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Abstract

We present a divide-and-conquer algorithm for parsing context-free languages efficiently. Our al-

gorithm is an instance of Valiant’s (1975), who reduced the problem of parsing to matrix multipli-

cations. We show that, while the conquer step of Valiant’s is O(n3), it improves to O(log2 n) under

certain conditions satisfied by many useful inputs, and if one uses a sparse representation of matrices.

The required conditions occur for example in program texts written by humans. The improvement

happens because the multiplications involve an overwhelming majority of empty matrices. This result

is relevant to modern computing: divide-and-conquer algorithms with a polylogarithmic conquer step

can be parallelised relatively easily.

1 Introduction

Recent years have seen the rise of parallel computer architectures for the masses. Multicore

CPUs and GPUs are legion. One would expect functional programs to be a perfect match

for these architectures. Indeed, thanks to the absence of side-effects, functional programs

are conceptually easy to parallelise. However, functional programmers have traditionally

relied heavily on lists as the data-structure of choice. This tradition hinders the adapta-

tion of functional programs to the age of parallelism. Indeed, the very linear structure of

lists imposes a sequential treatment of them. In an eloquent 2009 ICFP invited talk, Guy

Steele harangued the functional programming crowds to stop using lists and use sequences,

represented as balanced trees. If a computation over them follows the divide-and-conquer

skeleton, and uses an associative operator to cheaply combine intermediate results at each

node, their fractal structure allows to take advantage of many processors in parallel; in fact

as many as there are leaves in the tree.

An additional benefit of the structure its ability to support incremental computation. That

is, if one remembers the intermediate results of the computation for each node, then after

changing a single leaf in the tree, it suffices to recompute the results for the nodes which

are on the path from the root to the given leaf. If the tree is balanced, this means that one

only has to run the association operator only a few times to update the result after a single

incremental change.

Some problems are naturally solved by divide-and-conquer algorithms. This is the case

for example of vector operations, which treat each element independently of the others.
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However, many problems require creativity to discover efficient divide-and-conquer solu-

tions. This is the case of the problem of parsing context free languages.

Valiant [1975] discovered a divide-and-conquer algorithm for context-free recognition.

However, given Valiant’s assumptions, the cost of the conquer step is cubic. This means

that the conquer step dominates the cost of the algorithm: what we gain by running sub-

problems in parallel is dwarfed by the cost of what we must run sequentially. Therefore

the divide-and-conquer structure does not yield a significant performance benefit. In this

paper, we show that on most inputs, one can carefully implement Valiant’s algorithm to get

a polylogarithmic conquer step, yielding good overall performance.

Outline The res of the paper is organized as follows. In Sec. 2 we review the divide-and-

conquer skeleton, how it adequately abstracts incremental and parallel computation, and its

relationship with sequence homomorphisms. In Sec. 3 we review chart-based context-free

parsing, and derive Valiant’s algorithm from its specification. In Sec. 4 we characterize a

sub-class of context-free languages. We argue that this class corresponds to hierarchically

organized inputs. We proceed to show that for such languages, the average complexity of

the conquer step of the parsing algorithm is O(log2n). In Sec. 5, we describe an extension

of context-free grammars. This extension remains parseable with Valiant’s algorithm. Us-

ing this extension, we show how to reduce parse iteration (Kleene’s closure) hierarchically.

We conclude with a discussion of our results.

2 The Divide-And-Conquer Skeleton

Our aim is to construct a parallel and incremental parsing algorithm. To do so, we need a

sufficiently abstract model of incremental and parallel computation, and choose the divide

and conquer skeleton. We further assume that the input is provided as a sequence of input

symbols (taken in a finite alphabet Σ) — strings. Our definition of this skeleton relies the

theory of sequences as initial algebras developed by Bird [1986].

Definition 1

A sequence-algebra is a triplet of:

• A carrier type a

• A constant nil of type a

• A ternary operation bin of type a→Σ→a→a.

which satisfies the associative law:

bin a x (bin b y c) = bin (bin a x b) y c (1)

The type of sequences of Σ, written Seq, can be defined as the initial sequence-algebra.

Concretely, one naive way to implement Seq is as a list. In actual implementations, se-

quences will be represented by more complex data structures; perhaps trees featuring

dynamic re-balancing such as finger trees [Hinze and Paterson, 2006]. The associative

law (1) guarantees that re-balancing is not observable by user code. We will write Nil and

Bin (with capitals) for the operations of the initial sequence-algebra:

Nil : Seq

Bin : Seq → Σ → Seq → Seq
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Assume a function f : Seq → A. The construction of a divide-and-conquer algorithm

computing f can be specified as finding a sequence-algebra A = (A,nilA, binA) such as f

is an homomorphism between Seq and A .

That is, we need a carrier type A, a constant nilA and a function binA such that (1) is

satisfied and

nilA = f Nil

binA ( f l)x( f r) = f (Bin l x r)

Given such an algebra A and a sequence t, one can compute f t as the catamorphism of

A applied to t.

Assuming an implementation of Seq as trees, one can obtain a parallel algorithm by

spawning a new thread of execution at each node. In an actual implementation, the shape

of the tree structure will be dictated by the architecture of the computer running the code.

The implementation is free to choose the structure: any choice yields the same result, as

guaranteed by the associative law (1).

An incremental algorithm can be obtained by caching the intermediate results in each

node. An update at a leaf of the tree needs to run the bin function d times, where d is the

depth of the leaf in the tree.

In all the cases considered in the remainder, we never bother to prove the associative law

for the bin function that we construct. Indeed, because we consider only in values which

are generated by the sequence-homomorphism f , associativity holds automatically. In other

words, the fact that bin adequately implements f implies associativity.

Lemma 1

Given f : Seq → A, and bin : A → Σ → A → A such that

bin (f l) x (f r) = f (Bin l x r)

then (A′, f Nil, bin) is a sequence-algebra, where A′ is the image of Seq under f .

Proof

The missing associative law is obtained as follows:

bin a x (bin b y c)

= {-by A′ being inverse image of f -}

bin (f s) x (bin (f t) y (f u))

= {-by assumption on bin -}

f (Bin s x (Bin t y u)

= {-by Seq being a sequence-algebra -}

f (Bin (Bin s x t) y u)

= {-by assumption on bin -}

bin (bin (f s) x (f t)) y (f u)

= {-by definition of a,b,c -}

bin (bin a x b) y c
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Performance Crucially, in order for parallelisation or incrementalization to yield benefits

in terms of performance, the cost of running bin must be at most quasilinear. Let us analyze

why by using the following standard result:

Theorem 1 (Master Theorem, Cormen et al.)

Assume a function Tn constrained by the recurrence

Tn = aTn
b
+ f (n)

(Such an equation will typically come from a divide-and-conquer algorithm, where a is

the number of sub-problems at each recursive step, n/b is the size of each sub-problem,

and f (n) is the running time of dividing up the problem space into a parts, and combining

the sub-results together.)

If we let e = logb a and f (n) = O(nc logd n), then

Tn = O(ne) if c < e

Tn = O(nc logd+1 n) if c = e

Tn = O(nc logd n) if c > e

In our description of sequence homomorphisms we have assumed b = 2. In the case of a

sequential algorithm, a= 2, but in presence of parallelism or incrementality, a= 1, because

both sub-problems can be run in parallel or because the result of one sub-problem is already

computed. In sum e = 1 corresponds to the sequential case, while e = 0 corresponds to a

parallel or incremental case. We can then compute the asymptotic behavior of Tn for each

case:

e = 1 e = 0

(sequential) (parallel) speedup factor

c = 0 n logd+1 n n

logd+1n

0 < c < 1 n nc logd n n1−c

logdn

c = 1 n logd+1 n n logd n logn

c > 1 nc logd n nc logd n 1

That is, the fastest the conquer step, the bigger gains for parallelisation or incrementaliza-

tion. In particular, a conquer step running in Ω(n1+ε) yields no asymptotic gain.

Summary In sum, using a divide-and-conquer skeleton to construct an incremental and

parallel algorithm computing f means finding functions bin and nil such that:

• nil = f Nil

• bin (f l) x (f r) = f (Bin l x r)

• The complexity of Bin is quasilinear (and if possible better)

3 Context Free Parsing

In this section we review the basics of context free (CF) parsing, give a specification of

parsing in terms of transitive closure, and review the CYK and Valiant algorithms.
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3.1 Conventions and Notations

We assume a CF grammar G , given by a quadruple (Σ,N,P,S), where Σ is a finite set of

terminals, N is a finite set of non-terminals of which S is the starting symbol, and P a finite

set of production rules.

We furthermore assume an input w ∈ Σ∗ — a sequence of terminal symbols of length

|w|. The input symbol at position i is denoted w[i]. A sub-string of w starting at position

i (included) and ending at position j (excluded), is denoted w[i.. j]. Metasyntactic vari-

ables standing for arbitrary strings of terminals will have the form w1,w2, . . .. The letters

A,B,C, . . ., stand for arbitrary non-terminals, while α,β , . . . stand for arbitrary strings

(elements of (Σ∪N)∗) and t stands for a terminal symbol. Each production rule associates

a non-terminal with a string it can generate. We write A ::= α for A generates α .

