
Types for Programming and Reasoning

Habilitationsschrift

zur Erlangung des akademischen Grades

Dr. rer. nat. habil.

im Fachgebiet Informatik

vorgelegt an der

Technischen Universität Dresden

Fakultät Informatik

eingereicht von

Dr. rer. nat. Janis Voigtländer

geb. am 20. November 1977 in Halle/Saale

Dresden, im November 2008

Contents

1 Introduction 1

1.1 List of Appended Papers . 2

2 Haskell’s Abstraction Facilities 5

2.1 A Short Tour of Haskell . 5

2.2 The Virtues of Polymorphism . 8

2.3 Equational Reasoning . 11

3 Free Theorems and Program Transformations 13

3.1 Free Theorems . 13

3.2 Program Transformations . 15

4 A Knuth-like 0-1-2-Principle for Parallel Prefix Computation 19

4.1 Parallel Prefix Computation . 19

4.2 Prefix Networks in Haskell . 21

4.3 A Knuth-like 0-1-2-Principle . 23

5 Semantic Bidirectionalization 25

5.1 Bidirectional Transformation . 25

5.2 Bidirectionalization of Polymorphic get 26

5.3 Leveraging Free Theorems . 27

6 List Operations Vanish for Free 31

6.1 The Problem of Repeated Concatenation 31

6.2 Our Solution . 33

6.3 Other List Operations . 34

6.4 Yet Another Possibility . 36

7 Asymptotic Improvement of Computations over Free Monads 39

7.1 (Free) Monads in Haskell . 39

7.2 The Problem of Repeated Substitution 42

7.3 Improvement by Abstraction over return 44

Contents

8 Free Theorems and Selective Strictness 47
8.1 The Painful Truth about Free Theorems 47
8.2 The Formal Background of Free Theorems 50
8.3 Free Theorems in the Presence of seq 52
8.4 The Impact on Program Transformations 54

9 New Developments in Short Cut Fusion 59
9.1 The destroy/build-Rule . 59
9.2 Circular Short Cut Fusion . 62
9.3 Higher-Order Short Cut Fusion . 66
9.4 foldr/build and destroy/unfoldr, Revisited 66

10 Moving to Operational Semantics 69
10.1 A Core Calculus for Haskell . 69
10.2 A Small-Step Operational Semantics 71
10.3 Characterization Results and Extensions 72

11 Conclusion 75

Bibliography 77

Appended Papers 84

Chapter 1

Introduction

Types play an increasingly important role in program construction, software engi-
neering, and reasoning about programs. They serve as documentation of function-
ality, even as partial specifications, and can help to rule out whole classes of errors
before a program is ever run. This provides qualitative guarantees and enables safe
reuse of code components. In particular, static type checking constitutes a limited
form of automatic correctness proof below the threshold of full, and undecidable,
program verification.

An important asset for maintaining a strong type discipline, which attempts to
prevent the use of code in unfit contexts by assigning types that are as precise
and descriptive as possible, without forgoing the goal of also flexible reuse is the
availability of polymorphism, first identified as a distinct concept by Strachey (1967).
A polymorphic type, or type scheme, expresses that a certain functionality is offered
for different concrete type instantiations, and that in a controlled fashion.

Even though the prospects of strong typing as a lightweight yet powerful formal
method have already begun to influence the design of mainstream programming lan-
guages, and in particular Java and C# are embracing ever more sophisticated forms
of polymorphism (Naftalin and Wadler 2006, Golding 2005), the real stronghold
of typeful programming is in the area of functional programming languages like
ML (Milner et al. 1997) and Haskell (Peyton Jones 2003). To some degree this may
be an almost incidental consequence of the origin of much of the initial research into
expressive types (Cardelli and Wegner 1985), but there are also profound reasons.
The clear mathematical basis of the functional paradigm makes languages adhering
to it particularly amenable to precise analysis and thus allows the formalization and
mastery, both theoretically and practically, of very potent type systems. In fact, one
of the defining characteristics of Haskell over the last two decades has been its role
as a highly effective laboratory in which to explore, design, and implement advanced
type-related ideas (Hudak et al. 2007).

So the forefront of type research is still in the field of functional programming,
and it is also this setting in which the work reported on in this thesis explores ways
of using types for high-level program construction and reasoning about the behavior
of programs. Specifically, a very nice synergy arises from Haskell’s type discipline

1

Chapter 1: Introduction

and Haskell’s insistence on being a pure, rather than just any other “almost”, func-
tional language. The “no compromises” attitude vis-à-vis any impulse to relax the
compliance with the mathematical concept of side-effect-free functions contributes
to the existence of powerful reasoning techniques that connect the types of func-
tions to those functions’ possible observable behaviors.1 One such technique is the
systematic derivation of statements about program behavior from (polymorphic)
types alone. Originating from Reynolds’ (1983) characterization of what it means,
abstractly, for a function to be fully polymorphic over some part of its type, this ap-
proach has been popularized by Wadler (1989) under the slogan of “free theorems”.
It combines fruitfully with algebraic techniques like equational reasoning.

One prominent application area for free theorems has been, and continues to
be, the conception and study of semantics-preserving program transformations that
can be used in a compiler to optimize for execution speed. This thesis reports on
our furthering of that kind of applications (Chapters 6–9), but also on somewhat
surprising applications outside the core area of programming language research as
such (Chapters 4 and 5). Another topic that is covered is a series of investigations
into the theoretical underpinning of free theorems as regards aspects of Haskell
previously unaccounted for (Chapters 8 and 10).

To set the stage, though, Chapters 2 and 3 first give a brief introduction to
Haskell, its abstraction facilities and associated reasoning techniques in general and
on the type level, and a program transformation technique of the mentioned kind.
The subsequent chapters then provide high-level overviews of the results obtained
in the full papers that are appended after page 84.

1.1 List of Appended Papers

The papers included in this thesis are, in chronological order of publication:

1. J. Voigtländer. Concatenate, Reverse and Map Vanish For Free. In S.L.
Peyton Jones, editor, 7th International Conference on Functional Program-
ming, Pittsburgh, Pennsylvania, Proceedings, volume 37(9) of SIGPLAN No-
tices, pages 14–25. ACM Press, 2002.
DOI: 10.1145/583852.581481.

2. P. Johann and J. Voigtländer. Free Theorems in the Presence of seq . In
X. Leroy, editor, 31st Symposium on Principles of Programming Languages,
Venice, Italy, Proceedings, volume 39(1) of SIGPLAN Notices, pages 99–110.
ACM Press, 2004.
DOI: 10.1145/982962.964010.

1As an aside, it is pleasing to see that the mentioned attitude has not prevented Haskell from
becoming practically useful as well. Indeed, several success stories from different sectors of industry
have been reported in the “Commercial Users of Functional Programming” workshop series (http:
//www.galois.com/cufp).

2

http://dx.doi.org/10.1145/583852.581481
http://dx.doi.org/10.1145/982962.964010
http://www.galois.com/cufp
http://www.galois.com/cufp

Section 1.1: List of Appended Papers

3. P. Johann and J. Voigtländer. The Impact of seq on Free Theorems-Based
Program Transformations. Fundamenta Informaticae, volume 69(1–2), Spe-
cial Issue “Program Transformation: Theoretical Foundations and Basic Tech-
niques. Part 2”, guest editors: A. Pettorossi and M. Proietti, pages 63–102.
IOS Press, 2006.

4. J. Voigtländer and P. Johann. Selective strictness and parametricity in struc-
tural operational semantics, inequationally. Theoretical Computer Science,
volume 388(1–3), pages 290–318. Elsevier, 2007.
DOI: 10.1016/j.tcs.2007.09.014.

5. J. Voigtländer. Proving Correctness via Free Theorems: The Case of the
destroy/build-Rule. In R. Glück and O. de Moor, editors, Symposium on
Partial Evaluation and Semantics-Based Program Manipulation, San Fran-
cisco, California, Proceedings, pages 13–20. ACM Press, 2008.
DOI: 10.1145/1328408.1328412.

6. J. Voigtländer. Much Ado about Two: A Pearl on Parallel Prefix Compu-
tation. In P. Wadler, editor, 35th Symposium on Principles of Programming
Languages, San Francisco, California, Proceedings, volume 43(1) of SIGPLAN
Notices, pages 29–35. ACM Press, 2008.
DOI: 10.1145/1328897.1328445.

7. J. Voigtländer. Semantics and Pragmatics of New Shortcut Fusion Rules. In
J. Garrigue and M. Hermenegildo, editors, 9th International Symposium on
Functional and Logic Programming, Ise, Japan, Proceedings, volume 4989 of
LNCS, pages 163–179. Springer-Verlag, 2008.
DOI: 10.1007/978-3-540-78969-7 13.

8. J. Voigtländer. Asymptotic Improvement of Computations over Free Monads.
In C. Paulin-Mohring and P. Audebaud, editors, 9th International Conference
on Mathematics of Program Construction, Marseille, France, Proceedings, vol-
ume 5133 of LNCS, pages 388–403. Springer-Verlag, 2008.
DOI: 10.1007/978-3-540-70594-9 20.

9. J. Voigtländer. Bidirectionalization for Free! In B.C. Pierce, editor, 36th Sym-
posium on Principles of Programming Languages, Savannah, Georgia, Proceed-
ings. ACM Press, 2009.

10. P. Johann and J. Voigtländer. A Family of Syntactic Logical Relations for the
Semantics of Haskell-like Languages. Information and Computation, Special
Issue “Structural Operational Semantics”, guest editors: R. van Glabbeek and
P.D. Mosses. Elsevier, 2008.
DOI: 10.1016/j.ic.2007.11.009.

The papers are not actually appended in this chronological order. Instead, they are
appended, after page 84, in the order in which we discuss their results, that is, in
the order 6, 9, 1, 8, 2, 3, 5, 7, 4, 10.

3

http://dx.doi.org/10.1016/j.tcs.2007.09.014
http://dx.doi.org/10.1145/1328408.1328412
http://doi.acm.org/10.1145/1328897.1328445
http://dx.doi.org/10.1007/978-3-540-78969-7_13
http://dx.doi.org/10.1007/978-3-540-70594-9_20
http://dx.doi.org/10.1016/j.ic.2007.11.009

4

Chapter 2

Haskell’s Abstraction Facilities

We begin by briefly illustrating some important Haskell concepts, based on examples.
This is not intended to be a thorough introduction to the language, but rather should
serve to recall key ingredients of the overall programming methodology, as well as
to clarify Haskell’s syntax for readers more familiar with other functional languages.
We also highlight ways of structuring Haskell programs by means of abstraction and
introduce the technique of equational reasoning. For comprehensive accounts of the
language including the discussion of features like lazy evaluation we refer the reader
to the recent textbooks of Hutton (2007) and of O’Sullivan et al. (2008). We use
some language extensions that are supported only by the Glasgow Haskell Compiler
(http://www.haskell.org/ghc) at present. Throughout the thesis, we mention
the appropriate compiler flags (for GHC version 6.8.2) where this is the case.

2.1 A Short Tour of Haskell

Programming in Haskell means programming with equations. For example, a func-
tion delivering for every integer n, assumed to be nonnegative, the sum of the integer
values between 0 and n is given as follows:

sum :: Int→ Int
sum 0 = 0
sum (n+ 1) = n+ (sum n)

Note the (optional) type signature, the use of recursion/induction, and the definition
by cases. This looks much like how a mathematician would typically write down a
specification of the function sum, except for a different way of using parentheses in
denoting function application.

Definition by cases is supported via so-called pattern-matching on the left-hand
sides of equations, which is also available at other types than that of integers. For
example, summing up the elements of a list of integer values can be done as follows:

listsum :: [Int]→ Int
listsum [] = 0
listsum (n : ns) = n+ (listsum ns)

5

http://www.haskell.org/ghc

Chapter 2: Haskell’s Abstraction Facilities

The syntax of lists, as well as the way in which pattern-matching works for them,
should become clear from the following example evaluation:

listsum [1, 2, 3, 42]
= 1 + (listsum [2, 3, 42])
= 1 + (2 + (listsum [3, 42]))
= 1 + (2 + (3 + (listsum [42])))
= 1 + (2 + (3 + (42 + (listsum []))))
= 1 + (2 + (3 + (42 + 0)))
= 48

In addition to existing types like integers and lists, the user can define their own
types at need, in particular arbitrary algebraic data types. For example, a type of
binary, leaf-labeled integer trees is introduced as follows:

data Tree = Node Tree Tree | Leaf Int

Pattern-matching is automatically available for such user-defined types as well:

treesum :: Tree→ Int
treesum (Leaf n) = n
treesum (Node t1 t2) = (treesum t1) + (treesum t2)

Often, some functionality is useful at, and can indeed be uniformly specified for,
more than one particular type. For example, computing the length of a list should
be possible completely independently of the (type of) values contained in the list.
The desired reuse here is enabled by polymorphism. A polymorphic type is one in
which some concrete types are replaced by type variables. The length example then
takes the following form:

length :: [α]→ Int
length [] = 0
length (a : as) = 1 + (length as)

This function can be used on lists of integers, [Int], lists of Boolean values, [Bool],
and even lists of trees, [Tree], lists of lists of integers, [[Int]], and so on.

Polymorphism is not only available when defining functions, but also when defin-
ing types. For example, a more general version of the above tree data type, ab-
stracted over the type of leaves, could have been introduced as follows:

data Tree α = Node (Tree α) (Tree α) | Leaf α

Then we could still have treesum with exactly the same defining equations as above,
but revised type signature treesum :: Tree Int → Int, and moreover could write
functions that do not depend on a particular type of leaf values. Like so, using the
list concatenation operator (++) :: [α]→ [α]→ [α]:

flatten :: Tree α→ [α]
flatten (Leaf a) = [a]
flatten (Node t1 t2) = (flatten t1) ++ (flatten t2)

6

Section 2.1: A Short Tour of Haskell

List types are nothing special in Haskell. Except for some syntactic sugar, they are
on an equal footing with user-defined algebraic data types. In fact, seeing [] as a
type constructor of the same kind as the polymorphic version of Tree above, lists
can be thought of as being introduced with the following definition:

data [] α = (:) α ([] α) | []

Another important abstraction facility is the use of higher-order types. That is,
a function argument can itself be a function. For example, the following function
applies another function, which is supplied as an argument, to every element of an
input list and builds an output list from the results:1

map :: (α→ β)→ [α]→ [β]
map h [] = []
map h (a : as) = (h a) : (map h as)

Now two type variables, α and β, are used. They keep track of the dependencies
between the argument and result types of h and the types of the input and output
lists, respectively.

The combination of higher-order types with polymorphism often allows to capture
certain computation schemes in a reusable fashion. For example, the functions
listsum and length, and even map, follow the same regime of taking a list apart
element by element and always recursing on the remainder. The essence of this is
captured by the following function:

foldr :: (α→ β → β)→ β → [α]→ β
foldr c n [] = n
foldr c n (a : as) = c a (foldr c n as)

Indeed, using this function allows alternative definitions for the functions introduced
earlier to be given as follows:

listsum :: [Int]→ Int
listsum = foldr (+) 0

length :: [α]→ Int
length = foldr (λa r → 1 + r) 0

map :: (α→ β)→ [α]→ [β]
map h = foldr (λa r → (h a) : r) []

and, as a further example:

(++) :: [α]→ [α]→ [α]
(++) = foldr (λa r → (a :) ◦ r) id

1When reading such higher-order type signatures, the function arrow “→” associates to the
right. So the type (α → β) → [α] → [β] is the same as (α → β) → ([α] → [β]), but not the same
as α→ β → [α]→ [β].

7

Chapter 2: Haskell’s Abstraction Facilities

The latter uses the polymorphic identity function:

id :: α→ α
id a = a

and function composition:

(◦) :: (β → γ)→ (α→ β)→ α→ γ
(f ◦ g) a = f (g a)

Since polymorphism, including forms of it that are more advanced than those
already seen above, is at the heart of essentially all results reported on in this thesis,
the next section discusses it in some more detail.

2.2 The Virtues of Polymorphism

We have already introduced so-called parametric polymorphism, where the same
algorithm is used for all different instantiations of a type variable. For the function
map :: (α→ β)→ [α]→ [β] seen earlier this allows, for example:

map (+1) [1, 2, 3] = [2, 3, 4] — with α, β 7→ Int, Int
map not [True,False] = [False,True] — with α, β 7→ Bool,Bool
map even [1, 2, 3] = [False,True,False] — with α, β 7→ Int,Bool

The concrete choice of type parameters for α and β is not given explicitly in Haskell.
Rather, it is inferred automatically (while, e.g., map not [1, 2, 3] would be rejected).

So far, quantification over type variables has been implicit as well. For example,
the type (α→ β)→ [α]→ [β] is actually interpreted as ∀α.∀β.(α→ β)→ [α]→ [β].
The positioning and scope of quantifiers can be quite important. To see why, consider
the following function definition:

f g = (g [1, 2, 3]) + (g [True,False])

Note that in the equation’s right-hand side the function g is applied to lists of two
different types. But that should be fine if we apply f, for example, to length (in
which case we would expect the overall result to be 5). So it might be tempting
to give f the type ([α] → Int) → Int. But this would fail, as it would mean that
we expect f to be a polymorphic function which for any concrete type, say τ , takes
a function of type ([τ] → Int) as argument and delivers an integer as result. And
this τ is neither guaranteed to be Int, nor Bool, and certainly not both at the same
time. So the function calls g [1, 2, 3] and g [True,False] are bound to lead to trouble.
The point is that we do not really want f itself to be polymorphic, but rather want
it to be a function that takes a polymorphic function as argument. That is, instead
of ([α] → Int) → Int, which is equivalent to ∀α.([α] → Int) → Int, we need f to
have the type (∀α.[α]→ Int)→ Int. Such rank-2 types (Leivant 1983) are allowed in
mature Haskell implementations, and are crucial for the new program manipulation

8

Section 2.2: The Virtues of Polymorphism

techniques to be presented in Chapters 5–7 and 9. It is important to note, though,
that this additional abstraction facility, being able to write functions that abstract
over functions that abstract over types, comes at the price of type signatures no
longer being optional. In particular, the equation for f as given above in isolation
is not a legal function definition. Only when we add the type signature2

f :: (forall α. [α]→ Int)→ Int

it is accepted by the type checker; and so is, then, f length, which computes 5.
Another form of polymorphism is the so-called ad-hoc one, where a certain func-

tionality is provided for different types, without necessarily the same algorithm being
used in each and every instantiation. For example, an equality test for lists of inte-
gers is likely to be implemented differently than the same kind of test for integers
themselves, or for trees of Boolean values. In Haskell, such overloading of function-
ality is supported via type classes (Wadler and Blott 1989). For example, the class
Eq with methods == and /= is declared as follows:

class Eq α where
(==) :: α→ α→ Bool
(/=) :: α→ α→ Bool

For base types like Int these methods are predefined, while for other types they could
be defined as in the following example:

instance Eq α⇒ Eq [α] where
[] == [] = True
(x : xs) == (y : ys) = (x == y) && (xs == ys)

xs /= ys = not (xs == ys)

Here an equality test for elements of an arbitrary, but fixed, type is used for defining
an equality test for lists of elements of that type. Without further definitions, the
methods == and /= are then available for [Int], [[Int]], and so on. And the same is
true for functions defined in terms of them, such as the following one:

elem :: forall α. Eq α⇒ α→ [α]→ Bool
elem x = foldr (λa r → (a == x) || r) False

To even increase abstraction potential, type classes come in a higher-order vari-
ant as well. Using type constructor classes (Jones 1995b), some functionality can
be provided over a range of polymorphic type constructors like [] and Tree. The
prototypical example is the Functor class, which is declared as follows:

class Functor φ where
fmap :: forall α. forall β. (α→ β)→ φ α→ φ β

2Compiler flag -XRank2Types is used from now on.

9

Chapter 2: Haskell’s Abstraction Facilities

Its intention is to generalize the function map we have already discussed. In fact, an
instance definition of Functor for the list type constructor is straightforward:

instance Functor [] where
fmap = map

And given further instance definitions, fmap becomes available at other types like
(α→ β)→ Tree α→ Tree β. For all such instance definitions, one typically requires
the following two laws to hold:

fmap id = id (2.1)

(fmap f) ◦ (fmap g) = fmap (f ◦ g) (2.2)

Unfortunately, though, Haskell does not provide any means to enforce them on the
language level. Instead, the responsibility lies with the programmer here.

An important use of the generality provided by ad-hoc polymorphism over type
constructors is the abstract treatment of a range of algebraic data types via the
approach of two-level types, also pioneered by Jones (1995a). The basic idea is to
split recursive type definitions by separating flat surface structure generation from
recursion, where the latter is expressed via an explicit fixpoint.

