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ABSTRACT

With the explosion of information stored world-wide, data inten-
sive computing has become a central area of research. Efficient
management and processing of this massively exponential amount
of data from diverse sources, such as telecommunication call data
records, telescope imagery, online transaction records, web pages,
stock markets, medical records (monitoring critical health condi-
tions of patients), climate warning systems, etc., has become a
necessity. Removing redundancy from such huge (multi-billion
records) datasets resulting in resource and compute efficiency for
downstream processing constitutes an important area of study. “In-
telligent compression” or deduplication in streaming scenarios, for
precise identification and elimination of duplicates from the un-
bounded data stream is a greater challenge given the real-time na-
ture of data arrival. Stable Bloom Filters (SBF) address this prob-
lem to a certain extent. However, SBF suffers from a high false
negative rate (FNR) and slow convergence rate, thereby rendering
it inefficient for applications with low FNR tolerance.

In this paper, we present a novel Reservoir Sampling based Bloom
Filter, (RSBF’) data structure, based on the combined concepts
of reservoir sampling and Bloom filters for approximate detection
of duplicates in data streams. Using detailed theoretical analysis
we prove analytical bounds on its false positive rate (F'PR), false
negative rate (F'N R) and convergence rates with low memory re-
quirements. We show that RS BF offers the currently lowest FN
and convergence rates, and are better than those of SBF while using
the same memory. Using empirical analysis on real-world datasets
(3 million records) and synthetic datasets with around 1 billion
records, we demonstrate upto 2x improvement in FNR with better
convergence rates as compared to SBF, while exhibiting compara-
ble FPR. To the best of our knowledge, this is the first attempt to
integrate reservoir sampling method with Bloom filters for dedupli-
cation in streaming scenarios.

1. INTRODUCTION

Data intensive computing has evolved into a central theme in the
research community and the industry. There has been a tremendous
spurt in the amount of data being generated across diverse applica-
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tion domains such as IR, telecommunication (call data records), on-
line transaction records, web pages, medical records, virus databases
and climate warning systems to name a few. Processing such enor-
mous data is computationally prohibitive, and is further compounded
by the presence of duplicates and redundant data, wasting precious
compute time. Removing redundancy in the data helps in improv-
ing resource utilization and compute efficiency especially in the
context of stream data, which generally requires real-time process-
ing at 1 GB/s or higher. In this work, we consider the problem of
real-time elimination of redundant records present in large stream-
ing datasets. A record may be considered redundant, if it had ar-
rived previously in the stream. Formally, this is referred to as the
data deduplication or intelligent compression problem. Data re-
dundancy removal (DRR) and deduplication are used interchange-
ably in this paper.

Consider, for example, a large nation wide telecommunication
network, where each call generates call data records (CDRs). Each
CDR contains details about a particular call such as the calling
number, the called number and so forth. Due to errors in CDR gen-
eration, multiple copies of a CDR may get generated. Before stor-
ing these CDRs in a central data center, one needs to perform dedu-
plication over around 5 billion CDRs with real-time performance.
Solutions involving database accesses as in traditional systems are
prohibitively slow. Since algorithms involving typical Bloom filters
such as [11] are extremely resource intensive with huge memory
requirements (20GB or higher for 6B CDRs at FPR = 1e — 5), ap-
plications have to resort to disk based Bloom filer data structures at
the expense of reduced performance. Hence, there is a strong need
for deduplication algorithms that work in-memory or with reason-
able memory, have real-time performance and also have low FPR,
FNR and better convergence rates. This poses a very challenging
problem.

Search engines regularly crawl the Web to update their corpus of
webpages. Given the list of URLs extracted from the content of a
crawled page, a search engine must probe its archive to determine
if the URL is already present in its collection, and if re-crawling
of the URL can be avoided [?]. This involves duplicate detection,
which in practice may be imprecise but is indispensable given the
number of webpages present in the Internet. The consequence of
an imprecise duplicate detection is that some already-crawled pages
will be crawled again (caused by FNR), or some new URLs which
should be crawled are missed (caused by FPR). Here, a high FNR
might lead to severe performance degradation, while a relatively
high FPR results in new pages being ignored leading to a stale cor-
pus of webpages, both of which need to be balanced since a search
engine can archive only a small portion of the entire web [6].

[[17] proposes another application for approximate duplicate de-
tection in a streaming environment. In a Web advertising scenario,



advertisers pay web site publishers for clicks on their advertise-
ments. For the sake of profit, it is possible that a publisher fakes
some clicks (using scripts). Hence a third party, the advertising
commissioner, has to detect those false clicks by monitoring dupli-
cate user IDs and IPs. Here, low FNR is necessary to ensure min-
imal fraud. Ensuring low FNR while simultaneously having low
FPR, along with memory efficiency presents a difficult scenario.

Straightforward approaches for data redundancy removal (DRR)
involve pair-wise string comparisons, leading to quadratic com-
plexity. This prohibits real-time redundancy removal over enor-
mous (1 to 10 billion) number of records. In order to address
this computational challenge, Bloom filters [4] are typically used.
Bloom filters are space-efficient probabilistic data structures that
provide fast set membership queries, but with a small false positive
rate (FPR). Parallel Bloom filter based algorithms have also been
explored in [[11]].

Typical Bloom filter approaches involve k comparisons for ev-
ery record, where k is the number of hash functions computed per
record to check the bits of the Bloom filter array. This leads to poor
performance, as for an in-memory DRR over billions of records,
the memory required by such Bloom filter array is very high (order
of tens of Gigabytes depending on the false positive rate). One ap-
proach is to store the Bloom filter array on the disk and bring parts
of it into memory for reading and updates. But, this would lead to
a huge fall in the overall DRR throughput (due to disk access over-
heads). Further, there is a trade-off between the cache performance
and memory efficiency [19]] in such Bloom filter design.