Definition 2 (−→)

αAβ −→ αγβ iff. (A ::= γ) ∈ P

Definition 3 (
∗

−→)

The reflexive and transitive closure of the −→ relation is written
∗

−→.

Definition 4 (L )

The input string w belongs to the language L iff. S
∗

−→ w. We say that G generates L .

3.1.1 Chomsky Normal Form

The simplest implementation of CYK and Valiant algorithms takes as input a grammar

Chomsky Normal Form ([Chomsky, 1959]). In Chomsky Normal From, hereafter abbrevi-

ated CNF, the production rules are restricted to one the following forms

S ::= ε (nullary)

A ::= t (unary)

A0 ::= A1A2 (binary)

Any CF grammar G generating a language L can be converted to a grammar G ′ in CNF

defining the same language L . This conversion preserves many useful properties of the

input grammar. In particular:

• The size of the grammar does not increase too much: |G ′| ≤ |G |2.

• The parse-trees generated by G ′ are a binarised version of the parse tree generated

from G . This means that from a G ′-parse tree one can easily recover a G -parse tree,

modulo the following caveat.

• The conversion discards unit-rule cycles (such as A0 ::= A1; A1 ::= A0). This is

good: such cycles generate infinitely many (equivalent) parse trees, which the user

generally wants to ignore anyway.

Hence we will assume from now on a grammar provided in CNF. Moreover, because it

is easy to handle the empty string specially, we conventionally exclude it from the input

language and thus exclude the nullary rule S ::= ε from the set of productions P. In sum, we

assume that P contains only unary and binary production rules. The reader avid of details
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is directed to Lange and Leiß [2009] for a pedagogical account of the process of reduction

to CNF.

Given a grammar specified as above, the problem of parsing is reduced to finding a bi-

nary tree such that each leaf corresponds to a symbol of the input and a suitable unary rule;

and each branch corresponds to a suitable binary rule. Essentially, parsing is equivalent to

consider all possible bracketings of the input, and verify that they form a valid parse.

3.2 Charts as Matrices, Parsing as Closure

In this section we show how to specify parsing as an equation on matrices. We start by

abstracting away from the grammar, via a ring-like structure. We define the operations

0,+, · and σ as follows.

Definition 5 (0,+, · on P(N))

0 =∅

x+ y = x∪ y

x · y = {A | A0 ∈ x,A1 ∈ y,A ::= A0A1 ∈ P}

σi = {A | A ::= w[i] ∈ P}

The (·) operation fully characterizes the binary production rules of the grammar, while

σ captures the unary ones. We have the following properties: (0,+) forms a commutative

monoid (the usual monoid of sets with union); 0 is absorbing for (·); and (·) distributes

over (+). However, and crucially, (·) is not associative.

x+0 = x

0+ x = x

(x+ y)+ z = x+(y+ z)

x · (y+ z) = x · y+ x · z

x ·0 = 0

0 · x = 0

We will then use a matrix of sets of non-terminals C to record which non-terminals can

generate a given substring. The intention is that A ∈ Ci j iff. A
∗

−→ w[i.. j]. See Fig. 1 for

an illustration. In parsing terminology, a structure containing intermediate parse results is

called a chart. We call the set of charts C .

Definition 6

C = P(N)N×N

We lift the operations 0,+, · from sets of non-terminals to matrices of sets of nonterminals,

in the usual manner.

Definition 7 (0,+, · on C )
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0i j = 0

(A+B)i j = Ai j +Bi j

(A ·B)i j = ∑
k

Aik ·Bk j

As expected, all the properties carry over to matrices; and associativity is still lacking. The

operation σ is used to compute an upper diagonal matrix corresponding to the input w, as

follows.

Definition 8 (Initial matrix)

The initial matrix, written I(w), is a square matrix of dimension |w|+1 such that

I(w)i,i+1 = σi

I(w)i, j = 0 if j 6= i+1

Let W (1) = I(w). Note that W
(1)
i,i+1 = σi contains all the non-terminals which can generate

the substring w[i..i+ 1]. Let W (2) = W (1)W (1) + I(w). It is easy to see that W
(2)
i,i+2 = σi ·

σi+1, hence it contains all the non-terminals which can generate the substring w[i..i+ 2].

Consider now W (3) =W (2) ·W (2)+ I(w). We have

W
(3)
i,i+3 =W

(2)
i,i+2 ·W

(2)
i+2,i+3 +W

(2)
i,i+1 ·W

(2)
i+1,i+3

= (σi ·σi+1) ·σi+2 +σi · (σi+1 ·σi+2)

and

W
(3)
i,i+4 =W

(2)
i,i+2 ·W

(2)
i+2,i+4

= (σi ·σi+1) · (σi+2 ·σi+3)

Hence W (3) contains all possible parsing of 3 symbols, and all balanced parsings of 4

symbols. By iterating n times, one obtains all the parsings of n symbols. (However, as a

hint to our method for efficient parsing, it suffices to repeat the process logn+ 1 times to

obtain all balanced parsings of n symbols).

Definition 9 (Transitive closure)

If it exists, the transitive closure of a matrix W , written W+, is the smallest matrix C such

that

C =C ·C+W

A consequence of the above is C ⊇C ·C+ I(w). It is clear by now that, consequently, every

possible bracketing of the products I(w) · · · · · I(w) is contained in C, and thus all possible

parsings of w[i.. j] are found in Ci j. Conversely, because C is the smallest matrix satisfying

the property, if Ci j contains a non-terminal then it must generate w[i.. j]. Algorithms which

parse by computing a chart are known as chart parsers.

The above procedure specifies a recognizer: by constructing I(w)+ one finds if w is

parsable, but not the corresponding parse tree. Even though we focus on the recognition

problem in this paper, it is straightforward to specify parsers by using matrices of parse
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Z

Fig. 1. Example charts. In each chart a point at position (x,y) corresponds to a substring starting at x

and ending at y. The first parameter x grows downwards and the second one y rightwards. The input

string w is represented by the diagonal line. Dots in the upper-right part represent nonterminals. The

first chart witnesses A
∗

−→ w[i.. j] and B
∗

−→ w[k..l]. An instance of the rule Z ::= XY is illustrated

on the second chart.

trees instead of non-terminals, and adapting the operations accordingly, as we have done

in our implementation on top of BNFC.

In order to construct an efficient parallel parser, we must construct a sequence-homomorphism

from input strings to charts. Thanks to Lem. 1, it suffices find an operator bin which

combines two charts I(w1)
+, I(w2)

+ and a terminal t into a chart I(w1tw2)
+.

3.3 Cocke–Younger–Kasami

A straightforward manner to turn the above specification into an algorithm is as follows.

Let us first remark that the product of two upper triangular matrices is upper triangular.

Hence the closure of an upper triangular matrix must also be upper triangular. Hence,

in every chart ever considered, every element at the diagonal and below it equals zero.

The output of any algorithm computing the closure of I(w) must satisfy the equation C =

C ·C+ I(w). Expanding it index-wise yields:

Ci j = I(w)i j +
n

∑
k=0

Cik ·Ck j

Because C is upper triangular, Cik = 0 if k ≤ i and Ck j = 0 if k > j. Hence the sum can be

limited to the interval [i+1.. j]

Ci j = I(w)i j +
j

∑
k=i+1

Cik ·Ck j

Observing that the summand equals 0 when j = i + 1 and I(w)i j = 0 otherwise, we

distinguish on that condition and obtain the two equations:

Ci,i+1 = σi (2)

Ci j =
j

∑
k=i+1

Cik ·Ck j if j > i+1 (3)

These equations give a method to compute Ci j by induction on j− i. The equations can be

re-interpreted in term of parses and non-terminals as follows. Either

• we parse a single token wi, and the nonterminals generating it are given directly from

unary rules, or
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• we parse a longer string. In this case we split it at any intermediate position k,

and combine the intermediate results (found in Cik and Ck j) in every possible way

according to binary rules.

By applying the above rules naively, the computation time is exponential in the length

of the input; however by memoizing each intermediate result (for example by using lazy

dynamic programming [Allison, 1992]) the complexity is merely cubic. The resulting

dynamic programming algorithm is known as CYK, owing to its independent discoverers:

Cocke [1969], Kasami [1965] and Younger [1967].

In the CYK algorithm, any element of the chart is computed only on the basis of elements

strictly closer to the diagonal. Hence it can be used to program the combination step

of a divide-and-conquer algorithm. The combination of two charts and a terminal C =

bin(A,w[i],B), is defined as follows. Elements of C in the upper left corner are copied

from A; elements of the bottom right corner are copied from B; and elements from the top

right corner are computed using σi and the CYK formula (Eq. (3)).

Even though we have produced a sequence homomorphisms, it is not suitable for paral-

lelisation: its performance is not good enough. Indeed, the above operator has to compute

a matrix of size n × m, and computing each element takes time linear in n + m. The

complexity of bin is therefore cubic, and as we have seen in Sec. 2, there is no asymptotic

gain to parallelisation.

