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Abstract. The design and implementation of a capability secure multi-
paradigm language should be guided from its conception by proven prin-
ciples of secure language design. In this position paper we present the
Oz-E project, aimed at building an Oz-like secure language, named in
tribute of E [MMF00] and its designers and users who contributed greatly
to the ideas presented here.
We synthesize the principles for secure language design from the expe-
riences with the capability-secure languages E and the W7-kernel for
Scheme 48 [Ree96]. These principles will be used as primary guidelines
during the project. We propose a layered structure for Oz-E and discuss
some important security concerns, without aiming for completeness at
this early stage.

1 Introduction

The Oz language was designed to satisfy strong properties, such as full composi-
tionality, lexical scoping, simple formal semantics, network transparent distribu-
tion, and so forth. Security, in the sense of protection against malicious agents,
was not a design goal for Oz. In this paper, we give a road map for making a
secure version of Oz, which we call Oz-E. Our approach is not to add security to
Oz, but to remove insecurity. We start with a small subset of Oz that is known
to be secure. We add functionality to this subset while keeping security. The
ultimate goal is to reach a language that is at least as expressive as Oz and
is secure both as a language and in terms of its implementation. It should be
straightforward to write programs in Oz-E that are secure against many realistic
threat models.

Structure of the Paper

This paper is structured into five parts:

– Section 2 summarizes the basic principles of language-based security, to set
the stage for the rest.

– Section 3 discusses a possible structure for Oz-E and a migration path to
get there.



– Section 4 discusses some concerns that will influence the design of Oz-E.
– Section 5 gives some practical scenarios with fragments of pseudocode.
– Section 6 summarizes the paper and the work that remains to be done.

Readers unfamiliar with the terminology of capabilities (authority, permission,
etc.) are advised to have a look at the glossary at the end of the paper.

2 Basic Principles of Language-Based Security

We distinguish between three kinds of principles: mandatory, pragmatic, and
additional. All principles serve a common goal: to support the development of
programs that use untrusted modules and entities to provide (part of) their
functionality, while minimizing their vulnerability to incorrectness and malicious
intents of these entities.

To avoid excess authority the Principle of Least Authority (POLA) – ex-
plained in another paper in this book [MTS05] – has to be applied with scrutiny
and supported by the language. POLA is not just about minimizing and fine-
graining the authority that is directly provided to untrusted entities, but also
about avoiding the abuse – by adversaries or incorrect allies – of authority pro-
vided to relied-upon entities.

The latter form of abuse is known in the literature as the luring attack or
the confused deputy [Har89]. A deputy is an entity that gets authority from its
clients to perform a task. A confused deputy is a deputy that cannot tell the
difference between its own authority and the authority it is supposed to get from
its clients.

Fig. 1. ACL’s vs. Capabilities

Figure 1 (left) shows what can go wrong with Access Control Lists (ACL’s).
The client wants the deputy to write its results to the file “file#123”. Assume
the deputy has the authority to write to this file. Should the deputy write to the
file? It may be that the client is abusing the deputy to write somewhere that the



client itself should not be allowed to write. There is no simple way to solve this
problem with ACL’s.

Figure 1 (right) shows how capabilities solve the problem. Instead of provid-
ing a mere designation, the client now provides a capability that bundles the
designation with the authority to write the file. The deputy can use this capabil-
ity without second thoughts, because the client can no longer trick the deputy
into writing into a place it should not.

2.1 Mandatory Principles

This section explains the principles that form the minimum necessary conditions
to enable secure programming, following the object-capability approach [MS03].

No Ambient Authority All authority is to be carried by capabilities: unforge-
able entities that combine designation with permissions. To enable the individual
entities to control the propagation of authority, the language has to cut off every
other way of getting authority. All entities come to live with no default authority,
and capabilities can only be acquired in the following ways:

– By endowment and parenthood (as defined in Sect. 7).
– By introduction: an entity can initiate an exchange of capabilities with an-

other entity, by exerting a permission of a capability that designates the
other entity (Sect. 7).

The language thus has to make sure that no authority can be acquired in any
other way, whether via globally or dynamically scoped variables, or via memory
probing and forging. This means that the language has to be purely lexically

scoped and completely memory safe.

No Authority Generation The availability of two capabilities can result in
more authority than the simple sum of both authorities. This phenomenon is
called “authority amplification”.

Except for the purpose of authentication – which will be handled in section
2.2 – authority amplification is very dangerous and should be avoided when
possible. It is as if “ambient authority” becomes available to an entity, thereby
turning the entity into a confused deputy, because the extra authority is not
provided by the client nor by the deputy.