For example, the flat structure generation part of lists can be captured by the
following definition:

data FList α β = Cons α β | Nil

Together with

newtype Fix φ = Wrap (φ (Fix φ))

we then have, for every type τ , an isomorphism between the types [τ] and Fix (FList τ).
For example,

Wrap (Cons 1 (Wrap (Cons 2 (Wrap (Cons 3 (Wrap Nil)))))) :: Fix (FList Int)

directly corresponds to the list [1, 2, 3] :: [Int], and the use of newtype rather than
data for the type-level fixpoint above even ensures that the “extra” Wrap construc-
tors incur no overhead at runtime. Similarly,

data FTree α β = N β β | L α

captures trees in the sense that, for example,

Wrap (N (Wrap (N (Wrap (L ’a’)) (Wrap (L ’b’)))) (Wrap (L ’c’))) :: Fix (FTree Char)

corresponds to (Node (Node (Leaf ’a’) (Leaf ’b’)) (Leaf ’c’)) :: Tree Char.

The whole point of doing the above splitting is that we can now start to treat
lists and trees, and like types, in a generic fashion. The leverage comes from defining

10

Section 2.3: Equational Reasoning

appropriate Functor instances, like so:

instance Functor (FList α) where
fmap h (Cons a b) = Cons a (h b)
fmap h Nil = Nil

instance Functor (FTree α) where
fmap h (N b1 b2) = N (h b1) (h b2)
fmap h (L a) = L a

Then, functions abstracted over arbitrary functors, like

cata :: forall φ. Functor φ⇒ (forall β. (φ β → β)→ Fix φ→ β)
cata alg (Wrap t) = alg (fmap (cata alg) t)

can be used generically. The function cata corresponds to foldr on lists and to a
conceptually similar function on trees. In particular, listsum and treesum can now
both be defined in terms of cata:

listsum :: Fix (FList Int)→ Int
listsum = cata alg

where alg Nil = 0
alg (Cons n r) = n+ r

treesum :: Fix (FTree Int)→ Int
treesum = cata alg

where alg (L n) = n
alg (N r1 r2) = r1 + r2

Such type-genericity plays an important role in Chapter 7.

2.3 Equational Reasoning

As seen, a Haskell program is just a collection of equations defining the return
values of functions for given arguments. This is fundamentally different from the
concept of functions or procedures in imperative or impure functional languages,
where they may additionally access, and alter, some global state. A Haskell function
is really a function in the mathematical sense, transferring values to values and doing
nothing else. This absence of side-effects implies that every expression has a value
that is independent of when it is evaluated. Clearly, two expressions having the same
value can thus be replaced for each other in any program context without changing
the overall semantics; a property often called referential transparency. And the
easiest way to establish that two expressions have the same value is to observe them
as the left- and right-hand sides of the same program equation. Of course, this
might involve the instantiation of variables, on both sides and in exactly the same
manner, that stand for abstracted parts of the function’s input. Overall, this leads
to a simple but powerful reasoning principle.

11

Chapter 2: Haskell’s Abstraction Facilities

Since the above explanation is best substantiated by an example, we consider the
following function definition:

filter :: forall α. (α→ Bool)→ [α]→ [α]
filter p [] = []
filter p (a : as) = if p a then a : (filter p as)

else filter p as

Assume we want to prove that for every choice of p, h, and as (of appropriate types),
the following law holds:

filter p (map h as) = map h (filter (p ◦ h) as) (2.3)

Proceeding by induction on the list as , it suffices to establish that

filter p (map h []) = map h (filter (p ◦ h) []) (2.4)

holds and that

filter p (map h (a : as)) = map h (filter (p ◦ h) (a : as)) (2.5)

holds under the assumption that the induction hypothesis (2.3) holds for as . For
the induction base (2.4), equational reasoning succeeds as follows:

filter p (map h [])
= filter p []
= []
= map h []
= map h (filter (p ◦ h) [])

And for the induction step (2.3)→(2.5):

filter p (map h (a : as))
= filter p ((h a) : (map h as))
= if p (h a) then (h a) : (filter p (map h as))

else filter p (map h as)
= if (p ◦ h) a then (h a) : (map h (filter (p ◦ h) as))

else map h (filter (p ◦ h) as)
= if (p ◦ h) a then map h (a : (filter (p ◦ h) as))

else map h (filter (p ◦ h) as)
= map h (if (p ◦ h) a then a : (filter (p ◦ h) as)

else filter (p ◦ h) as)
= map h (filter (p ◦ h) (a : as))

While equational reasoning is employed as an auxiliary technique in most of the
works included in this thesis, our main focus is on reasoning about functions without
having access to their defining equations. How this is possible is the subject of the
next chapter, along with some classical examples.

12

Chapter 3

Free Theorems and
Program Transformations

We review why a polymorphic type may allow to derive statements about a function’s
behavior without knowing that function’s defining equations. Then we consider an
application of this approach in the area of program transformation.

3.1 Free Theorems

It is best to start with a concrete example. Consider the following type signature:

f :: forall α. [α]→ [α]

What does it tell us about the function f? For sure that it takes lists as input
and produces lists as output. But we also see that f is polymorphic, and so must
work for lists over arbitrary element types. How, then, can elements for the output
list come into existence? The answer is that the output list can only ever contain
elements from the input list. This is so because the function f, not knowing the
element type of the lists it operates over, cannot possibly make up new elements of
any concrete type to put into the output, such as 42 or True, or even id, because
then f would immediately fail to have the general type forall α. [α]→ [α].

So for any input list l (over any element type) the output list f l consists
solely of elements from l.

But how can f decide which elements from l to propagate to the output list, and in
which order and multiplicity? The answer is that such decisions can only be made
based on the input list l. For f has no access to any global state or other context
based on which to decide. It cannot, for example, consult the user in any way about
what to do. The means by which to make decisions based on l are quite limited
as well. In particular, decisions cannot possibly depend on any specifics of the
elements of l. For the function f is ignorant of the element type, and so is prevented
from analyzing list elements in any way (be it by pattern-matching, comparison

13

Chapter 3: Free Theorems and Program Transformations

operations, or whatever). In fact, the only means for f to drive its decision-making is
to inspect the length of l, because that is the only element-independent “information
content” of a list.

So for any pair of lists l and l′ of same length (but possibly over different
element types) the lists f l and f l′ are formed by making the same
position-wise selections of elements from l and l′, respectively.

Now recall the function map from Section 2.1. Clearly, map h for any function h
preserves the lengths of lists. So if l′ = map h l, then f l and f l′ are of the same
length and contain, at each position, position-wise exactly corresponding elements
from l and l′, respectively. Since, moreover, any two position-wise corresponding
elements, one from l and one from l′ = map h l, are related by the latter being the
h-image of the former, we have that at each position f l′ contains the h-image of
the element at the same position in f l.

So for any list l and (type-appropriate) function h, the following law
holds:

f (map h l) = map h (f l) (3.1)

Note that during the reasoning leading up to this statement we did not (need to)
consider the actual definition of f at all. It could have been f = reverse, or
f = tail, or f = take 5, or many other choices. It just did not matter.

And this is not a one-off success. Intuitive reasoning of the same style as above
can be applied to other polymorphic functions as well. For example, one can arrive
at the conclusion that for every function

f :: forall α. (α→ Bool)→ [α]→ [α]

the following law holds:

f p (map h l) = map h (f (p ◦ h) l) (3.2)

The steps required to establish this are but minor extensions of the ones leading to
law (3.1) above. It is only necessary to additionally factor in how f’s decision about
which elements from an input list to propagate to the output list, and in which
order and multiplicity, may now depend also on the outcomes of an input predicate,
namely f’s first argument, on the input list’s elements.

Note that law (3.2) is exactly the same as law (2.3) on page 12, except that now
we claim it much more generally for all functions of filter’s type, not just for the
particular one considered there. And there is no need for induction anymore. Better
yet, the intuitive reasoning above can be put on a more formal basis. This is pre-
cisely what the methodology of deriving free theorems à la Wadler (1989) provides:
a way to obtain statements like above for arbitrary function types, and in a more
disciplined (and provably sound) manner than mere handwaving. We defer fur-
ther discussion of this formal approach to Section 8.2. Here we only emphasize that

14

Section 3.2: Program Transformations

Wadler’s approach is algorithmic enough that it can be implemented in an automatic
tool. For concrete evidence, see the following screenshot of the online free theorems
generator accessible at http://linux.tcs.inf.tu-dresden.de/~voigt/ft, after
having been fed with the input “f::[a]->[a]”:

Tool support also plays an important role in Chapter 9.

3.2 Program Transformations

Apart from obtaining algebraic laws in the style of (3.1) and (3.2) as useful ingredi-
ents for proofs by equational reasoning in general, the prime application area of free
theorems has been the study of correctness of a certain class of program transfor-
mations. These “short cut fusion” techniques (Gill et al. 1993, Svenningsson 2002,
Fernandes et al. 2007, and others) aim to eliminate intermediate data structures
from programs written in a modular style. This is an important issue for the ef-
ficient execution of Haskell programs, given that the language strongly encourages
solving an overall task by composing functions that solve subtasks.

In some cases free theorems directly lend themselves to the elimination of inter-
mediate results. For example, the free theorem derived from the type signature

length :: forall α. [α]→ Int

15

http://linux.tcs.inf.tu-dresden.de/~voigt/ft

Chapter 3: Free Theorems and Program Transformations

is that for every list l and (type-appropriate) function h,

length (map h l) = length l (3.3)

Here it is quite obvious that a compiler which automatically replaced every instance
of the left-hand side by the corresponding right-hand side would be doing the pro-
grammer a favor. But for other free theorems, like (3.1) and (3.2), the situation is
less clear. Note that both

f :: forall α. [α]→ [α]

and

f :: forall α. (α→ Bool)→ [α]→ [α]

could be functions that either decrease or increase the length of the output list as
compared to that of the input list; or sometimes decrease and sometimes increase
the length, depending on the particular inputs. Hence, in both cases it is not certain
whether it is efficiency-wise preferable to perform any map h “after” or “before” f,
and thus, whether a compiler should be using the laws (3.1) and (3.2) as rewritings
from left to right or conversely.

The seminal contribution of Gill et al. (1993) was to devise a transformation
scheme based on free theorems that largely avoids such uncertainties (up to some
very low-level implementation details). The drawback is that the functions to be
dealt with are not anymore solely constrained by their types; some syntactic con-
ditions are necessary as well. In particular, discussing only the case of intermedi-
ate lists, a successful fusion requires the consumer function to be defined in terms
of foldr. Fortunately, where possible, this is good practice anyway. We have seen
in Chapter 2 that listsum, length, map, ++, and elem can be defined so, and the
same is true for filter and many other list-consuming functions. The producer
of an intermediate list to be eliminated by fusion must be defined in terms of the
following function:

build :: forall α. (forall β. (α→ β → β)→ β → β)→ [α]
build g = g (:) []

Note that build has a rank-2 type as discussed in Section 2.2. To use it for producing
a list of type [τ], for some concrete type τ , we must pass a polymorphic function g
of type forall β. (τ → β → β) → β → β. It is helpful to illustrate what such a g
might do. Clearly, it will take two arguments, say c and n. Given these, it must
return a value of the same type as n and as the return value and second argument
of c. And since g must be polymorphic over that type, it is very limited in its ability
to produce such a value. In fact, g can use only n and c for producing its return
value. For example, it could simply return n. Or it could return c a n for some
a :: τ , or c a1 (c a2 n) for some a1, a2 :: τ , and so on. But this is all. In fact, any g
of the mentioned polymorphic type must be semantically equivalent to a function,

16

Section 3.2: Program Transformations

for some k ≥ 0 and a1, . . . , ak :: τ , of the following form:

g = λc n→

c

a1 c

a2 X

c

ak n

Of course, g need not be exactly of that syntactic form. But semantically, the above
captures all possibilities as permitted by g’s type. Now, applying build to g simply
means to instantiate c and n to the list constructors, as follows:

build g =

:

a1 :

a2 X

:

ak []

On the other hand, the functionality of foldr as introduced on page 7 is to replace
the list constructors in its third argument by its first and second arguments. Thus,
we have:

foldr c n (build g) =

c

a1 c

a2 X

c

ak n

This suggests that the following law should hold:

foldr c n (build g) = g c n (3.4)

And indeed, a free theorem can be used to formally prove this semantic equality for
arbitrary c, n, and g that make the left-hand side well-typed.

Despite its simplicity, law (3.4) is very effective as an efficiency-improving pro-
gram transformation. Of course, its wide applicability depends on expressing many
list-producers in terms of build. But this is easy, and can even be automated (Chitil
1999). For example, map can be expressed as both a foldr and a build at the same
time:

map :: forall α. forall β. (α→ β)→ [α]→ [β]
map h as = build (λc n→ foldr (λa r → c (h a) r) n as)

17

Chapter 3: Free Theorems and Program Transformations

This enables fusion with map both as a consumer and as a producer. We illustrate
only the latter here. Assume we want to write a function that takes a list of integers
and computes the sum of their squares. An attractive, modular way of doing so is
as follows:

squaresum :: [Int]→ Int
squaresum ns = listsum (map (ˆ 2) ns)

But this entails explicit creation of an intermediate list at the interface position
between map and listsum. A more direct solution would be possible, but would
require the programmer to forgo the modularity benefit. Fortunately, thanks to
law (3.4), the compiler can find the monolithic version on its own. All it needs to
do is to inline the definitions of listsum in terms of foldr and of map in terms
of build, to use law (3.4) as a rewriting from left to right, and to perform some
standard simplifications:

squaresum ns
= listsum (map (ˆ 2) ns)
= foldr (+) 0 (build (λc n→ foldr (λa r → c ((ˆ 2) a) r) n ns))
= (λc n→ foldr (λa r → c ((ˆ 2) a) r) n ns) (+) 0
= foldr (λa r → (+) ((ˆ 2) a) r) 0 ns
= foldr (λa r → (a ˆ 2) + r) 0 ns

Note that the resulting definition works in a single pass over the input list, without
creating an intermediate list. By similar steps we also obtain law (3.3) for the
special case that length is not just any function of type forall α. [α]→ Int, but the
particular one defined in terms of foldr on page 7.

Following the success of foldr/build-fusion, a whole range of program transfor-
mations based on free theorems have been developed over the years. For example,
the approach has been transferred to other algebraic data types than lists (Takano
and Meijer 1995, Johann 2002) and fusion rules that are dual to foldr/build in a
category-theoretic sense have been considered (Takano and Meijer 1995, Svennings-
son 2002). Examples of more recent work in the short cut fusion tradition are that
of Coutts et al. (2007), Fernandes et al. (2007), and Ghani and Johann (2008). Our
contribution reported on in Chapter 6 also builds on the short cut fusion method-
ology, while Section 8.4 and Chapter 9 focus on associated correctness issues. First,
though, the next two chapters deal with other applications of free theorems.

18

Chapter 4

A Knuth-like 0-1-2-Principle for
Parallel Prefix Computation

This chapter is based on the following paper:

• J. Voigtländer.
Much Ado about Two: A Pearl on Parallel Prefix Computation.
In P. Wadler, editor, 35th Symposium on Principles of Programming Lan-
guages, San Francisco, California, Proceedings, volume 43(1) of SIGPLAN
Notices, pages 29–35. ACM Press, 2008.
(Voigtländer 2008b)

It presents an application of type-based reasoning to a real-world problem. In partic-
ular, we benefit from Haskell’s mathematical rigor and its abstraction and reasoning
facilities in the endeavor to analyze a whole class of algorithms.

4.1 Parallel Prefix Computation

Parallel prefix computation is a task with numerous applications in the hardware
and algorithmics fields (Blelloch 1993). The basic problem description is as follows:

Given an associative binary operation ⊕ and inputs x1, . . . , xn, compute
the values x1, x1 ⊕ x2, x1 ⊕ x2 ⊕ x3, . . . up to x1 ⊕ x2 ⊕ · · · ⊕ xn.

Here is an obvious solution for n = 10, depicted as a prefix network in which
the inputs are provided at the top, values flow downwards along “wires” and get
combined by ⊕ -“gates”, and the outputs can be read off at the bottom, from left
to right:

19

Chapter 4: A Knuth-like 0-1-2-Principle for Parallel Prefix Computation

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕

At first glance, this may appear to be the best solution possible, as it employs
maximal reuse of partial results. After all, it is clear that nine applications of ⊕ are
necessary to compute x1 ⊕ x2 ⊕ · · · ⊕ x10 alone. So if the same nine applications
yield all the other required outputs as well, what could be better? The point is that
the number of applications of ⊕ is not the only measure of interest. For example,
the above solution is inherently sequential, which leads to bad time performance.
Assuming that each application of ⊕ requires one unit of time, the last output is not
available until nine units have passed. In contrast, the following maximally parallel
solution requires only four time units to deliver all outputs:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

⊕
⊕

⊕

⊕

⊕
⊕

⊕

⊕

⊕

⊕
⊕
⊕

⊕

⊕
⊕

Note that thanks to the assumed associativity of ⊕, correctness is still guaranteed.
For example, x1 ⊕ x2 ⊕ · · · ⊕ x7 is now actually computed as (((x1 ⊕ x2) ⊕ x3) ⊕
(x4 ⊕ x5))⊕ (x6 ⊕ x7).

Admittedly, the shorter time to output in the parallel solution comes at the ex-
pense of an increased number of ⊕ -“gates” and more complicated “wiring”. But
depending on the usage scenario this can be a worthwhile allowance. In some sce-
narios, in particular in a hardware setting where the “wires” are real wires and the
⊕ -“gates” are real gates, many more trade-offs (guided by architectural, delay, or
other constraints) are possible and of potential benefit. Hence, a wealth of solutions
has been developed over the years (Sklansky 1960, Brent and Kung 1980, Ladner and
Fischer 1980, Lin and Hsiao 2004, to mention just a few). Key to all of them is to use
the associativity of ⊕ to rearrange how partial results are computed and combined.

20

Section 4.2: Prefix Networks in Haskell

An obvious concern is that for correctness of such new, and increasingly complex,
methods. While checking the correctness of a concrete prefix network is a straight-
forward, though maybe tedious, task, the real practical interest is in validating a
whole method of constructing prefix networks. For that is the general nature of work
on parallel prefix computation: to develop and study algorithms that yield networks
for arbitrary n ≥ 1. In the case of the completely sequential network it should be
clear how to abstract from n = 10 to arbitrary n. But also behind the other network
shown above there is a general construction principle. It is the method of Sklansky
(1960), and as another example here is its instance for n = 16:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

⊕
⊕

⊕
⊕

⊕

⊕

⊕
⊕
⊕

⊕
⊕
⊕

⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕

⊕

⊕
⊕

⊕
⊕
⊕

⊕
⊕
⊕
⊕

So if studying prefix networks really means studying methods for their construc-
tion, how should these be expressed? Clearly, it would be beneficial to have a
common framework in which to describe all methods, be they classical or still under
development. For then they could be more readily compared, maybe combined, and
hopefully analyzed using a common set of reasoning principles, as opposed to when
each method is described in a different formalism or notation. One very attractive
choice for the unifying framework is to use some universal programming language.
After all, by Turing completeness, this would allow to precisely capture the notion
of an algorithm that may, or may not, be a correct solution to the parallel prefix
computation task. Of course, this begs the question in terms of which programming
language to cast the problem, algorithms, and analyses. It turns out that Haskell,
with its mathematical expressivity and nice abstraction facilities, is a very good fit.

4.2 Prefix Networks in Haskell

From the problem description at the beginning of the previous section it is clear that
any function implementing parallel prefix computation should have the following
type:

forall α. (α→ α→ α)→ [α]→ [α]

The polymorphism over α is justified by the fact that in the problem description
neither the type of the inputs x1, . . . , xn, nor any specifics (apart from associativity)
of ⊕ are fixed, except (implicitly) that the type on which ⊕ operates should be the
same as that of the inputs. By providing the inputs in a variable-length list, we
express our interest in algorithms that work for arbitrary n. And indeed, the prefix
networks seen in the previous section are easily generated in Haskell.