In order to address these challenges, we present the design of
a novel Bloom filter based on biased Reservoir Sampling [22| ?],
referred to as RSBF (Reservoir Sampling based Bloom Filter). Us-
ing threshold based non-temporal bias function we obtain upto 2 x
improvement in FNR and much better convergence rates as com-
pared to [6]] while maintaining nearly the same FPR. The choice of
such bias functions may be of independent research interest in this
direction.

This paper makes the following contributions:

(1) We present the design of a novel Bloom filter based on bi-

ased Reservoir Sampling, RSBF'. Using threshold based non-temporal

bias function, we obtain improved FNR and convergence rates as
compared to [[6] while maintaining similar FPR.

(2) Using detailed theoretical analysis, we provide upper bounds
on FPR and FNR. Further, we exhibit the faster convergence of our
algorithm, compared to S BF', with expected bounds on the num-
ber of 1s in the Bloom filters.

(3) We demonstrate real-time in-memory DRR using both real
and synthetic datasets of the order of 1B records. We observe upto
2x better FNR and much better convergence rates compared to the
prior results.

2. PRELIMINARIES & BACKGROUND

A Bloom filter is a space-efficient probabilistic data structure that
is widely used for testing membership queries on a set [3]]. The ef-
ficiency is achieved at the expense of a small false positive rate,
where the Bloom filter may falsely report the presence of an ele-
ment in the set. However, it does not report false negatives, i.e.
falsely reporting the absence of an element in the set. Represent-
ing a set of n elements by a Bloom filter requires an array of m
bits (m << n), initially all set to 0. To insert an element e; into
the Bloom filter, & bits (locations) in the Bloom filter array are set.
These k locations are evaluated from k independent hash functions
hi(ei),...,hi(e;). If all the locations are already set to 1, then
either the element e; is already a member of the set or is a false
positive. The probability of the false positive rate [4] for a standard

Bloom filter is given by:

FPR ~ (1 - e*’“"/m)k 2.1

Given n and m the optimal number of hash functions & = In 2.(m/n).

For detailed analysis of these derivations, please refer [4].

To support a situation where the contents of a set changes over
time, with elements being continually inserted and deleted, Fan et
al. [9]] introduced counting Bloom filters. This approach allows el-
ements to be updated in the Bloom filter by using a small counter
instead of a single bit at every position. Insertion now requires the
corresponding counters to be incremented. On the other hand, dele-
tion requires the corresponding counters to be decremented. The
process of deletion introduces a false negative, (F'N) wherein an
element is wrongly reported as unique.

In reservoir sampling [22]], one continuously maintains a reser-
voir of size n from the data stream. The first n points in the data
stream are added to the reservoir for initialization. Subsequently,
after ¢ elements of the data stream have been processed, the (t+1)™"
element is added to the reservoir with probability n/(t + 1), also
known as the insertion probability. This element replaces a ran-
domly chosen element from the current reservoir. We note that
the probability value n/(¢ 4+ 1) reduces with stream progression.
Reservoir sampling thus satisfies the following property:

Property After ¢ points in the data stream have been processed,
the probability of any point in the stream belonging to the sample
of size n is equal to n/t.

One interesting characteristic of this maintenance algorithm is
that it is extremely efficient to implement in practice. When new
points in the stream arrive, we only need to decide whether or not to
insert into the current sample array which represents the reservoir.
The sample array can then be overwritten at a random position. The
bias function [?] associated with the ‘" data point at the time of
arrival of the t'" point (r < t) is given by f(r, ) and is related to
the probability p(r, t) of the r™ point belonging to the reservoir at
the time of arrival of the ™ point. Specifically, p(r,t) is propor-
tional to f(r,t). The function f(r,t) is monotonically decreasing
with ¢ (for fixed r) and monotonically increasing with r (for fixed
t). Therefore, the use of a bias function ensures that recent points
have higher probability of being represented in the sample reser-
voir. Hence, we define the concept of a bias-sensitive sample S(t),
which in turn is defined by the bias function f(r, ) as,

Definition Let f(r,t) be the bias function for the " point at the
arrival of the t*" point. A biased sample S(t) at the time of arrival
of the ¢ point in the stream is defined as a sample such that the
relative probability p(r, t) of the r* point belonging to the sample
S(t) (of size n) is proportional to f(r,t).

3. RELATED WORK

Duplicate detection poses a classical problem within the domain
of data storage and databases giving rise to numerous buffering so-
lutions. With the advent of online arrival of data and transactions,
detection of duplicates in such streaming scenarios using similar
buffering and caching mechanisms [?] constitutes a naive solution
given the inability to store the entire information arriving in an infi-
nite stream. Hence fuzzy duplicate detection methods [?, ?] present
an alternative method for tackling the problem.

Data stream management has emerged as a fundamental research
domain involving approximate frequency moments [?], element
classification [?], correlated aggregate queries [?] to name a few.
Bit Shaving, the problem of fraudulent advertisers not paying com-
mission for a certain fraction of its traffic has been studied in [?].



Approximate duplicate detection has been an area of concern both
in the domain of database management and Web applications. Al-
gorithms for redundancy removal for search engines were studied
in [?, 2, ?]. File-level hashing was used in storage systems to de-
tect duplicates [?, ?, ?]. However this techniques provides a low
compression ratio. For fixed-sized data blocks, [?] proposed se-
cure hashes. Bloom filter was first used by the TAPER system [?].
Further caching techniques have also been applied on Bloom filters
asin [?].