3.4 Valiant

A more subtle way to turn the transitive closure specification into an algorithm is the

following. Our task is to find a function ·+ which maps a matrix W to its transitive closure

C =W+, which implies C =C ·C+W . As above, we do so by refinement of the definition

of transitive closure, but we adopt a divide and conquer approach rather than iterating

indexwise.

If W is a 1 by 1 matrix, W = 0, and the solution is C = 0. Otherwise, let us divide W and

C in blocks as follows (for efficiency the blocks should be roughly of the same size; but

the reasoning holds for any sizes):

W =

[

A X

0 B

]

C =

[

A′ X ′

0 B′

]

Then the condition C =C ·C+W becomes
[

A′ X ′

0 B′

]

=

[

A′ X ′

0 B′

]

·

[

A′ X ′

0 B′

]

+

[

A X

0 B

]

Applying matrix multiplication and sum block-wise:

A′ = A′A′+A

X ′ = A′X ′+X ′B′+X

B′ = B′B′+B

Because A and B are smaller than W (and still upper triangular), we know how to compute

A′ and B′ recursively (A′ =A+, B′ =B+). There remains to find an algorithm to compute the

top-right corner X ′ of the matrix. That is (renaming variables for convenience) the problem
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Step 1:
A11

A22

A12

B12B11

B22

X21

X11

X22

X12

Step 2:
A11

A22

A12

B12B11

B22

Y21

X11

X22

X12

Step 3:
A11

A22

A12

B12B11

B22

Y21

Y11

X22

X12

Step 4:
A11

A22

A12

B12B11

B22

Y21

Y11

Y22

X12

Fig. 2. The recursive step of function V . The charts A and B are already complete. To complete the

matrix X , that is, compute Y = V (A,X ,B), one splits the matrices and performs 4 recursive calls.

Each recursive call is depicted graphically. In each figure, to complete the dark-gray square, multiply

the light-gray rectangles and add them to the dark-gray square, then do a recursive call on triangular

matrix composed of the completed dark-gray square and the triangles.

is reduced to finding a recursive function V which maps A, B and X to Y = V (A,X ,B),

such that Y = AY +Y B+X . In terms of parsing, the function V combines the chart A of

the first part of the input with the chart B of the second part of the input, via a partial chart

X concerned only with strings starting in A and ending in B, and produces a full chart Y .

Let us divide each matrix in blocks again:

Y =

[

Y11 Y12

Y21 Y22

]

X =

[

X11 X12

X21 X22

]

A =

[

A11 A12

0 A22

]

B =

[

B11 B12

0 B22

]

(Again we assume that splitting can be done; the base cases can be obtained by dropping

the first rows and/or the second columns in the above splits.) The condition on Y then

becomes

[

Y11 Y12

Y21 Y22

]

=

[

A11 A12

0 A22

]

·

[

Y11 Y12

Y21 Y22

]

+

[

Y11 Y12

Y21 Y22

]

·

[

B11 B12

0 B22

]

+

[

X11 X12

X21 X22

]
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By applying matrix multiplication and sum block-wise:

Y11 = A11Y11 + A12Y21 + Y11B11 + 0 + X11

Y12 = A11Y12 + A12Y22 + Y11B12 + Y12B22 + X12

Y21 = 0 + A22Y21 + Y21B11 + 0 + X21

Y22 = 0 + A22Y22 + Y21B12 + Y22B22 + X22

By commutativity of (+) and 0 being its unit:

Y11 = A11Y11 + X11 + A12Y21 + Y11B11

Y12 = A11Y12 + X12 + A12Y22 +Y11B12 + Y12B22

Y21 = A22Y21 + X21 + 0 + Y21B11

Y22 = A22Y22 + X22 + Y21B12 + Y22B22

Because each of the sub-matrices is smaller and because of the absence of circular depen-

dencies, Y can be computed recursively:

Y21 =V (A22, X21 , B11)

Y11 =V (A11, X11 +A12Y21 , B11)

Y22 =V (A22, X22 +Y21B12 , B22)

Y12 =V (A11, X12 +A12Y22 +Y11B12, B22)

We have ignored the base cases so far because they are straightforward, except for

the following point. When computing V (A,X ,B) on matrices of dimension 1 × 1, it is

guaranteed that A and B are equal to 0. Indeed, in that case X is just above the diagonal.

Therefore A and B are on it and must then be 0. The result matrix is therefore equal to X .

In sum, with the above definitions, we have the following expression for V in the recur-

sive case

V

([

A11 A12

0 A22

]

,

[

X11 X12

X21 X22

]

,

[

B11 B12

0 B22

])

=

[

Y11 Y12

Y21 Y22

]

.

In the base cases, some or all of the top and/or right sub-matrices are empty and the

corresponding recursive calls are omitted. In terms of parsing, initially the partial chart

X contains at the bottom-left position a single non-zero element corresponding to the

symbol at the interface of A and B. Recursive calls progressively fill this chart, quadrant by

quadrant. The above algorithm was first described by Valiant [1975]. A graphical summary

is shown in Fig. 2.

From Valiant’s function V , one can construct the bin operator (completing the sequence

homomorphism) as follows:

bin(A, t,B) =

[

A V (A,X ,B)

0 B

]

where X =













0 · · · · · · 0
... . .

. ...

0 0
...

σi 0 · · · 0













An advantage of Valiant’s algorithm over CYK is that it treats whole subcharts at once,

via matrix-level multiplication and addition, while CYK explicitly refers to each element of

C individually. In particular, when using a sparse-matrix representation, the multiplication

of an empty chart with any other chart is instantaneous. The ability to handle this case
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import Prelude (Eq (. .))
class RingLike a where

zero :: a

(+) :: a → a → a

(·) :: a → a → a

data M a = Q (M a) (M a) (M a) (M a) | Z | One a

q Z Z Z Z = Z

q a b c d = Q a b c d

one x = if x ≡ zero then Z else One x

instance (Eq a,RingLike a)⇒ RingLike (M a) where

zero = Z

Z + x = x

x+Z = x

One x+One y = one (x+ y)
Q a11 a12 a21 a22 +Q b11 b12 b21 b22

= q (a11 +b11) (a12 +b12)
(a21 +b21) (a22 +b22)

Z · x = Z

x ·Z = Z

One x ·One y = one (x · y)
Q a11 a12 a21 a22 ·Q b11 b12 b21 b22

= q (a11 ·b11 +a12 ·b21) (a11 ·b12 +a12 ·b22)
(a21 ·b11 +a22 ·b21) (a21 ·b21 +a22 ·b22)

v :: (Eq a,RingLike a)⇒ M a → M a → M a → M a

v a Z b = Z

v Z (One x) Z = One x

v (Q a11 a12 Z a22) (Q x11 x12 x21 x22) (Q b11 b12 Z b22)
= q y11 y12 y21 y22

where y21 = v a22 x21 b11

y11 = v a11 (x11 +a12 · y21 ) b11

y22 = v a22 (x22 + y21 ·b12) b22

y12 = v a11 (x12 +a12 · y22 + y11 ·b12) b22

Fig. 3. Data structure for charts as sparse matrices (M), and implementation of the function V . The

tricky parts compared to the mathematical development of Sec. 3.4 is the handling of empty matrices.

Care must be taken to create empty matrices (Z) whenever they contain only zero elements. This

is done by using the smart constructors q and one in matrix multiplication. The input matrices a

and b are empty iff. the matrix x has dimension one. For concision, this implementation supports

only matrices of size 2n for some n. It can be extended to matrices of arbitrary dimension in a

straightforward manner by adding constructors for row and column matrices, to be used as leaves.

An implementation supporting arbitrary matrix dimensions, as well as the optimization explained in

Sec. 7.2 can be found in the BNFC repository:

https://github.com/BNFC/bnfc/blob/master/source/runtime/Data/Matrix/Quad.hs

efficiently is key: in the next section we observe that in many cases, charts are sparse, and

composition of charts is efficient.

When using a straightforward representation of sparse matrices as quadtrees, the im-

plementation of Valiant’s algorithm is an elegant functional program, as can be seen in

Fig. 3.
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4 Sparse Matrix Assumption and Complexity Analysis

4.1 Model of the Input

In practice, matrices representing charts are expected to be sparse for large inputs, that is, a

given substring is unlikely to be generated by a given non-terminal. Indeed, in most cases,

the substring starts in the middle of a construction and ends in the middle of some other,

usually unrelated other construction. This effect is illustrated in Fig. 4. In the remainder of

the paper, we assume that inputs conform to this assumption. Before explaining where it is

coming from, we give its formal definition.

Definition 10 (Assumption)

There exists a constant α such that, for any input, the distribution of non-zero elements in

the chart C corresponding to it is bounded as follows. For any square subchart A of C above

the diagonal,

#A ≤

⌈

α ∑
(i, j)∈dom(A)

1

( j− i)2

⌉

where #A is the number of non-zero elements in matrix A.