Figure 2 shows what can happen. The client passes a capability to the deputy.
This capability designates an entity. Authority amplification will increase the
authority that the deputy has over this entity. This is shown by the small bold
oval. In that way, designation and authority have effectively become separated
again, just like with ACL’s, and the same problems arise.

Since the language will represent capabilities as data abstractions (e.g. ob-
jects, procedures, abstract data types (ADT’s)) it must make sure that these
abstractions can handle delegation of authority appropriately. Unbundled ab-
stractions (ADT’s), that provide operations separately from values, can lead



Fig. 2. Authority amplification can confuse deputies

very easily to the creation of deputies that are confused by authority amplifica-
tion.

To minimize the opportunities for deputies to be confused by authority am-
plification, a secure language must provide all access to system resources as
bundled data abstractions that completely encapsulate their internal state. Au-
thority amplification is defendable only in cases where normal capabilities would
not suffice.

2.2 Pragmatic Principles: Promoting Secure Programming

With the basic principles in place, all essential control of authority distribution
and propagation becomes available to programmers, and they can now – in prin-
ciple – start building entities that will perform reliably in collaboration with un-
trusted ones. However, it is not enough that Oz-E enables secure programming,
it should also make secure programming feasible in practice and consequently
favor secure programming (Sect. 7) as the default.

Defensive Correctness The dominant pattern of secure programming, which
the language must make practical, is that clients may rely on the correctness of
servers, but that servers should not rely on the correctness of clients. In other
words, a server (any “callee” in general) should always check its preconditions.
A client (any “caller” in general) may rely on the server, if it has the means
to authenticate the server. The usefulness of this pattern has emerged from
experience with E and its predecessors.

In traditional correctness arguments, each entity gets to rely on all the other
entities in the program. If any are incorrect, all bets are off. Such reasoning pro-
vides insufficient guarantees for secure programming. To expect programmers to
actually check all preconditions, postconditions, and invariants is not a realistic



approach either. Defensive correctness is when every entity explicitly checks its
input arguments when invoked. This is a realistic and effective middle way.

We require the language to make it practical to write most abstractions
painlessly to this standard. We require the libraries to be mostly populated by
abstractions that live up to this standard, and that the remaining members of
the library explicitly state that they fall short of this standard.

Fig. 3. Paths of vulnerability

Figure 3 shows an access graph. Dashed nodes are entities not relied upon
in any way. White crescents indicate explicit checking of input arguments when
invoked. A black crescent indicates explicitly checking all arguments when invok-
ing. A and B are vulnerable to (rely upon) C and C is vulnerable to D, and since
vulnerability is a transitive relation, A and B are also vulnerable to D. Because C
checks its incoming arguments when invoked, it will protect itself and its clients
from malicious arguments (e.g. provided by X). Paths of vulnerability are easy
to follow and go one way only. Two clients vulnerable to the same server are not
for that reason vulnerable to each other.

To support defensive correctness, Oz-E has to make it easy for the pro-
grammer to check incoming arguments. Guards, authentication primitives, and
auditors, presented in the next sections, realize such support.

Guards E ’s guards [Sti00] form a soft typing system [CF91] that provides
syntax support to make dynamic checking as easy as using static types. Guards
are first class citizens and support arbitrary complex dynamic checking without
cluttering the code with the actual tests. They can be user defined, and combined
into more complex guards by logical operators.

Authentication For an entity to defend its invariants in a mutually distrusting
context, it can be important to know the origin of collaborating entities. The en-
tity might want to authenticate a procedure before invoking it, and an argument
before applying the procedure to it. Because capabilities unify designation and
permission, and because the confused deputy problem can be naturally avoided,
there is no need to authenticate the invoker.



We do not necessary want to know who wrote the code for that entity – since
that knowledge is not very useful in general – but whether we want to rely upon
the entity that loaded it and endowed it with initial authority. For example, if
we rely upon bank B, we can authenticate an account-entity A by asking B if A
is genuine, in other words if B recognizes A as one of the accounts B – or maybe
an associated branch – created earlier.

Authentication by Invited Auditors The above form of authentication is
only useful to authenticate entities of which the alleged creator is a relied-upon
third party. Moreover, this form of authentication cannot tell us anything further
about the actual state of an entity at the time of authentication.

To reliably interact with entities of unknown origin, it must be possible to
have them inspected by a relied-upon third party. Without breaking encapsula-
tion – which would violate the principles in section 2.1 – that can be done as
shown by E’s auditors [YM00]. When an entity is created, a relied-upon third
party auditor is invited by the creator, to inspect the entity’s behavior and lexical
scope. Later, when the auditor is asked to vouch for the relied-upon properties,
it will reveal its conclusions, or if necessary re-inspect the state of the entity
before answering yes or no. If inconclusive or uninvited, it will answer no.