21

Chapter 4: A Knuth-like 0-1-2-Principle for Parallel Prefix Computation

For example, the completely sequential construction method is captured as fol-
lows:

serial :: forall α. (α→ α→ α)→ [α]→ [α]
serial op (x : xs) = go x xs

where go x [] = [x]
go x (y : ys) = x : (go (x ‘op‘ y) ys)

To see how this code corresponds to the first network on page 20, consider the
following evaluation:

serial (+) [1..10]
= go 1 [2..10]
= 1 : (go (1 + 2) [3..10])
= 1 : (3 : (go (3 + 3) [4..10]))
= 1 : (3 : (6 : (go (6 + 4) [5..10])))
= 1 : (3 : (6 : (10 : (go (10 + 5) [6..10]))))
= 1 : (3 : (6 : (10 : (15 : (go (15 + 6) [7..10])))))
= 1 : (3 : (6 : (10 : (15 : (21 : (go (21 + 7) [8..10]))))))
= 1 : (3 : (6 : (10 : (15 : (21 : (28 : (go (28 + 8) [9..10])))))))
= 1 : (3 : (6 : (10 : (15 : (21 : (28 : (36 : (go (36 + 9) [10]))))))))
= 1 : (3 : (6 : (10 : (15 : (21 : (28 : (36 : (45 : (go (45 + 10) [])))))))))
= 1 : (3 : (6 : (10 : (15 : (21 : (28 : (36 : (45 : [55]))))))))
= [1, 3, 6, 10, 15, 21, 28, 36, 45, 55]

The method of Sklansky (1960) is captured as follows:

sklansky :: forall α. (α→ α→ α)→ [α]→ [α]
sklansky op [x] = [x]
sklansky op xs = us ++ vs

where t = ((length xs) + 1) ‘div‘ 2
(ys, zs) = splitAt t xs
us = sklansky op ys
u = last us
vs = map (u ‘op‘) (sklansky op zs)

This is already a bit more complicated than serial, but still expressed in a way
that is nicely declarative and accessible. Confidence that this code really implements
Sklansky’s method can also be gained from the fact that the two parallel network
pictures shown in the previous section, for n = 10 and n = 16, were automatically
generated from it.1 And more recent algorithms for parallel prefix computation can
be treated in the same way.

What is only hinted at above actually extends to a whole methodology for design-
ing, and then analyzing, hardware circuits using functional languages. An interesting
introductory text containing many references is that of Sheeran (2005). Around the

1In the same way, namely using a separate Haskell program, the completely sequential network
picture for n = 10 was automatically generated from the function serial above.

22

Section 4.3: A Knuth-like 0-1-2-Principle

idea of specifying circuits on a very high and abstract level, and then “compiling”
right down to hardware, a community is forming that attracts players from both
academia and industry.2 Our contribution reported here is a display of what pow-
erful abstractions can buy in this context. Its reasoning is specific to parallel prefix
computation, but similar results may hold for other algorithm classes of interest.

4.3 A Knuth-like 0-1-2-Principle

Assume we have a candidate function of type forall α. (α→ α→ α)→ [α]→ [α].
This function could be our attempt at implementing a classical method from the
literature. Or it could be a new algorithm we have come up with or obtained by
refining or combining existing ones. Indeed, it could be a function that we only hope
to correctly implement parallel prefix computation, while actually it does not. To
assure ourselves of its correctness, we may try an explicit proof or at least perform
systematic testing. But it seems that in order to do so, we would have to consider
every concrete type τ as potential instantiation for α, and for each such τ consider
every (associative) operation of type τ → τ → τ as well as every input list of type [τ].
Not only would this mean a lot of work, it is also unsatisfactory on a conceptual
level. After all, given the rather generic problem description, we could expect that
analyses of solution candidates are possible in a sufficiently generic way as well.

Here the 0-1-Principle of Knuth (1973) comes to mind. It states that if an
oblivious sorting algorithm, that is one where the sequence of comparisons performed
is the same for all input sequences of any given length, is correct on Boolean valued
input sequences, then it is correct on input sequences over any totally ordered value
set. This greatly eases the analysis of such algorithms. Is something similar possible
for parallel prefix computation? For 0-1 the answer is negative: one can give a
function that is correct for all binary operations and input lists over Boolean values,
but not in general. The next best thing to hope for then is that a three-valued type
may suffice as a discriminator between good and bad candidate functions. And this
is indeed the case.

Our 0-1-2-Principle for parallel prefix computation can be formulated as follows.
Let a function

candidate :: forall α. (α→ α→ α)→ [α]→ [α]

be given and let

data Three = Zero | One | Two

If for every associative operation (⊕) :: Three → Three → Three and every list
xs :: [Three],

candidate (⊕) xs = serial (⊕) xs

2See, for example, the “Hardware Design using Functional Languages” workshop series (http:
//www.hflworkshop.org).

23

http://www.hflworkshop.org
http://www.hflworkshop.org

Chapter 4: A Knuth-like 0-1-2-Principle for Parallel Prefix Computation

then the same holds for every type τ , associative (⊕) :: τ → τ → τ , and xs :: [τ].
That is, correctness of candidate at the type Three implies its correctness at arbi-
trary type. Here the definition of “correctness” is “semantic equivalence to serial

for associative operations as first input”. Actually, the formal account (Voigtländer
2008b) uses a different reference implementation than serial, but one that is easily
shown to be semantically equivalent to it by equational reasoning.

The only aspect of the overall proof to which we want to draw attention here is
the role of type-based reasoning. Note that we have not put any restriction on the
actual definition of candidate, just on its type. This is, of course, a case for working
with a free theorem. The free theorem derived from candidate’s type is that for
every choice of concrete types τ1 and τ2, a function h :: τ1 → τ2, and operations
(⊗) :: τ1 → τ1 → τ1 and (⊕) :: τ2 → τ2 → τ2, if for every x, y :: τ1,

h (x⊗ y) = (h x)⊕ (h y) (4.1)

then for every xs :: [τ1],

map h (candidate (⊗) xs) = candidate (⊕) (map h xs)

This free theorem’s conclusion gives us a starting point for relating the behavior
of candidate at different types, as ultimately required for the 0-1-2-Principle. Un-
fortunately, it is not as easy as setting τ1 = Three and τ2 = τ and working from
there. Instead, we found it necessary to use an indirection via the type of integer
lists (and an auxiliary statement originally discovered by M. Sheeran). Also, some
good choices for h, ⊗, and ⊕ must be made, associativity must be factored into es-
tablishing the precondition (4.1), and some properties of permutations are needed.
But all in all, once we have the above free theorem, the proof is mainly a bunch
of equational reasoning steps. It has additionally been machine-verified using the
Isabelle interactive proof assistant (Böhme 2007).

24

Chapter 5

Semantic Bidirectionalization

This chapter is based on the following paper:

• J. Voigtländer.
Bidirectionalization for Free!
In B.C. Pierce, editor, 36th Symposium on Principles of Programming Lan-
guages, Savannah, Georgia, Proceedings. ACM Press, 2009.
(Voigtländer 2009)

It presents a novel approach to the view-update problem known from the database
area, utilizing programming language theory surrounding polymorphic types.

5.1 Bidirectional Transformation

Assume we have a domain of concrete values and a function get that takes such
a value as source and produces from it a view by abstracting from some details.
Now assume this view is updated in some way, and we would like to propagate this
change back to the input source. So we need another function put that takes the
original source and an updated view and produces an updated source. Clearly, get
and put should be suitably related, because otherwise the integrity of the data to be
transformed by using them is threatened. In the database area, where the concrete
and abstract domains will typically be relation tables or XML trees, the following
conditions have been proposed (Bancilhon and Spyratos 1981):

put s (get s) = s (5.1)

get (put s v) = v (5.2)

put (put s v) (get s) = s (5.3)

put (put s v) v′ = put s v′ (5.4)

known as acceptability, consistency, undoability, and composability.
Writing and maintaining good get/put-pairs requires considerable effort. So it is

natural to invest in methodologies that can reduce this burden on the programmer.

25

Chapter 5: Semantic Bidirectionalization

The ideal is to not have to write two separate specifications and to establish their
relatedness by proving (some of) the conditions above, but to instead be able to
provide only a single specification and still get both forward/backward-components.
This problem has received much attention from the programming language commu-
nity in recent years. For example, Foster et al. (2007) pioneered a domain-specific
language approach that fences in a certain subclass of transformations, provides
a supply of correctly behaving get/put-pairs on a low level, and then describes
systematic and sound ways of assembling bigger bidirectional transformations from
smaller ones. Another approach is to devise an algorithm that works on a syntactic
representation of somehow restricted get-functions and tries to infer appropriate
put-functions automatically (Matsuda et al. 2007). While all the approaches pro-
posed in the literature so far have been syntactic in nature, we present one that
works purely on the level of semantic values.

5.2 Bidirectionalization of Polymorphic get

The idea is to write, directly in the language in which the forward and backward
functions shall live themselves, a higher-order function that takes get-functions as
arguments and returns appropriate put-functions. It turns out that Haskell is very
well up to the task. One thing to stress is that “on the semantic level” means that
when prescribing how put will behave we are not willing, or even able, to inspect the
function definition of get. That is, the backward component we return cannot be
based on a deep analysis of the forward function’s innards. This may sound crippling,
and yet we can provide nontrivial, and well-behaved, put-functions for a wide range
of (polymorphic) get-functions. And forgoing any possibility to “look into” get

liberates our approach from considerable syntactic restraints. In particular, and
in contrast to the situation with all previous approaches, the programmer is not
anymore restricted to drawing forward functions from some sublanguage only.

Let us consider a specific example in Haskell, for simplicity working with lists only
rather than with richer data structures like tables or trees. Assume our get-function
is as follows:

get :: forall α. [α]→ [α]
get as = take ((length as) ‘div‘ 2) as

Here the abstraction amounts to omitting the input list’s second half. Propagating
an update on the preserved first half back to the original, full list can be done with
the following function:

put :: forall α. [α]→ [α]→ [α]
put as as ′ = let n = (length as) ‘div‘ 2

in if (length as ′) == n then as ′ ++ (drop n as)
else error “Shape mismatch.”

And indeed, our higher-order function bff (named for an abbreviation of the full

26

Section 5.3: Leveraging Free Theorems

paper’s title), when applied to the above get, will return this put.1 Of course not
the exact syntactic definition of put that is shown above, but a functional value
that is semantically equivalent to it. This is absolutely enough from an application
perspective. We want automatic bidirectionalization precisely because we do not
want to be bothered with thinking about the backward function. So we do not care
about its syntactic form, as long as the function serves its purpose. There is a certain
price to pay, namely bff get runs much less efficiently on its inputs than the hand-
coded put does, in this and in other examples. But this is a different story. Here
we are interested in safety and programmer (rather than program) productivity.

One aspect to be aware of is that the put-function given above is a partial function
only. That is, it may raise an exception for unsuitable input that represents a view-
update that cannot (automatically and consistently) be reconciled with the original
source. Some in the related literature, notably Foster et al. (2007) and follow-on
works, emphasize the static description, or even calculation, of the domain on which
a put-function is totally defined. We instead follow Matsuda et al. (2007), accept
partiality, and weaken the bidirectional properties (5.2)–(5.4) somewhat by adding
definedness preconditions. Specifically, these three properties are only required to
hold if put s v is actually defined, and (5.4) even has the additional precondition that
put (put s v) v′ is defined as well. The thus revised conditions, and the original (5.1),
are what we prove for polymorphic get and put = bff get.2 The way we do this
crucially depends on get being of polymorphic type, because this allows us to learn
something about its behavior without having access to its defining equations.

5.3 Leveraging Free Theorems

We do not want to repeat the full development and implementation of bff or the
associated proofs here, but at least explain some of the key ideas.

Assume that bff is given a function get :: forall α. [α]→ [α] as input. How can it
gain information about this function, so as to exploit that information for producing
a good backward function? Note that get is of exactly the type discussed as first
example in Section 3.1. There, we have analyzed what this type tells us about
the behavior of any such function. The essence of this analysis was that such a
function’s behavior does not depend on any concrete list elements, but only on
positional information. Now we additionally use that this positional information
can even be observed explicitly, for example by applying get to ascending lists over
integer values. Say get is tail, then every list [0..n] is mapped to [1..n], which allows
bff to see that the head element of the original source is absent from the view, hence
cannot be affected by an update on the view, and hence should remain unchanged
when propagating an updated view back into the source. And this observation can
be transferred to other source lists than [0..n] just as well, even to lists over non-

1Well, almost. Actually, it will return this function with type forall α. Eq α⇒ [α]→ [α]→ [α].
2Again, almost. In general, we prove the conditions up to == rather than up to semantic

equivalence. But for the typical instances of Eq used in practice, == and = totally agree.

27

Chapter 5: Semantic Bidirectionalization

integer types, thanks to law (3.1) from page 14. In particular, that law allows us to
establish that for every list s of the same length as [0..n], but over arbitrary type,
we have

get s = map (s !!) (get [0..n]) (5.5)

where (!!) :: forall α. [α]→ Int→ α is the operator used in Haskell for extracting a
list element at a given index position, starting counting from 0.

Let us develop the above line of reasoning further, again on the tail example.
So bff tail is supposed to return a good put. To do so, it must determine what
this put should do when given an original source s and an updated view v. First,
it would be good to find out to what element in s each element in v corresponds.
Assume s has length n + 1. Then by applying tail to the same-length list [0..n],
bff (or, rather, bff tail = put) learns that the original view from which v was
obtained by updating had length n, and also to what element in s each element in
that original view corresponded. Being conservative, we will only accept v if it has
retained that length n. For then, we also know directly the associations between
elements in v and positions in the original source. Now, to produce the updated
source, we can go over all positions in [0..n] and fill them with the associated values
from v. For positions for which there is no corresponding value in v, because these
positions were omitted when applying tail to [0..n], we can look up the correct
value in s rather than in v. For the tail example, this will only concern position 0,
for which we naturally take over the head element from s.

The same strategy works also for general bff get. In short, given s, produce
a kind of template s′ = [0..n] of the same length, together with an association g
between integer values in that template and the corresponding values in s. Then
apply get to s′ and produce a further association h by matching this template
view versus the updated proper value view v. Combine the two associations into a
single one h′, giving precedence to h whenever an integer template index is found
in both h and g. Thus, it is guaranteed that we will only resort to values from the
original source s when the corresponding position did not make it into the view,
and thus there is no way how it could have been affected by the update. Finally,
produce an updated source by filling all positions in [0..n] with their associated
values according to h′. Some extra care is needed when matching the template view
versus the updated proper value view, to produce h, for the case that an index
position is encountered twice. This case occurs as soon as get duplicates a list
element. Consider, for example, get = (λs→ s++ s). Applied to a template [0..n],
it will deliver the template view [0, . . . , n, 0, . . . , n]. Under what conditions should a
match between this template view and an updated proper value view be considered
successful? Clearly only when equal indices match up with equal values, because
only then we can produce a meaningful association reflecting a legal update.

Using the standard functions

zip :: forall α. forall β. [α]→ [β]→ [(α, β)]

28

Section 5.3: Leveraging Free Theorems

and

lookup :: forall α. forall β. Eq α⇒ α→ [(α, β)]→ Maybe β

with

data Maybe β = Nothing | Just β

and the obvious semantics, the strategy described above could be implemented as
follows:

bff :: (forall α. [α]→ [α])→ (forall α. Eq α⇒ [α]→ [α]→ [α])
bff get [] [] = []
bff get [] v = error “Shape mismatch.”
bff get s v = let s′ = [0..((length s)− 1)]

g = zip s′ s
h = assoc (get s′) v
h′ = h++ g

in map (λi→ case lookup i h′ of Just b→ b) s′

assoc :: Eq α⇒ [Int]→ [α]→ [(Int, α)]
assoc [] [] = []
assoc (i : is) (b : bs) = let m = assoc is bs

in case lookup i m of
Nothing→ (i, b) : m
Just c → if b == c

then m
else error “Update violates equality.”

assoc = error “Shape mismatch.”

Note that the first two defining equations for bff reflect the fact that a function
get :: forall α. [α] → [α] can map [] only to [], so only an empty list is accepted
as updated view for an empty source. The case and if in the second defining
equation for assoc provide for the correct treatment of duplication of list elements,
by checking whether indeed equal indices match up with equal values.

The implementation given above is clearly not optimal. It makes a rather bad
choice for representing the associations between integer values and values from
s and v. Above, lists of pairs are used for this, namely [(Int, α)], and lookup is
just linear search. The full paper (Voigtländer 2009) actually uses the standard
library Data.IntMap instead, with better asymptotic behavior. The implementation
in the paper also differs in other, smaller ways from the one above, such as by a
more refined error handling, but the key ideas are the same.

More importantly, the paper then goes on to develop semantic bidirectionaliza-
tion for other functions than ones of type forall α. [α] → [α]. One dimension
of generalization is to consider functions that are not fully polymorphic, but may
actually perform some operations on list elements. For example, the following func-
tion uses equality, or rather inequality, tests to remove duplicate occurrences of list

29

Chapter 5: Semantic Bidirectionalization

elements:
get :: forall α. Eq α⇒ [α]→ [α]
get [] = []
get (a : as) = a : (get (filter (a /=) as))

It is not in the reach of the bidirectionalization strategy described thus far. It cannot
be given the type forall α. [α] → [α], and indeed the essential law (5.5) does not
hold for it.3 But by working with refined free theorems (Wadler 1989, Section 3.4)
it is possible to treat get-functions of type forall α. Eq α ⇒ [α] → [α] as well, to
implement a higher-order function

bffEq :: (forall α. Eq α⇒ [α]→ [α])→ (forall α. Eq α⇒ [α]→ [α]→ [α])

and to prove that every pair get :: forall α. Eq α⇒ [α]→ [α] and put = bffEq get

satisfies the laws (5.1)–(5.4), in their revised form discussed at the end of Section 5.2.
The same goes for the type class Ord capturing ordering tests, a new higher-order
function

bffOrd :: (forall α. Ord α⇒ [α]→ [α])→ (forall α. Ord α⇒ [α]→ [α]→ [α])

and get-functions like the following one:

get :: forall α. Ord α⇒ [α]→ [α]
get = (take 3) ◦ List.sort

For each of bff, bffEq, and bffOrd, the full paper actually only discusses the proofs
for conditions (5.1) and (5.2), but those for (5.3) and (5.4) are similar.

Another dimension of generalization is to consider functions that deal with data
structures other than lists. By employing polymorphism over type constructor
classes, like Functor in Section 2.2, and type-generic programming techniques, we
provide one implementation of each bff, bffEq, and bffOrd that applies to functions
involving a wide range of type constructors, on both the source and the view sides.
For example, the very same bff can be used to bidirectionalize the get-function
shown in Section 5.2 as well as flatten from Section 2.1.

An online interface to the implementations from the full paper is accessible at
http://linux.tcs.inf.tu-dresden.de/~bff/cgi-bin/bff.cgi.

3Consider s = “abcbabcbaccba” and n = 12. Then on the one hand, get s = “abc”, but on the
other hand, map (s !!) (get [0..n]) = map (s !!) [0..n] = s.

30

http://linux.tcs.inf.tu-dresden.de/~bff/cgi-bin/bff.cgi

Chapter 6

List Operations Vanish for Free

This chapter is based on the following paper:

• J. Voigtländer.
Concatenate, Reverse and Map Vanish For Free.
In S.L. Peyton Jones, editor, 7th International Conference on Functional Pro-
gramming, Pittsburgh, Pennsylvania, Proceedings, volume 37(9) of SIGPLAN
Notices, pages 14–25. ACM Press, 2002.
(Voigtländer 2002)

It introduces a type-based, and lightweight, approach to program transformation
that can achieve asymptotic speed-ups by exploiting algebraic laws about list con-
catenation and other operations.

6.1 The Problem of Repeated Concatenation

Recall the function

flatten :: forall α. Tree α→ [α]
flatten (Leaf a) = [a]
flatten (Node t1 t2) = (flatten t1) ++ (flatten t2)

from Section 2.1. While serving as a good specification of flattening a tree into a
list, this definition has an inefficient runtime behavior due to repeated concatenate
operations on intermediate lists. This is particularly evident on left-leaning trees.
Consider, for example, trees of the following form:

Node

X

Node

Leaf 1 Leaf 2

Leaf n

31

Chapter 6: List Operations Vanish for Free

On these, flatten will lead to computation tasks of the following form:

++

X

++

[1] [2]

[n]

But since applications of ++ (both the version on page 7 and the one from the
standard Haskell Prelude) require runtime linear in the lengths of their left argument
lists, this will lead to an overall runtime quadratic in n.

One solution is to introduce an accumulating parameter as follows:

flatten1 :: forall α. Tree α→ [α]
flatten1 t = flatten′1 t []

flatten′1 :: forall α. Tree α→ [α]→ [α]
flatten′1 (Leaf a) as = a : as
flatten′1 (Node t1 t2) as = flatten′1 t1 (flatten′1 t2 as)

While Wadler (1987; revised, 1989) showed how this transformation can be per-
formed automatically, it very much depends on the syntax of the original function
definition and thus is brittle to even small changes in the program. Moreover, there
are situations where left-associatively nested concatenations lead to quadratic over-
head but accumulating parameters are of no help at all.