We stress that the assumption involves not a grammar per se, but the language itself (i.e.

the set of possible input strings we consider), when seen as strings generated by a given

grammar in CNF. todo: move later: So, for
any given α, every
non-trivial grammar will
admit strings that break
the assumption. Our
assumption is that, when
considering a whole
corpus, there is a but
usually the set of strings
we consider behaves well
in practice.

The above formula merits justification. Before using it to evaluate the complexity of

the parsing algorithm, we will build a more precise intuition for it, by examining its

consequences.

Intuition based on string length Let us turn first to the interpretation of the term 1
( j−i)2 .

Recall that a non-terminal in Ci j corresponds to a substring of size n = j− i in the input.

The assumption therefore says that the probability that a substring is parseable is inversely

proportional to the square of its size. (More precisely, when considering k random sub-

strings of size n in a corpus of strings representative of the language, one finds on average

that αk
n2 of them correspond to a single nonterminal.) That is, by doubling the size of the

substring considered, it will be four times less likely to be parsable. This corresponds

well to intuition. Indeed, in a well-formed input, every single token can be can be given

independent meaning. However, a larger substring in the same well formed input will likely

start in a middle of a non-terminal (eg. in the middle of a function) and end up in the middle

of an other, unrelated function. In an input which is organized hierarchically, it takes luck

to pick a beginning and an end which match precisely if those are far apart.

Experimental evidence The assumption we make is not strictly speaking verifiable ex-

perimentally, because for any chart there exists an α such that the assumption is verified.

However, one can gain confidence in the assumption by plotting the probability of a string

to be parsable against its size. One should observe that this probability decreases with the

square of the size. In practical terms, given a chart corresponding to a large input, if one

observes a drastic cut-off in the density of non-zero elements when departing from a certain

distance from the diagonal, then the input is compatible with our assumption. In Fig. 4,
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Fig. 4. The chart corresponding to a fragment of a C program. The input program can be found

in appendix. Two remarkable features merit commentary. First, the staircase shapes, which are

explained in Sec. 5.4. Second, some small sub-matrices near the diagonal appear to be dense. These

regions correspond to argument lists in the C program, and this iteration structure is implemented by

linear recursion rather than our special encoding of Sec. 5.

we show a chart corresponding to a fragment of C code, obtained using our algorithm.

This chart, along with all other inputs for which we have run this experiment, exhibits the

expected features. The assumption is also confirmed, albeit indirectly, by observing that

the cost analysis which depends on it holds in practice.

Non-suitable inputs Any input which uses nesting in linear proportion to the size of its

input will violate our assumption. For example, the lisp program composed of n successive

applications of cons does not satisfy our assumption.

(cons x (cons x (. . .(cons x nil) . . .)))

It appears however that few programs are written in this style, except perhaps for machine-

generated ones. Linear constructions are often present, but they are then supported by

special syntax. Indeed the above lisp program is invariably written as:

(list x x . . .x)

Hence we provide special treatment for such special iteration syntaxes. We show in Sec. 5

how to deal with them, while respecting our assumption.

4.2 Close and far matrices

For simplicity we consider only inputs of sizes which are powers of 2. This additional

assumption implies that we only need to consider square matrices in our analysis.

We first remark that because charts are always divided in the middle, a subchart X

considered by the algorithm is always square, and at a distance kn to the diagonal, where
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k is some natural number and n is the size of X . When k = 0 we say that X is close to the

diagonal and when k > 0 we say that X is far from the diagonal. This distinction is crucial,

because matrices close to the diagonal have O(logn) elements in them, whereas matrix far

away have a constant number of elements in them. This fact is not obvious, so we devote

the present subsection to its proof.

Definition 11

The distance to the diagonal of a subchart is ( j− i−1) iff its bottom-most leftmost element

has index (i, j) in the complete chart.

Assume S(n,d) is a square sub-matrix of size n at distance d to the diagonal.

Our assumption puts upper bounds on the number of non-zero elements in S(n,d). In this

section, we will compute an asymptotic upper bound of #S(n,kn), for any k. The strategy

is to symbolically evaluate P(A), from which it is easy to infer bounds for #A, where

P(A) = ∑
(i, j)∈dom(A)

1

( j− i)2

Triangles As a stepping stone, we consider a lower triangle T (n,d), of size n and at

distance d to the diagonal, because the above sum is then easy to evaluate symbolically.

n

d

We have:

P(T (n,d)) = ∑
(i, j)∈T (n,d)

1

( j− i)2

=
n

∑
k=1

k

∑
l=1

1

(d + k)2

=
n

∑
k=1

k

(d + k)2

= ψ0(d +n+1)−ψ0(d +1)+

d(ψ1(d +n+1)−ψ1(d +1))

Where ψ is the polygamma function, which is approximated asymptotically by logarithms:

ψk(n)∼ dk

dn
logn.

Squares From the above result on triangles one can recover a result on squares: a square

of size n is a triangle of size 2n minus two triangles of size n:
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2n

d

P(S(n,d)) = P(T (2n,d))−2P(T (n,n+d)) (4)

together with (4) and get

P(S(n,kn))∼ 2(kn+n)

(

1

kn+n+1
−

1

kn+2n+1

)

− kn

(

1

kn+1
−

1

kn+2n+1

)

− log(kn+1)+2log(kn+n+1)− log(kn+2n+1)

• if k ≥ 1, we have

lim
n→∞

P(S(n,kn)) = 2log(k+1)− log(k+2)− log(k)

and the limit converges from below. So we the above expression is an asymptotic

bound for P(S(n,kn)).

• if k = 0, we have

S(n,kn) = S(n,0)

∼ 2n

(

1

1+n
−

1

1+2n

)

+2log(1+n)− log(1+2n)

∼ logn

Summary We therefore have the following upper bounds of a square submatrix A:

• if A is close to the diagonal, then #A ≤ ⌈α logn⌉

• if A is far from the diagonal (its distance is kn with with k ≥ 1), then

#A ≤ ⌈α(2log(k+1)− log(k+2)− log(k))⌉

Remarkably, this upper bound is independent from the size of A.

Intuition based on balancing of trees To further support the validity of our assumption,

we can connect the logarithmic amount of non-zero elements in a close matrix with the

balancing factor of input trees. Consider the triangle-shaped subchart T n which touches

the diagonal and a non-terminal A at distance k from it. We assume all symbols in the

triangle but closer to the diagonal combine to form A. If the symbol A can be combined

with exactly one other symbol of size βk with 0 < β ≤ 1, it will yield exactly one symbol

at distance (1+β )k. Inductively we compute that there is of the order of
log(n)

log(1+β ) nodes in

the triangle, which is compatible with our condition, with α = 1/log2(1+β ).
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A

n

k

4.3 Cost Estimation

We will estimate the cost as the number of elementary multiplications (multiplications

on sets of non-terminals) to be performed. All the results of this subsection assume the

distribution of non-zero elements discussed above.

4.3.1 Cost of Matrix Multiplications

We start by estimating Mn, the cost of the multiplication of two square subcharts A and B

of size n.

Theorem 2

The complexity of subchart multiplication Mn is O(1) in average and O(logn) in the worst

case.

Proof

We proceed by case analysis on weather the matrices are close or far from the diagonal.

Let us write FFn for Mn if both matrices are far, CFn if one is close and one is far, and CCn

if both are close. Let us evaluate each case:

• FFn = O(1). Indeed, both #A and #B are bounded by a constant when A and B are

far from the diagonal.

• CCn = O(CFn). Indeed, when dividing a matrix close to the diagonal in four equal-

sized blocks, only the bottom-left corner is close to the diagonal, the other ones

are far away. The recursion for block-wise matrix multiplication then yields CCn =

2CFn
2
+6FFn

2
. Because FFn is O(1), the bound of CCn is then CFn.

• CFn = O(1). Let us assume A close and B far away. Let Bi j for i, j ∈ {1,2} be the

submatrices of the far matrix, B. After a finite number of recursion steps, there is

at most a single element in B. Therefore we can assume #B = 1, without loss of

generality. We can then weigh the cost of each recursive call by #Bi j:

CFn = #B11FFn
2
+#B21FFn

2
+#B12FFn

2
+#B22FFn

2

+#B11CFn
2
+#B21FFn

2
+#B12CFn

2
+#B22FFn

2

= rCFn
2
+O(1)

Where r = #B11 + #B12, and is 1 if the element of the matrix B is in its upper part,

and 0 otherwise. In the worst case, r = 1, and the solving the recurrence using the
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Master Theorem (Th. 1) gives CFn = O(logn). In the average case we can assume an

even distribution of the non-zero element in B, which implies r = 1/2. The solution

of the recurrence is therefore CFn = O(1).

One might raise the following objection to the assumption of even average distribution of

elements: because inputs given to a parser are generally valid, the top-rightmost element

will be non-zero, as well as many elements on the top row, and many elements on the right

column, violating the assumption. The refutation is the following: the topmost matrices,

with a skewed distribution towards the top, are only involved on the left-hand-side of

multiplications, for which we have no assumption of evenness. (Symmetrically, rightmost

matrices are only involved on the right-hand-side of multiplications, and topmost rightmost

matrices are not involved in any multiplication at all.)