Failing Safely When an entity cannot guarantee its invariants in a certain
condition, it should raise an exception. The default mechanism should not enclose
any capabilities or potentially sensitive information with the exception that is
raised. Part of this concern can be automated by the guards discussed earlier,
who will throw an exception on behalf of the entity.

Preemptive Concurrency and Shared State Preemptive concurrency en-
ables an activation of an entity at some point in its progress to destroy the
assumptions of another activation of the same entity at another point in its
progress. This phenomenon is called plan interference.

Semaphores and locks give programmers control over the interaction between
concurrently invoked behavior, but their use is error-prone and increases the
overall complexity of a program. Good locking becomes a balancing exercise be-
tween the danger of race conditions and deadlocks. Preemptive concurrency with
shared state makes defensive programming too hard because considering a single
invocation of behavior is not enough to ensure preconditions and invariants.

For example, consider a simple “observer”-pattern [GHJV94]. With message-
passing concurrency as explained in chapter 5 of [VH04] – all entities involved
are Active Objects, subscription is done by providing a Port, and notification
via a Port.send operation – all update notifications of an entity are guaranteed
to arrive at all subscribers in the order of the update. With threads there is no
guarantee whatsoever about the order of arrival and it becomes dauntingly hard
to impose a proper order while at the same time avoiding deadlocks.



2.3 Additional Principles: Support for the Review Process

When the language is ready to provide all the necessary support for secure
programming, one more important design concern remains. The programmers
are now in the position to avoid security flaws while programming, but they also
need to be able to quickly find any remaining vulnerabilities that might have got
in. Oz-E must be designed to make security debugging easy. Its syntax should
therefore allow programmers to quickly identify big parts in a program that are

obviously safe, and concentrate on the remaining part.
A minimum set of tools to support debugging and analyzing the vulnera-

bilities is indispensable. These can range from support for syntax coloring to
debuggers of distributed code and tools for security analysis. To this goal, we
are currently researching formal models that allow us to analyze authority con-
finement amongst entities collaborating under mutual distrust [SMRS04]. A tool
based on this model would allow us to investigate the limits of the usability of
patterns of safe collaboration that emerged from experience (e.g. the Power-
box [SM02] and the Caretaker[MS03]), and enable the discovery of new such
patterns.

3 Proposed Structure of Oz-E

The Oz language has a three-layered design. We briefly introduce these layers
here, and refer to chapter 2 and appendix D of [VH04] for a detailed explanation.

The lowest layer is a simple language, kernel Oz, that contains all the concepts
of Oz in explicit form. The next layer, full Oz, adds linguistic abstractions to
make the language practical for programmers.1 The final layer, Mozart/Oz, adds
libraries and their interfaces to the external environment that depends on the
operating system functionality.

We realize that in an ideal world, the language and the operating system
should be developed together. Pragmatically, we will provide as much of the oper-
ating system functionality as possible inside the third layer of the language. Any
remaining functionality – not fitting the language without a complete rewrite of
the operating system – will be accessible through a general system interface.

The importance of the layered architecture for security is stressed by a flaw
in the current Mozart system that was found by Mark Miller. The module Time,
currently available in the second layer as ambient authority, provides access to
the system clock and should therefore be transferred to layer three, the func-
tionality of which can only be available via explicitly granted capabilities.

Read access to the system time can be used to read covert channels regard-
less of the countermeasures (e.g. randomness in thread execution sequence and
adding randomizing delays) the system could have taken to prevent this. Ad-
versaries that are prevented from reading the system type might still be able to

1 A linguistic abstraction is an abstraction with syntactic support. An abstraction is
a way of organizing a data structure or a control flow such that the user is given a
higher-level view and does not have to be concerned with its implementation.



send out the secrets they can discover, but there are countermeasures that can
make it arbitrary hard for them receive their instructions via covert channels.

We propose for Oz-E to keep as much of this layered structure as possible,
while staying within the boundaries of the security requirements. We will start
with very simple versions of these layers and grow them carefully into a full-
featured language, maintaining the security properties throughout the process.
The project will start by showing formally that the initial versions of kernel lan-
guage and full language are secure. During the growth process, we will maintain
at all times a formal semantics of the kernel language.

In the following three subsections, we present each of the three layers and
we discuss some of the issues that need to be resolved for each layer. Of course,
the early stage of the project does not allow us to attempt completeness in this
respect.