A more powerful solution is to switch to an alternative representation of lists
as functions, by abstraction over the list end, often called difference lists. In the
formulation of Hughes (1986), but encapsulated as an explicitly new data type:

newtype DList α = DL ([α]→ [α])

rep :: forall α. [α]→ DList α
rep as = DL (as ++)

abs :: forall α. DList α→ [α]
abs (DL f) = f []

nilR :: forall α. DList α
nilR = DL id

consR :: forall α. α→ DList α→ DList α
consR a (DL f) = DL ((a :) ◦ f)

appendR :: forall α. DList α→ DList α→ DList α
appendR (DL f) (DL g) = DL (f ◦ g)

32

Section 6.2: Our Solution

Then, flattening a tree into a list in the new representation can be done using the
following function:

flatten′2 :: forall α. Tree α→ DList α
flatten′2 (Leaf a) = consR a nilR

flatten′2 (Node t1 t2) = (flatten′2 t1) ‘appendR‘ (flatten′2 t2)

and a more efficient variant of the original function, with its original type, can be
recovered as follows:

flatten2 :: forall α. Tree α→ [α]
flatten2 = abs ◦ flatten′2

But how do we know that the new flatten2 is equivalent to the original flatten?
We could try to argue by “distributing” abs over the definition of flatten′2, using
abs nilR = [], abs (consR a as) = a : (abs as), and

abs (appendR as bs) = (abs as) ++ (abs bs) (6.1)

But actually the last equation does not hold in general. The reason is that there are
as :: DList τ , for some concrete type τ , that are not in the image of rep. Consider,
for example, as = DL reverse. Then neither is as = rep as ′ for any as ′ :: [τ], nor
does law (6.1) hold for every bs . Any argument “by distributing abs” would thus
have to rely on the implicit assumption that a certain discipline has been exercised
when going from the original flatten to flatten′2 by replacing [], (:), and (++) by
nilR, consR, and appendR (and/or applying rep to explicit lists). But this implicit
assumption is not immediately in reach for formal grasp. So it would be nice to be
able to provide a single, conclusive correctness statement for transformations like
the one above.

6.2 Our Solution

By making use of Haskell’s abstraction facilities at the level of the type system, we
can provide a way of writing flatten (and functions with similar problems) in a
form closely resembling the original specification, but avoiding quadratic overhead
caused by repeated concatenations, and at the same time being assured of semantic
correctness. The key ingredient is a function of the following type:

vanish++ :: forall α. (forall β. β → (α→ β → β)→ (β → β → β)→ β)→ [α]

Note the rank-2 polymorphism here, due to the inner forall. As far as the program-
mer is concerned, vanish++ has the following defining equation:

vanish++ g = g [] (:) (++) (6.2)

33

Chapter 6: List Operations Vanish for Free

Note the similarity of both the type and the definition to those of build on page 16.
With the knowledge of (6.2) it is straightforward to rewrite flatten into the fol-
lowing equivalent form:

flatten3 :: forall α. Tree α→ [α]
flatten3 t = vanish++

(λnil cons append → let f (Leaf a) = cons a nil
f (Node t1 t2) = (f t1) ‘append ‘ (f t2)

in f t)

Indeed, this abstraction from the concrete list constructors [] and : as well as from
occurrences of ++ is no more complicated than that performed when expressing
list-producers in terms of build as preparation for short cut fusion. And that the
abstraction is done properly is guaranteed by the polymorphic type of vanish++’s
argument. Any incomplete or inconsistent switch from [], :, and ++ to nil , cons ,
and append would immediately lead to a complaint by the Haskell type checker.

If (6.2) were really the syntactic definition of vanish++, then of course flatten3

would not be any more efficient than the original flatten. The concrete list con-
structors and ++ would simply be put back in place, and afterwards the same com-
putations as originally would be performed. So the crucial point is that (6.2) is
actually not the definition of vanish++. Instead, that function is defined as follows:

vanish++ :: forall α. (forall β. β → (α→ β → β)→ (β → β → β)→ β)→ [α]
vanish++ g = g id (λa f → (a :) ◦ f) (◦) []

But a free theorem can be used to prove that (6.2) is a semantic equality that holds
for this definition. So whenever the type checker accepts an expression vanish++ g,
the programmer is safe to read this expression as g [] (:) (++). So it is as if (6.2)
were the definition of vanish++, which makes writing and understanding code like
that of flatten3 above very easy. Behind the scenes, however, the actual, more
complicated definition of vanish++ is used, which gives linear runtime alike to that
of flatten1 (with accumulating parameters) and flatten2 (with difference lists).

The connection to difference lists is very strong indeed, as comparing the argu-
ments to g in the actual definition of vanish++ to the definitions of nilR, consR, and
appendR shows. But by encapsulating the transformation in vanish++ we achieve
the necessary discipline, enforced by the type checker, when moving from the stan-
dard representation of lists to the one with optimized concatenation. And law (6.2)
provides the sought-after general correctness statement in a very concise way.

6.3 Other List Operations

The discussion so far has been specific to list concatenation. But problems with
repeated, nested operations leading to quadratic overhead occur for other ways of
manipulating lists (or other data structures) as well. Consider, for example, the

34

Section 6.3: Other List Operations

following naive definition of a function for shuffling a list:

shuffle :: forall α. [α]→ [α]
shuffle [] = []
shuffle (a : as) = a : (reverse (shuffle as))

Since every application of reverse takes time linear in the length of its argument,
the overall runtime of shuffle is quadratic in the length of the input list. The full
paper (Voigtländer 2002) describes a methodology to manufacture vanish-functions
for other operations than list concatenation. For reverse it leads to the following
definition:

vanishrev :: forall α. (forall β. β → (α→ β → β)→ (β → β)→ β)→ [α]
vanishrev g = fst (g (split id id)

(λa f → split ((a :) ◦ fst ◦ f) (snd ◦ f ◦ (a :)))
(λf → (split snd fst) ◦ f)
[])

where:

fst :: forall α. forall β. (α, β)→ α
fst (a, b) = a

snd :: forall α. forall β. (α, β)→ β
snd (a, b) = b

split :: forall α. forall β. forall γ. (α→ β)→ (α→ γ)→ α→ (β, γ)
split f g a = (f a, g a)

Then, the following rewrite of shuffle:

shuffle′ :: forall α. [α]→ [α]
shuffle′ as = vanishrev

(λnil cons reverse → let f [] = nil
f (a : as) = cons a (reverse (f as))

in f as)

has linear runtime. Its correctness with respect to the original shuffle is guaranteed
by the following law, which can be proved using a free theorem:

vanishrev g = g [] (:) reverse

Actually, in the presence of only partially defined or infinite lists, just an inequational
variant of this law is proved, where the left-hand side may be more defined than the
right-hand side. For our concrete example this becomes visible by shuffle′ happily
mapping an infinite input list to an infinite output list, while shuffle applied to an
infinite list diverges after producing just one element of output. For more discussion
on this aspect we refer the reader to the full paper.

35

Chapter 6: List Operations Vanish for Free

Our general methodology builds on ideas from short cut (foldr/build-) fusion.
Additionally, we factor in knowledge about algebraic properties of the operations un-
der consideration. For example, vanish++ (as well as Wadler’s and Hughes’ methods
introduced in Section 6.1) is built on the following associativity law:

(as ++ bs) ++ cs = as ++ (bs ++ cs) (6.3)

while the development of vanishrev was informed by the observation that

reverse (reverse as) = as

(at least for total, finite lists as). Similarly, vanish-functions for map and filter

can be obtained from

(map f) ◦ (map g) = map (f ◦ g)

and

(filter p) ◦ (filter q) = filter (λa→ (q a) && (p a))

respectively, and combinations are also possible. Finally, the methodology is not
specific to lists alone. It is equally applicable to other algebraic data types. Indeed,
Chapter 7 presents a related approach that handles a whole class of data structures,
so-called free monads.

6.4 Yet Another Possibility

To prepare for the next chapter, we draw attention to a further way of eliminat-
ing repeated list concatenation, in the spirit of difference lists but with improved
guidance by the type checker and facilitating a concise correctness statement.

The idea is to use (higher-order) overloading. Specifically, one can declare a type
constructor class as follows:

class ListLike δ where
nil :: forall α. δ α
cons :: forall α. α→ δ α→ δ α
append :: forall α. δ α→ δ α→ δ α

and provide the following two instance definitions:

instance ListLike [] where
nil = []
cons = (:)
append = (++)

instance ListLike DList where
nil = nilR

cons = consR

append = appendR

36

Section 6.4: Yet Another Possibility

Then, it is possible to write list-producers without early commitment to either or-
dinary or difference lists. For example, the following single version of flatten:

flatten :: forall α. Tree α→ (forall δ. ListLike δ ⇒ δ α)
flatten (Leaf a) = cons a nil

flatten (Node t1 t2) = (flatten t1) ‘append‘ (flatten t2)

can be used both to produce ordinary lists and to produce difference lists. The
choice between the two will be made automatically by the type checker, depending
on the context in which a call to flatten occurs. For example, in

last (flatten t)

the ordinary list representation will be used, due to the input type of

last :: forall α. [α]→ α

If that is what we want, then fine. But if not, we can switch to the better behaved
difference list representation without touching the code of flatten at all, by simply
using the rank-2 polymorphic function

improve :: forall α. (forall δ. ListLike δ ⇒ δ α)→ [α]
improve as = abs as

as follows:
last (improve (flatten t))

Here the (input) type of abs determines flatten to use nilR, consR, and appendR,
leading to linear runtime. And the semantic correctness of adding improve at will
wherever the type checker allows doing so is established by a somewhat surprising
statement that can be proved using a free theorem. Namely, for every concrete
type τ and every as that can be given the type forall δ. ListLike δ ⇒ δ τ , it holds
that

improve as = as (6.4)

What makes this statement surprising is that it seems to say that improve is an iden-
tity function, while improve’s definition seems to say that it has incompatible input
and output types. The explanation here is that the type forall δ. ListLike δ ⇒ δ τ
is essentially a “subtype” of [τ]. Every value of the former can also be seen as a
value of type [τ], and indeed will implicitly be turned into one by the type checker if
the program context so demands. But while the type checker would do this naively
by using the ListLike instance in which nil is [], cons is (:), and append is (++), we
can use improve to instead enforce the use of difference lists. Just as with law (6.2),
the equivalence (6.4) is for the programmer’s peace of mind, while behind the scenes
more intricate things are going on. The work reported on in the next chapter applies
this particular approach of hiding details through type constructor class abstraction
to efficient programming with monads.

37

38

Chapter 7

Asymptotic Improvement of
Computations over Free Monads

This chapter is based on the following paper:

• J. Voigtländer.
Asymptotic Improvement of Computations over Free Monads.
In C. Paulin-Mohring and P. Audebaud, editors, 9th International Conference
on Mathematics of Program Construction, Marseille, France, Proceedings, vol-
ume 5133 of LNCS, pages 388–403. Springer-Verlag, 2008.
(Voigtländer 2008d)

It presents a program transformation to improve the time efficiency of computations
over a variety of data types. Advanced mechanisms on the level of types make the
transformation both powerful and easy to use.

7.1 (Free) Monads in Haskell

Since first brought to the field of programming language semantics by Moggi (1991)
and then popularized for practical programming by Wadler (1992), monads have
become everyday structures for Haskell programmers to work with. Monads allow
to safely encapsulate impure features of the language (Peyton Jones and Wadler
1993, Launchbury and Peyton Jones 1995), but are also used in pure code to separate
concerns and provide modular design (Liang et al. 1995). The original, mathematical
definition of monads from category theory is translated into a type constructor class
declaration as follows:

class Monad µ where
return :: forall α. α→ µ α
(>>=) :: forall α. forall β. µ α→ (α→ µ β)→ µ β

39

Chapter 7: Asymptotic Improvement of Computations over Free Monads

where the following three laws are expected to hold:

(return a)>>= k = k a (7.1)

m>>= return = m (7.2)

(m>>= k)>>= h = m>>= (λa→ (k a)>>= h) (7.3)

One important Monad instance is IO, which is responsible precisely for what its name
suggests. The interpretation of return is simply to lift pure values into the realm
of monads. That is, return a is a computation without input/output-effects that
results in a. The operator >>= is used for sequencing potentially effectful compu-
tations. That is, m>>= k is a computation that first performs the computation m,
with all its input/output-effects, then takes the resulting value, passes it as argument
to k, and continues with whatever computation is determined by this application.
Together with some predefined primitives like the following ones:

getChar :: IO Char

putChar :: Char→ IO ()

this allows to write arbitrary computations performing input/output. For example,

echo :: IO ()
echo = getChar>>= (λc→ if c /= ’∗’ then (putChar c)>>= (λ()→ echo)

else return ())

is a computation that, when executed, reads characters from the standard input
and immediately writes them to the standard output, until character ’∗’ is read, at
which point the computation finishes.

It is also entirely possible to define one’s own monads. For example, the data
type

data Tree α = Node (Tree α) (Tree α) | Leaf α

from Section 2.1 lends itself to an instance definition, satisfying the laws (7.1)–(7.3),
as follows:

instance Monad Tree where
return = Leaf
(Leaf a) >>= k = k a
(Node t1 t2) >>= k = Node (t1 >>= k) (t2 >>= k)

Note that the operation of >>= here is simply to substitute leaves by trees depending
on their labels, with a potential change of the type of leaf-labels. Such monads
built around a substitution operation are actually quite frequent, they constitute
the class of free monads. And they even have something interesting to say about
input/output- and related “real effects” computations, as discussed next.

Assume we want to analyze input/output-code like that of echo above, but with-
out directly executing it. An attractive way of doing this is to build a pure model of
effectful computations by simply defining another, less opaque (than IO), monad that

40

Section 7.1: (Free) Monads in Haskell

also supports the primitives of interest. Borrowing from Swierstra and Altenkirch
(2007), this may look as follows:

data IOSpec α = Return α | GetChar (Char→ IOSpec α)
| PutChar Char (IOSpec α)

instance Monad IOSpec where
return = Return
(Return a) >>= k = k a
(GetChar f) >>= k = GetChar (λc→ (f c)>>= k)
(PutChar c m) >>= k = PutChar c (m>>= k)

getChar :: IOSpec Char
getChar = GetChar Return

putChar :: Char→ IOSpec ()
putChar c = PutChar c (Return ())

Additionally, code for “simulating” the execution of such pure representations of
effectful computations is given:

data Trace α = Finish α | Read Char (Trace α) | Write Char (Trace α)

trace :: forall α. IOSpec α→ String→ Trace α
trace (Return a) cs = Finish a
trace (GetChar f) (c : cs) = Read c (trace (f c) cs)
trace (PutChar c m) cs = Write c (trace m cs)

Then, by changing echo’s type signature to echo :: IOSpec (), but not changing
anything in its defining equation, we have a version that can be analyzed and tested
on choice input. For example, we have

trace echo “ab∗”
= Read ’a’ (Write ’a’ (Read ’b’ (Write ’b’ (Read ’∗’ (Finish ())))))

and if we alter the code of echo, say as follows:

echo′ :: IOSpec ()
echo′ = getChar>>= (λc→ if c /= ’∗’ then echo′ >>= (λ()→ putChar c)

else return ())

then we can very clearly observe how this affects input/output-behavior:

trace echo′ “ab∗”
= Read ’a’ (Read ’b’ (Read ’∗’ (Write ’b’ (Write ’a’ (Finish ())))))

Surprisingly, though, there is a fundamental difference between using trace on echo

and on echo′. Despite the only very small change from one to the other, the runtime
of trace echo cs is linear in the length of the longest prefix of cs not containing ’∗’,
while that of trace echo′ cs is quadratic. Why this is so, and what we can do about
it, in this and in similar situations, is the topic of the current chapter.

41

Chapter 7: Asymptotic Improvement of Computations over Free Monads

7.2 The Problem of Repeated Substitution

Let us consider the evaluation of trace echo′ cs for some string cs starting with at
least n non-’∗’ characters. Then at least n recursive calls to echo′ will need to be
unfolded. Inlining (getChar >>= k) :: IOSpec () to GetChar (λc → k c), this means
that eventually the following computation needs to be performed:

GetChar

λc1

>>=

GetChar

λc2

>>=

GetChar

λc3

>>=

X

GetChar

λcn

>>=

echo′ λ()

putChar

cn

λ()

putChar

c3

λ()

putChar

c2

λ()

putChar

c1

Taking into account that the program equation defining >>= on a left argument of
the form GetChar f can be pictured as follows:

>>=

GetChar

λc

1

2
=

GetChar

λc

>>=

1 2

the cause of the quadratic runtime becomes apparent. The reason is simply that the
fragments

42

Section 7.2: The Problem of Repeated Substitution

GetChar

λc2
,

GetChar

λc3
,

GetChar

λc4
,

and so on need to “move over” one, two, three, and so on, occurrences of >>=,
respectively. This gives an arithmetic sequence, the sum of which is quadratic in n.

It is instructive to compare this to the situation for trace echo cs . Here, the
corresponding computation to be performed looks as follows:

GetChar

λc1

>>=

putChar

c1

λ()

GetChar

λc2

>>=

putChar

c2

λ()

X

GetChar

λcn

>>=

putChar

cn

λ()

echo

This does not give rise to a cascade of calls to >>= as above, and thus ultimately
leads to linear runtime overall.

The above considerations indicate that the problem is with left-associatively
nested substitutions >>=. Indeed, the situation is similar to that from Section 6.1.
And just as law (6.3) on page 36 was the key to avoiding quadratic overhead caused
by repeated list concatenations, we can now use law (7.3) to cure the observed
inefficiency in code operating on monads.

Note that the right-hand side of (7.3) is preferable, efficiency-wise, over its left-
hand side not only for the particular monad IOSpec, but for other free monads as
well, such as for Tree and for other pure models of Swierstra and Altenkirch (2007).
Hence, we have developed a generic solution that applies to all of them in a single
stroke.

43

Chapter 7: Asymptotic Improvement of Computations over Free Monads

7.3 Improvement by Abstraction over return

Just as difference lists abstract over the end of a list, we are going to abstract over
the return-method of a Monad instance. Encapsulated as a new data type that is
parametrized over a type constructor, this can be formulated as follows:

newtype C µ α = C (forall β. (α→ µ β)→ µ β)

It is easy to go back and forth between a monad and its “C-version” as follows:

rep :: forall µ. Monad µ⇒ (forall α. µ α→ C µ α)
rep m = C (m >>=)

abs :: forall µ. Monad µ⇒ (forall α. C µ α→ µ α)
abs (C p) = p return

Crucially, C µ always is itself a monad, and even is so with a constant-time imple-
mentation for the sequencing operator:

instance Monad (C µ) where
return a = C (λh→ h a)
(C p)>>= k = C (λh→ p (λa→ case k a of C q → q h))

The key to efficiency improvement by eliminating repeated substitution is now that
for every concrete Monad instance κ, concrete types τ and τ ′, and m :: κ τ and
k :: τ → κ τ ′, we have1

rep (m>>= k) = (rep m)>>= (rep ◦ k)

Note that the occurrence of >>= on the right-hand side refers to the efficient imple-
mentation from the Monad instance C κ.

However, it is not simply possible to more or less use the new monad C IOSpec
as a drop-in replacement for IOSpec in the definition of echo′. The reason is that
echo′ :: IOSpec () uses getChar :: IOSpec Char and putChar :: Char → IOSpec (),
for which we have no “C-equivalents” yet. More generally, C κ does not only have
to be a monad, but also has to support equivalents of the data constructors of κ,
such as Return, GetChar, and PutChar in the case κ = IOSpec, and Node and Leaf in
the case κ = Tree. In order to treat all these cases at once, we can use the two-level
types approach discussed in Section 2.2.

To recall, we have seen that for any concrete type τ , the type Tree τ is isomorphic
to the type Fix (FTree τ), where

newtype Fix φ = Wrap (φ (Fix φ))

and
data FTree α β = N β β | L α

1The proof naturally depends on law (7.3) for the Monad instance κ.