Another way to understand that the unevenness does not hurt is to consider the following

randomized variant of the algorithm. One artificially multiplies the size of the input by

two, and randomize the position of the actual input inside it. This randomization makes the

distribution of elements even with respect to subchart boundaries, and at worst multiplies

the total cost by a constant.

4.3.2 Cost of the Conquer Step

We proceed to estimate the running cost Vn of the valiant function V on a matrix of size n.

Theorem 3

The complexity of the V function is O(logn) on average and O(log2 n) in the worst case.

Proof

We will compute the number of matrix multiplications performed; the worst case complex-

ity is obtained merely by multiplying by a logn factor.

We assume that we know the resulting chart Y = V (A,X ,B). That is, Vn maps Y to the

cost of running V (A,X ,B). We have the following recurrence:

Vn(0) = 0

Vn

[

Y11 Y12

Y21 Y22

]

=Vn
2
(Y21)+Vn

2
(Y11)+Vn

2
(Y22)+Vn

2
(Y12)

+M n
2
(A12,Y21)+M n

2
(Y21,B12)

+M n
2
(A12,Y22)+M n

2
(Y11,B12)

Because A and B are upper-triangular matrices, the subcharts A12 and B12 are close to the

diagonal. We distinguish two cases: either Y is close or far from the diagonal. In the former

case we let Vn = Fn and in the latter case Vn =Cn.
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Y far All sub-matrices of Y are far from the diagonal. The recurrence specializes then to:

Fn(0) = 0

F1(Y ) = 1

Fn

[

Y11 Y12

Y21 Y22

]

= Fn
2
(Y11)+Fn

2
(Y12)+Fn

2
(Y21)+Fn

2
(Y22)

+O(1)

Because Y has a constant number of non-zero elements, a fortiori so has X , therefore most

recursive calls will return immediately, and on average only one recursive call needs to be

counted. We thus have

Fn = Fn
2
+O(1)

Hence we use the Master Theorem with a = 1,b = 2 and f (n) = 1. We are therefore in the

case c = e, and obtain Fn = O(logn).

Y close Out of the four submatrices of Y , Y21 is close to the diagonal and the other three

are far from it. Therefore the recurrence specializes to:

C1 = 1

Cn =C n
2
+3Fn

2
+O(1)

=C n
2
+O(logn)

We use the Master Theorem with a = 1, b = 2 and f (n) = O(logn). We are in the case

c = e, and obtain Cn = O(log2 n).

4.3.3 Total Cost

We can proceed to compute the total cost of our algorithm Tn on an input string of size

n = |w|. Again, we use the Master Theorem. We divide the input into two parts, so b = 2.

We assume that the input is already provided as a balanced tree representing the matrix

I(w), and so the cost of the divide step is zero. Therefore f (n) is the cost of the conquer

step only. This step involves a matrix close to the diagonal, so f (n) =Cn = O(logd n), and

in turn c = 0. The constant d is 2 if one considers the average case or 3 in the worst case.

Tn = aTn
2
+O(logdn)

• If we assume a sequential execution of the two sub-problems then we have a = 2. In

turn, e = 1 and T (n) = O(n).

• If we assume perfect parallelisation of sub-problems, or an incremental situation,

where one of the sub-solution can be reused, then a = 1. In turn, e = 0 and T (n) =

O(logd+1 n).

Valiant’s evaluation (1974) for Vn is O(nγ), for some γ between 2 and 3 (the exact value

depends on the matrix multiplication algorithm used). In his case c = γ and d = 0, yielding

T (n) = O(nγ), whatever the value of a. That is, according to Valiant’s analysis, making an

incremental or parallel version of his algorithm would lead no benefit, while our analysis

reveals that a big payoff is at hand for usual inputs.
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Fig. 5. Running time of the V function in function of the size of the input, using semi-logarithmic

scale. The grammar is that corresponding to the encoding of t∗ using the technique described in

Sec. 5. The next data point (input size 223) could not be obtained due to running out of memory. The

curve is the graph of a quadratic function which fits the measurements.

4.3.4 Experiments

We have conducted two sets of experiments on the running time of the algorithm. All

timings were obtained using the CRITERION library [O’Sullivan, 2013], on an Intel Core

2 at 2.13GHz. All programs were compiled with GHC 7.6.1. In the first set, we have

measured the performance on a practical language on practical inputs, to confirm that the

function is fast enough to use as an incremental parser in an interactive setting. To do so,

we have run our BNFC implementation on a C grammar to produce the σ and (·) func-

tions, and tested the running time of the V function on a large C program, extracted from

the Linux kernel scheduler (https://github.com/torvalds/linux/blob/master/

kernel/sched/core.c — preprocessor directives as well as typedefs found in it were

expanded by hand.) The input was divided into a left part and a right part of equal sizes, and

a middle symbol. The complete charts for the left and the right part were computed, then

we measured the time of the V function on the charts and the singleton chart containing

the middle symbol. After collecting 100 samples, CRITERION reported a mean runtime

of 320.1469 µs, with a standard deviation of 23.06691 µs. This is well within acceptable

limits for interactive use: most people cannot perceive a delay less than a millisecond.

In the second set of experiments, we tested the V function on generated inputs of various

sizes, to confirm our calculation of the worst case running time. The grammar is that

corresponding to the encoding of t∗ (the nonterminal t repeated an arbitrary number of

times) using the technique described in Sec. 5 (which ensures that our assumption is

verified with α close to 1). The inputs were a repetition of that terminal symbol. The results

are shown in Fig. 5. We observe that the measurements, when drawn on a semi-logarithmic

scale, fit a quadratic curve; which agrees with the theoretical cost estimation.
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5 Iteration in Context-Free Grammars

5.1 The Problem With Iteration

While we have worked hard to ensure the efficient handling of the non-associative aspect

of CF parsing, we have neglected so far that most CF languages feature regular iteration;

that is, associative concatenation rules. Without special treatment, such associative rules

cause severe inefficiencies in the algorithm as presented so far.

Iteration is technically known as Kleene closure, and is written here as a postfix star

(∗). In context-free grammars, it can be (and usually is) encoded as either as left or right

recursion. For example a rule A ::= Y ∗ is typically encoded as follows.

A ::= ε

A ::= AY

The problem with this encoding is two-fold. First, inputs consisting mostly of a sequence

of Y necessarily violate our assumption on inputs: the depth of the parse tree grows linearly

with the size of the input. todo: figure. What should
it show exactly?

Second, the generated AST will necessarily be linear. Consequently, as we have seen in

the introduction, this linear shape would preclude efficient parallel or incremental process-

ing of the AST by computations consuming it.

One could possibly imagine working around the first problem with creative algorithmic

devices. However it is clear that the second problem is intrinsic to the encoding of iteration

as linear recursion. Hence we take the stance that special support for iteration is necessary

in any parallel or incremental parser.

5.2 Towards an Efficient Encoding

Instead of a linear, unary encoding of iterations, one can attempt a binary tree encoding.

One might propose the following encoding:

A ::= AA

A ::= Y

However this encoding accepts all possible associations of sequences of Y s, in particular

also linear ones. One might attempt to mend the rules by using a more clever encoding,

say:

Ak+1 ::= AkAk

Ignoring that it codes only lists of size 2n for some n, our second condition on inputs is still

be violated. Indeed, in a sequence of Y , any subsequence of length 2n for some n would be

recognized. This means that there would be a lot of overlap between possible parse trees.

In the remainder of the section we describe a way to keep the rule A ::= AA, but tweak

the parsing algorithm so that for any sequence of Y s only a single association is considered.

5.3 Oracle-Sensitive Parsing
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Fig. 6. Example chart for the grammar Ak+1 ::= AkAk
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Fig. 7. Matching a list using the oracle-sensitive algorithm. We assume that only one non-terminal

Y is involved and thus show only the bit-tags. Considering only the non-terminals which cannot

be combined using the rule Y ::= Y 0Y 1, the charts features a sequence of Y 1 (of increasing size),

followed by a sequence of Y 0 (of decreasing size).

Overview Each nonterminal will come with a bit indicating whether it should be used

either as a left or right-child in the parse tree. The bit will be chosen by an oracle upon

reduction of the nonterminal, so that the tree will be balanced. We write Y b for the non-

terminal Y annotated with bit b. The main rule constructing trees is then written:

Y ::= Y 0Y 1

This restricts which trees are explored. After parsing with this rule, we obtain a sequence

of Y 1 (unmatched right children) of growing size followed by a sequence of Y0 (unmatched

left children), as depicted in Fig. 7. These nodes will then be collected using special rules.

Assuming that C0 and D0 delimit the list of non-terminals Y ∗, the collecting rules would

be written:

C ::=C0

::=CY 1

D ::= D0

::= Y 0D
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And the final list can be produced by the rule L ::=CD.

