally refer to as a layer.
What functions constitute this layer, however, is fundamentally
different. A DIF is a collection of IPC processes (nodes). Each
IPC process executes routing, transport and management func-
tions. IPC processes communicate and share state information.
How a DIF is managed, including addressing, is hidden from
the applications. To understand why layers must be organized
this way, see [1].

The goal of a DIF is to provide a distributed service
that allows application processes to communicate. One use
of a DIF might be as a private network or overlay. Two
novel aspects of a DIF is that it repeats and is relative.
Each repetition addresses a different range of operation and/or
scope. As shown in Figure 2, two IPC processes P1 and P2
in an N-level DIF communicate by utilizing the services of
an (N-1)-level DIF. Thus, while the specific function of IPC
processes is to do IPC, they are also application processes
requesting IPC from a lower layer. Our IPC-based architecture
can be found in [2]. In this section, we only highlight key
aspects of this architecture that have a fundamental impact on
security.

application
processes

IPC process
(sender/peceiver/relay)

IPC process

IPC process
(sender/receiver)

(sender/receiver

Fig. 2.

RINA Architecture

A. Access Control

Unlike TCP/IP, RINA requires explicit enrollment for an
IPC process within a system to either join an existing DIF, or
create a new DIF.

a) Adding a New Member to an (N)-DIF: Suppose that
DIF I consists of a number of IPC processes on a set of
systems. Suppose that an IPC process, j, wants to join DIF I.
7 knows the application (service) name of an IPC process, i,
in I, not its address — 7 has no way of knowing the address of
any process in DIF I. i and j are connected by an underlying
(N-1)-DIF?. Using the underlying (N-1)-DIF, j requests that
the (N-1)-DIF establish an IPC channel (connection) with i
using the application name of i. In RINA, application processes
incorporate a common protocol for establishing application
connections that includes a plug-in module for authentication.

The (N-1)-DIF determines whether i exists and whether j
has access to i. After the connection has been established, i
authenticates j and determines whether it can be a member
of DIF I. This authentication can be as strong or as weak as
required by the DIF. If the result is positive, i assigns an (N)-
address to j. Note that the address is taken from the name space
for DIF I, i.e., DIFs have their own name (address) space. j
uses the (N)-address to identify itself to other members of
DIF I. Other initialization parameters associated with DIF [
are exchanged with j, possibly including a shared secret key.
The IPC process, j, is now a member of DIF I.

b) Creating a New DIF: Creating a new DIF is a
simple matter. A management or similar application with the
appropriate permissions causes an IPC process to be created
and initialized, including pointing it to one or more (N-1)-
DIFs. As part of its initialization, the IPC process is given the
means to recognize allowable members of the DIF (e.g., a list
of application process names, a digital signature, and so on). It
might be directed to initiate enrollment with them or to simply
wait for them to find this initial IPC process. When this has
been achieved, adding more members to the DIF proceeds as
described earlier.

B. Addresses and their Binding

The TCP/IP architecture has a global addressing space,
which allows any system to freely connect to any other system.
On the contrary, in RINA, the addresses are internal to a DIF.
For two application processes to communicate, they have to
have access to a DIF in common. If there is no common DIF,
then one must be created either by joining an existing DIF or
creating a new one. This provides the opportunity to restrict
access based on the security policy of the DIF.

In the TCP/IP architecture, TCP overloads the port-id to be
both a local handle, which identifies the application process,
and connection-endpoint-id, which identifies the data-transfer
connection. Figure 3 illustrates TCP’s management of data-
transfer connections. And by overloading the port-id again by
giving it application semantics as a well-known destination
port forces the receiver to rely on the sender’s id informa-
tion for its identity/consistency checking, rather than ids it
generated, which makes it easier for attackers to guess/spoof
the source port and thwart any consistency checking by the
receiver.

3Ultimately the lowest level DIF is the physical medium.

Unlike TCP/IP, RINA does not conflate port allocation
(which must be hard-state / explicitly signaled) with transport
state synchronization (which is timer-based / soft-state). In
RINA, applications do not listen to a well-known port. Rather
an application process requests service using the destination
application-name. The local communication IPC process re-
turns a port-id with only local significance to the user to use
as an opaque handle. The request is translated into a set of
policies for an EFCP (Error and Flow Control Protocol) flow.
One end of the flow is instantiated by creating an EFCP-
instance, identified by a different local identifier, referred to as
a connection-endpoint-id (CEP-id). The local communication
process then issues a create-request to find the destination
application and if the request is successful/accepted, allocates
the flow. Figure 4 illustrates RINA’s management of data-
transfer connections.