In this paper we put forth a novel approximate deduplication al-
gorithm in streaming environments using Bloom filters [3]]. The
literature contains several proposed Bloom filter variants to suit
various application needs for deduplication. These include, count-
ing Bloom filters [9], compressed Bloom filters [18]], space-code
Bloom filters [15], and spectral Bloom filters [21] among many.
Counting Bloom filters replace an array of bits with counters in or-
der to count the number of items hashed to a particular location.
The others use subtle variations to efficiently meet the nature of
demand of the applications.

The window model of Bloom filters [17]] also contains several
flavors such as landmark window, jumping window, along with the
recently proposed sliding window [?], all of which operate on a
definite amount of history of objects observed in the stream to draw
conclusions for future processing of the stream elements.

Another exciting Bloom filter structure proposed recently, S B F [6]

provides a stable guarantee regarding the nature of performance
of the structure given a very large stream. This constant perfor-
mance is of huge importance in real-time applications involving
de-duplication. It continuously evicts stale information from the
Bloom filter to make room for more recent elements. It also pro-
vides a tight upper bound of false positive rates, however theoreti-
cally it attains stability at infinite stream length. In this paper, we
used Biased Reservoir sampling based Bloom filter and prove up-
per bounds on both FPR, FNR and fast convergence to stability.
Using empirical analysis, we demonstrate around 2x better FNR
compared to 6] and also better convergence rates.

Interestingly, Bloom filters have also been applied to network-
related applications, albeit for solving different problems, such as
finding heavy flows for stochastic fair blue queue management [[10]],
providing a useful tool to assist network routing, such as packet
classification [2]], per-flow state management and the longest prefix
matching [[7]. [13|] proposes a new Bloom filter structure that sup-
ports representation of items with multiple attributes and exhibits a
low false positive rate. It is composed of multiple Bloom filters and
a hash table to represent items accurately and efficiently. [[12] ex-
tends Bloomjoin, the state-of-the-art algorithm for distributed joins,
to minimize the network usage for the query execution based on
database statistics. [[16] discusses how Bloom filters can be used
to speed up name-to-location resolution process in large scale dis-
tributed systems.

A related problem of finding the number of distinct elements
present in a data stream was explored in [?]. There exists several
other methodologies in the data stream domain to approximate the
frequency and norms of the input elements. Our approach as pre-
sented in this paper provides a conjugation of Bloom filters and
reservoir sampling technique to efficiently approximate duplicate
detection in such unbounded streams.

The problem of synopsis maintenance [?] [?] has been studied
in great detail due of its extensive application for query estima-
tion [?] in data streams. Many synopsis methods such as sampling,
wavelets, histograms and sketches are designed for use with spe-
cific applications such as approximate query answering. A com-
prehensive survey of stream synopsis construction algorithms may

K Bloom Filters each of s bits
k

HO)  HQ  HO)
I
i i
I
[

\‘hm \ B \ };(3,\ \h(b\

Inserted directly

m

clements

STREAM

~ ~.

Insert probability = p ;=8 /i

Figure 1: The structure of RSBF

be found in [1]. An important class of stream synopsis construc-
tion methods is reservoir sampling [22]]. The method of sampling
has great appeal because it generates a sample of the original multi-
dimensional data representation. Hence, it can be used with arbi-
trary data mining applications with minor changes to the underlying
methodologies and algorithms.

[?] proposes a new approach on memory-less temporal bias
function based reservoir sampling for continually evolving data
streams. It demonstrates that such bias functions lead to efficient
implementation: O(1) processing time per stream element. While
biased reservoir sampling is a difficult problem (with the one pass
constraint), [?] shows that it is possible to design very efficient re-
placement algorithms for such important class of “memory-less"”
bias functions. In addition, incorporation of bias results in up-
per bounds on reservoir sizes in many cases limits the maximum
space requirements to nearly constant even for an infinitely long
data stream. This enables its application in a variety of space-
constrained scenario.

In this paper, we present a non-temporal threshold based bias
function for reservoir sampling for the deduplication problem using
Bloom filters, resulting in low FNR. Further, we establish theoret-
ically and show empirical results to support the efficiency and fast
convergence rates of our algorithm.

4. RESERVOIR SAMPLING BASED BLOOM
FILTER APPROACH (RSBF)

The design of RSBF (Figure [I) is motivated by the reservoir
sampling technique [22] and is targeted for detecting duplicates in
large data streams. We consider k& Bloom filters each of size s bits.
Initially all the bits are set to zero. Each element of the stream is
mapped to one of the s bits in each of the k different Bloom fil-
ters. Each of these k bits is generated by a uniform random hash
function. These k locations are also probed to determine whether
the element is distinct or duplicate, similar to the procedure fol-
lowed in regular Bloom filters. If all the k bits are set to 1, then the
element is said to be duplicate, otherwise distinct.

The initial s elements of the stream are directly inserted into
the RSBF, as in reservoir sampling method, by setting the cor-
responding k bits in the Bloom filters. Each element e;, ¢ > s of
the stream is then inserted with a probability p; = s/ (insert prob-
ability), where ¢ is the current length of the stream and s is the size
of a Bloom filter (the reservoir). For inserting the element e;, the k
hash bits are generated by the hash functions and the corresponding
Bloom filter bits are set to 1.

In order to accommodate future elements in the infinite stream
within a limited memory space and simultaneously prevent high



false positive rates, whenever an element is inserted, we reset & bits
to 0. These k bit locations, one from each Bloom filters are chosen
uniformly at random. However, this deletion operation leads to the
occurrence of false negatives in the structure. We observe that the
use of reservoir sampling technique in the Bloom filters increases
the probability that an element will not be inserted (due to a pos-
sible duplicate) into the Bloom filters with decrease in the insert
probability as the stream progresses. As a result, the false negative
rate of the structure increases, since even new elements found later
in the stream may be repeatedly rejected by the reservoir algorithm,
thereby degrading the performance of RSBF'.