The delimiters C0 and D0 are necessary so that only one collection of Y 1 and only one

collection of Y 0 are needed; thereby ensuring a good performance. Without delimiters, ev-

ery combination of sequences of Y 1 and Y 0 would need to be considered. An intermediate

situation is where only one delimiter is present, say the opening one. In that case, only one

list of Y 1 is considered, but many sequences of Y 0 would be considered.

Oracle-Sensitive Grammar Formalism In general, we extend productions so that non-

terminals on a right-hand-side are tagged with a bit. Formally, we extend the syntax of the

productions as follows, where b1,b2, . . . range over bits:

• A ::= Bb1Cb2

• A ::= t, for t ∈ Σ

We allow, as a shorthand, to write non-annotated non-terminals in the right-hand-side

of a production rule. The production then stands for a pair of productions with either

annotation. That is A ::= α0Bα1 is a shorthand for the pair of rules A ::= α0B0α1 and

A ::= α0B1α1.

Algorithm The implementation takes a grammar written using a special construction for

iteration and translate it to the above formalism appropriately. The algorithmic part of the

parsing procedure remains the same as previously. The part which changes is the operators

generating and combining non-terminals, as follows.

Definition 12

σi = {Ab | A ::= w[i] ∈ P}

x · y = {Ab | Bb1 ∈ x,Cb2 ∈ y,A ::= Bb1Cb2 ∈ P}

where the output bit b comes from the oracle.

The transitive closure function of I(w) modified to use the above version of the (·) operator

is called Tρ in the remainder.

Formalization and proof We proceed to prove that the above implementation indeed

recognizes the intended language. But first, we must define the meaning of our extended

grammar formalism and show that it corresponds to our needs.

The main issue is that the algorithm behaves non-deterministically, in the sense that the

grammar-writer does not have access to the bits generated by the oracle. The rest of the

section is structured as follows:

1. we define a generation relation restricted to a given source of bits ρ , which represents

the oracle;

2. we show that the algorithm decides the above relation for a specific (but intangible)

ρ;

3. we narrow the acceptable grammars to those which are oblivious to ρ (describe

languages independent of ρ);
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4. we provide a toolkit which enables to identify and construct such oblivious gram-

mars;

5. and finally we show that our encoding of iteration preserves obliviousness.

Oracle We define a new generation relation
ρ

7−→, indexed by a stream of bits ρ . This

stream of bits wholly models the oracle.

The meaning of production rules annotated with bits can then be given. We first define a

1-step generation relation indexed by a single bit.

Definition 13 (bit-indexed generation)

• if (A ::= Bb1Cb2) ∈ P, then w0Abα
b

7−→ w0Bb1Cb2 α

• if (A ::= x) ∈ P, then w0Abα
b

7−→ w0xα

Crucially, the rules require the relation to act on the first nonterminal in a string. This forces

the bit-stream ρ to be used in a deterministic way. Otherwise, the relation could use each

bit of ρ in a arbitrary place, essentially bypassing the instructions of the oracle transmitted

via the bitstream ρ .

Definition 14 (stream-indexed generation)

The relation α
ρ

7−→ w is inductively defined as follows.

• w
ρ

7−→ w

• If α
b

7−→ γ and γ
ρ

7−→ w then α
b,ρ
7−→ w

Algorithm The algorithm decides the
ρ

7−→ relation, but only for one particular bit-stream

ρ (which the grammar-writer has no control over).

Theorem 4

For every ρ , Ab ρ
7−→ wi j iff Ab ∈ Tρ(w)i j

Proof

By induction on the decomposition structure of the matrix (done by T ).

Obliviousness Ultimately, we do not want the language defined using our formalism to

depend on the actual stream ρ of bits generated by the oracle, because this is out of the

control of the grammar writer. That is, if a string is generated using some ρ , it should be

generated with every ρ .

We first remark that the set of strings generated by any given tagged non-terminal always

depends on ρ . Hence instead we have to consider the strings generated by sets of non-

terminals (and in general sets of strings). We thus define the following relations, using Γ,

∆ and Ξ to range over sets of strings.

Definition 15

• Γ
∃

7−→ w iff. ∃ρ .∃α ∈ Γ. α
ρ

7−→ w

• Γ
∀

7−→ w iff. ∀ρ .∃α ∈ Γ. α
ρ

7−→ w

Definition 16
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A set of strings Γ is called oracle-oblivious if the set of strings of terminals generated by it

is insensitive to non-determinism; that is, for any w0, if Γ
∃

7−→ w0 then Γ
∀

7−→ w0.

Definition 17

We note Ã the set {A0,A1}.

Definition 18 (well-formed grammar)

An oracle-sensitive grammar is well-formed if S̃ is oracle-oblivious.

We can then show that obliviousness fulfills its purpose: the sensitivity to ρ introduced

in the algorithm is indeed hidden by obliviousness.

Theorem 5

If Ã is oracle-oblivious then

Ã
∀

7−→ wi j iff ∃ρ .Ab ∈ Tρ(w)i j, for some bit b

Proof

left-to-right direction By definition, Ã
∀

7−→ wi j implies in particular that there exists a ρ

and a b such that Ab ρ
7−→ wi j. Th. 4 yields the desired conclusion.

right-to-left direction Because of the obliviousness of Ã it suffices to prove that ∃ρ .Ab ∈

Tρ(w)i j, for some bit b implies ∃ρ .∃b.Ab ρ
7−→ wi j. Again, Th. 4, in the right-to-left di-

rection, yields the desired conclusion.

A kit for well-formed grammars Given a grammar definition using bit-annotations ar-

bitrarily, it is hard to decide whether it is well-formed. Hence we define the following

relation, which enables us to reason about obliviousness compositionally.

Definition 19

Γ
∗

=⇒ ∆ iff for every w0,

• if Γ
∃

7−→ w0 then ∆
∃

7−→ w0.

• if ∆
∀

7−→ w0 then Γ
∀

7−→ w0.

The above relation is constructed to transport obliviousness:

Lemma 2

If Γ
∗

=⇒ ∆ and ∆ is oracle oblivious, then so is Γ.

Proof

Direct consequence of the definition.

Lemma 3

1.
∗

=⇒ is reflexive and transitive

2. If Γ
∗

=⇒ ∆ then ΓΞ
∗

=⇒ ∆Ξ and ΞΓ
∗

=⇒ Ξ∆

3. Assume a non-terminal A and Γ its set of productions. Then Ã
∗

=⇒ Γ.

Proof

1. and 3. are a direct consequences of the definitions. The proof of 2. is tedious but

straightforward, and similar in style to the proof of Lem. 4 and thus omitted.
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The above lemma means that, if productions are written without bit annotations (they

generate all possible annotations), then they preserve obliviousness. Hence, a grammar

written without annotations is necessarily well formed. Because our encoding of iteration

also preserves obliviousness, this in turn means that, if one uses annotations only to encode

iteration in the pattern we prescribe, the grammar is then well-formed.

Encoding iteration As a reminder, we encode L ::=C0Y0 ∗D0, as

Y ::= Y0

::= Y 0Y 1

C ::=C0

::=CY 1

D ::= D0

::= Y 0D

L ::=CD

Theorem 6

L̃
∗

=⇒ C̃0Ỹ ∗
0 D̃0

Proof

We construct the relation in the following stages.

1. L̃

2. C̃0{Y 1}∗{Y 0}∗D̃0

3. C̃0Ỹ ∗D̃0

4. C̃0Ỹ ∗
0 D̃0

Lem. 3. gives the relation between 1 and 2 and between 3 and 4. Only the step between 2

and 3 requires special treatment: it depends on the relation

{Y 1}∗{Y 0}∗
∗

=⇒ Ỹ ∗

Proving it requires two preservation lemmas for every w0:

• if {Y 1}∗{Y 0}∗
∃

7−→ w0 then Ỹ ∗ ∃
7−→ w0.

• if Ỹ ∗ ∀
7−→ w0 then {Y 1}∗{Y 0}∗

∀
7−→ w0.

The first one is an easy consequence of the ability to chose any possible ρ in the
∃

7−→

relation. The second one is the angular stone of our method, and is proved in the following

lemma.

Lemma 4

Let w ∈ Σ∗ and α ∈ Ỹ ∗. If α
∀

7−→ w then there exists β ∈ {Y 1}∗ and γ ∈ {Y 0}∗ such that

βγ
∀

7−→ w.

Proof

By induction on the length of α . If α is in the required form, we have the result. If not,

then the subsequence Y 0Y 1 can be found at least once in α:

α = α0Y 0Y 1α1
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We can decompose w into two parts w0 and w1 such that

α0
∀

7−→ w0

Y 0Y 1α1
∀

7−→ w1

But, for any b, we have Y bα1
b

7−→Y 0Y 1α1. Therefore, Y bα1
∀

7−→w1 and in turn α0Y bα1
∀

7−→

w.

We can then use the induction hypothesis on α0Y bα1 to obtain β and γ satisfying the

conditions of the theorem.