3.1 Kernel Language

The kernel language should be complete enough so that there is no need to go
lower, e.g., to a byte code level. As the kernel language is the lowest level seen by
(normal) application developers and library designers, reasoning and program
development will be simplified. Only the language designers themselves will go
below that level. The implementation will guarantee that the kernel language
satisfies its semantics despite malicious interference by programs written in it.

The initial kernel language will be as close as possible to the general kernel
language of Oz, which has a complete and simple formal semantics as given
in chapter 13 of [VH04]. This is the most complete formal semantics of Oz
that exists currently. As far as we know, the relevant part of the Mozart system
implements this semantics. It is straightforward to show that this kernel language
satisfies basic security properties such as secure closures (encapsulation based
on lexical scoping), absence of ambient authority, and unforgeable identity of
kernel language entities.

In the rest of this subsection, we address two specific issues that are directly
related to the kernel language, namely authentication and finalization. Authen-
tication is an issue that is directly related to security. Finalization is an issue
that is indirectly related to security: the current design has problems that would
make building secure systems difficult.

We prefer the kernel language of Oz-E to be a subset of the full language.
This results in semantic clarity, uniformity of syntax and simplicity, all important
pedagogical assets when teaching Oz-E. Furthermore, the kernel language subset
will allow us to experiment with language extensions while staying within the
language.

Authentication via Token Equality A basic requirement for building secure
systems is authentication of authority-carrying entities. Entities that were cre-
ated by relied-upon third parties should be recognizable with the help of the
third party. This means that the entity needs an identity that is unforgeable and



unspoofable, otherwise a creator could never be sure the entity is really the one
it created earlier. Unforgeable means that it is impossible to create an identity
out of thin air that matches with the identity of an existing entity. Unspoofable
means that the authenticity check cannot be relayed (man in the middle attack).

The kernel language has to let us achieve these properties for its own authority-
carrying entities and also for user-defined entities built using the kernel language.
Both of these categories impose conditions on the kernel language semantics. Let
us examine these conditions. In the following paragraphs we use the term “entity”
to mean a language entity of a type that can carry authority (be a capability),
as opposed to pure data (Sect. 7).

For kernel entities, authentication is achieved by the kernel language syntax
and semantics. The kernel semantics ensures that each newly created entity has
a new identity that does not exist elsewhere and that is unforgeable.

For user-defined entities, authentication has to be programmed. For exam-
ple, say we have a user-defined entity called “object” that is implemented as a
one-argument procedure. The object’s identity should not be confused with the
procedure’s identity. This implies that the kernel language should have opera-
tions to build unforgeable and unspoofable identity into user-defined entities.
One way to do this uses the concepts of chunk and name from the Oz kernel
language. A chunk is a record with only one operation, field selection. A name

is an unforgeable constant with an equality operation. With chunks and names,
it is possible to build an operation that wraps an entity in a secure way, so
that only the corresponding unwrap operation can extract the entity from the
wrapped one [VH04]. This is similar to the sealer/unsealer pairs [Mor73] in the
E language [Sti00].

Finalization Finalization is the user-defined “clean-up” operation that is re-
lated to automatic memory management. When an entity is no longer reachable
from an active part of the program, its memory can be reclaimed. Sometimes
more than that has to be done to maintain the program invariants. For example,
there might be a data structure whose value depends on the entity’s existence
(it counts the number of entities satisfying a particular property). Or the entity
might hold a descriptor to an open file. Finalization handles cases such as these.

The current finalization in Oz does not guarantee that an entity that became
unreachable is no longer used. The last operation performed on an entity before it
becomes unreachable should truly be the last operation performed on the entity.
To guarantee this, we propose to follow the “postmortem finalization” technique
(executor of an estate). This was invented by Frank Jackson, Allan Schiffman,
L. Peter Deutsch, and Dave Ungar.2 When an entity becomes unreachable, the
finalization algorithm invokes another entity, which plays the role of the executor
of the first entity’s estate. The executor will perform all the clean-up actions but
has no reference to the original entity.

2 We searched for a publication to reference this work but found none.



3.2 Full Language

The full language consists of linguistic abstractions built on top of the kernel
language and (base) libraries written in the full language itself. Giving this lin-
guistic support simply means that there is language syntax that is designed to
support the abstraction. For example, a for loop can be given a concise syn-
tax and implemented in terms of a while loop. We say that the for loop is a
linguistic abstraction.

The full language has to be designed to support the writing of secure pro-
grams. This implies both building new abstractions for secure programming and
verifying that the current language satisfies the properties of secure program-
ming. The language should not provide ambient authority or leak potentially
confidential information by default. For example, the current Mozart system has
an exception handling mechanism that in some cases leaks too much information
through the exceptions.