44

Section 7.3: Improvement by Abstraction over return

Since free monads treat one distinguished data constructor differently from all oth-
ers, namely the one at which actual substitution takes place, it makes sense to
specialize the two-level types approach by revising the fixpoint wrapper as follows:

data Free φ α = Return α | Wrap (φ (Free φ α))

Then, for example, Tree τ is isomorphic to Free F′Tree τ for

data F′Tree β = N β β

and IOSpec τ is isomorphic to Free FIO τ for

data FIO β = GetChar (Char→ β) | PutChar Char β

Moreover, the Monad instance definitions for Tree and IOSpec given in Section 7.1
are, up to the mentioned isomorphisms, just special cases of the generic definition

instance Functor φ⇒ Monad (Free φ) where
return = Return
(Return a) >>= k = k a
(Wrap t) >>= k = Wrap (fmap (>>= k) t)

for the straightforward Functor instance definitions

instance Functor F′Tree where
fmap h (N b1 b2) = N (h b1) (h b2)

and
instance Functor FIO where
fmap h (GetChar f) = GetChar (h ◦ f)
fmap h (PutChar c b) = PutChar c (h b)

In fact, for any Functor instance satisfying the laws (2.1) and (2.2) from page 10,
the implied Monad instance satisfies the laws (7.1)–(7.3). This precisely captures all
free monads in a generic way.

Now we are also in a position to treat data constructors. In particular, we need
to treat the non-Return ones, that is, those that are captured in the φ of Free φ.
In the spirit of the ListLike class from Section 6.4, we want to provide an abstract
interface that can later be populated both by the original representation of a monad
and by its “C-version”. This motivates the following class declaration:2

class (Functor φ,Monad µ)⇒ FreeLike φ µ where
wrap :: forall α. φ (µ α)→ µ α

Then we can define abstract versions of getChar :: IOSpec Char and putChar ::
Char→ IOSpec () as follows:3

getChar :: forall µ. FreeLike FIO µ⇒ µ Char
getChar = wrap (GetChar return)

putChar :: forall µ. FreeLike FIO µ⇒ Char→ µ ()
putChar c = wrap (PutChar c (return ()))

2Compiler flag -XMultiParamTypeClasses is needed here.
3Compiler flag -XFlexibleContexts is needed here.

45

Chapter 7: Asymptotic Improvement of Computations over Free Monads

and consequently give the type signature forall µ. FreeLike FIO µ ⇒ µ () to both
echo and echo′, without changing anything in their defining equations. The idea, of
course, is that we then want to use echo and echo′ alternatively at type Free FIO (),
corresponding to the original type IOSpec (), or at type C (Free FIO) (), with the
improved implementation of sequencing. This clearly requires appropriate instance
definitions for FreeLike. One is almost trivial:4

instance Functor φ⇒ FreeLike φ (Free φ) where
wrap = Wrap

The other is somewhat intricate:

instance FreeLike φ µ⇒ FreeLike φ (C µ) where
wrap t = C (λh→ wrap (fmap (λ(C p)→ p h) t))

But it is this definition which eventually enables us to prove the “magic equivalence”

improve m = m

for the following function:

improve :: forall φ. Functor φ⇒ (forall α. (forall µ. FreeLike φ µ⇒ µ α)
→ Free φ α)

improve m = abs m

The proof uses both equational and type-based reasoning. More details can be found
in the full paper (Voigtländer 2008d).

The benefit for the programmer is that it is now possible to transparently switch
between the original representation of a free monad and the version optimized by
exploiting associativity according to law (7.3). Indeed, trace (improve echo′) cs ,
for a very minor variation of trace that takes care of the additional Wraps, now
runs in linear time, as do trace (improve echo) cs and trace echo cs .

4Compiler flag -XFlexibleInstances is needed here.

46

Chapter 8

Free Theorems and
Selective Strictness

This chapter is based on the following two papers:

• P. Johann and J. Voigtländer.
Free Theorems in the Presence of seq .
In X. Leroy, editor, 31st Symposium on Principles of Programming Languages,
Venice, Italy, Proceedings, volume 39(1) of SIGPLAN Notices, pages 99–110.
ACM Press, 2004.
(Johann and Voigtländer 2004)

• P. Johann and J. Voigtländer.
The Impact of seq on Free Theorems-Based Program Transformations.
Fundamenta Informaticae, volume 69(1–2), Special Issue “Program Transfor-
mation: Theoretical Foundations and Basic Techniques. Part 2”, guest editors:
A. Pettorossi and M. Proietti, pages 63–102. IOS Press, 2006.
(Johann and Voigtländer 2006)

It discusses how free theorems suffer when certain language features have to be taken
into account, and what we can do about it. Of particular interest is the impact this
has on program transformations like those seen in Section 3.2 and Chapter 6.

8.1 The Painful Truth about Free Theorems

In Section 3.1 we argued that for every function

f :: forall α. [α]→ [α]

the following law holds:

f (map h l) = map h (f l) (8.1)

47

Chapter 8: Free Theorems and Selective Strictness

But consider the following function definition:

f :: forall α. [α]→ [α]
f l = [head (f l)]

Due to the recursive call in a position that is absolutely required for evaluating the
element of the singleton output list, f l will never compute a completely total value.
In fact, independently of l, it always produces a list whose single element is a looping
computation. Such nontermination is usually denoted by the “undefined value” ⊥,
so that f l can be seen as evaluating to [⊥]. But this means that the left-hand
side of (8.1) always evaluates to [⊥], while its right-hand side evaluates to [h ⊥].
Since h could be a constant function ignoring its argument, say h = (λa→ 17), the
supposed equivalence (8.1) suddenly does not hold anymore. Let us consider this
problem in some more detail.

The starting point for the discussion leading to law (8.1), or (3.1), in Section 3.1
was the observation that the output list of any f :: forall α. [α]→ [α] can only ever
contain elements from the input list. But this is not true anymore when we take
general recursion with its potential for nontermination into account. Because then
f might just as well choose, for some element position of its output list, to start an
arbitrary nonterminating computation, easily detectable or not. That is, while f
certainly (and still) cannot possibly make up new elements of any concrete type to
put into the output, such as 42 or True, it may very well “put” ⊥ there, even while
not knowing the element type of the lists it operates over, because conceptually ⊥
does exist at every type. So the erstwhile claim that for any input list l the output
list f l consists solely of elements from l has to be refined as follows.

For any input list l the output list f l consists solely of elements from l
and/or ⊥.

The decisions about which elements from l to propagate to the output list, in which
order and multiplicity, and where to put ⊥ can again only be made based on the
input list l, and only by inspecting its length (or running into an undefined tail or
an infinite list).

So for any pair of lists l and l′ of same length (refining this notion to take
partial and infinite lists into account) the lists f l and f l′ are formed
by making the same position-wise selections of elements from l and l′,
respectively, and by inserting ⊥ at the same positions, if any.

For any l′ = map h l, we then still have that f l and f l′ are of the same length
and contain position-wise exactly corresponding elements from l and l′, at those
positions where f takes over elements from its input rather than inserting ⊥. For
those positions where f does insert ⊥, which will then happen equally for f l and f l′,
we may only argue that the element in f l′ contains the h-image of the corresponding
element in f l if indeed ⊥ is the h-image of ⊥. This requirement is called strictness.

So for any list l and, importantly, strict function h, the law (8.1) holds.

48

Section 8.1: The Painful Truth about Free Theorems

The example given above, essentially f = (λl → [⊥]), together with h = (λa→ 17)
shows that it is in general not possible to drop the condition on h.

And the situation gets worse if we move on to consider further language features
that are ignored in the “naive” perspective on free theorems. For example, Haskell
provides a primitive seq with conceptually the following definition:

seq :: forall α. forall β. α→ β → β
seq ⊥ b = ⊥
seq a b = b , if a 6= ⊥

It is typically used to selectively force the evaluation of subexpressions, circum-
venting lazy evaluation. This gives the advanced programmer explicit control over
evaluation order (by making functions strict that would otherwise not be so), which
can be important for efficiency. For example, in the function definition

foldl′ :: forall α. forall β. (β → α→ β)→ β → [α]→ β
foldl′ f b [] = b
foldl′ f b (a : as) = let b′ = f b a in seq b′ (foldl′ f b′ as)

the use of seq ensures that the accumulating parameter is computed immediately
in each recursive step rather than constructing a complex closure which would be
computed only at the very end. But the provision of seq also weakens what we can
conclude about a function’s behavior by just inspecting its type.

Consider again the following type signature:

f :: forall α. [α]→ [α]

Before, we have argued that when f decides which elements from its input list to
propagate to the output list, in which order and multiplicity, and where to put ⊥,
this can only depend on the length of the input list. The rationale for this was that
f is ignorant of the element type, and so is prevented from analyzing list elements in
any way. But this is not true anymore now. Using the fully polymorphic primitive
seq, it is possible to make f’s behavior depend in a certain way on whether specific
elements of the input list are ⊥ or not. It is not necessary to know those elements’
type for this. Since the possible behaviors of f are richer now, the attendant free
theorem must become weaker. Indeed, now equivalence (8.1) can only be guaranteed
to hold if in addition to strictness we also require totality of h, where a function is
called total if it never maps a non-⊥ value to ⊥. There is also an example evidencing
the need for this additional restriction. Consider the following function definition:

f :: forall α. [α]→ [α]
f l = seq (head l) []

With the strict function h = ⊥ and the list l = [17] we have f (map h l) = ⊥, but
map h (f l) = [], so that equivalence (8.1) fails.

It was long a folklore belief that the restriction to strict and total functions as
above would be enough to always salvage free theorems even in the presence of

49

Chapter 8: Free Theorems and Selective Strictness

general recursion and selective strictness à la seq. But in the work reported on here
we showed that this is not the case (Johann and Voigtländer 2004). For example,
for the equivalence (3.2) from Section 3.1 the folklore belief would have predicted
that it is again enough to require h to be strict and total. But actually it turns
out that one needs to additionally require that p is not ⊥. The good news is that
it is possible to recover free theorems even in the presence of advanced language
features. So while free theorems get weakened, and rightly so, when moving from the
pure polymorphic lambda-calculus (Reynolds 1974) for which they were originally
conceived towards a setting more closely resembling modern functional languages,
we have a handle at things. We can revise the underlying theory, and thus make
free theorems applicable in richer settings. Before saying a bit more about this, it
is helpful to briefly explain how free theorems come about at all.

8.2 The Formal Background of Free Theorems

The origin of free theorems lies in Reynolds’ (1983) studies about characterizing
parametric polymorphism. The question approached was what it means for a poly-
morphic function to behave uniformly, regardless of the concrete type at which it
is instantiated. Intuitively, the concept of two functions to behave the same is
that they map equal arguments to equal results. But this does not really make
sense when we want to compare two different instantiations of a polymorphic func-
tion. For example, when trying to compare the two instantiations of a function
f :: forall α. [α]→ [α] at types Int and Bool, we cannot say that they “behave the
same” when they “map equal input lists to equal output lists”. After all, one of the
two instantiations under consideration maps integer lists to integer lists, while the
other maps Boolean valued lists to Boolean valued lists. And there is no concept
of an integer list being “equal” to a Boolean valued list. Reynolds’ key idea was
to move away from equality and instead consider arbitrary binary relations. Say
we fix a relation between Int and Bool that relates every even integer to True and
every odd integer to False. Given this relation as a base, it is straightforward to
formulate a meaningful concept of an integer list and a Boolean valued list being
related: we simply require that the lists are of the same length and that elements
at corresponding positions are related in the way just described. For the supposed
two instances of f at Int and Bool we can now require that they map related input
lists to related output lists. If f is truly polymorphic, with its behavior independent
of concrete choices for instantiating α, then this invariant will indeed be preserved.
Actually, it will be so for every choice of a base relation between Int and Bool, not
just for the one connecting even integers to True and odd ones to False. And what
is more, this condition is not only necessary, but also sufficient. Not only will every
truly polymorphic f preserve every relation between every pair of concrete types
chosen for instantiating α, but also conversely is this universal preservation enough
to establish that f is polymorphic in a truly uniform way. For any f that were
to “cheat” by behaving differently for one type or another, it would be possible to

50

Section 8.2: The Formal Background of Free Theorems

find some relation that is not preserved. It is this characterization on which Wadler
(1989) built his methodology of deriving free theorems. Of course, it is necessary to
make precise the idea of propagating relations from the base level to relations over
lists, over functions, and so on.

First, every quantification over type variables is replaced by quantification over
relation variables. For example, given the type signature f :: forall α. [α]→ [α] we
obtain ∀R. [R]→ [R]. Then, there is a systematic way of reading such expressions
over relations as relations themselves. In particular,

• base types like Int are read as identity relations,

• for relations R and S we have

R → S = {(f, g) | ∀(a, b) ∈ R. (f a, g b) ∈ S}
and

• for “type schemes” τ and τ ′ with at most one free variable, say α, and a func-
tion F on relations such that every relationR between concrete types τ1 and τ2,
denoted R ∈ Rel(τ1, τ2), is mapped to a relation F R ∈ Rel(τ [τ1/α], τ ′[τ2/α]),
we have

∀R. F R = {(u, v) | ∀τ1, τ2,R ∈ Rel(τ1, τ2). (uτ1 , vτ2) ∈ F R}
(Here, uτ1 is the instantiation of a value u of type forall α. τ at the type τ1,
and similarly for vτ2 . So far, we have always left type instantiation implicit,
and we will continue to do so in what follows, except for Chapter 10.)

Also, every type constructor is read as an appropriate construction on relations.
For example, the list type constructor maps every relation R ∈ Rel(τ1, τ2) to the
relation [R] ∈ Rel([τ1], [τ2]) defined by

[R] = {([], [])} ∪ {(a : as , b : bs) | (a, b) ∈ R, (as , bs) ∈ [R]}
and similarly for other algebraic data types.

Free theorems are now derived from the fact, proved once and then used over and
over again, that every value of a concrete type is related to itself by the relational
interpretation of that type. For the example f :: forall α. [α]→ [α] this means that
any such f satisfies (f, f) ∈ ∀R. [R] → [R], which by unfolding some of the above
definitions is equivalent to having for every τ1, τ2, R ∈ Rel(τ1, τ2), l :: [τ1], and
l′ :: [τ2] that (l, l′) ∈ [R] implies (f l, f l′) ∈ [R], or, specialized to the function level
(R 7→ h, and thus [R] 7→ map h), for every h :: τ1 → τ2 and l :: [τ1] that f (map h l) =
map h (f l). This finally provides the formal, and systematic, counterpart to the
intuitive reasoning seen earlier.

Of course, this all depends on the mentioned fact that every value is related to
itself by the relation built from its type. Reynolds proved it for the pure polymor-
phic lambda-calculus, but when extending the calculus towards a real programming
language this proof has to be revisited, adapted, extended, and in some cases even
largely redone.

51

Chapter 8: Free Theorems and Selective Strictness

8.3 Free Theorems in the Presence of seq

To take care of general recursion and thus potential nontermination, Wadler (1989,
Section 7) mandates that only strict relations should be allowed as interpretations
of types. That is, Rel(τ1, τ2) is not anymore taken to be the collection of all relations
between types τ1 and τ2, but only of those that contain the pair (⊥,⊥).1 By ensuring
that the required constructions on relations preserve strictness, in particular by
explicitly including the pair (⊥,⊥) in [R] ∈ Rel([τ1], [τ2]) and in the relational
interpretations of other algebraic data types, one gets a treatment of free theorems
that is sound again. In particular, one gets law (8.1) under the condition that h
is a strict function, precisely as argued on the intuitive level in the first half of
Section 8.1.

When additionally including seq, slightly more subtle issues need to be addressed.
First of all, the collection of relations available for interpreting types needs to be
further constrained. It is important to note that the restrictions getting imposed
on relations when considering additional language features are not the result of
arbitrary decisions. Rather, they directly have to do with the idea in the first part
of Section 8.2 that relations are used as kind of “invariants” that tie together two
instances of a polymorphic function. The more expressivity the language has at hand
without being bound to concrete types, such as ⊥ and seq, the fewer such invariants
we can expect to be preserved. Or, in other words, since free theorems stem from
considerations about what the language is not able to do in a polymorphic way,
exactly the right weakenings have to be found whenever a new primitive is added
that gives the language new possibilities of doing things polymorphically. The best
way to find out what restrictions become necessary is to derive a free theorem for
the new primitive, but according to the “old” relational framework.

Recall that the type of seq is forall α. forall β. α→ β → β. So we would expect
that (seq, seq) ∈ ∀R. ∀S. R → (S → S), and thus that for every R ∈ Rel(τ1, τ2),
S ∈ Rel(τ ′1, τ

′
2), (a1, a2) ∈ R, and (b1, b2) ∈ S, it holds that (seq a1 b1, seq a2 b2) ∈ S.

But just requiringR and S to be strict is not enough to guarantee this. In particular,
it is absolutely possible to choose a strict R with (⊥, a2) ∈ R for some a2 6= ⊥ and
a strict S with (b1, b2) ∈ S but (⊥, b2) /∈ S for some b1 and b2. Then (⊥, a2) ∈ R
and (b1, b2) ∈ S, but not (seq ⊥ b1, seq a2 b2) ∈ S. The problem apparently is
that imposing strictness on a relation only means that ⊥ must at least be related
to ⊥. It does not mean that ⊥ may not also be related to some non-⊥ values.
And this leads to the counterexample just mentioned. The appropriate restriction
that prevents this is to require that relations quantified over in the definition of
∀R. F R should not only be strict, but also bottom-reflecting. That is, Rel(τ1, τ2) is
not anymore taken to be the collection of all strict relations between types τ1 and τ2,
but only of those that are strict and in addition do not contain a pair (a1, a2) with

1Actually, relations must be strict and continuous (in the domain-theoretic sense). However,
we mainly focus on interpreting type variables not by general relations, but by relation graphs of
Haskell functions. These, and any relations constructed from them by propagation along the type
structure, will always be continuous, so we leave the continuity condition implicit in what follows.

52

Section 8.3: Free Theorems in the Presence of seq

either a1 = ⊥ and a2 6= ⊥ or a1 6= ⊥ and a2 = ⊥.
But this refinement is not yet enough to recover free theorems in the presence

of seq. Having adapted the choice of relations to quantify over in such a way that
(seq, seq) ∈ ∀R. ∀S. R → (S → S) holds, only means that we have ensured that
the new base case in the overall proof of “every value of a concrete type is related
to itself by the relational interpretation of that type” goes through. That proof is
by induction over typing derivations (with rules like those shown in Section 10.1),
and we need to recheck all the “old” induction cases as well. As it turns out, one
of them depends on the fact that any restriction we impose on relations, such as
strictness and bottom-reflectingness, should not only hold for the relations chosen in
the definition of ∀R. F R, but should also be preserved throughout the propagation
of relations along the type structure. And unfortunately, with the definition

R → S = {(f, g) | ∀(a, b) ∈ R. (f a, g b) ∈ S}
it is not the case that for every choice of strict and bottom-reflecting relations R and
S we get a strict and bottom-reflecting relation R → S. So this definition needs
to be adapted by explicitly enforcing bottom-reflectingness. That change to the
definition, in turn, affects another induction case. But in the end this “adaptation
cycle” can be completed, and we truly recover free theorems that are valid in the
presence of both ⊥ and seq. More details can be found in the original paper (Johann
and Voigtländer 2004).

One additional, and crucial, ingredient of our approach worth mentioning here is
that we perform a certain break of symmetry to obtain more liberal free theorems.
Note that all free theorems seen so far have been stating semantic equivalences.
When we moved to a richer language setting, more or less severe preconditions
became necessary to maintain those equivalences. For example,

f (map h l) = map h (f l)

as derived from f :: forall α. [α] → [α] could only be maintained for h that are
both strict and total, and we even saw how the equivalence fails for a certain f

and a certain h that is strict but not total. In that particular case failure showed
up by the left-hand side becoming less defined than the right-hand side, ⊥ vs. [].
Thus, a natural question is whether this is a general phenomenon. Can we somehow
“decompose” the above equivalence into

f (map h l) v map h (f l) (8.2)

and

f (map h l) w map h (f l)

for a suitable definedness order v in such a way that the inequational versions hold
under more liberal preconditions than required for the full equivalence? The answer
is yes. By introducing asymmetry into the relational interpretations of types we

53

Chapter 8: Free Theorems and Selective Strictness

obtain such a treatment. For example, we can then show that law (8.2) holds for
any f :: forall α. [α] → [α] potentially involving ⊥ and seq and any h that is
strict. Totality of h is not required for this direction of semantic approximation,
for this particular free theorem. The ability to study semantic inequations rather
than equations is also helpful in analyzing the impact of seq on short cut fusion and
related program transformations, as reported on in the next section.