When the communication IPC process at the destination gets
the create-request, it determines if it can accept the request.
The degree of access control is a matter of policy — it could
be quite elaborate, or null like the current Internet. If the
request is accepted, the destination communication process
instantiates an EFCP-instance with its own local CEP-id,
and the result is returned to the requesting application. The
source and destination CEP-ids are concatenated for use as
a connection or flow id. If the create-request returns with a
negative response, it is determined whether the cause is fatal
or not. If not fatal, the source communication process may
modify the request and try again. If the create-request returns
with a positive response, the CEP-id is bound to the port-
id. Note that each end uses only ids that it has generated to
distinguish the flow.

Application Process

Port-id

Fig. 3. TCP Connection

application
processes

~(*—Local Mapping
& -

Fig. 4. RINA connections

C. Data Transfer

By separating port allocation (and access control) from
transport state synchronization, data transfer in RINA can
be cleanly done in a soft-state fashion and thus can support
reliable or unreliable, short or long transfers. If there is a lull
in the data transfer that is long enough to cause transport
timers to expire, the connection state is simply deleted but
ports are not deallocated. Ports are managed in a hard-state
style. After a lull, once data transfer resumes, the connection
state is immediately created.

RINA uses a soft-state data transfer protocol, built around
Watson’s Delta-t protocol [3]. This is in contrast to the
hybrid hard-state/soft-state approach of TCP. In Delta-t, unless
refreshed by data/ACK packet arrivals, a flow state is deleted
after 2 x M PL (Maximum Packet Lifetime) at the receiver,
and 3 x MPL at the sender. Figure 5 depicts a generic
RINA sender/receiver. TCP, on the other hand, requires explicit
control messages to synchronize the sender and receiver for
the purpose of providing data reliability (i.e., no data loss or
duplication). This makes TCP more vulnerable to attacks that
fabricate such control messages, or cause them to be dropped
[4]. Tt is worth noting that unlike TCP/IP where connection
synchronization is overloaded with security mechanisms such
as SYN cookies, RINA decouples authentication as part of
enrollment when IPC processes first join a DIF.

Transport
state removed,

Transfer
resumes

Transport
state created /7%

Tran:

init-request|

~ Port / CEP-id
P?ATI é ;f;—' d Allocation
request pending

er|starts accepted

Idle period >|
State Timer

Duration
Data Transfer

Soft-state Delta-t style
Transport

Hard-state Port Allocation
and Access Control

Fig. 5. RINA Sender / Receiver Protocol State

III. TRANSPORT ATTACKS ON TCP/IP vs. RINA
A. Port-Scanning Attacks

Port scanning is often viewed as a first step for an attack,
wherein the attacker explores “open” ports to which processes
on a system are listening. In RINA, a service is accessed
by its application-name—the requesting applications never see
addresses nor CEP-ids. In fact they are not privy to any data-
transfer identifiers. This is in contrast to TCP/IP in which
a destination application process is assumed to listen to a
well-known port. RINA also supports local access control
domains that restrict which applications are visible to the
DIF that the requestor belongs to. As described earlier, source
and destination port-ids then get assigned locally on-demand.
Ports are also dynamically mapped to separate data-transfer
(connection) endpoints, and contrary to TCP/IP, ports are not

part of the flow/connection id. This makes traditional port-
scanning attacks not possible in RINA.

In RINA, however, the attacker might try to scan application
names. But this is more difficult because application names are
strings of variable length, a far larger name space. Further-
more, the malicious user has to be a member of the same DIF
to be able to address other members in the DIF. Joining a DIF
requires that the new IPC process be authenticated, providing
further barriers to compromise RINA.

B. Connection-Opening Attacks

In this type of attack [5], the intruder attempts to establish
a connection with the server, impersonating a trusted user A.