Modules and Functors Like Oz, the full language will provide operations
to create and manipulate software components. In Oz, these components are
values in the language called functors, which are defined through a linguistic
abstraction. Functors are instantiated to become modules, which are executing
entities. Modules are linked with other modules through a tool called the module

manager. This linking operation gives authority to the instantiated module.
In Oz-E, the module manager has to be a tool for secure programming. For

example, it should be easy to run an untrusted software component in an envi-
ronment with limited authority, by linking it only to limited versions of running
modules. Such modules can be constructed on the fly by the user’s trusted shell
or desktop program, to provide the right capabilities to host programs. This
mechanism can also be used for coarse grained “sandboxing”, e.g. to run a nor-
mal shell with a limited set of resources.

3.3 Environment Interaction

The security of Oz-E must be effective even though the environment is largely
outside of the control of the Oz-E application developers and system developers.
How can this be achieved? In the long term, we can hope that the environment
will become more and more secure, similar to Oz-E itself. In the short term, we
need libraries to provide controlled access to the operating system and to other
applications.

Security of an application ultimately derives from the user of the application.
An application is secure if it follows the user’s wishes. The user should have the
ability to express these wishes in a usable way through a graphical user interface.
Recent work shows that this can be done [Yee02]. For example, selecting a file
from a browser window gives a capability to the application: it both designates
the file and gives authority to perform an operation (such as an edit) on the file.
A prototype desktop environment, CapDesk, has been implemented using these



ideas. CapDesk shows that both security and usability can be achieved on the
desktop [SM02].

Oz has a high-level GUI tool called QTk. It combines the conciseness and
manipulability of the declarative approach with the expressiveness of the pro-
cedural approach. QTk builds on the insecure module Tk and augments that
functionality instead of restricting it. QTk has to be modified so that it satisfies
the principles enunciated in [Yee02] and implemented in CapDesk.

4 Cross-Layer Concerns

The previous section presented a layered structure for the Oz-E language and
system. In general however, security concerns cannot be limited to a single layer
in such a structure. As explained by another paper in this book [MTS05], they
are pervasive concerns. Some them will affect several layers. In this section we
discuss three such concerns: pragmatic issues of how to make the system easy
to program, execution on distributed systems, and the need for reflection and
introspection.

4.1 Pragmatic Issues in Language Design

A secure language should not just make it possible to write secure programs, it
must also make it easy and natural. Otherwise, one part of a program written
with bad discipline will endanger the security of the whole program. The default
way should always be the secure way. This is the security equivalent of fail-safe
programming in fault-tolerant systems.

We propose to use this principle in the design of the Oz-E concurrency model.
The two main concurrency models are message-passing concurrency (asynchro-
nous messages sent to concurrent entities) and shared-state concurrency (concur-
rent entities sharing state through monitors). Experience shows that the default
concurrency model should be message-passing concurrency. This is not a new
idea; Carl Hewitt anticipated it long ago in the Actor model [Hew77,HBS73].
But now we have strong reasons for accepting it. For example, the Erlang lan-
guage is used for building highly available systems [Arm03,AWWV96]. The E

language is used for building secure distributed systems [MSC+01]. For funda-
mental reasons, both Erlang and E use message-passing concurrency. We there-
fore propose for Oz-E to have this default as well. One way to realize this is by
the following semantic condition on the kernel language: cells can only be used

in one thread. This simple semantic condition has as consequence that threads
can communicate only through dataflow variables (declarative concurrency) and
ports (message-passing concurrency).

4.2 Distributed Systems

The distribution model of Oz allows all language entities to be partitioned over
a distributed system, while keeping the same semantics as if the entities were



on different threads in a single system, at least when network or node failures
are not taken into account. For every category of language entities (stateless,
single-assignment, and stateful) a choice of distributed protocols is available that
minimizes network communications and handles partial failure gracefully. Fault-
tolerant abstractions can be built within the language, on top of this system.

We want to keep the Oz-E distribution system as close as possible to this
model and put the same restrictions on communication with remote threads as
with local threads (such restrictions were discussed in section 4.1).

We are in the process of replacing the current, monolithic implementation of
distribution in Mozart by a modular implementation using the DSS (Distribution
Subsystem) [KEB03]. The DSS is a language-independent library, developed
primarily by Erik Klintskog, that provides a set of protocols for implementing
network-transparent and network-aware distribution. We will briefly consider
the opportunities offered by the DSS to add secure distribution to Oz-E.