8.4 The Impact on Program Transformations

In Section 3.2 we have encountered the following foldr/build-rule:

foldr c n (build g) = g c n (8.3)

and discussed how applying it from left to right can improve the efficiency of pro-
grams. The semantic correctness of this rule was attributed to the facts that the
type of build enforces g to be polymorphic, g :: forall β. (τ → β → β)→ β → β for
some concrete type τ , and that this means that g must be semantically equivalent
to a function, for some k ≥ 0 and a1, . . . , ak :: τ , of the following form:

g = λc n→

c

a1 c

a2 X

c

ak n

But the argument establishing the latter was based on the “naive” setting of Sec-
tion 3.1 (and Section 8.2), while now we know that in a more realistic programming
language things may change. And indeed, general recursion and selective strict-
ness provide new ways for g to behave while maintaining its polymorphic type. For
example, it can now take the form

g = λc n→

seq

c

a1 X

c

ai n

c

ai+1 X

c

ak n

or even

g = λc n→
seq

c n

54

Section 8.4: The Impact on Program Transformations

And for such g the semantic equivalence in rule (8.3) can break. Consider the first
one. For it, we have:

build g =

seq

:

a1 X

:

ai []

:

ai+1 X

:

ak []

=

:

ai+1 X

:

ak []

and thus:

foldr c n (build g) =

c

ai+1 X

c

ak n

while:

g c n =

seq

c

a1 X

c

ai n

c

ai+1 X

c

ak n

Clearly, it can happen that c a1 (· · · (c ai n) · · ·) is ⊥ while c ai+1 (· · · (c ak n) · · ·)
is not. In that case, the right-hand side of (8.3) becomes ⊥ while the left-hand side
is not. That such a decrease of definedness is possible when incautiously applying
foldr/build-fusion was first observed by Voigtländer (2002, Appendix B). A more
realistic failure scenario (than for rather artificial g as above) is discussed by Johann
and Voigtländer (2008, Section 6).

The main extension in the second paper on which this chapter is based (Johann
and Voigtländer 2006, Section 8), over the first one, is precisely an in-depth anal-
ysis of this impact of seq on the correctness of foldr/build-fusion and related
transformations. On the theoretical side, we identify conditions under which such
transformations remain fully correct and also investigate under which (weaker) con-
ditions at least “partial correctness” in the sense of semantic approximation can be
guaranteed.

For foldr/build-fusion we find that the semantic equivalence in (8.3) in general
only holds under the conditions that neither c ⊥ ⊥ nor n are ⊥, but that the
following inequational law holds without preconditions:

foldr c n (build g) w g c n (8.4)

55

Chapter 8: Free Theorems and Selective Strictness

For our transformation technique reported on in Chapter 6 we find that law (6.2)
becomes

vanish++ g w g [] (:) (++) (8.5)

and similarly for vanish-functions that deal with other operations than list concate-
nation. Note that the quality of “equivalence gets down-graded to approximation” is
of an opposite nature for our technique from Chapter 6 than it is for foldr/build-
fusion. That is, while (8.4) is intended to be used as a rewriting from left to right,
meaning that the program after transformation may be less defined than the one
before, the efficiency improvement direction in (8.5) is from right to left, so that
the worst thing which can happen2 is that the program becomes more defined when
applying our transformation. Finally, we consider a transformation that is dual (in
a category-theoretic sense) to foldr/build-fusion.

Takano and Meijer (1995) and later more pragmatically oriented Svenningsson
(2002) proposed to express list-producing and -consuming functions, respectively, in
terms of

unfoldr :: forall α. forall β. (β → Maybe (α, β))→ β → [α]
unfoldr f b = case f b of Nothing → []

Just (a, b′)→ a : (unfoldr f b′)

and

destroy :: forall α. forall γ. (forall β. (β → Maybe (α, β))→ β → γ)→ [α]→ γ
destroy h = h (λb→ case b of [] → Nothing

a : b′ → Just (a, b′))

Then the rule

destroy h (unfoldr f b) = h f b (8.6)

can be used to eliminate intermediate lists in some cases where foldr/build-fusion
is not effective. For example, it can handle zip as a fusion-friendly consumer of two
lists, provided the function is expressed as follows:

zip :: forall α. forall β. [α]→ [β]→ [(α, β)]
zip as bs = destroy (λp1 x1 → destroy (λp2 x2 → go p1 p2 x1 x2) bs) as

where go p1 p2 x1 x2 = case p1 x1 of
Nothing → []
Just (a, x′1)→ case p2 x2 of

Nothing → []
Just (b, x′2)→ (a, b) : (go p1 p2 x

′
1 x
′
2)

The semantic correctness of the destroy/unfoldr-rule is intended to follow from
a free theorem obtained for the polymorphic type of h. But we demonstrated that

2There are indeed examples where it does happen.

56

Section 8.4: The Impact on Program Transformations

even in the presence of just general recursion, without selective strictness, only an
inequational variant of (8.6) holds, replacing = by v, and that things get even more
complicated when selective strictness is also considered. Specifically, we find that
we then must impose the preconditions f 6= ⊥ and f ⊥ ∈ {⊥, Just ⊥} to obtain

destroy h (unfoldr f b) v h f b

while f being strict and total and never returning Just ⊥ is needed to obtain

destroy h (unfoldr f b) w h f b

Concrete counterexamples show that none of these preconditions (or of those in the
equational variant of (8.4)) can be dropped. Beside such theoretical investigations,
the extended paper also discusses pragmatic aspects of the semantically weakened
transformations. Natural questions are how to cope with transformation rules that
potentially increase or decrease definedness, whether a compiler can statically check
required preconditions, and how many of the typically encountered fusion instances
are actually affected by the presence of seq.

57

58

Chapter 9

New Developments in
Short Cut Fusion

This chapter is based on the following two papers:

• J. Voigtländer.
Proving Correctness via Free Theorems: The Case of the destroy/build-
Rule.
In R. Glück and O. de Moor, editors, Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, San Francisco, California, Proceed-
ings, pages 13–20. ACM Press, 2008.
(Voigtländer 2008a)

• J. Voigtländer.
Semantics and Pragmatics of New Shortcut Fusion Rules.
In J. Garrigue and M. Hermenegildo, editors, 9th International Symposium on
Functional and Logic Programming, Ise, Japan, Proceedings, volume 4989 of
LNCS, pages 163–179. Springer-Verlag, 2008.
(Voigtländer 2008c)

It describes our investigations into new (and variants of old) short cut fusion rules,
along with systematic proof construction.

9.1 The destroy/build-Rule

As seen in the previous chapter, program transformations based on free theorems are
prone to semantic defect when advanced language features enter the picture. And
even when restricted to a more naive language setting, the construction of complete
correctness proofs has sometimes been considered a kind of black art. Not only does
one have to derive an appropriate free theorem, but then one is typically left with
several degrees of freedom as to how to instantiate relations and (function) values
in the obtained statement. And only the right choice, plus a certain amount of
equational reasoning, will lead to a complete overall proof. Our position, though, is

59

Chapter 9: New Developments in Short Cut Fusion

that more mysteriousness has been attributed to this whole process than is justified
or necessary. To make this point, the first paper on which the current chapter is
based (Voigtländer 2008a) performs a case study on proving the correctness of an
until then unknown transformation rule.

In that case study, we purposefully deviate from the “by-hand-approach” that was
used in proving the results reported on in Section 8.4. Instead, we try to harness tool
support as much as possible and to perform the overall proof construction in a mostly
systematic manner. The ideal is that starting from an intuitive transformation idea
it should be possible to establish formal correctness, and to identify any necessary
preconditions, in a goal-driven fashion, that is, without too much foresight and
without too much additional invention being required on the way.

The new transformation rule considered is a rule that applies when a list-consumer
expressed in terms of destroy encounters a list-producer expressed in terms of
build. This is a situation that could not be handled previously, but that does occur
in practice, because neither of foldr/build- and destroy/unfoldr-fusion subsumes
the other in transformation power. In particular, while foldr can be written using
destroy, and unfoldr can be written using build, neither can every function ex-
pressible via build be (efficiently) expressed via unfoldr, nor can every function
expressible via destroy be expressed via foldr in a way that would benefit efficiency
(not even after fusion). As a consequence, if one wants to maximize potential profit
from both foldr/build- and destroy/unfoldr-fusion, one ends up with programs
mixing all four functions. And then it can happen that a list-consumer f1 which was
written with destroy in the hope that it may match up with an unfoldr-expressed
producer (and which indeed may do so at some other place in the overall program)
encounters, in some call instance, a list-producer f2 which was written with build in
the dual hope. The destroy/build-rule we propose, while not causing as aggressive
optimization as the foldr/build- and destroy/unfoldr-rules do by itself, at least
reduces the overhead originally introduced when expressing f1 and f2 via destroy

and unfoldr rather than in direct style.

By simply inlining the definitions of destroy and build, we see that for every
choice of concrete types τ and τ ′ and functions

g :: forall β. (τ → β → β)→ β → β

and

h :: forall β. (β → Maybe (τ, β))→ β → τ ′

the expression

destroy h (build g) (9.1)

is equivalent to

h (λb→ case b of [] → Nothing
a : b′ → Just (a, b′)) (g (:) [])

(9.2)

60

Section 9.1: The destroy/build-Rule

This shows that a standard list is created by g using the constructors : and [] and that
essentially an isomorphic copy of that list in terms of Just (,) and Nothing is built
when h traverses it using, repeatedly, its function argument (λb→ case b of · · ·).
Internally, h then works with those Just (,)- and Nothing-structures. To avoid the
“repackaging” of lists, an almost obvious optimization idea is to have g immediately
create lists in terms of Just (,) and Nothing instead. The function argument
supplied to h could then be trivial, not involving any pattern-matching. While the
supposed

h (λb→ b) (g (λa b→ Just (a, b)) Nothing)

is rejected due to an occurs check during type unification, the following variant
works:

newtype L α = L (Maybe (α, L α))

h (λ(L b)→ b) (g (λa b→ L (Just (a, b))) (L Nothing)) (9.3)

Due to the nature of newtype-definitions, no extra overhead is incurred. Even
though they do not look so, both L and (λ(L b) → b) are operationally identity
functions. We do not further discuss the pragmatics of transforming expression (9.1)
into expression (9.3), but instead focus on what this transformation means for the
semantics of a program. The question of interest is whether, and maybe under which
preconditions, (9.1) and (9.3) are equivalent, or maybe weaker, one approximates
the other.

The first step is to derive free theorems from the types of g and h given above.
Here they are, in the “equational setting” (no asymmetry introduced when inter-
preting types as relations), and already specialized to the function level:

∀τ1, τ2, f :: τ1 → τ2, f strict and total. ∀p :: τ → τ1 → τ1. ∀q :: τ → τ2 → τ2.
(((p 6= ⊥)⇔ (q 6= ⊥))
∧ (∀x :: τ. ((p x 6= ⊥)⇔ (q x 6= ⊥)) ∧ (∀y :: τ1. f (p x y) = q x (f y))))
⇒ (∀z :: τ1. f (g p z) = g q (f z))

and

∀τ1, τ2, f :: τ1 → τ2, f strict and total.
∀p :: τ1 → Maybe (τ, τ1). ∀q :: τ2 → Maybe (τ, τ2).

(((p 6= ⊥)⇔ (q 6= ⊥)) ∧ (∀x :: τ1. (p x, q (f x)) ∈ liftMaybe(lift (,)(id, f))))
⇒ (∀y :: τ1. h p y = h q (f y))

where

liftMaybe(lift (,)(id, f)) = {(⊥,⊥), (Nothing,Nothing)}
∪ {(Just x1, Just y1) | (x1, y1) ∈ lift (,)(id, f)}

lift (,)(id, f) = {(⊥,⊥)}
∪ {((x1, x2), (y1, y2)) | (x1 = y1) ∧ (f x2 = y2)}

It should be emphasized that no manual derivation effort is required for obtaining
these two statements. In fact, the “Export as PDF” facility of the online free

61

Chapter 9: New Developments in Short Cut Fusion

theorems generator accessible at http://linux.tcs.inf.tu-dresden.de/~voigt/
ft produces almost exactly the above as output, up to only minor differences in
typesetting.

The conditions imposed on f and the conditions relating to ⊥ are precisely the
kinds of technical details that need to be taken into account when wanting to prove
correctness results that also hold in the presence of general recursion and seq, i.e.,
results that are meaningful for Haskell, rather than just for the pure polymorphic
lambda-calculus. Here, following the foundational work reported on in Section 8.3,
they are automatically generated by the tool we use, and we only need to properly
keep track of (and hopefully do away with) them in the remainder of the proof.

To proceed with the proof, we can let ourselves be guided by the form of the
overall correctness statement that we are interested in. For example, the desired
equivalence of (9.1), or rather (9.2), on the one hand and (9.3) on the other, matches
nicely with the conclusion h p y = h q (f y) of the second of the two free theorems
obtained above. Starting from this observation, and with some finite proof branch-
ing where required instantiations are not immediately obvious, we can step by step
develop a successful proof. By simply following the directions and necessities en-
countered on the way, pieces fall into place and eventually even a concrete definition
for f (in both free theorems above) is essentially forced on us. There is no need to
pull any rabbits out of a hat. In the end, some easy checks suffice to establish that

destroy h (build g) = h (λ(L b)→ b) (g (λa b→ L (Just (a, b))) (L Nothing))

holds as a semantic equivalence. In particular, no preconditions relating to⊥ remain,
because all expressions mandated to be non-⊥ in the two free theorems above happen
to become explicit λ-abstractions.

The first paper reported on here (Voigtländer 2008a) exercises this whole process
through, almost tutorial style, for the particular case of the destroy/build-rule.
And, quite pleasingly, the presented way of reasoning rigorously about program
transformations based on free theorems, while not ignoring advanced language fea-
tures, scales to other transformation rules as well. Specifically, it was also employed
in the exploratory study performed in the second paper on which the current chapter
is based (Voigtländer 2008c), reported on in the next three sections.

9.2 Circular Short Cut Fusion

We already mentioned at the end of Section 3.2 that foldr/build-fusion was just a
beginning for ever new related transformation rules to be developed. In one strand
of development, Fernandes et al. (2007) started an investigation into how to deal
with situations in which a list-producer needs to pass additional context information
to the consumer.

Consider, for example, the following variation of the function filter from page 12
that in addition to selecting those elements from the input list which fulfill the input

62

http://linux.tcs.inf.tu-dresden.de/~voigt/ft
http://linux.tcs.inf.tu-dresden.de/~voigt/ft

Section 9.2: Circular Short Cut Fusion

predicate also outputs their number:

filterAndCount :: forall α. (α→ Bool)→ [α]→ ([α], Int)
filterAndCount p [] = ([], 0)
filterAndCount p (a : as) = if p a then let (as ′, l) = filterAndCount p as

in (a : as ′, l + 1)
else filterAndCount p as

This additional information could be used in a function that, for the special case
that the list elements are floating-point numbers, consumes such an output pair and
normalizes list elements through division by the provided length:

normalize :: ([Float], Int)→ [Float]
normalize (as , l) = foldr (λa r → (a / (fromIntegral l)) : r) [] as

The functions in terms of which Fernandes et al. (2007) propose to define such
producers and consumers are as follows:

buildp :: forall α. forall γ. forall δ. (forall β. (α→ β → β)→ β → γ → (β, δ))
→ γ → ([α], δ)

buildp g u = g (:) [] u

pfold :: forall α. forall β. forall δ. (α→ β → δ → β)→ (δ → β)→ ([α], δ)→ β
pfold h1 h2 (as , z) = foldr (λa r → h1 a r z) (h2 z) as

Note that the function argument g of buildp takes, beside abstract list constructors,
an additional input parameter. That parameter may be used to guide both the con-
struction of the output list and the production of the additional context information
to be passed to the consumer.

To facilitate fusion, the above examples can be expressed in terms of buildp and
pfold as follows:

filterAndCount :: forall α. (α→ Bool)→ [α]→ ([α], Int)
filterAndCount p = buildp g

where g c n [] = (n, 0)
g c n (a : as) = if p a then let (as ′, l) = g c n as

in (c a as ′, l + 1)
else g c n as

normalize :: ([Float], Int)→ [Float]
normalize = pfold (λa r l→ (a / (fromIntegral l)) : r) (λl→ [])

Finally, Fernandes et al. (2007) provide the following semantic equivalence, in-
tended to be used as a fusion rule from left to right:

pfold h1 h2 (buildp g u) = let b = g (λa r → h1 a r z) (h2 z) u
z = snd b

in fst b
(9.4)

63

Chapter 9: New Developments in Short Cut Fusion

Note the circular dependency between b and z in the right-hand side, preventing use
of the rule in an eagerly evaluated language. That it is correct in Haskell, at least
in a naive setting, can be explained as follows.

Let g :: forall β. (τ1 → β → β) → β → τ2 → (β, τ3) for concrete types τ1,
τ2, and τ3. Intuitively, all that g can do, given arguments c, n, and u, is to return
a pair of which the first component is c a1 (· · · (c ak n) · · ·) for some k ≥ 0 and
a1, . . . , ak :: τ1 and of which the second component is some d :: τ3, where all of k,
a1, . . . , ak, and d may depend on, and only on, the provided u :: τ2. For example, it
is not possible that d depends on n, because the type of n is unknown inside g, and
so g is very limited in what it can do with n. In graphical form:

g = λc n u→

,

c

a1 X

c

ak n

d

where the shading indicates which output parts can depend on which input.
Now let us have a look at the left- and right-hand sides of the pfold/buildp-rule

for a fixed such g and fixed h1, h2, and u. On the left, pfold h1 h2 (buildp g u)
unfolds to case g (:) [] u of (as , z)→ foldr (λa r → h1 a r z) (h2 z) as , and thus to:

h1

a1 h1

a2 X

h1

ak h2

d

And on the right, the circular bindings in the let-block lead to a cyclic structure:

fst

,

h1

a1 X

h1

ak h2

d

snd

with the arrow at the top indicating where evaluation is to be started.

64

Section 9.2: Circular Short Cut Fusion

Looking at the two graphs just shown, it becomes clear why the left- and right-
hand sides of (9.4) are equivalent, and also why the circular dependency in the
right-hand side is not harmful. However, the explanation just given depends on a
simplified view on g, in particular on the assumption that g makes no use of seq.
So what if, instead, g had a form like the following one:

g = λc n u→
seq

n ,

n u

assuming τ2 = τ3? Then by comparing the left- and right-hand sides of (9.4) we get:

h2

u
vs.

fst

seq

h2
,

u

snd

Clearly, the right-hand side will fail to terminate if h2 is strict, because then the
cycle through seq, h2, and snd is truly vicious. But the left-hand side may very well
terminate even for strict h2, given that h2 u 6= ⊥ is very well possible even then.
This shows that (9.4) is not anymore a semantic equivalence in the presence of seq.

To avoid the above problem, we can demand that h2 ⊥ 6= ⊥. Additionally, a
similar restriction needs to be imposed on h1 as well. Then, the paper reported on
here (Voigtländer 2008c) proves that (9.4) is indeed a semantic equivalence provided
h1 ⊥ ⊥ ⊥ 6= ⊥ and h2 ⊥ 6= ⊥. In addition to this full correctness result for a more
realistic language setting than considered by Fernandes et al. (2007), we also proved
that even in the presence of general recursion and selective strictness the partial
correctness result

pfold h1 h2 (buildp g u) w let b = g (λa r → h1 a r z) (h2 z) u
z = snd b

in fst b

holds, without any preconditions. In doing so, the proof development approach de-
scribed in Section 9.1 was very useful, in particular that the employed free theorems
generator is able to automatically derive inequational free theorems as well.

Following this careful semantic account of circular pfold/buildp-fusion, an al-
ternative rule is invented that trades circularity for higher-orderedness and thus
attains better semantic properties, as well as becoming usable again, in principle at
least, in an eagerly evaluated language.

65

Chapter 9: New Developments in Short Cut Fusion

9.3 Higher-Order Short Cut Fusion

The idea to replace circular definitions by higher-order ones is a classical one. For
example, Pettorossi and Proietti (1987) describe it using the terminology of import
and export of information. When applying it to pfold/buildp-fusion, we clearly
want to preserve the advantages of the circular rule such as elimination of the inter-
mediate list and effective handling of the additional result produced by buildp and
used by pfold. It turns out that this is indeed possible, as follows:

pfold h1 h2 (buildp g u) = let b = g (λa r z → h1 a (r z) z) (λz → h2 z) u
in (fst b) (snd b)

Note that there is no circular dependency in the right-hand side, and that the rule
is higher-order in the sense that the first component of the tuple computed in b will
be a function of type τ3 → τ for whatever type τ the corresponding component of b
in (9.4) has.