In TCP/IP, this attack exploits the explicit three-way hand-
shake of TCP in which the client and server exchange
(synchronize) their Initial Sequence Numbers (ISN) prior to
data transfer. A malicious handshake sequence with server S,
intruder X, and spoofed client A, may look like:

X — S :SYN{ISNx), SRC= A

S — A :SYN(ISNs), ACK(ISNx)

X — S :ACK({dSNs), SRC = A

X — S : ACK(SNs), SRC = A, malicious-data

In this attack, we assume that the attacker X already knows
the destination port and IP address, as well as the source
IP address. The destination port and IP address are easy to
obtain, as they are generally published, as well-known ports.
The source IP address is also generally easy to obtain, as
this is simply the client that is being spoofed. As this is a
connection establishment phase, the intruder can use any one
of the ports as source port-id. This attack also assumes that
the acknowledgment (ACK) sent by the server and destined
to the spoofed system A, is lost or delayed, either because A
itself was down or slow (possibly through a separate attack)
or the ACK is intercepted and dropped by the intruder X.

The difficult part of launching this attack is determining the
ISN of the server. This could be more easily obtained if the
intruder is in the middle and observes the (unencrypted) traffic
between A and S. Otherwise, the intruder has to guess ISNs,
which given 32-bit sequence numbers and random selection
of ISNs, involves 232 possibilities.

In TCP/IP, the data packet that follows the three-way
handshake can contain any arbitrary, perhaps malicious, data.
This can lead to attacks such as connection-opening attacks,
unless TLS (Transport Layer Security) is used. On the other
hand, RINA requires TLS functionalities to be applied recur-
sively. Specifically, in RINA, the communicating application
processes inherently use a common application protocol for
establishing and releasing application connections. By using
this protocol the receiver expects the authenticated packets
to follow the connection establishment phase, which greatly
reduces the risk of connection-opening attacks. A message se-
quence illustrating RINA’s transport connection establishment,
followed by application authentication (challenge / response),
in the presence of an attacker X spoofing client A, looks like:

X — S : create-request(service-name, A, S,
source CEP-id, QoS, - --)
S — A : create-response(OK, destination CEP-id, - - -)
X — S : ACK(destination CEP-id), ISNc, - - -
S — A : challenge(---)
X — S :response(:--)
X — S:data

In this RINA attack scenario, we assume that the intruder
X has somehow thwarted the DIF enrollment authentication
described earlier, and is a member of the DIF as are A and S,
but we note that these are the hurdles that a TCP intruder does
not need to overcome. If that is the case, X is able to know the
addresses of A and S, i.e., X is launching an insider attack. As
this is a connection establishment phase, the intruder can use
any source CEP-id. And since in RINA, there is no need for
synchronizing sequence numbers [3]%, the sender can also use
any initial sequence number. Assuming X does not observe the
reply with the destination CEP-id, it has to guess this CEP-
id. Assuming standard field lengths, we take the length of
CEP-id to be the same as that of a port-id (i.e., 16 bits), thus
guessing CEP-id involves 2'6 possibilities. This makes this
type of attack equivalent to port-scanning attacks, in which an
intruder may be attempting an unallocated destination CEP-
id. Such attacks raise more suspicion (and hence, are easier to
detect) than TCP attacks that guess ISN.

C. Data-Transfer Attacks

Data-transfer attacks, known as blind in-window attacks
[6], are those where the attacker does not have access to
the data packets of the victim connection but still attempts
to inject packets that seem legitimate. Forming a legitimate
packet requires guessing various fields in the packet’s header.

In TCP/IP, the goal of this type of attack might be to abort an
ongoing connection by injecting a TCP “reset” [6], [7]. The
damage depends on the application running above the TCP
connection. One such application is BGP, where a connection
abort would result in entries of the routing table being flushed.
In this attack we assume that the attacker knows the destination
port and IP address, as well as the source IP address. The
destination port and IP address are easy to obtain, as they
are published. The source IP address is also generally easy to
obtain, as this is simply the spoofed client. The intruder has
to guess the source port as well as the sequence number that
has to lie within the window of the receiver.