To address this problem, we propose a novel extension which
can be considered as a weak form of biased reservoir sampling per-
formed on the stream. After the reservoir sampled insertion prob-
ability falls below a specific threshold, say p*, any element in the
stream reported as unique by probing its corresponding bits in the
k Bloom filters, is inserted. This helps to keep the false negative
rate in check as the next time the same element arrives, it will cor-
rectly be reported as a duplicate. This procedure also enables the
Bloom filters to evolve with changes in the data skew of the stream,
and help RS BF to dynamically adapt itself to a changing stream.
The reservoir sampling still operates on the other elements of the
stream.

As the stream length increases, the probability that an element
is duplicate increases (for finite universe of the stream elements).
If most of the elements in the Bloom filters become 1, the false
positive rate increases. The reservoir sampling method, helps to
prevent such a scenario by rejecting elements. While this leads
to increase in the false negative rate, the use of the threshold p*,
helps to control the increase in F'N R. Thus this novel combination
of reservoir sampling and the threshold, complements each other;
keeping both the F"P R and the F'N R at acceptably low limits. The
pseudo-code for the working of RSBF is given in Algorithm|[T}

We emphasize that the insertion procedure of RSBF selects k
bits (one bit for each of the Bloom filters) to be set to 1 and an-
other k bits to be reset to 0. This approach leads to a near constant
number of 1s and Os in RSBF, stability as discussed later in the
paper. Hence, RS BF exhibits significantly lower FNR and faster
convergence rate to stability with comparable FPR as that of SBF/,
making it a more attractive structure for modern day applications.
In the remaining paper we describe in details and validate with the-
oretical bounds and empirical results the efficient performance of
RSBF.

5. THEORETICAL FRAMEWORK

In this section, we present theoretical bounds and analysis for
FPR, FNR and the fraction of ones (convergence rates) of our RSBF
data structure. Later we present extensive results justifying the va-
lidity of our approach. Table[T|describes the symbols used through-
out the paper.

5.1 False Positive Rate

Here we compute the false positive rate, (£'PR) of our proposed
algorithm. A false positive, F'P occurs when a distinct element of
the stream is reported as a duplicate.

Consider the FPR at €,,,11, the (m + 1)‘h element of the stream.
We assume that the elements of the stream are uniformly drawn at
random from a universe I', with |T'| = U.

Let Punique be the probability that e,, 41 has not occurred in the
first m elements of the stream.

U—-1\"
Punique = (?) 6D

Algorithm 1: RSBF(S)

Require: Threshold FPR (F'PR;), Memory in bits (M), and
Stream (.5)
Ensure: Detecting duplicate and distinct elements in S

Compute the value of k from FPR;.
Construct k£ Bloom filters each having M /k bits of memory.
iter < 1
flag + 0
for each element e of S do
Hash e into k bit positions, H = hq,--- , hg.
for each h; in H do
if bit at position h; in the i*™ bloom filter is not set then
Result <+ DISTINCT
flag <1
break
end if
if flag = O then
Result <+ DUPLICATE
end if
Compute probability of insertion of e, P.
if (P. < (s/iter)) OR (iter < s) then
for all positions h; in H do
Set the bit at h; of the i*" bloom filter.
end for
else
if (P. > p*) AND (Result = DISTINCT) then
for all positions h; in H do
if h; = 0 then
Find a bit in i*" bloom filter which is set to 1,
and reset to 0.
Set the bit at h; position to 1
end if
end for
else
No operation.
end if
end if
iter < iter + 1
end for
end for

Let €41 hash to H = {hq, ha, ..., hy} positions, where h; €
1, 5] for the i™ Bloom filter. e,,+1 will be reported as a duplicate
when all the bit positions in H are set to 1 after the first m stream
elements. Since all the Bloom filters are identical and are indepen-
dently processed, we argue with one of them, and then extended for
the others.

Assume element e; hashes to position £ in the first Bloom filter.
Initially, all the bits of the Bloom filters are set to 0. Let the latest
transition of A1, from 0 to 1, occur at the I™ iteration, and thereafter
h1 is never reset, i.e. set to 0. We observe, in RS BF' a bit will not
be reset to 0 in any iteration, if the stream element for the iteration
is not selected for insertion or a different bit of the Bloom filter is
chosen for deletion, if the element is to be inserted. We represent
the probability of such a transition of 1 by Pirans. Therefore,

Pirans = P(e is inserted). P(e; selects hi).P(hq is not reset)

_, L ﬁ (1—p;)+ sl sl ﬁ A
—pl~8~ pi pi- S —l~s~i:l+l P

i=l4+1

1

m



Symbols | Meanings
M Available memory (in bits)
k Number of bloom filters
S Size of each bloom filter (in bits)
i Prob. of insertion by Reservoir Sampling
p* Insertion threshold prob. for distinct elements
hi Hash position within the i™ bloom filter
S Stream of input elements

Table 1: Symbol List

This transition may happen during any of the iterations from (s+1)
to m. Hence, [ € [s + 1, m] giving,

. N1 m—s
Prange = g Pirans = E E = m (52)
l=s5+1 l=s+1

Since the different Bloom filters are independent, the analysis for
other bit positions in H hold similarly as given by Eq. (5.2). The
final decision (distinct or duplicate) regarding e, 11 is taken after
probing all the bit positions of H, and hence,

(o2 (8)

It can be observed that the transition of the bit may also be pos-
sible during the first s elements of the stream. Since the first s
elements of the stream are always inserted, all the bit positions in
H should be set at least once during this period for an element to
be reported as duplicate. Therefore, the probability that the bit in a
Bloom filter is set in the initial s iterations is given by,