For examples of the new rule in action we refer the reader to the full paper
(Voigtländer 2008c). Here we only mention that, crucially, we have proved that
even in the presence of general recursion and selective strictness the above seman-
tic equivalence holds unconditionally. Moreover, the full paper weighs the circular
and higher-order flavors of pfold/buildp-fusion against each other as regards their
sharing behavior. It turns out that the circular version fares better here. In the pres-
ence of the so-called full laziness transformation (Peyton Jones and Lester 1991) it
can avoid certain recomputations that may surface when applying the higher-order
version. A “repair” for the higher-order fusion rule is given as well, but in order to
be effective requires slight adaptations to either or both of the functions pfold and
buildp.

Finally, we note that Pardo et al. (2009) have recently taken our higher-order
pfold/buildp-rule and generalized it to other algebraic data types than lists, as well
as transferred it (and circular short cut fusion) to a setting of programs involving
monads.

9.4 foldr/build and destroy/unfoldr, Revisited

The experiences made with the higher-order pfold/buildp-rule, in particular that
it holds unconditionally as a semantic equivalence even when seq is present, have
led us to revisit the veteran foldr/build- and destroy/unfoldr-rules discussed in
Sections 3.2 and 8.4. And indeed, the realization that the good semantic properties
of the higher-order rule stem from the fact that the “extra” λ-abstractions over z
prevent g from encountering a ⊥-value when combining its arguments, even though
h1 and/or h2 might very well contain or produce such values, motivates a higher-
order variation of the foldr/build-rule which can be proved fully correct without
preconditions.

66

Section 9.4: foldr/build and destroy/unfoldr, Revisited

In an attempt to make the resulting rule also pragmatically effective, rather
than just semantically correct, we “defunctionalize” it by performing an indirec-
tion via an extra, and almost trivial, data type instead of via the protective λ-
abstractions. Whether this will ultimately lead to a practical and robust fusion
framework is still unclear and depends on continued effort to be invested in more
low-level compiler optimizations (Peyton Jones 2007). For a corresponding variant
of the destroy/unfoldr-rule initial experiments seem quite promising. For more
details, we again refer the reader to the full paper (Voigtländer 2008c).

67

68

Chapter 10

Moving to Operational Semantics

This chapter is based on the following two papers:

• J. Voigtländer and P. Johann.
Selective strictness and parametricity in structural operational semantics, in-
equationally.
Theoretical Computer Science, volume 388(1–3), pages 290–318. Elsevier,
2007.
(Voigtländer and Johann 2007)

• P. Johann and J. Voigtländer.
A Family of Syntactic Logical Relations for the Semantics of Haskell-like Lan-
guages.
Information and Computation, Special Issue “Structural Operational Seman-
tics”, guest editors: R. van Glabbeek and P.D. Mosses. Elsevier, 2008.
(Johann and Voigtländer 2008)

It gives a very high-level overview of our work on putting free theorems for Haskell
on a firm theoretical basis. We do not go into formal detail here, instead letting the
papers speak for themselves in this regard.

10.1 A Core Calculus for Haskell

In Section 8.3 we have reported on our study of free theorems for a language set-
ting including general recursion and selective strictness, and thus for more realistic
situations than were considered previously. That work was performed by using a
denotational semantics framework (Schmidt 1986), which seemed appropriate as it
allowed a rather intuitive approach to the problems at hand. However, one issue
with this is that there is not really a “standard denotational model for Haskell”
anywhere in the literature. Even the language specification (Peyton Jones 2003) is
remarkably silent on how the mathematical meaning of a given program is to be
determined. On the other hand, one could say that there is a mostly agreed upon

69

Chapter 10: Moving to Operational Semantics

operational model for Haskell somewhat hidden inside the language implementa-
tions. Hence, in follow-on work we have studied the theoretical foundations of free
theorems in an operational semantics framework. Specifically, we have dealt with an
extension of the pure polymorphic lambda-calculus that resembles the intermediate
language Core used inside the Glasgow Haskell Compiler.

We do not model full Core, but even so we get closer to results that we can with
a high degree of confidence claim to apply to real Haskell. For example, in favor of
an intuitive exposition, Johann and Voigtländer (2004, 2006) did not even formally
describe the exact sublanguage of Haskell, with syntax and static and dynamic se-
mantics, for which free theorems were developed. Rather, that line of work relied
on a “commonly accepted, informal” understanding as actually used in much of the
literature concerning the reasoning about Haskell programs. Also, type abstraction
and type instantiation were left implicit, i.e., were not reflected in the syntax of
expressions. This agrees with surface Haskell, but loses important structural infor-
mation that needs to be used in the inductive proof of “every value (actually, every
expression) of a concrete type is related to itself by the relational interpretation of
that type”. And finally, there were also some fundamental theoretical aspects that
we could not fully satisfactorily address in the denotational setting.

The lambda-calculus studied in the first paper this chapter reports on (Voigtländer
and Johann 2007) is given by the following typing axioms and rules, from which also
the syntax of expressions and types can be read off:1

Γ, x :: τ ` x :: τ

Γ, x :: τ `M :: τ ′

Γ ` (λx :: τ.M) :: τ → τ ′
Γ ` F :: τ → τ ′ Γ ` A :: τ

Γ ` F A :: τ ′

α,Γ `M :: τ

Γ ` (Λα.M) :: ∀α.τ
Γ ` G :: ∀α.τ

Γ ` Gτ ′ :: τ [τ ′/α]

Γ ` nilτ :: τ -list Γ ` H :: τ Γ ` T :: τ -list
Γ ` (H : T) :: τ -list

Γ ` L :: τ -list Γ `M1 :: τ ′ Γ, h :: τ, t :: τ -list `M2 :: τ ′

Γ ` case L of {nil⇒M1; h : t⇒M2} :: τ ′

Γ ` F :: τ → τ
Γ ` fix(F) :: τ

Γ ` A :: τ Γ ` B :: τ ′

Γ ` seq(A,B) :: τ ′

Note that type abstraction and instantiation are now explicit in the syntax of ex-
pressions as Λα.M and Gτ ′ , respectively, and that general recursion is captured via
an explicit fixpoint primitive. As a sole, but representative, algebraic data type we
include lists. Now, for example, the function map can be defined as the following
expression M and then satisfies ∅ `M :: τ , where ∅ is the empty typing environment

1Throughout, Γ is a typing environment of the form α1, . . . , αn, x1 :: τ1, . . . , xm :: τm.

70

Section 10.2: A Small-Step Operational Semantics

and τ = ∀α.∀β.(α→ β)→ α-list → β-list :

fix(λm :: τ.Λα.Λβ.λh :: α→ β.λl :: α-list .case l of {nil ⇒ nilβ;
a : as ⇒ (h a) : (mαβ h as)})

10.2 A Small-Step Operational Semantics

We provide a simple stack-based abstract machine for our calculus. First, a subset
of the set of all (well-typed) expressions is identified as values by the following
grammar:

V ::= λx :: τ.M | Λα.M | nilτ | M : M

Then, redex/reduct-pairs are defined as follows:

(λx :: τ.M) A M [A/x]
(Λα.M)τ M [τ/α]

case nilτ of {nil⇒M1; h : t⇒M2} M1

case H : T of {nil⇒M1; h : t⇒M2} M2[H/h, T/t]
fix(F) F fix(F)

seq(A,B) B if A is a value

We also need a notion of reduction in context, so a grammar for stacks of evaluation
frames is given as follows:

S ::= Id | S ◦ E
E ::= (− M) | −τ | (case − of {nil⇒M ; x : x⇒M}) | seq(−,M)

and the small-step transition relation is then defined by:

(S,E{M})� (S ◦ E,M) if M is not a value
(S ◦ E,M)� (S,E{M}) if M is a value

(S,M)� (S,M ′) if M M ′

where the notation E{M} stands for the result of replacing ‘−’ by the expression M
in the evaluation frame E. Intuitively, the first two transition rules navigate an
expression to detect the next redex to be reduced, while the third rule performs a
small-step reduction in a given evaluation context. Note that � is deterministic,
but not terminating (due to fix). An expression is said to evaluate to a value,
denoted M ⇓ V , if (Id ,M) �∗ (Id , V) for the empty stack Id and the reflexive,
transitive closure�∗ of�. If for a given expression M there exists such a value V ,
then M is said to converge, M⇓, otherwise to diverge, M⇑.

Two expressions are considered to be semantically equivalent if and only if they
lead to the same overall observable behavior, convergence or divergence, whenever
putting them in some larger, and arbitrary, program context. The aim of the work
reported on in this chapter was to precisely characterize this notion of semantic
equivalence, and/or a corresponding notion of semantic approximation, at a given

71

Chapter 10: Moving to Operational Semantics

type by an inductively generated relational interpretation of that type à la Sec-
tion 8.2. The desired “every expression is related to itself by the relational interpre-
tation of its type” is simply a special case of this, given that semantic equivalence
and semantic approximation are reflexive notions by nature.

10.3 Characterization Results and Extensions

The technical approach we used is very close to the one that was pioneered by
Pitts (2000, 2005) for dealing with general recursion in either purely strict or purely
nonstrict calculi, but without taking selective strictness into account. Indeed, in a
precursor work (Voigtländer and Johann 2006) to that reported on here we showed
how to extend Pitts’ results to selective strictness à la seq, i.e., to the calculus
and semantics just presented in the previous two sections. Of course, this crucially
depended on the insights regarding seq and necessary adaptations to the process
of interpreting types as relations reported on in Section 8.3. We transferred the
modifications found to work in the denotational setting to the operational setting
and established their proper interaction with Pitts’ machinery, as well as formal
properties specific to selective strictness. This led to a “seq-aware” version of Pitts’
characterization result for semantic equivalence.

In the journal version (Voigtländer and Johann 2007) we then make the step to
an “inequational” setting by performing the break of symmetry also mentioned in
Section 8.3. This focus on semantic approximation, rather than equivalence, again
allows a finer-grained analysis of computational behavior than a fully symmetric
treatment does. As one example application we put those results from Section 8.4
relating to foldr/build-fusion on a firmer theoretical basis than available before.

In a certain sense, the results reported on in this chapter so far really only
reconfirm what we already learned in the less completely formalized earlier studies.
No radical revision of our perspective on free theorems for Haskell became necessary,
and while the full proofs do contain some interesting technical details, they are also
long and sometimes tedious. But still, that was effort well spent. By showing that
our initial intuitive approach can indeed be embellished into a fully formal account,
the former attains justification. So we, and others, can safely continue to use it in
applications such as those presented in earlier chapters.

Also, we expanded on the operational semantics treatment to push yet closer
to Haskell reality. One deviation of the calculus shown in Section 10.1 from the
Glasgow Haskell Compiler’s Core language is that it provides no sharing construct.
Thus, when expressing the function foldl′ from page 49 we have to write it as:

fix(λg :: ∀α.∀β.(β → α→ β)→ β → α-list → β.
Λα.Λβ.λf :: β → α→ β.λb :: β.λl :: α-list .

case l of {nil⇒ b; a : as ⇒ seq(f b a, gαβ f (f b a) as)})

Note the duplication of the subexpression f b a. To avoid this, we have in later

72

Section 10.3: Characterization Results and Extensions

work replaced
Γ ` A :: τ Γ ` B :: τ ′

Γ ` seq(A,B) :: τ ′

by
Γ ` A :: τ Γ, x :: τ ` B :: τ ′

Γ ` let! x = A in B :: τ ′

Thus, we can express foldl′ more naturally as follows:

fix(λg :: ∀α.∀β.(β → α→ β)→ β → α-list → β.
Λα.Λβ.λf :: β → α→ β.λb :: β.λl :: α-list .

case l of {nil⇒ b; a : as ⇒ let! b′ = f b a in gαβ f b
′ as})

More fundamentally, though, the second paper this chapter reports on (Johann and
Voigtländer 2008) introduces a Haskell-like error primitive with typing axiom

Γ ` errorτ (i) :: τ

where the number i represents a descriptive argument. The motivation is to appro-
priately distinguish different causes of program failure, e.g., divergence versus failed
pattern-matching versus arithmetic errors, because such distinctions are significant
in practice. In denotational terms, we do not want to conflate all possible erroneous
behaviors into a single ⊥.

In the operational semantics we then have additional possible behaviors beside
M⇓ and M⇑, namely M i if there is a transition sequence from M in the con-
text of the empty stack to an error(i)-call in the context of an arbitrary stack.
Actually, in an orthogonal drive towards implementation reality, the transition re-
lation itself is also changed to now work over untyped expressions. To this end, a
type-erasure transformation is defined that drops the type annotations in the bind-
ing occurrences of variables in λ-abstractions, eliminates all type abstractions and
instantiations, omits the type subscripts of nil and error, and leaves the input ex-
pression otherwise unchanged. The stack-based abstract machine is correspondingly
changed, in particular by dropping the value form Λα.M , the evaluation frame form
−τ , and the redex/reduct-pair definition describing the interaction of those two.
Moreover, the evaluation frame form seq(−,M) is replaced by let! x = − in M and
seq(A,B) B by let! x = A in B B[A/x], still only for A being a value.

The switch to a type-erasing semantics is important to more faithfully model ac-
tual implementations, in particular that type abstraction and instantiation carry no
computational content. It also rectifies a mismatch between the original denotational
treatment of Johann and Voigtländer (2004) and the first operational treatment of
Voigtländer and Johann (2007) as pertains the relational interpretation of ∀-types.
On the technical side, the interaction between the low-level semantics definition on
untyped expressions and the intended reasoning on a higher, typed level poses an
interesting challenge.

One final aspect of the theory developed in the second paper (Johann and
Voigtländer 2008) we want to report on here is that it is built around a very ab-
stract notion of relating the observable behavior of computations. Clearly, once

73

Chapter 10: Moving to Operational Semantics

we semantically distinguish different failure causes, their relative definedness needs
to be considered. Many potential choices arise here, such as considering nontermi-
nating programs as strictly less defined than programs that terminate via error,
considering these situations incomparable, or adding even more structure, among
different kinds of explicit errors or with respect to relating such finite failures and
normally terminating programs. In order not to predetermine such design decisions,
which may very well depend on the usage scenario for free theorems and program
transformations based on them, we parametrize our whole development by a pre-
order embodying the various possible choices. A further advantage of this abstract
approach is that we can deal with semantic equivalence and (either direction of)
semantic approximation in a unified manner.

When, for example, investigating the correctness of foldr/build-fusion, we do
not anymore need to prove two separate results for when the transformed program
is at least as (v) or at most as (w) defined as the original one. Instead, a single
proof parametrized by an abstract preorder suffices. Concrete results for semantic
equivalence and different directions of semantic approximation, and for different
concepts of relating failure causes, can then be read off by just instantiating this
parameter in different ways. This high reuse potential is capitalized on in a concrete
case study (Johann and Voigtländer 2008, Section 6).

74

Chapter 11

Conclusion

The story of type-based thinking and reasoning about programs is only at its begin-
ning. We expect to see it having a big impact also on practical software construction
in the coming years. One possible scenario is that ideas and features first developed
and studied in the context of perceivedly mere academic languages and type systems
continue to slowly trickle into the mainstream, as has happened with the inclusion
of parametric polymorphism into Java and C#, and of first-class functions (i.e.,
λ-abstractions) into the latter. Scala (Odersky 2006) is an experiment into how a
resulting hybrid object-oriented/functional language with strong ties to type theory
research may look like. Another possible scenario is a more radical paradigm shift.
Microsoft’s LINQ project, which directly builds on Haskell work, demonstrates that
this is not as absurd a prospect as it may seem (Meijer 2008).

More generally, formal methods are definitely gaining tract in software engi-
neering. Extended static checking (Flanagan et al. 2002), contract-oriented design
(Meyer 1992, Barnett et al. 2006), and interactive proof of the adherence of programs
to logical specifications (Guttag et al. 1993) or refinement of such specifications into
programs (Abrial 1996), all are approaches to improve the quality of software, with
increasing degrees of ambition regarding the extent of provided guarantees. In a
suitably controlled setting they could certainly profit from techniques like free the-
orems. For side-effect-free code parts that essentially correspond to pure functions,
say, statements derived from sufficiently expressive types could be used to auto-
matically discharge proof obligations, or auxiliary lemmas could be generated for
potential use in interactive proofs.

And Haskell does not even represent the upper end of the expressiveness spec-
trum of type systems. Currently, one could say that the object-oriented research
community looks towards Haskell when seeking a yardstick of how strong types could
be (Wadler 2006, Dominus 2008). But there is more to discover beyond Haskell. For
example, dependent types in languages like Coq (Bertot and Castéran 2004), Epi-
gram (McKinna 2006), and Agda (Norell 2007) capture semantically richer proper-
ties of functions, and could thus lead to new heights in expressiveness for applications
in the spirit of free theorems.

75

Chapter 11: Conclusion

Less speculatively, there are still a number of interesting directions to pursue
that are more bound to the particular niche of type-based reasoning in which we
have been working as reported in this thesis. For example, the applications from
Chapters 4 and 5 could be further developed, and similar applications outside the
core area of programming language research be identified. On the theory side,
there are still features of Haskell that are not fully taken care of in current formal
accounts. For example, the interplay between free theorems and type classes, as
used for some of the results in Chapter 5 and (even for type constructor classes)
in Section 6.4 and Chapter 7, has been described by Wadler (1989, Section 3.4)
in principle, but has never really been formalized. Also, the semantic treatment
of finite failure reported on in Section 10.3 still differs from the reality in Haskell
implementations which actually come with a certain degree of nondeterminism in
error handling (Peyton Jones et al. 1999). In recent work (Stenger and Voigtländer
2008) we are approaching this issue. We would also like to investigate whether it
is possible to develop a theory of free theorems that provides statements not only
about semantic equivalences or approximations, but also about more intensional
aspects such as the relative efficiency of two expressions. For this, we expect to
benefit from machinery developed in the context of “improvement theories” (Sands
1996, Moran and Sands 1999, Gustavsson and Sands 2001).

We should also mention that despite our stance on the importance of reconciling
free theorems with the reality of Haskell and its advanced features, some of our ap-
plications have been examined only in the “naive language setting” so far. Notably,
the results reported on in Chapters 4, 5, and 7 currently ignore the presence of seq.
But transferring them to a more accurate model of Haskell should now be more or
less routine tasks. More tool support would certainly be welcome. As a possible
implementation strategy for such further mechanization effort we intend to look at
that employed by Silva and Oliveira (2008).

76

Bibliography

J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM Trans-
actions on Database Systems, 6(4):557–575, 1981. DOI: 10.1145/319628.319634.

M. Barnett, B.-Y.E. Chang, R. DeLine, B. Jacobs, and K.R.M. Leino. Boogie: A
modular reusable verifier for object-oriented programs. In Formal Methods for
Components and Objects 2005, Revised Lectures, volume 4111 of LNCS, pages
364–387. Springer-Verlag, 2006. DOI: 10.1007/11804192 17.

Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development
— Coq’Art: The Calculus of Inductive Constructions. Springer-Verlag, 2004.

G.E. Blelloch. Prefix sums and their applications. In J.H. Reif, editor, Synthesis of
Parallel Algorithms, pages 35–60. Morgan Kaufmann, 1993.

S. Böhme. Much ado about two. Formal proof development. In G. Klein, T. Nipkow,
and L. Paulson, editors, The Archive of Formal Proofs. http://afp.sf.net/

entries/MuchAdoAboutTwo.shtml, 2007.

R.P. Brent and H.T. Kung. The chip complexity of binary arithmetic. In ACM
Symposium on Theory of Computing, Proceedings, pages 190–200. ACM Press,
1980. DOI: 10.1145/800141.804666.

L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymor-
phism. ACM Computing Surveys, 17(4):471–522, 1985. DOI: 10.1145/6041.6042.

O. Chitil. Type inference builds a short cut to deforestation. In International
Conference on Functional Programming, Proceedings, volume 34(9) of SIGPLAN
Notices, pages 249–260. ACM Press, 1999. DOI: 10.1145/317636.317907.

D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion: From lists to streams
to nothing at all. In International Conference on Functional Programming, Pro-
ceedings, volume 42(9) of SIGPLAN Notices, pages 315–326. ACM Press, 2007.
DOI: 10.1145/1291151.1291199.

77

http://dx.doi.org/10.1145/319628.319634
http://dx.doi.org/10.1007/11804192_17
http://afp.sf.net/entries/MuchAdoAboutTwo.shtml
http://afp.sf.net/entries/MuchAdoAboutTwo.shtml
http://dx.doi.org/10.1145/800141.804666
http://dx.doi.org/10.1145/6041.6042
http://dx.doi.org/10.1145/317636.317907
http://dx.doi.org/10.1145/1291151.1291199

Bibliography

M.J. Dominus. Atypical types (Invited talk). At Object-Oriented Programming,
Systems, Languages, and Applications, 2008.