Responsibility of the Language Runtime System The division of labor
between the DSS and the language system assigns the following responsibilities
to the language runtime system:

1. Marshalling and unmarshalling of the language entities.
2. Differentiating between distributed and local entities.
3. Mapping of Oz-E entities and operations to their abstract DSS-specific types,

which the DSS will distribute.
4. Choosing amongst the consistency protocols provided by the DSS, based on

the abstract entity types, and adjustable for individual entities.

Secure marshalling should not break encapsulation, and every language entity
should be allowed to specify and control its own distribution strategy and mar-
shalling algorithm. E provides such marshalling support via “Miranda” methods
that every object understands and that provide a safe default marshalling be-
havior which can be overridden. Oz-E could build a similar implementation for
the language entities that can perform method dispatching (e.g. objects). For
the other entities (e.g. zero-argument procedures), Oz-E could allow specialized
marshalers to be invited into the lexical scope of an entity when it is created.
Section 5.2 gives two examples of how invitation can be implemented in Oz-E.
Alternatively, Oz-E’s kernel language could use only object-style procedures that
by default forward marshalling behavior to marshalers, and that can override this
behavior.

Depending on these choices, marshalling might need support at the kernel
language level. The other three responsibilities of the language system can be
provided as part of an Oz-E system library.

Responsibility of the Distribution Subsystem The DSS itself takes re-
sponsibility for:

1. Distributing abstract entities and abstract operations.



2. Providing consistency, using the consistency protocols that were chosen.
3. Properly encrypting all communication, making sure that external parties

cannot get inside the connection.
4. Ensuring that it is unfeasibly hard to get (guess) access to an entity without

having received a proper reference in the legal way.
5. Authenticating the distributed entities to ensure that no entity is able to

pretend to be some other entity.

In [BKB04] the DSS is shown to have security requirements that are compatible
with the requirements for safely distributing capabilities. Three attack scenarios
have been investigated:

1. Outsider attacks. It should be impossible (infeasibly hard) for an attacker
node that does not have legal access to any distributed entities, to access an
entity at a remote site or to make such an entity unavailable for legal access.

2. Indirect attacks. It should be impossible for an attacker node that has legal
access to a distributed entity but not the one being attacked, to perform this
kind of intrusion or damage.

3. Insider attacks. It should be impossible for an attacker node that has legal
access to a distributed entity, to render the entity unavailable for legal access.
This can only be guaranteed for protocols that do not distribute or relocate
state such as protocols for asynchronous message sending or stationary ob-
jects (RPC), and only if the attacker node did not host the original entity,
but only a remote reference to it.

Apart from the requirements of the second scenario, the current DSS implemen-
tation claims to follow all these requirements. DSS distribution protocols will be
made robust to ensure that no DSS-node can be crashed – or forced to render
entities unavailable for legal access – by using knowledge of the implementation.
This is called “protocol robustification” and is still under development.

The fact that only asynchronous message sending and RPC-style protocols
are protected from insider attacks is no objection for Oz-E. In section 4.1 such re-
striction was already put on the interaction between entities in different threads:
normal threads on as single node will not be able to share cells.

4.3 Reflection and Introspection

To verify security properties at runtime, we propose to add the necessary prim-
itive operations to the kernel language, so that it can be programmed in Oz-E
itself. How much should a program be able to inspect itself, to verify security
properties? The problem is that there is a tension between introspection and
security. For example, a program might want to verify inside a lexically scoped
closure. Done naively, this breaks the encapsulation that the closure provides. In
general, introspection can break the encapsulation provided by lexical scoping.

To avoid breaking encapsulation the E language allows a user-defined entity
to invite relied-upon third parties (auditors) to inspect an abstract syntax tree
representation of itself, and report on properties that they find. Section 5.2 shows
how this could work in Oz-E.



Safe Debugging In a distributed environment, where collaborating entities
spread over different sites have different interests, how can debugging be done?
The principle is similar to safe introspection: entities are in control of what
debugging information they provide, and the debugger is a third party that may
or may not be “invited into the internals” of the entity.

Code Verification Loaded code should not be able to bring about behavior
which exceeds behavior that could be described within the kernel language. Since
we plan to use the Oz VM to run Oz-E bytecode, and the Oz VM itself provides
no such guarantee, we must verify all code before loading it. Such verification
of byte code is a cumbersome and error-prone task. Oz-E should be restricted
to load code from easily verifiable abstract syntax tree (AST) representations of
kernel and full language statements instead of byte code.

5 Some Practical Scenarios

In this section we take a closer look at how some of these ideas could be im-
plemented. We want to stress that the examples only present one of the many
possible design alternatives and do not express any preferences or recommenda-
tions from the authors. They are only provided as a clarification to the principles
and as a sample of the problems that Oz-E designers will need to solve.