To guess the source port-id, given 16-bit port numbers,
we have at most 2'¢ possibilities. Furthermore, for each
possible source port-id, given 32-bit sequence numbers and
say 64KB window size’, we have % = 213 possibilities
for selecting a sequence number that lies within the current

“4Recall that RINA uses a Delta-t [3] style data transfer protocol, whereby
new and old data connections are distinguished by connection ids that are
assigned for at least 2 X M PL to ensure data packets and duplicates for a
particular connection have died out before reusing the same connection id.
Thus, there is no need to synchronize sequence numbers for that purpose.

564KB is the default TCP maximum window size, without window scaling
options. Note that 64KB = 26+10+3 — 919,

receiver’s window. Thus, there is a total of 216+13 — 929
possibilities. Note that for larger window sizes®, typical of
higher bandwidth-delay-product networks, the attack will be
easier to launch.

In the case of RINA, the intruder can launch an attack
during two different phases of a connection: (1) after the
resource-allocation request is complete and before the data
transfer phase starts, or (2) during the data transfer phase.
Again here we assume that the intruder is in the same DIF, so
the attacker knows the addresses of the source and destination
IPC processes.

In the first case, the attacker has to guess the source CEP-
id and the destination CEP-id. The attacker also has to guess
other agreed-upon parameters of the connection, such as the
QoS-id, though as a member of the DIF, he/she knows the
legal range of QoS-ids. Since the data transfer phase has not
started, the attacker can use any ISN. Given 16-bit CEP-ids and
8-bit QoS-id, the attacker has 216+16+8 = 240 pogsibilities for
guessing the CEP-ids and QoS-id for the victim connection.

In the second case, in addition to the CEP-ids and QoS-id,
the attacker has to guess the sequence number which falls
within the window of the receiver. This guessing involves
240+13 = 9253 possibilities, assuming 64KB window size. This
type of attack is made even harder because of RINA’s use of
a Data-Run-Flag (DRF) during its Delta-t’s style data transfer
[3]. If the DRF bit is set, this implies that the sender has
no data left to be acknowledged or it is starting a new data
run. Thus, the DRF bit periodically synchronizes the sender
and receiver, and so setting it incorrectly in the attack packet
would raise suspicion.

For example, if the DRF bit is not set and the receiver’s
connection state had timed out (because it has not been
refreshed by new data from the sender), the attack packet
is simply dropped by the receiver. Let’s then assume that
the attacker always sets the DRF bit, along with an arbitrary
sequence number, in its attack packet. This attack packet is
accepted only if the receiver had no state for this connection.
Otherwise, the receiver can verify whether the setting of the
DRF bit makes sense, which is the case only if the receiver
has indeed acknowledged all prior data packets.

Finally, this type of attack is not possible or harder to
launch in RINA for two reasons: (1) RINA uses a soft-state
approach in managing connections, thus it does not use explicit
connection “reset” messages, which precludes “reset” attacks,’
and (2) RINA supports the dynamic assignment of CEP-ids
during the lifetime of a connection, binding them to the same
port-ids that are only locally-visible. This would make it very
hard for an attacker to guess the source and destination CEP-
ids.

1) Blind TCP Data Injection through Fragmented IP Traf-
fic: Zalewski [8] described a possible attack that can be
performed on TCP/IP that does not require the attacker to

Larger window sizes are possible using window scaling options.

7In a soft-state approach, the connection’s state at the receiver is automat-
ically reset after 2 X M PL if not refreshed by the sender [3], thus there is
no need for an explicit “reset” message.

guess or know the aforementioned TCP connection param-
eters and could therefore be successfully exploited in some
scenarios with less effort than that required to exploit the more
traditional data-injection attacks.

The attack is performed when one system is transferring
information to a remote peer by means of TCP, and the
resulting IP packet gets fragmented. In this case, the first IP
fragment will usually contain the entire TCP header, including
port numbers, sequence number, and other information that
may be relatively difficult for a third party (the attacker) to
guess otherwise. The other fragments carry the remaining
sections of the TCP payload, which would be put back
together (reassembled) at the receiver. Instead of attempting
to guess TCP header’s information such as port and sequence
numbers, the attacker may spoof any of the IP fragments
subsequent to the first fragment, inserting malicious data into
the TCP payload that causes the reassembly to fail. Zalewski
[8] discusses the feasibility of such attack.