Psiset:]-_(S;l) %<1_é) (54)

This bit must not be reset during the (s 4+ 1)™ to m™ iterations,
which is given by,

m 1 s
P’reset/ = H |:pl <1 - ;) + (1 _pl):| = E (55)

i=s+1

Using Eqgs. (5.4) and (5.3), the probability of all the bits for ey,41
at positions in H being set is,

(-5
Py, =(]1-=].2 (5.6)
e m

Either of the above two events will contribute to the F'P R, hence
the probability of e,,+1 being reported as an F'P can be obtained

by using Egs. (3-I), (33), and (5.6), which is given by,

o () [ (2] o

Analyzing Eq. (3.7), we observe that as the stream length m
tends to infinity, the right multiplicative factor tends to 1. How-
ever, as U — 1 < U the left multiplicative term tends to 0. Hence
as the stream length increases, the observed F'PR decreases and
nearly becomes constant. This leads to a stable performance of
RSBF similar to that of SBF. However, RSBF achieves this
convergence much faster as opposed to SBFE as discussed in Sec-
tion[5.3] In Section [6] we exhibit extensive experimental results
that validates this claim.

5.2 False Negative Rate

A false negative (FN) error occurs in a stream when a duplicate
element is recognized as distinct. In this section, we focus on deter-
mining the probability of occurrence of an FN. As per the working
of RSBF (Algorithm I, an element e will be an FN if it has oc-
curred in the stream earlier and one of the following two cases hold:

1. At least one of the k bits of the hash positions of e (set dur-
ing the previous occurrence of e) has been reset during the
insertion of another stream element into the reservoir.

2. When e occurred earlier in the stream it was not inserted due
to low insertion probability of the stream then (by Reservoir
Sampling). However, according to the threshold p* in Algo-
rithm [T} we insert every distinct element in the stream if the
current insertion probability, p; < p*. Therefore, if previ-
ous appearances of e had occurred before p; was less than p*
and were not inserted, then it is likely to be detected as an FN
when e repeats for the first time after the insertion probability
of the reservoir falls below p*.

We now consider the probability of occurrence of an FN for
an element €41, at the (m + 1) iteration. Let the previous
occurrence of element e,,+1 be at position x, where it was in-
serted into the reservoir. Therefore, Pr(em+1 occurs at  and is
inserted) = P, = p,/U. Now, for all iterations from (z + 1) to
m, either e, 41 has not occurred in the stream or was not inserted.
Thus, Pr(em,+1 has not occurred OR e,,1 has not been inserted
after x) is given by,

P m U —1 1-— yozs <N S m—x )
I/i.H{ U + U ]_[_U.m] [ pi = s/i]
i=x+1
=s(m=xz) s .
<e Um [ == is small] (5.8)
Um
Now, Pr(em+1 was last inserted at position z) is given by,
—s(m—z)
Pi=P, Py <— ¢ Unm (5.9)
Uz

Since e, +1 was last inserted at position z, the k bits corresponding
to em+1 were all set to 1. Therefore, e, 41 will be a FN if at least
one of those k bits is reset to 0. Due to the deletion operation in
case of insertion of an element into the reservoir, some of those k&
bits can be reset again. Let y be the last iteration where there is
a transition from 0 to 1 for any of the k n=bits corresponding to
em+1, after which it is not reset again till the mth iteration, and
hence x < y < m. Therefore, Pr(a bit is set at y) = Py, =
py/s = 1/y. Also, Pr(that bit is not reset after ) is given as

m

Py= ]I {pi (1 - %) +(1 fpi)} = % (5.10)

i=y+1

Hence, Pr(the last transition of the bit from 0 to 1 in a buffer at
y) can be expressed as a product of P, and P,, which is equal to
1/m.

As y can vary from x to m, therefore the Pr( the bit remains
setatm) = Y = MmoEl So, the Pr(at least one of
those k bits is reset at m) = P, = 1 — Pr(the bit remains set at
m)F =1- (m_Tz“)k Now, Pr(em+1 is last inserted at z AND
at least one of those k bits is reset at m) is given by

k
—s(m—=wx) —
Po= PP < e ‘[1_ (w)
U.x m

(5.11)
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7sl(Jm—z) S
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[*5=2]"

S 1(m_z)2 <1 (5.12)
s + Um + 21(U.m)? T
Therefore, substituting Eq. (5.12)) in Eq. (5.11) we have,
k
Pn< 1 1_(77”_””*1) (5.13)
Ux m

However, the value of z can vary within the range [(s + 1), m].
Hence, the probability of e,,,11 being reported as a FN becomes,
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If em+1 had occurred in the first s iterations, then it had defi-
nitely been inserted, and e.,+1 will be a FN if at least one of the
bits is O at the (m 4 1)™ iteration. The probability that the last
insertion of e,,1 occurs in the first s iterations is,

Fine = {17<%)3} ﬁ {%’(1fpi)+%

i=s+1
L) e
imst1
) f b
S
< % [Using Eq. G-12)] (5.15)

Similar to the previous arguments, probability of transition of a bit

from O to 1 is 1/m. As the position y can vary within [s+1, m],

the probability that the bit is set after (m + 1)" iteration is (7).

Hence for all the Bloom filters, the probability of at least one bit
being zero is given by,

Py =1-[1- i]k L (5.16)

m m

From Eq. (5.13) and (5.16) the FNR in this context is given by 2.
Using Eq. (5.14) and the above result (both can produce an FNR),

the probability of e, 41 being reported as a FN can be bounded by,

k
PFNR ~ 0 (ﬁ)

(5.17)

Hence, RS BF tends to observe a constant /"N R as the stream
length increases.