5.1 At What Level Should We Implement Guards?

In section 2.2 we explained briefly the benefits of guards and how they are
supported in E. Let us now show in pseudocode how expressions could be guarded
in Oz-E and how a linguistic abstraction for guards could look like.

The example in Figure 4 guards a three valued logic type consisting of true,
false, or unknown. EnumGuard ensures that the set is provided as a list and
that all its elements are bound. Then it creates a single parameter procedure
that will do nothing if its argument is in the set, or raise an exception otherwise.
A guard Trilogic is created from that, and tested in the two last lines. The
first test will succeed, the second one will raise an exception.

What if we want to use this guard in a procedure declaration? Let’s first
assume we want to guard an input parameter, in this case X. Then:
proc {$ X:Trilogic ?Y} <S> end

can be translated into:
proc {$ X ?Y} {Trilogic X} <S> end

Guarding output parameters is more difficult. If Y is unbound then:
proc {P X ?Y:Trilogic} <S> end

can be translated as shown in Figure 5. Note that in Figure 5 the expression
marked (1) represents the statement <S> in which all free occurrences of the
identifier Y are replaced by an identifier Y2 which does not occur in <S> (see
chapter 13 of [VH04]).



fun {EnumGuard L}
if {Not {List.is L}}
then raise notAList(enumGuard) end
end
for X in L do {Wait X} end
proc {$ X}

try
if {Member X L}
then skip
else raise guardFailed(enumGuard) end
end

catch _ then
raise guardFailed(enumGuard) end

end
end

end
Trilogic = {EnumGuard [true false undefined]}
{Trilogic (x == y)} % will succeed
{Trilogic 23} % will raise an exception

Fig. 4. A three valued logic type guard

proc {$ X ?Y}
Y2

in
thread

try {Trilogic Y2} Y = Y2
catch Ex
then Y = {Value.failed Ex}
end

end
<S>{Y->Y2} %(1)

end

Fig. 5. Guarding output parameters



These examples work for atomic values that are either input or output param-
eters, but they cannot simply be extended for guarding partial values, because
the latter can be used for both input and output at the same time. Another
problem is the relational programming style where all parameters can be input,
output or both depending on how the procedure is used. This definitely calls for
more research, possibly revealing the need for a new primitive to support guards.

5.2 A Mechanism for Invitation and Safe Introspection

Let’s assume we have a new construct NewProc that takes an abstract syntax
tree (AST) and an environment record mapping the free identifiers in the AST
to variables and values, and returns a procedure. Instead of creating a procedure
like this:
P1 = proc {$} skip end

we could now also create a procedure like this:
P1 = {NewProc ast(stmt:´skip´) env()}

To create an audited procedure, an auditor is invoked with an AST and an
environment. The client of the procedure can call the auditor to inquire about
the properties that it audits. Let’s build an auditor to check declarative behavior.
We first present one that keeps track of the declarative procedures it creates.

Figure 6 builds an auditor procedure that takes a message as argument. If
the message matches createProc(...) it will investigate the AST and envi-
ronment provided, and create a procedure by calling {NewProc ...} with the
same arguments. If the investigation returned true, it will store the resulting
procedure in a list of all the created procedures that succeeded the Investigate
test. If the message matches approved(...) it will check this list.

Rees [Ree96] gives strong arguments against the approach of Figure 6, as it
easily leads to problems with memory management, performance, and to seman-
tic obscurity. For this reason W7 – like E – has chosen to provide a primitive
function to create sealer-unsealer pairs. Figure 7 provides an alternative approach
that avoids these drawbacks.

The auditor built in Figure 7 is stateless, and lets MarkOK wrap the created
procedure in some kind of recognizable entity that can be invoked as a normal
procedure. An invokable chunk would do for that purpose, as it could have a
secret field accessible by the name Secret known only to the auditor. For this
to work, Oz-E’s kernel language has to provide either invokable chunks or a
primitive function to create sealer-unsealer functions.

Instead of providing the environment directly for the auditor to investigate,
[Rei04] suggests a mechanism to manipulate the values in the environment before
giving them to the auditor (e.g. by sealing) to make sure that they cannot be
used for anything else than auditing.