This security problem arises in the TCP/IP architecture
because fragmentation/reassembly is done by both TCP and
IP—TCP can produce segments that are larger than IP’s
MTU (Maximum Transfer Unit) size. In RINA, because the
transport and routing functions are integrated into the same
DIF layer [9], fragmentation/reassembly occurs only once to
segment/fragment Service Data Units (SDUs).

D. Summary

Table I summarizes our comparison of RINA against
TCP/IP under transport-level attacks. We assume 32-bit se-
quence numbers, 16-bit port-ids/CEP-ids, 64KB window size,
and 3-bit QoS-id. To be able to make a direct comparison, we
had to assume that a RINA network had been compromised
and a rogue member had been allowed to join—a hurdle that
is not present in TCP/IP networks.

IV. SECURITY POLICIES IN TCP/IP vs. RINA

RINA decouples the various security functions of authen-
tication and confidentiality/integrity. The former is done by
the applications of the DIF where applications of the DIF
authenticate each other. The latter is done at the bottom of the
DIF where the IPC processes encrypt their traffic if they do
not trust the lower DIFs. These security functions are applied
recursively, so IPC processes themselves would authenticate
each other when communicating through lower-level DIFs.
Policies of the DIF determine the levels of authentication and
encryption. Figure 6 illustrates this functional organization.

In contrast, TCP/IP implements security functions piece-
meal, for example, using TLS under the application layer
and IPSec below the network layer. The TCP/IP organizing
structure is rigid and can only accommodate security functions
as “shim” sublayers, rather RINA accommodates them as an
integral part of (recursive) inter-process communication.

Figure 7 illustrates a “middlebox” solution to enable the
support of “private” domains in TCP/IP. Such a middlebox
is known as Network Address Translator (NAT) since it
aggregates private addresses of systems inside the private

TABLE I
COMPARISON OF TCP/IP AND RINA UNDER TRANSPORT ATTACKS. TO BE ABLE TO MAKE A DIRECT COMPARISON, WE HAD TO ASSUME THAT A RINA
NETWORK HAD BEEN COMPROMISED AND A ROGUE MEMBER HAD BEEN ALLOWED TO JOIN—A HURDLE THAT IS NOT PRESENT IN TCP/IP NETWORKS.

Vulnerability | TCP/IP

[RINA]

Port-scanning

possible due to well-known ports

not possible with unknown CEP-ids

Connection-opening

232 possibilities to guess ISN

218 possibilities to guess
destination CEP-id

Data-transfer 229

(right after conn. open)

possibilities to guess
source port-id and valid SN

220 possibilities to guess source and destination
CEP-ids and agreed-upon QoS-id

229 possibilities to guess
source port-id and valid SN

Data-transfer
(after transfer started)

253 possibilities to guess source and destination
CEP-ids, agreed-upon QoS-id, and valid SN

Authentication Module

Module
DIF

Fig. 6. Security policies applied recursively

domain (such as system “B” in the figure) into the NAT
public address. Communication across the private domain and
the public (Internet) domain, say between systems “B” and
“A”, is done through the NAT, which translates between its
public NAT address and port number, which identifies “B”
externally, and B’s actual private address and port number.
Furthermore, the NAT acts as a firewall, preventing attacks
on private addresses and ports. However, it is clear that this
kind of hand-crafted arrangement makes it hard to coordinate
communication across domains when we want to.

Mapping Table B

&

message

can't initiate connection

A NAT, id, &> B, id;

S

NAT

To: NAT, id,,

message

Fig. 7.

Security through NATs in TCP/IP

Figure 8 illustrates the procedure in RINA, where com-
munication is established between application processes to
join the same DIF. First, process “B” joins DIF z, which
initially only contains process “C” (Figure 8(a)). As mentioned
earlier, this explicit enrollment procedure happens using a
common underlying DIF (DIF y, in this example), and involves
authenticating that B is a valid member of DIF z, initializing
it with current DIF information, and assigning B an internal
address for use in coordinating communication within DIF
z. Then, similarly, process “A” joins DIF z (Figure 8(b)).

Thus, in RINA, there are no “middleboxes” per se, but rather
processes join and leave DIFs as determined by management
(security) policies. Furthermore, such enrollment procedures
can be repeated horizontally to create concurrent DIFs, or
vertically to create stacked DIFs.