5.3 Stability Factor

S BF introduced the concept of stability of a Bloom filter, whereby
the number of 1s or Os in the structure become constant after a
time period. It should be noted that as the FPR and FNR is de-
pendent on the 1s and Os present in the Bloom filter respectively,
stability of their counts nearly guarantees constant performance of
the data structure. In the analysis that follows, we show that our
RS BF structure attains stability much earlier compared to SBF',
which guarantees to achieve stability theoretically at infinite stream
length.

In the following theorem, we intend to find out the expected frac-
tion of ones in the RSBF. The fraction of ones (or zeroes) is impor-
tant because the false positive rate (or FNR) is dependent on the
fraction of ones (or zeroes). The faster we attain stability, the better
will be the overall performance of the structure.

Let E(X) be the expected count of 1s in one of the k¥ Bloom
filters of RSBF; then the expected fraction of ones in RSBF, (¢)
can be approximated by E(X)

==, where s is the size of each Bloom
filter (in bits).

THEOREM 5.1. Given an RSBF with k.s bits, at any iteration
1, the expected fraction of ones ({) is a constant, Vi > s.

PROOF. Let A denote the count of ones in iteration (i — 1). We
begin our analysis with a single Bloom filter as other Bloom filters
(and the operations on them) are identical. We observe that by
Algorithm [T] the count of ones can either increase or decrease by
one only or remain the same in iteration ¢. Therefore, the expected
count of ones can be expressed as,

E(X) = (A=1)Pr(A—1)+APr(A) + (A+1) Pr(A+1) (5.18)

since Pr(A £ j) = 0, where j > 2.

The count of ones in a Bloom filter can decrease by one when
an element is inserted and the bit selected to be set was already
set to 1, and during deletion, one of the set bits is reset to 0. The
probability is given by,

M} (5.19)

Pr(A—1) = p; { >

The count of ones can remain the same when the i element e; in
the stream is not inserted. Further, if the element is inserted, the
count of ones can still remain the same if a 0 bit is selected to be
set to 1 and a 1 bit is reset to 0 during deletion. Also, if the bit to
be set to 1 is already set and that to be reset is already 0, the count
of ones remain constant. Hence,

Pr(\) = (1 -pi) +pi [’\(S _SQA U A(SS; A)] (5.20)

Similarly, the count can increase by one if a O bit is set to 1 and
during deletion any O bit is selected.

s—A\’
Pr(A+1) =p;
s
Substituting Equations [5.19} [5.20] and [5.21] in Equation [5.18] we

have,
1-s\?
E(X)=p |A S +1

(5.21)

+ A1 —pi)
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For any value that A can assume, we have 0 < |¢|] < 1 and
therefore the fraction of ones, F(X)/s in a buffer is a constant.
Moreover, the fraction |p;.€| is monotonically decreasing with in-
creasing values of ¢, which is the stream length. Hence for large ¢, €
is practically 0. This analysis holds identically for all the remaining
(k — 1) buffers. Therefore ( is a constant for RSBF. [

We now calculate the variance of the count of ones in a single
Bloom filter, Var[X] which can be easily extended to the remain-
ing Bloom filters, as discussed previously. Given,

Var[X] = E[X?] — (B[X])?

by simple algebraic manipulations, we have

S

Var[X] ~ 2 (A) pi B - 1} +pi —po (5.23)

Let A\ = (.s, where 0 < B < 1. Substituting this value in

Eq. (5.23), we have,
Var[X] =p: (8°+ (8—-1)%) —pi (5.24)

Eq. (5.24) implies that the variance of the count of ones in the
Bloom filters for RS BF is significantly low. For instance, when
B = 0.5 the variance is only (p;/2 — p?). Further, as the length of
the stream increases, the variance of the number of ones decreases
in the Bloom filters for RSBF'.

This analysis implies a faster convergence to stability for RS BF
with respect to SBF' which is validated by experimental results
provided in Section[f] for different datasets.

5.4 Setting of Parameters

We explore the procedure of setting the parameters for the pro-
posed algorithm to optimize its performance. Given a fixed amount
of memory space, M in bits, we theoretically search for the best
setting of the number of Bloom filters, k and the size of each Bloom
filter, s, such that s.k = M. The algorithm takes M and the thresh-
old FPR, FPR; as inputs, and computes the optimal value of &k
and s to find a suitable operating point for RS BF with low overall
FPRand FNR.

Assume that the algorithm conforms to the threshold FPR, F'PR;
after the initial s elements of the stream has been processed. An
FPR will occur for an element e if all the corresponding bits in
the Bloom filter for e, 1 are set. Considering a single Bloom filter,
the particular bit into which es41 hashes to will be set if at least
one of the s elements maps into it. Therefore,

P.e; = 1 — P(bit is not set by any of the s elements)

:17(171)S%<171) (5.25)
S e

Hence for all bits of es41 in the Bloom filters, Eq. (5.23)) becomes

1\
Prpr, = (1 - 7> (5.26)

e
Also, es+1 should not have occurred in the initial s elements. This
can be captured by the factor ((U — 1)/U)*. Considering U to be
large, this factor tends to 1, and hence we ignore this term in the
present discussion.

Equating F'P R, and Eq. (3.26) we have

1 k
(1—*) :FPRt
e

k= M (5.27)
In(1-23)
and, s = % (5.28)

We find that F'PR decreases with increase in the value of k,
while F'N R is the lowest when k& = 1. Hence, to optimize this
trade-offs, we take the value of k as the arithmetic mean of 1 and
that obtained in Eq. (5.27). Given the value of k, s can thus be
appropriately set according to Eq. (3.28).