Instead of inviting an auditor, one could invite a relied-upon third party that
offers general introspection and reflection. It would have roughly the same code-
frame as the auditor, but provide more detailed – and generally non-monotonic
– information about the internal state and the code of the procedure.



declare
local

AuditedProcedures = {NewCell nil}
fun {Investigate AST Env}

... % return boolean indicating whether
% {NewProc AST Env} returns a declarative procedure

end
proc {MarkOK P} % remember that P is declarative

AuditedProcedures := P | @AuditedProcedures
end
fun {IsOK P} % checks if P is marked declarative
{Member P @AuditedProcedures}

end
in

proc {DeclarativeAuditor Msg}
case Msg
of createProc(Ast Env ?P) then

if {Investigate Ast Env}
then

NewP = {NewProc Ast Env}
in

{MarkOK NewP}
P = NewP

else P = {NewProc Ast Env}
end

[] approved(P ?B) then
B = {IsOK P}

end
end

end
end

P1 = proc {$} skip end
P2 = {DeclarativeAuditor createProc(ast(stmt:´skip´) env())}
P1OK = {DeclarativeAuditor approved(P1 $)} % P1OK will be false
P2OK = {DeclarativeAuditor approved(P2 $)} % P2OK will be true

Fig. 6. Stateful auditor that investigates declarativity



declare
local

Secret = {NewName}
fun {Investigate AST Env}

... % return boolean indicating whether
% {NewProc AST Env} returns a declarative procedure

end
fun {MarkOK P}

WrappedP in
... % wrap P in some sort of invokable chunk WrappedP
... % WrappedP when invoked, will transparently invoke P
WrappedP.Secret = ok
WrappedP

end
fun {IsOK P} % checks if P is marked declarative

try P.Secret == ok catch _ then false end
end

in
proc {DeclarativeAuditor Msg}

case Msg
of createProc(Ast Env ?P) then

if {Investigate Ast Env}
then P = {MarkOK {NewProc Ast Env $}}
else P = {NewProc Ast Env}
end

[] approved(P ?B) then
B = {IsOK P}

end
end

end
end

Fig. 7. Stateless auditor that investigates declarativity



6 Conclusions and Future Work

A long-term solution to the problems of computer security depends critically
on the programming language. If the language is poorly designed, then assuring
security becomes complicated. If the language is well-designed, for example, by
thoroughly following the principle of least authority, then assuring security is
much simplified. With such a language, problems that appear to be very difficult
such as protection against computer viruses and the trade-off between security
and usability become solvable [Sti].

A major goal of Oz language research is to design a language that is as
expressive as possible, by combining programming concepts in a well-factored
way. The current version of Oz covers many concepts, but it is not designed
to be secure. This paper has given a rough outline of the work that has to be
done to create Oz-E, a secure version of Oz that supports the principle of least
authority and that makes it possible and practical to write secure programs. We
have covered both language and implementation issues. We also explain what
problems arise when a secure language lives in an insecure environment. Building
Oz-E will be a major undertaking that will require the collaboration of many
people. But the potential rewards are very great. We hope that this paper will
be a starting point for people who want to participate in this vision.

7 Glossary

Data A reference to an Oz-entity that has structural equality and consists only
of atoms, numbers, and completely grounded records that contain only data.

Capability An unforgeable reference that designates an entity of any type with
token identity. A capability comes with a fixed set of permissions: the differ-
ent kinds of interactions it supports.

Permission A means for interacting with the entity designated by a capability.
For example, a procedure comes with the permission to be applied to values.

Authority Any directly or indirectly observable effect an entity can cause. The
entity has to use a permission to achieve such an effect. Invoking a procedure
for instance could result in the update of a file, or influence the state of an
object that will eventually effect the screen.

Dynamic Authority and Revocation While the permission to invoke a pro-
cedure cannot be revoked, the authority that is provided by such a permission
can dynamically change and even reduce to zero. Authority depends on the
behavior of the invoked entity, which is usually influenced by its state and
by the arguments provided to it. Authority also depends on the behavior of
the invoker, which can decide whether or not it will use the returned values,
and to which extent. Authority is thus generated via collaboration during
the exertion of a permission, and both collaborators – invoker and invoked
entity – have certain means to dynamically influence the authority that is
realized.

Endowment When creating an entity, the creating entity can provide part of
its authority to the created entity.



Parenthood When creating an entity, the creating entity automatically gets
the only initial capability to the created entity.

Secure Programming Programming using components of which the reliabil-
ity is unknown or uncertain, while still guaranteeing that a predefined level
of vulnerability is not exceeded. Secure programming has to guarantee two
conditions:
1. all relied-upon components are programmed reliably so that they

(a) do not abuse their authority to inflict unacceptable damage, and
(b) cannot be lured into doing so by their collaborators.

2. no authority that can be abused to inflict unacceptable damage can
become available to not-relied-upon components.
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