A

Q @: DIFz i

(b)

Fig. 8. (a) Process “A” is about to join DIF z, (b) Process “A” after joining

DIF z.

V. CONCLUSION

In this paper, we compare a clean-slate internet architecture,
RINA, that is based on fundamental IPC principles, to TCP/IP
in terms of architectural support for security. We specifically
compare the resiliency of RINA to security vulnerabilities
found in the TCP/IP architecture. In some cases, to make a
fair comparison, we had to assume that a RINA network had
been compromised and a rogue member had been allowed to
join. (A hurdle that is not present in TCP/IP networks.) Even
so, we found RINA to be more secure and resistant to these
attacks.

We focused on access control, addresses and their binding,
and data transfer. We contrast the open access of TCP/IP
to the controlled access of RINA, which requires an explicit
enrollment phase to join a network of IPC processes (DIF).
Unlike TCP/IP, in RINA, node addresses (of IPC processes)

are internally assigned by a DIF, and are not exposed to
application processes. Furthermore, data connections are dy-
namically assigned connection endpoint ids (CEP-id), which
are bound to dynamically assigned ports. This late (dynamic)
binding of addresses / ids provides levels of indirection that
make RINA inherently more secure than TCP/IP, which ex-
poses static addresses and port numbers to applications.

We compare the resiliency of RINA and TCP/IP to
transport-level attacks. We show how the static assignment
of addresses and ports, as well as the hard-state approach
of TCP/IP to synchronizing connection states for reliable
data transfer, makes TCP/IP quite vulnerable to port-scanning,
connection-opening, and data-transfer attacks. On the other
hand, the dynamic assignment of addresses and ports, the
decoupling of port numbers from CEP-ids, and the soft-state
approach to data transfer, makes RINA quite resilient to such
attacks. We believe that this is an interesting result, given
that no more consideration of security was present in the
development of RINA than in the development of the TCP/IP
architecture. One might be led to conclude that strong design
is as important to good security as explicit consideration of
security. In other words, TCP/IP does not suffer as much from
a lack of foresight as a weak design.

Finally, we argue that the recursive nature of RINA or-
ganizes the security policies in a clean way, decoupling
authentication from integrity and confidentiality.

VI. ACKNOWLEDGMENT

This work was supported in part by NSF grants CNS-
0963974, CCF-0820138 and CSR-0720604.

REFERENCES

[1] J. Day, Patterns in Network Architecture: A Return to Fundamentals.
Prentice Hall, 2008.

[2] J. Day, I. Matta, and K. Mattar, ““Networking is IPC”: A Guiding Prin-
ciple to a Better Internet,” in Proceedings of ReArch’08 - Re-Architecting
the Internet. Madrid, SPAIN: Co-located with ACM CoNEXT 2008,
December 2008.

[3] R. Watson, “Timer-Based Mechanisms in Reliable Transport Protocol
Connection Management,” Computer Networks, vol. 5, pp. 47-56, 1981.

[4] G. Gursun, I. Matta, and K. Mattar, “Revisiting A Soft-State Approach
to Managing Reliable Transport Connections,” in Proceedings of the 8th
International Workshop on Protocols for Future, Large-Scale and Diverse
Network Transports (PFLDNeT), Lancester, PA, November 2010.

[5] S. M. Bellovin, “Security Problems in the TCP/IP Protocol Suite,”
Computer Communication Review, vol. 19, no. 2, pp. 3248, 1989.

[6] P. Watson, “Slipping in the Window: TCP Reset attacks,” Presentation at
2004 CanSecWest, 2004, http://cansecwest.com/csw04archive.html.

[7]1 E. Gont, “Security Assessment of the Transmission Control Protocol,”
CPNI Technical Note, Feburary 9 2009.

[8] M. Zalewski, “A New TCP/IP Blind Data Injection Technique?” Post to
the bugtraq mailing-list, 2003.

[9] K. Mattar, I. Matta, J. Day, V. Ishakian, and G. Gursun,
“Declarative Transport: A Customizable Transport Service for the
Future Internet)” in Proceedings of the 5" International Workshop
on Networking Meets Databases (NetDB 2009), co-located with
SOSP 2009, Big Sky, MT, October 2009. [Online]. Available:
http://www.cs.bu.edu/fac/matta/Papers/netdb09.pdf