For applications requiring a low F'NR, we can set £ = 1, and
for low F'PR requirements k is set as Eq. (5.27). Hence, the
RSBF algorithm can dynamically be suited to a particular appli-
cation needs. Section[f|exhibits that such choice of parameters help
RS BF perform better than the competing algorithms.

6. RESULTS & ANALYSIS

We implemented both RSBF and SBF [|6] algorithms and com-
pared their performance based on real as well as synthetic datasets.
The real dataset containing clickstream data E] having around 3M
records and random dataset with 1B records were used to evaluate
the quality of membership query results generated.

We performed two sets of experiments to capture: (a) Variation
of FNR, FPR and convergence with increasing number of records
in the input, and (b) Variation of FNR and FPR with increasing
amounts of memory for sampling the input stream, using multiple
datasets for increasing percentage of duplicates. In all the experi-
ments, p* was set to 0.03. For faster changing streams or for more
biased reservoir sampling method, p* can be set to a higher value.

6.1 Quality Comparison

In this section we present the variation of FNR and FPR along
with convergence rates with increasing number of records in the in-
put stream. The memory used for the underlying Bloom filter data
structure is kept constant for both SBF and RSBF in these experi-
ments. For sake of clarity, points are plotted in the curves at every
1K input stream records.

Fig. P2]presents the comparison of FPR for real dataset with more
than 3M records. Initially, till the number of input stream records
reaches the threshold, RSBF has better FPR (0.001) than SBF (around
0.0025). RSBF in this stage accepts all the input records in its
reservoir and the available memory determines the threshold count.
It can also be observed that uptil the threshold point RSBF will
not incur any FNR.

As the number of records increase, the FPR performance of RSBF
gradually becomes comparable to that of SBF. We note here that,
even with a small memory of 2KB for around 3M elements, the
FPR achieved is quite low, 0.0025. This demonstrates that both
RSBF and SBF attain low FPR for large number of records with a
significantly small memory space.

Fig. 3] presents the comparison of FPR for the synthetic dataset
with 1B records. With 128 MB memory, as the number of records
increases, the FPR for RSBF stabilizes at 0.8%, while that for SBF
stabilizes around 0.7%. With larger memory, 512MB memory, as
the number of records increases, the FPR for both RSBF and SBF
stabilizes at around 0.06%. Thus both RSBF and SBF attain com-

9'obtained from http://www.sigkdd.orqg/kddcup/
index.php?section=2000&method=data
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parable FPR for massive number of records, with the performance
becoming nearly equal at larger memory. The use of reservoir sam-
pling in RSBF enables the data structure in general to sieve out
duplicates which occur in higher probability as the stream length
increases, given the finite size of alphabet set of the input elements.
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Fig.[d] compares the FNR between RSBF and SBF with increase
in the number of records. For around 3M records and FPR thresh-
old of 0.1, both RSBF and SBF show an initially increases in FNR,
stabilizing as the number of records increases further. However, we
observe that for both 2KB and 4KB memory, RSBF clearly outper-
forms SBF by a significant margin. For 2KB memory, RSBF' has
a stable FNR of 10% which is around 1.5X better as compared to
SBF which produces a stable FNR of 15%. With increase in mem-
ory the performance gap between the two further increases in favor
of RSBF. We observe that for 4KB memory, RSBF attains a sta-
ble FNR of nearly 12% which is around 1.83x better than that of
SBF with a stable FNR of 22%.

Fig. B also compares the FNR between RSBF and SBF albeit
on synthetic dataset having 1B records and FPR threshold of 0.1.
For both RSBF and SBF the FNR again initially increases but then
stabilizes. We observe that for both 128MB and 512MB memory,
RSBF similarly outperforms SBF. For 128MB memory, RSBF has a
stable FNR of 22% which is around 1.73 x better compared to SBF

which has an FNR of 38%. With 512MB memory, for RSBF we
observe a stable FNR of 7%, around 1.86% better than SBF with a
stable FNR of 13%. Thus, RSBF consistently demonstrates better
FNR than SBF upto to a factor of 1.86x, for different datasets.
We emphasize that such significant reduction in FNR is novel
with respect to stable Bloom filters and extremely vital for practical
applications such as search engines. This performance of RSBF
can be attributed to the forced insertion of a stream element into the
reservoir when the insert probability for the system falls below the
threshold p™* as described earlier (Section E]) This approach elimi-
nates the possibility of an FNR occurring due to repeated rejection
of an element from being inserted into the reservoir given the lone
operation of reservoir sampling. It can also be observed that essen-
tially it helps RSBF' to adapt its reservoir in dynamic streaming
environments. Hence, it partially acts as a simple bias function for
RSBF'. SBF, on the other hand fails to meet such demands.
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[6] proposes S BF having a unique feature, stability of the num-
ber of 1s present in the Bloom filter leading to a stable performance
of SBF in terms of FPR and FNR. This stability poses an attractive
feature for applications for guaranteeing a constant performance
with increasing stream lengths. However, SBF' converges to its
stable point at a theoretical stream length of infinity. Practically,



this represents a very large input stream. RS BF also exhibits such
stability but converges to a stable performance at a much earlier
point. This enables applications to guarantee efficiency at a much
smaller stream length.

Fig.[compares the difference in the number of 1s for successive
number of records, in the underlying Bloom filter data structures.
By studying the variation in the difference in number of 1s with
increasing number of records, one gets insights into the conver-
gence behavior of the two algorithm. Here again, the total number
of records is around 3M and FPR threshold used is 0.1. For 2KB
memory, RSBF stabilizes quickly as the difference in the number of
1s stabilizes to nearly O at only 500K records. However, SBF does
not stabilize even at 3M records. For 4KB memory, RSBF observes
stability at around 1.5M records, but SBF fails to stabilize even at
3M records. This demonstrates that our algorithm, RSBF has much
better convergence rate than SBF.