5.4 Performance

The above encoding yields good performance in practice, even with a naive implementation

of the oracle providing the stream of bits ρ , which does not produce perfectly balanced

trees. Indeed, Fig. 7 shows the chart generated from a sample C program. It exhibits the

drastic cut-off in non-zero node density formalized in Def. 10, except for a few linear

shapes, as one can observe. These are caused by our implementation of the oracle, which

is naive. In our implementation, the bit which is generated is a parameter of the function V ,

and it is flipped (deterministically) for some recursive calls. This means that, inside a given

subchart, all instances of associative rules either right-associate or left-associate, yielding

a linear arrangement of results in the chart. Yet, this strategy for bit generation is the best

we have found with respect to observed performance. The reason might be that more even

distributions of results in the chart worsens the locality of non-zero data, yielding smaller

zero subcharts.

6 Related Work

6.1 Our Own Previous Work

Claessen [2004] wrote a paper titled “parallel parsing processes”, but which has only

tenuous connections with the present work. The paper of 2004 presents a parsing tech-

nique based on usual sequential parsers, but where disjunction is represented by processes

running concurrently. An advantage of that technique is that the parser processes the input

string in chunks that can be discarded as soon as the parser has analyzed them.

Bernardy [2009] has shown how to combine the above idea with the online parsers

of Hughes and Swierstra [2003]. This makes the resulting parsing algorithm suitable for

incremental parsing in an editing environment such as Yi [Bernardy, 2008]. However the

method is brittle, because grammars need to be expressed in a special-purpose formalism,

and error-correction must be “bake-in” the grammar. In contrast, the method presented here

accepts grammar in Backus-Naur Form (see Sec. 7.6); only iterative structures need to be

changed to use the special construction of Sec. 5. One does not have to worry about error

recovery because all substrings are parsed.

The present work was presented, in a draft version, at ICFP [Bernardy and Claessen,

2013]. Besides correcting several minor mistakes and improving the presentation, the present

version gives a better analysis of the complexity of the parsing algorithm: we show that the

algorithm is asymptotically faster by a factor of logn in the average case.
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6.2 Special Support for iteration

The assumption we make on inputs, which is tied to the balancing of the parse trees is

partially inspired by work by Wagner and Graham [1998]. They show that linear parse trees

cannot be handled efficiently (in parallel or incrementally), because updating a structure

requires time proportional to its depth. Wagner and Graham then deduce that efficient

incremental parsing requires a special purpose support for iteration, as we have done in

Sec. 5.

6.3 General CF Parsing

Perhaps the most well known method for parsing general CF languages is that of Tomita

[1986]. This method has in common with ours that it achieves linear performance on well-

behaved inputs, while degrading gracefully to the best possible performance (cubic) in the

worst case.

The main difference between the methods is that Tomita’s algorithm processes the input

sequentially, while we can process it any bottom-up order. This means that the condition for

well-behaved inputs is different for either methods. In Tomita’s case, the condition is that,

at any point during the parsing, the amount of ambiguity is small (bound by a constant),

implying that the next action of the parser is most of the time determined by the next

symbol in the input. In our case, it is captured by Def. 10, which essentially means that

the input should be hierarchical. Tomita’s condition does not imply ours: linearly arranged

inputs can be deterministic. Checking the other implication is left for future work. It is

not easy to conclude: our condition imposes non-local conditions which may or may not

restrict non-determinism in a linear processing of the input.

The chief advantage of our method is its divide-and-conquer structure, which means that

is can be used in a standard parallel or incremental framework. Tomita inherits essential

use of the sequential processing of the input from LR parsing, making his technique not

amenable to parallelisation.

6.4 Parallel Parsing

There is a wealth of previous work devoted to efficient recognition and parsing of context-

free languages on abstract parallel machines, so much that a comprehensive survey of the

field is out of the scope of this paper. The situation can however be summarized as follows:

to the best of our knowledge, before this work, algorithms proposed for parallel parsing

either need an unrealistic number of processors, or they target a language class which is

too restrictive to be of practical interest.

Too many processors Sikkel and Nijholt [1997] describe a parallel algorithm (in section

6.3) which can recognize a string of length n in O(logn) time, but it requires O(n6)

processors in the worst case.

A line of work involving Rytter gives a dozen of complexity results for various sub-

classes of CF and various abstract machines. The most closely related results are perhaps

the following.
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Chytil et al. [1991] present a simple parallel algorithm recognizing unambiguous context-

free languages on a CREW PRAM in time log2 n with only n3 processors. The similarity

with our work is that the authors restrict the languages they accept to a well-behaved subset

of CF to obtain sensible running time. In our opinion the present work captures better the

actual sets of inputs found in the actual practice of CF parsing.

Too restrictive grammars Rytter and Giancarlo [1987] analyze an algorithm which can

parse a bracket grammar in O(logn) time and O(n/ logn) processors. This is fast and does

not use too many processors, but is restricted to languages where the grouping of non-

terminals is completely explicit in the input: each production rule starts with an opening

bracket and ends with a closing bracket.

6.5 Automatic Parallelisation

Gibbons [1996] (following the work of Bird [1986]) states that if a function can be ex-

pressed both as a leftwards and rightwards function (foldl and foldr), then it can also be

expressed as a sequence homomorphism. Morita et al. [2007] use this theorem to derive

such sequence homomorphism algorithmically. They present a tool which can produce a

sequence homomorphism when given functions expressed both as foldl and foldr.

It would be interesting to check if the method could derive an efficient parallel parsing

algorithm. As far as we understand, the method might (possibly with extensions) be able to

discover the Valiant algorithm from a leftwards and a rightwards CYK algorithm. However,

we think that discovering the interest of a sparse matrix representation out of reach: it

requires a creative step which is hard to capture in an automatic tool.

Mainstream parsing algorithms (such as LL(k) or LALR(k)) also seem hard to parallelise

using an automatic method. First, it is not clear how one can reverse such a parser, because

the definition of the algorithm is tightly coupled with direction of parsing (as their name

indicates). Second, Morita et al. [2007] do not give an upper bound on the efficiency of the

generated combination operator (bin), but only measure the performance of the generated

code on a number of examples. As we understand there may be situations where the method

produces an associative operator of linear (or worse) complexity, thereby yielding modest

parallelisation gains (if any).

6.6 Simultaneous Incremental and Parallel Computation

Burckhardt et al. [2011] propose a model of computation which captures both incremental

and parallel execution. Their model is based on concurrently running tasks which commit

their results atomically upon completion. Our work is instead based on the well-known

sequence homomorphism as model of parallel and incremental computation.

7 Discussion

7.1 Destructive Updates

We were tempted to solve the problem of iteration by using destructive updates. That is, to

make associative rules such as Y ::= YY consume their arguments. That is, when a Y non-
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terminal is added to the chart using the above rule, the two Y non-terminals that compose

it would be removed. We have attempted this solution, but faced a couple of issues, which

will not surprise an audience of functional programmers.

• On the theoretical side, reasoning about parsing with destructive updates of the chart

has proven intractable. The generation relation describing which strings are recog-

nized by such a parser is hard to define, let alone reason about. A major difficulty

is to combine destructive updates with a notion of non-determinism similar to that

described in Sec. 5. Indeed, the user has no control on which particular consuming

rule will fire first, because the order depends on the particular of the implementation

of Valiant’s algorithm (the order in which matrix multiplications are run, etc.) and

the exact positioning of the substrings.

• On the practical side, the presence of updates makes for a more complicated imple-

mentation. It would also mean to abandon (so far unexploited) parallel opportunities

in the matrix multiplication and the V function.

7.2 Optimization

In many grammars, a fair proportion of non-terminals occur only either on the left, or on

the right of binary productions. Assume for example that A only ever occurs on the left. It

is wasteful in this case to consider A for right-combinations, as does the algorithm we have

presented so far.

This optimization is available to many CF parsing algorithms, but it is especially useful

to us, because it acts in synergy with the detection of empty matrices. Indeed, by having

separate matrices of left-combinable and right-combinable non-terminals, each matrix be-

comes sparser. This means that some combinations can be discarded in blocks, that is, at

the level of matrices instead at the level of individual non-terminals.

An additional benefit of this optimization is that it pays for the cost of tagging non-

terminals with an extra bit, as we describe in Sec. 5. Indeed, 0-tagged non-terminals occur

only on the left of binary productions, and 1-tagged non-terminals occur only on the right

in our encoding of iteration. Therefore this optimization eliminates all the cost of tagging:

instead of tagging a non-terminal with a bit, it suffice to insert it only in the relevant matrix.

7.3 Implementation

An implementation of the parsing method presented here, including special support for

iteration as presented in Sec. 5 and the optimization presented above, is implemented

as a new back-end for the BNFC tool, [Forsberg and Ranta, 2012] available in version

2.6, licensed under the GPL [Free Software Foundation, 1991]. The tool takes a grammar

in BNF with annotations for efficient repetition. When running the tool with the option

--cnf, it produces a Haskell implementation of CNF tables and an instance of the Valiant’s

algorithm using it. As other BNFC back-ends, our implementation produces full parsers,

not mere recognizers.
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7.4 Unexploited Parallelism

The parallelisation that we suggest can take advantage of at most a number of processors

proportional to the length of the input. When parsing using Valiant’s algorithm, there is

more parallelism to take advantage of (for example two of the recursive calls in the V

function are independent from each other). However, running in parallel all recursive calls

to V would require asymptotically more processors than the length of the input. We do

believe that this is not a reasonable assumption to make when parsing a whole input.