J.P. Fernandes, A. Pardo, and J. Saraiva. A shortcut fusion rule for circular program
calculation. In Haskell Workshop, Proceedings, pages 95–106. ACM Press, 2007.
DOI: 10.1145/1291201.1291216.

C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, and R. Stata.
Extended static checking for Java. In Programming Language Design and Imple-
mentation, Proceedings, volume 37(5) of SIGPLAN Notices, pages 234–245. ACM
Press, 2002. DOI: 10.1145/543552.512558.

J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A. Schmitt. Combinators
for bidirectional tree transformations: A linguistic approach to the view-update
problem. ACM Transactions on Programming Languages and Systems, 29(3):17,
2007. DOI: 10.1145/1232420.1232424.

N. Ghani and P. Johann. Short cut fusion of recursive programs with computational
effects. In Trends in Functional Programming, Draft Proceedings, 2008.

A. Gill, J. Launchbury, and S.L. Peyton Jones. A short cut to deforestation. In Func-
tional Programming Languages and Computer Architecture, Proceedings, pages
223–232. ACM Press, 1993. DOI: 10.1145/165180.165214.

T. Golding. Professional .NET 2.0 Generics. Wrox, 2005.

J. Gustavsson and D. Sands. Possibilities and limitations of call-by-need space
improvement. In International Conference on Functional Programming, Proceed-
ings, volume 36(10) of SIGPLAN Notices, pages 265–276. ACM Press, 2001. DOI:
10.1145/507546.507667.

J.V. Guttag, J.J. Horning, S.J. Garland, K.D. Jones, A. Modet, and J.M. Wing.
Larch: Languages and Tools for Formal Specification. Springer-Verlag, 1993.

P. Hudak, R.J.M. Hughes, S.L. Peyton Jones, and P. Wadler. A history of Haskell:
Being lazy with class. In History of Programming Languages, Proceedings, pages
12-1–12-55. ACM Press, 2007. DOI: 10.1145/1238844.1238856.

R.J.M. Hughes. A novel representation of lists and its application to the function “re-
verse”. Information Processing Letters, 22(3):141–144, 1986. DOI: 10.1016/0020-
0190(86)90059-1.

G. Hutton. Programming in Haskell. Cambridge University Press, 2007.

P. Johann. A generalization of short-cut fusion and its correctness proof.
Higher-Order and Symbolic Computation, 15(4):273–300, 2002. DOI:
10.1023/A:1022982420888.

78

http://dx.doi.org/10.1145/1291201.1291216
http://dx.doi.org/10.1145/543552.512558
http://dx.doi.org/10.1145/1232420.1232424
http://dx.doi.org/10.1145/165180.165214
http://doi.acm.org/10.1145/507546.507667
http://doi.acm.org/10.1145/507546.507667
http://dx.doi.org/10.1145/1238844.1238856
http://dx.doi.org/10.1016/0020-0190(86)90059-1
http://dx.doi.org/10.1016/0020-0190(86)90059-1
http://dx.doi.org/10.1023/A:1022982420888
http://dx.doi.org/10.1023/A:1022982420888

Bibliography

P. Johann and J. Voigtländer. Free Theorems in the Presence of seq. In Principles of
Programming Languages, Proceedings, volume 39(1) of SIGPLAN Notices, pages
99–110. ACM Press, 2004. DOI: 10.1145/982962.964010.

P. Johann and J. Voigtländer. The Impact of seq on Free Theorems-Based Program
Transformations. Fundamenta Informaticae, 69(1–2):63–102, 2006.

P. Johann and J. Voigtländer. A Family of Syntactic Logical Relations for the
Semantics of Haskell-like Languages. Information and Computation, 2008. DOI:
10.1016/j.ic.2007.11.009.

M.P. Jones. Functional programming with overloading and higher-order polymor-
phism. In Advanced Functional Programming, Tutorial Text, volume 925 of LNCS,
pages 97–136. Springer-Verlag, 1995a.

M.P. Jones. A system of constructor classes: Overloading and implicit higher-order
polymorphism. Journal of Functional Programming, 5(1):1–35, 1995b.

D.E. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching.
Addison-Wesley, 1973.

R.E. Ladner and M.J. Fischer. Parallel prefix computation. Journal of the ACM,
27(4):831–838, 1980. DOI: 10.1145/322217.322232.

J. Launchbury and S.L. Peyton Jones. State in Haskell. Lisp and Symbolic Compu-
tation, 8(4):293–341, 1995. DOI: 10.1007/BF01018827.

D. Leivant. Polymorphic type inference. In Principles of Programming Languages,
Proceedings, pages 88–98. ACM Press, 1983. DOI: 10.1145/567067.567077.

S. Liang, P. Hudak, and M.P. Jones. Monad transformers and modular interpreters.
In Principles of Programming Languages, Proceedings, pages 333–343. ACM Press,
1995. DOI: 10.1145/199448.199528.

Y.-C. Lin and J.-W. Hsiao. A new approach to constructing optimal parallel prefix
circuits with small depth. Journal of Parallel and Distributed Computing, 64(1):
97–107, 2004. DOI: 10.1016/j.jpdc.2003.09.004.

K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidirectionaliza-
tion transformation based on automatic derivation of view complement func-
tions. In International Conference on Functional Programming, Proceedings,
volume 42(9) of SIGPLAN Notices, pages 47–58. ACM Press, 2007. DOI:
10.1145/1291220.1291162.

J. McKinna. Why dependent types matter (Invited talk). In Principles of Program-
ming Languages, Proceedings, volume 41(1) of SIGPLAN Notices, pages 1–14.
ACM Press, 2006. DOI: 10.1145/1111320.1111038.

79

http://dx.doi.org/10.1145/982962.964010
http://dx.doi.org/10.1016/j.ic.2007.11.009
http://dx.doi.org/10.1016/j.ic.2007.11.009
http://dx.doi.org/10.1145/322217.322232
http://dx.doi.org/10.1007/BF01018827
http://dx.doi.org/10.1145/567067.567077
http://dx.doi.org/10.1145/199448.199528
http://dx.doi.org/10.1016/j.jpdc.2003.09.004
http://dx.doi.org/10.1145/1291220.1291162
http://dx.doi.org/10.1145/1291220.1291162
http://dx.doi.org/10.1145/1111320.1111038

Bibliography

E. Meijer. Fundamentalist functional programming (Keynote address). In Genera-
tive Programming and Component Engineering, Proceedings, page 99. ACM Press,
2008. DOI: 10.1145/1449913.1449929.

B. Meyer. Applying “Design by contract”. IEEE Computer, 25(10):40–51, 1992.
DOI: 10.1109/2.161279.

R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML
— Revised. MIT Press, 1997.

E. Moggi. Notions of computation and monads. Information and Computation, 93
(1):55–92, 1991. DOI: 10.1016/0890-5401(91)90052-4.

A.K. Moran and D. Sands. Improvement in a lazy context: An operational theory
for call-by-need. In Principles of Programming Languages, Proceedings, pages
43–56. ACM Press, 1999. DOI: 10.1145/292540.292547.

M. Naftalin and P. Wadler. Java Generics and Collections. O’Reilly, 2006.

U. Norell. Towards a practical programming language based on dependent type theory.
PhD thesis, Chalmers University of Technology, 2007.

M. Odersky. The Scala experiment: Can we provide better language support for
component systems? (Invited talk). In Principles of Programming Languages,
Proceedings, volume 41(1) of SIGPLAN Notices, pages 166–167. ACM Press, 2006.
DOI: 10.1145/1111320.1111052.

B. O’Sullivan, D.B. Stewart, and J. Goerzen. Real World Haskell. O’Reilly, 2008.

A. Pardo, J.P. Fernandes, and J. Saraiva. Shortcut fusion rules for the derivation of
circular and higher-order monadic programs. In Partial Evaluation and Program
Manipulation, Proceedings. ACM Press, 2009.

A. Pettorossi and M. Proietti. Importing and exporting information in program
development. In Partial Evaluation and Mixed Computation, Proceedings, pages
405–425. North-Holland, 1987.

S.L. Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, 2003.

S.L. Peyton Jones. Call-pattern specialisation for Haskell programs. In International
Conference on Functional Programming, Proceedings, volume 42(9) of SIGPLAN
Notices, pages 327–337. ACM Press, 2007. DOI: 10.1145/1291220.1291200.

S.L. Peyton Jones and D. Lester. A modular fully-lazy lambda lifter in
Haskell. Software Practice and Experience, 21(5):479–506, 1991. DOI:
10.1002/spe.4380210505.

80

http://dx.doi.org/10.1145/1449913.1449929
http://dx.doi.org/10.1109/2.161279
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1145/292540.292547
http://dx.doi.org/10.1145/1111320.1111052
http://dx.doi.org/10.1145/1291220.1291200
http://dx.doi.org/10.1002/spe.4380210505
http://dx.doi.org/10.1002/spe.4380210505

Bibliography

S.L. Peyton Jones and P. Wadler. Imperative functional programming. In Principles
of Programming Languages, Proceedings, pages 71–84. ACM Press, 1993. DOI:
10.1145/158511.158524.

S.L. Peyton Jones, A. Reid, C.A.R. Hoare, S. Marlow, and F. Henderson. A seman-
tics for imprecise exceptions. In Programming Language Design and Implementa-
tion, Proceedings, volume 34(5) of SIGPLAN Notices, pages 25–36. ACM Press,
1999. DOI: 10.1145/301631.301637.

A.M. Pitts. Parametric polymorphism and operational equivalence. Math-
ematical Structures in Computer Science, 10(3):321–359, 2000. DOI:
10.1017/S0960129500003066.

A.M. Pitts. Typed operational reasoning. In B.C. Pierce, editor, Advanced Topics
in Types and Programming Languages, pages 245–289. MIT Press, 2005.

J.C. Reynolds. Towards a theory of type structure. In Colloque sur la Programma-
tion, Proceedings, pages 408–423. Springer-Verlag, 1974.

J.C. Reynolds. Types, abstraction and parametric polymorphism. In Information
Processing, Proceedings, pages 513–523. Elsevier, 1983.

D. Sands. Total correctness by local improvement in the transformation of functional
programs. ACM Transactions on Programming Languages and Systems, 18(2):
175–234, 1996. DOI: 10.1145/227699.227716.

D.A. Schmidt. Denotational Semantics: A Methodology for Language Development.
Allyn and Bacon, 1986.

M. Sheeran. Hardware design and functional programming: a perfect match. Journal
of Universal Computer Science, 11(7):1135–1158, 2005.

P.F. Silva and J.N. Oliveira. ‘Galculator’: Functional prototype of a Galois-
connection based proof assistant. In Principles and Practice of Declar-
ative Programming, Proceedings, pages 44–55. ACM Press, 2008. DOI:
10.1145/1389449.1389456.

J. Sklansky. Conditional-sum addition logic. IRE Transactions on Electronic Com-
puters, EC-9(6):226–231, 1960.

F. Stenger and J. Voigtländer. Parametricity for Haskell with imprecise error se-
mantics. Technical Report TUD-FI08-08, Technische Universität Dresden, 2008.

C. Strachey. Fundamental concepts in programming languages. Lecture notes for
a course at the International Summer School in Computer Programming, 1967.
Reprint appeared in Higher-Order and Symbolic Computation, 13(1–2):11–49,
2000. DOI: 10.1023/A:1010000313106.

81

http://dx.doi.org/10.1145/158511.158524
http://dx.doi.org/10.1145/158511.158524
http://dx.doi.org/10.1145/301631.301637
http://dx.doi.org/10.1017/S0960129500003066
http://dx.doi.org/10.1017/S0960129500003066
http://dx.doi.org/10.1145/227699.227716
http://dx.doi.org/10.1145/1389449.1389456
http://dx.doi.org/10.1145/1389449.1389456
http://dx.doi.org/10.1023/A:1010000313106

Bibliography

J. Svenningsson. Shortcut fusion for accumulating parameters & zip-like func-
tions. In International Conference on Functional Programming, Proceedings,
volume 37(9) of SIGPLAN Notices, pages 124–132. ACM Press, 2002. DOI:
10.1145/583852.581491.

W. Swierstra and T. Altenkirch. Beauty in the beast: A functional semantics for
the awkward squad. In Haskell Workshop, Proceedings, pages 25–36. ACM Press,
2007. DOI: 10.1145/1291201.1291206.

A. Takano and E. Meijer. Shortcut deforestation in calculational form. In Functional
Programming Languages and Computer Architecture, Proceedings, pages 306–313.
ACM Press, 1995. DOI: 10.1145/224164.224221.

J. Voigtländer. Concatenate, Reverse and Map Vanish For Free. In International
Conference on Functional Programming, Proceedings, volume 37(9) of SIGPLAN
Notices, pages 14–25. ACM Press, 2002. DOI: 10.1145/583852.581481.

J. Voigtländer. Proving Correctness via Free Theorems: The Case of
the destroy/build-Rule. In Partial Evaluation and Semantics-Based Pro-
gram Manipulation, Proceedings, pages 13–20. ACM Press, 2008a. DOI:
10.1145/1328408.1328412.

J. Voigtländer. Much Ado about Two: A Pearl on Parallel Prefix Computation. In
Principles of Programming Languages, Proceedings, volume 43(1) of SIGPLAN
Notices, pages 29–35. ACM Press, 2008b. DOI: 10.1145/1328897.1328445.

J. Voigtländer. Semantics and Pragmatics of New Shortcut Fusion Rules. In Func-
tional and Logic Programming, Proceedings, volume 4989 of LNCS, pages 163–179.
Springer-Verlag, 2008c. DOI: 10.1007/978-3-540-78969-7 13.

J. Voigtländer. Asymptotic Improvement of Computations over Free Monads. In
Mathematics of Program Construction, Proceedings, volume 5133 of LNCS, pages
388–403. Springer-Verlag, 2008d. DOI: 10.1007/978-3-540-70594-9 20.

J. Voigtländer. Bidirectionalization for Free! In Principles of Programming Lan-
guages, Proceedings. ACM Press, 2009.

J. Voigtländer and P. Johann. Selective strictness and parametricity in structural
operational semantics. Technical Report TUD-FI06-02, Technische Universität
Dresden, 2006.

J. Voigtländer and P. Johann. Selective strictness and parametricity in structural
operational semantics, inequationally. Theoretical Computer Science, 388(1–3):
290–318, 2007. DOI: 10.1016/j.tcs.2007.09.014.

P. Wadler. Faith, evolution, and programming languages: from Haskell to
Java to Links (Invited talk). In Object-Oriented Programming, Systems, Lan-
guages, and Applications, Proceedings, page 508. ACM Press, 2006. DOI:
10.1145/1176617.1176623.

82

http://dx.doi.org/10.1145/583852.581491
http://dx.doi.org/10.1145/583852.581491
http://dx.doi.org/10.1145/1291201.1291206
http://dx.doi.org/10.1145/224164.224221
http://dx.doi.org/10.1145/583852.581481
http://dx.doi.org/10.1145/1328408.1328412
http://dx.doi.org/10.1145/1328408.1328412
http://doi.acm.org/10.1145/1328897.1328445
http://dx.doi.org/10.1007/978-3-540-78969-7_13
http://dx.doi.org/10.1007/978-3-540-70594-9_20
http://dx.doi.org/10.1016/j.tcs.2007.09.014
http://dx.doi.org/10.1145/1176617.1176623
http://dx.doi.org/10.1145/1176617.1176623

Bibliography

P. Wadler. The concatenate vanishes. Note, University of Glasgow, 1987; revised,
1989.

P. Wadler. Theorems for free! In Functional Programming Languages and
Computer Architecture, Proceedings, pages 347–359. ACM Press, 1989. DOI:
10.1145/99370.99404.

P. Wadler. The essence of functional programming (Invited talk). In Principles
of Programming Languages, Proceedings, pages 1–14. ACM Press, 1992. DOI:
10.1145/143165.143169.

P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In Principles
of Programming Languages, Proceedings, pages 60–76. ACM Press, 1989. DOI:
10.1145/75277.75283.

83

http://dx.doi.org/10.1145/99370.99404
http://dx.doi.org/10.1145/99370.99404
http://dx.doi.org/10.1145/143165.143169
http://dx.doi.org/10.1145/143165.143169
http://dx.doi.org/10.1145/75277.75283
http://dx.doi.org/10.1145/75277.75283

For copyright reasons, the full papers are not appended to this electronic version of
the thesis. Author versions are available online at:

• Much Ado about Two: A Pearl on Parallel Prefix Computation.
http://wwwtcs.inf.tu-dresden.de/~voigt/popl202-voigtlaender.pdf

• Bidirectionalization for Free!
http://wwwtcs.inf.tu-dresden.de/~voigt/popl09-2.pdf

• Concatenate, Reverse and Map Vanish For Free.
http://wwwtcs.inf.tu-dresden.de/~voigt/p114-voigtlaender.pdf

• Asymptotic Improvement of Computations over Free Monads.
http://wwwtcs.inf.tu-dresden.de/~voigt/mpc08.pdf

• Free Theorems in the Presence of seq .
http://wwwtcs.inf.tu-dresden.de/~voigt/p76-voigtlaender.pdf

• The Impact of seq on Free Theorems-Based Program Transformations.
http://wwwtcs.inf.tu-dresden.de/~voigt/seqFinal.pdf

• Proving Correctness via Free Theorems: The Case of the destroy/build-
Rule.
http://wwwtcs.inf.tu-dresden.de/~voigt/pepm09-voigtlaender.pdf

• Semantics and Pragmatics of New Shortcut Fusion Rules.
http://wwwtcs.inf.tu-dresden.de/~voigt/flops.pdf

• Selective strictness and parametricity in structural operational semantics, in-
equationally.
http://wwwtcs.inf.tu-dresden.de/~voigt/TCS.pdf

• A Family of Syntactic Logical Relations for the Semantics of Haskell-like Lan-
guages.
http://wwwtcs.inf.tu-dresden.de/~voigt/iandc.pdf

84

http://wwwtcs.inf.tu-dresden.de/~voigt/popl202-voigtlaender.pdf
http://wwwtcs.inf.tu-dresden.de/~voigt/popl09-2.pdf
http://wwwtcs.inf.tu-dresden.de/~voigt/p114-voigtlaender.pdf
http://wwwtcs.inf.tu-dresden.de/~voigt/mpc08.pdf
http://wwwtcs.inf.tu-dresden.de/~voigt/p76-voigtlaender.pdf
http://wwwtcs.inf.tu-dresden.de/~voigt/seqFinal.pdf
http://wwwtcs.inf.tu-dresden.de/~voigt/pepm09-voigtlaender.pdf
http://wwwtcs.inf.tu-dresden.de/~voigt/flops.pdf
http://wwwtcs.inf.tu-dresden.de/~voigt/TCS.pdf
http://wwwtcs.inf.tu-dresden.de/~voigt/iandc.pdf

	1 Introduction
	1.1 List of Appended Papers

	2 Haskell's Abstraction Facilities
	2.1 A Short Tour of Haskell
	2.2 The Virtues of Polymorphism
	2.3 Equational Reasoning

	3 Free Theorems and Program Transformations
	3.1 Free Theorems
	3.2 Program Transformations

	4 A Knuth-like 0-1-2-Principle for Parallel Prefix Computation
	4.1 Parallel Prefix Computation
	4.2 Prefix Networks in Haskell
	4.3 A Knuth-like 0-1-2-Principle

	5 Semantic Bidirectionalization
	5.1 Bidirectional Transformation
	5.2 Bidirectionalization of Polymorphic get
	5.3 Leveraging Free Theorems

	6 List Operations Vanish for Free
	6.1 The Problem of Repeated Concatenation
	6.2 Our Solution
	6.3 Other List Operations
	6.4 Yet Another Possibility

	7 Asymptotic Improvement of Computations over Free Monads
	7.1 (Free) Monads in Haskell
	7.2 The Problem of Repeated Substitution
	7.3 Improvement by Abstraction over return

	8 Free Theorems and Selective Strictness
	8.1 The Painful Truth about Free Theorems
	8.2 The Formal Background of Free Theorems
	8.3 Free Theorems in the Presence of seq
	8.4 The Impact on Program Transformations

	9 New Developments in Short Cut Fusion
	9.1 The destroy/build-Rule
	9.2 Circular Short Cut Fusion
	9.3 Higher-Order Short Cut Fusion
	9.4 foldr/build and destroy/unfoldr, Revisited

	10 Moving to Operational Semantics
	10.1 A Core Calculus for Haskell
	10.2 A Small-Step Operational Semantics
	10.3 Characterization Results and Extensions

	11 Conclusion
	Bibliography