Fig. |Z| similarly compares the difference in the number of 1s
of successive number of records for the synthetic dataset. With
512KB memory, the difference in the number of 1s stabilizes to
zero faster for RSBF (shortly after 50 million records) as compared
to SBF, which has not yet stabilized even at 455 million records.
This exactly validates Eq. (3:22)) that the number of 1s in RSBF
becomes nearly constant much ahead of SBF'.
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We further emphasize the faster convergence of RS BF in Fig. |§|
which compares the FNR of both the algorithms with increase in
stream length. We observe that the increase of FNR in RSBF is
around 0.1% over a stream length of 0.35M elements, having an
average deviation of 0.3 x 107° per element. On the other hand,
S BF demonstrates an increase in FNR of around 0.3% over 0.3M
element with the average deviation as 1 X 1075, Therefore, one can
figure out that RSBF converges to an almost stable FNR much
earlier in the stream than SBF'. This in turn reinforces the faster
convergence of the stability curves of RSBF compared to SBF,
described earlier.

6.2 Detailed Analysis

In this section, we present detailed analysis of the algorithms,
RSBF and SBF compared against variation of memory used and
percentage of distinct elements in the stream.

Tablepresents the FNR and FPR with 100K records and 76%
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distinct records while varying memory used for the underlying Bloom
Filter data structure from 16K bits to 4.2M bits. Here, both the
FNR and FPR of RSBF and SBF are close to each other for different
values of memory used. This is due to the fact that the stream size
is quite small and neither of the structures have reached their sta-
bility point. Table 3] presents the FNR and FPR with 10M records
and 49% distinct records with varying memory from 16K bits to
4.2M bits. Here again, we observe comparable results for both
FNR and FPR in RSBF and SBF as the number of duplicates and
distinct elements in the stream are roughly equal. However, with
10M records, and percentage of distinct elements lesser than 49%,
RSBF has better FNR than SBF as exhibited in other dataset values
given below.

Space SBF | RSBF | SBF | RSBF
(in bits) | % FNR | % FNR | % FPR | % FPR
16384 | 85.06 | 84.49 10.05 | 11.22
65536 | 7437 | 7485 | 8.093 | 8.384
4194304 | 5.51 6.29 | 0.00382 | 0.00263

Table 2: Dataset of 100K elements (76 % Distinct)



Space SBF RSBF SBF RSBF
(in bits) | % FNR | % FNR | % FPR | % FPR

16384 88.83 87.52 11.08 12.464
262144 88.11 86.89 10.86 12.12
4194304 | 77.33 77.73 7.822 7914

Table 3: Dataset of 10M elements (49 % Distinct)

TableElpresents the FNR and FPR with 695M records and 15%

distinct records while varying memory used for the underlying Bloom

Filter data structure from 262K bits to 4.2B bits. Here, FNR achieved
by RSBF is better than SBF and this gap is higher when larger
memory is used. At around 67M bits, RSBF has FNR of 58.3%,
while SBF has FNR of 82.48%; while at 1B bits, RSBF has FNR of
23.12%, while SBF has FNR of 37.79%. However, the FPR values
remain similar across both these algorithms.

Tablepresents the FNR and FPR with 1B records and 10% dis-
tinct records while varying memory used for the underlying Bloom
Filter data structure from 262K bits to 4.2B bits. Here again, FNR
achieved by RSBF is better than SBF. At around 67M bits, RSBF
has FNR of 58%, while SBF has FNR of 82%; while at 1B bits,
RSBF has FNR of 23.47%, while SBF has FNR of 37%. The ratio
of FNR between SBF and RSBF increases to 1.74x at 4.2B bits.
However, the FPR values remain similar across both these algo-
rithms. This demonstrates, that our algorithm, RSBF has consistent
superior FNR compared with SBF, with FPR values close to SBF
though sometimes higher by a small margin.

Space SBF RSBF SBF RSBF
(in bits) % FNR | % FNR | % FPR | % FPR
262144 88.86 87.47 12.51 11.1
67108864 82.48 | 58.2818 8.3 8.4
1073741824 37.79 23.12 0.742 0.89
4294967296 | 12.94 7.37 0.069 0.072

Table 4: Dataset of 695M elements (15 % Distinct)

Space SBF RSBF SBF RSBF
(in bits) % FNR | % FNR | % FPR | % FPR
67108864 82.58 67.66 8.262 10.262
1073741824 | 38.17 23.47 0.7 0.83
4294967296 | 13.163 7.53 0.0634 | 0.0664

Table 5: Dataset of 1B elements (10% Distinct)

7. CONCLUSIONS & FUTURE WORK

Real-time data redundancy removal for streaming datasets poses
a challenging problem. We have presented the design of a novel
Bloom filter based on biased Reservoir Sampling. Using thresh-
old based non-temporal bias function, we obtain improved FNR
and convergence rates as compared to [6] while maintaining simi-
lar FPR. Using detailed theoretical analysis, we prove upper bounds
on FPR and FNR. Further, we prove better convergence (stability
of number of 1s) of our algorithm with expected bounds on the
number of 1s compared to other algorithms.

We demonstrate real-time in-memory DRR using both real and
synthetic datasets of the order of 1B records. We demonstrate upto
2x better FNR and much better convergence rates compared to the

best [6] prior results. To the best of our knowledge, RS BF' offers
the best known FNR and convergence rates for streaming datasets
with the same memory requirement as that of SBF'. In future, we
hope to study the effect of other temporal and non-temporal biased
functions for reservoir sampling to improve the FNR. Investiga-
tion for methods of parallelizing the RS B F' algorithm may in turn
lead to further advancements of parallel data redundancy removal
research.
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