However, in the case of incremental parsing, where only a tiny fraction of the input will be

re-parsed, one might want to take advantage of such extra parallelism opportunities.

7.5 Unexploited Incrementality

We have suggested that the incremental version of the parser should run the V function

O(logn) times when changing one symbol in the input. In fact, it might be possible to use

a better implementation of the chart data structure, which would support an incremental

update with a single run of the V function. Indeed, when changing a single symbol of the

input, only the part of the chart which depends on that symbol (the square whose bottom-

left corner is the symbol in question) needs to be recomputed. This improved re-use of

results is left for future work.

7.6 Chomsky Normal-Form

Even though we assume that we transform the grammar to CNF for ease of presentation,

this is not actually the best form to use in an implementation. In fact, it is better to convert

the grammar to 2NF (where productions have at most 2 symbols) and derive the operations

(·) and σ using a slightly modified algorithm, using the method described by Lange and

Leiß [2009], as we have done in our implementation.

The conversion from Backus-Naur Form (BNF) to CNF (or 2NF) involves a division

of long productions into binary ones. This is usually done by chaining the binary rules

linearly. If the productions of the input grammar are long, this impacts negatively the

performance of our algorithm, which performs best on balanced inputs. Fortunately it is

not difficult to divide long productions into a balanced tree of binary rules.

The CNF grammar is suitable not only for recognition of languages, but also for parsing:

the parse trees obtained by the converted grammar are essentially a binarization of the trees

obtained by the grammar in BNF. The aspect which cannot be preserved by the conversion

is the presence of cycles of unit rules. However, the elimination of such cycles can only be

seen as a benefit: they introduce an unbounded amount of ambiguity in the grammar, and

are a symptom of a mistake in the grammar specification.

7.7 A New Class of Languages

The assumption we make on the input (depending on a constant α), defines implicitly a

new class of languages. The class lies between regular and context-free languages. We

call the class α-balanced context-free languages, or BCF(α). The use of the parameter α

contrasts with that of the parameter k in classes such as LL(k) or LR(k). While LL(k) or
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LR(k) restricts the form that a CF grammar can take, BCF(α) does not. Instead, it restricts

the strings of the languages.

We have found that for a given grammar, programs are written with a shallow nesting

structure, instead of a deep one (with the exception of regular iteration) and hence we have

anecdotal evidence that any given programming language is a member of BCF(α), if we

consider the language as the set of strings actually written in it by programmers. Together

with observation that the parsing problem for BCF(α) has lower computational complexity

than that of general-context free languages, this makes BCF(α) worthy of study.

In fact, because the assumption we make is not one which is enforced by usual CF

grammars, but we still observe it to hold in practice, it must mean that the assumption is

self-imposed by the writers of these inputs, namely programmers. This is not too surprising,

as our assumption can be violated only by programs which exhibit an amount of nesting

comparable to the total length of the input. As folklore goes, programmers are adverse

to deeply-nested constructions. Indeed, understanding a program with n levels of nesting

requires to remember n levels of context. The link between the ability for a computer

to efficiently parse an input in parallel and incrementally and for a human to do so is

intriguing, and we hope that the present paper sheds an interesting light on it.

7.8 Generalization

The body of the paper does not depend on the particulars of CF recognition: we abstract

over it via an arbitrary association operator. This means that other applications can be

devised. A natural extension is to support CF parsing, as we have done in our imple-

mentation. More exotic extensions are also possible. A first example would be to support

symbol tables, which are for example necessary for proper parsing of C. In this extension,

non-terminals would be associated with two symbol sets, one that they assume comes

from the environment and one which they provide to the environment. The combination

operator would reconcile these two sets. A second example is stochastic parsing. Here,

a probability would be associated with each non-terminal and production rule, and the

association operator would simply multiply the probabilities.

In fact, our method can be seen as a general way to turn a non-associative operator into

an associative one by computing all possible associations. The efficiency is recovered by

the ability to filter out most of the results; either because the original operator discards

them, or because there is (possibly hidden) associativity which can be taken advantage of.

Yet another generalization of Valiant’s algorithm produces a parser for Boolean gram-

mars, as recently shown by Okhotin [2014]. Boolean grammars allow to define the gen-

eration of non-terminals not only by union of production rules, but also intersection and

complement. They can characterize non context-free languages, such as {anbncn | n ∈ N}.

In this case, the ring-like structure that we have used is not sufficient: one must apply a

Boolean function to all possible combination of non-terminals before obtaining the parses

of a given substring.
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7.9 The Old as New

It strikes us that a parsing algorithm published in 1975 finds an application in the area

of parallelisation for computer architectures of the 2010 decade. Further, Valiant gives no

indication that the algorithm described should find any practical parsing application. As

it seems, he aims only to tie the complexity of context-free recognition to that of matrix

multiplication (via the transitive closure operation).

Indeed, in the case of parsing (in contrast to mere recognition), subtraction of matrices

is not defined. Hence one cannot use the efficient Strassen algorithm [Strassen, 1969] for

multiplication, and in turn the complexity of general context-free parsing using Valiant’s

method is cubic, and fails to beat the simpler CYK algorithm.

Our contribution is to recognize that Valiant’s algorithm performs well for parsing prac-

tical inputs, given a special handling of iteration and a sparse matrix representation (even

when using the naive matrix multiplication algorithm). If we also account for the ease of

making parallel and incremental implementations of the algorithm thanks to its divide and

conquer structure, we must classify Valiant’s algorithm as a practical method of parsing.

In fact, Valiant’s algorithm offers such a combination of simplicity and performance that

we believe it deserves a prominent place in textbooks, on par with LALR algorithms.

8 Conclusions

At the start of this work, we set out to find an associative operator with sub-linear com-

plexity that could be used to implement a divide-and-conquer algorithm for parsing. The

goal was to obtain a parallelizable parsing algorithm that would double as an incremental

parsing algorithm. We managed to find such an operator, but the desired complexity only

holds under certain assumptions that luckily do seem to hold in practice. The conditions

hold when the recursive nesting depth of a program text only grows, say logarithmically

in terms of the total length of the program. An unanticipated result of our work is thus

the definition of a new class of languages. We were also forced to come up with a special

way of dealing with iteration (frequently occurring in grammars) so it would not break this

practical assumption.
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Appendix: C Program Fragment

BEGIN PROGRAM

vo id s t a r t b a n dw i d t h t im e r ( s t r u c t h r t ime r p e r i o d t im e r , i n t p e r i o d )
{

uns igned long d e l t a ;
i n t s o f t , hard , now ;

f o r ( ; ; ) {
i f ( h r t i m e r a c t i v e ( p e r i o d t im e r ) )

break ;

now = h r t im e r c b g e t t im e ( p e r i o d t im e r ) ;
h r t im e r f o rw a r d ( p e r i o d t ime r , now , p e r i o d ) ;

s o f t = h r t i m e r g e t s o f t e x p i r e s ( p e r i o d t im e r ) ;
hard = h r t i m e r g e t e x p i r e s ( p e r i o d t im e r ) ;
d e l t a = i n t o n s ( k t ime sub ( hard , s o f t ) ) ;
h r t i m e r s t a r t r a n g e n s ( p e r i o d t ime r , s o f t , d e l t a ,

HRTIMER MODE ABS PINNED , 0) ;
}

}

s t a t i c vo id u p d a t e r q c l o c k t a s k ( s t r u c t rq ∗rq , l ong d e l t a ) ;

vo id u p d a t e r q c l o c k ( s t r u c t rq ∗rq )
{

l ong d e l t a ;

i f ( rq−>s k i p c l o c k u p d a t e > 0)
r e t u rn ;

d e l t a = s c h e d c l o c k c p u ( cpu o f ( rq ) ) − rq−>c l o c k ;
rq−>c l o c k += d e l t a ;
u p d a t e r q c l o c k t a s k ( rq , d e l t a ) ;

}

s t a t i c i n t s c h ed f e a t s h ow ( s t r u c t s e q f i l e ∗ m, vo id v )
{

i n t i ;

f o r ( i = 0 ; i < SCHED FEAT NR ; i++) {
i f ( ! ( s y s c t l s c h e d f e a t u r e s & (1 << i ) ) )

s e q pu t s (m, ”NO ” ) ;
s e q p r i n t f (m, ”%s ” , s ch ed f e a t name s [ i ] ) ;

}
s e q pu t s (m, ”\n” ) ;

r e t u rn 0 ;
}

END PROGRAM

Fragment of a C program corresponding to the chart in Fig. 4. It is excerpt by hand from the

linux kernel scheduler (beginning of the file https://github.com/torvalds/linux/

blob/master/kernel/sched/core.c)
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