
Morton-order Matrices Deserve Compilers’ Support�

Technical Report 533

David S. Wisey Jeremy D. Frensz

Indiana University Northwestern College

November 29, 1999

Abstract
A proof of concept is offered for the uniform representation of matrices serially in Morton-order (orZ-order)

representation, as well as their divide-and-conquer processing as quaternary trees. Generally,d dimensional arrays
are accessed as2d-ary trees. This data structure is important because, at once, it relaxes serious problems of locality
and latency, while the tree helps schedule multi-processing. It enables algorithms that avoid cache misses and page
faults at all levels in hierarchical memory, independently of a specific runtime environment.

This paper gathers the properties of Morton order and its mappings to other indexings, and outlines for compiler
support of it. Statistics on matrix multiplication, a critical example, show how the new ordering and block algorithms
achieve high flop rates and, indirectly, parallelism without low-level tuning.

Perhaps because of the early success of column-major representation with strength reduction, quadtree represen-
tation has been reinvented and redeveloped in areas far from the center that is Programming Languages. As target
architectures move to multiprocessing, super-scalar pipes, and hierarchical memories, compilers must support quad-
trees better, so that more programmers invent algorithms that use them to exploit the hardware.

CCS Categories and subject descriptors:E.1 [Data Structures]: Arrays; D.3.2 [Programming Languages]: Lan-
guage Classifications—concurrent, distributed and parallel languages; applicative (functional) languages; D.4.2 [Op-
erating Systems]: Storage management—storage hierarchies; E.2 [Data Storage Representations]: contiguous repre-
sentations; F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical algorithms and problems— compu-
tations on matrices.
General Terms: Design, Performance.
Additional Key Words and Phrases:caching, paging, quadtree matrices, matrix multiplication.

1 Introduction

Maybe we’ve not been representing them efficiently for some time. Matrix problems have been fodder for higher-level
languages from the beginning [4], and the classical representations of matrices appear in the textbooks. Advocates of
column-major representation have tilted with adherents to row-major representation. Both alternatives use the same
space, and both conventions yet survive; Crout still is mentioned together with Dolittle [25][26, p. 104].

But maybe both are archaic perspectives on matrix structure, which might best be represented using a third conven-
tion. Architecture has developed quite a bit since we had to pack scalars into small memory. With hierarchical—rather
than flat—memory, only the faster memory is precious; with distributed processing instructions on local registers are
far faster than those touching remote memory. And, of course, multiprocessing on many cheap processors demands
less crosstalk than code for single threading on uniprocessors with unshared memory. Address space, itself, has grown
so big that chunks of it are extremely cheap, when mapped to virtual memory and never touched. But fast cache, local
to each processor, remains dear, and, perhaps, row-major and column-major are exactly wrong for it.

�Supported in part by the National Science Foundation under a grant numbered CDA93–03189.
ySupported, in part, by the National Science Foundation under a grant numbered CCR-9711269. Author’s address: Computer Science Dept, 215

Lindley Hall, Bloomington, IN 47405–7104, USA.dswise@cs.indiana.edu
zWork, in part, performed at Indiana University and supported by the U.S. Department of Education under a grant numbered P200A50237.

Author’s address: Computer Science Dept., Northwestern College, Orange City, IA 51041, USA.jdfrens@nwciowa.edu

1

This paper advocates Morton-order (sometimes calledZ-order) storage for matrices. Consistent with the con-
ventional sequential storage of vectors, it also provides for the usual cartesian indexing (row, column indices) into
matrices. It extends to higher dimensional matrices. The main attraction of Morton order, however, is that it offers a
memory locality to the quadtree-matrix algorithms whose use is yet growing. That is, we can provide cartesian index-
ing for the “dusty decks” while we write new divide-and-conquer and recursive-descent codes for block algorithms on
the same structures. Thus, parallel processing is accessible at a very high level in decomposing a problem. Best of all,
the content of any block is addressed sequentially, and their sizes vary naturally (they undulate) to fit the chunks of
memory transferred between levels of the memory hierarchy.

Compilers have long supported implicit ameliorations on row-major or column-major ordering, such as strength
reduction on operators and the introduction of blocking (or tiling) for locality. In order for Morton order to penetrate
the stronghold of column-major libraries, compiler writers need to deliver its beautiful features, supporting it as a
(perhapsthe) standard representation for arrays. Many programmers may not need to know that their array is Morton-
ordered at run time, but in order to take advantage of quadtree structure they need access (perhaps syntax) to use
Morton or Ahnentafel indexing directly.

1.1 Historical Perspective

The forces that elevate the importance of Morton order come from several sources—none from traditional program-
ming languages (PL). The primary forces are architectures of hierarchical memory. Memory may have been flat
(albeit small) in the 1960’s, but by 1970 paging arrived; now programs deal with register files, primary caches for both
instructions and data, secondary cache, RAM, paging disks, a LAN, and the Internet.

Processors are not central in either control or cost. Multiprocessors abound, and any processor can now be super-
scalar, with several pipes. Multiprocessing bollixes up the classic fetch/execute tempo of processing, because memory
conflicts will impede processing that is only threatened by unfavorable patterns of memory access. Cache coherency
is another manifestation of this same problem.

Today’s real cost is communication: moving bits around. Once the data is close to a processor, it pays to compute
on it as much as possible. In terms of algorithms, the divide-and-conquer style, often associated with functional
programming, becomes very attractive for decomposing computation into a few, big, independent chunks. These
become fodder for schedules and data decomposition that preclude processor and memory conflicts.

Against this simple cure is legacy code following FORTRAN style, which dominates both the program libraries
and the preparation of generations of programmers. This is especially valued among scientific programmers who
still dominate the supercomputing marketplace because they have big problems and big codes that justify the big
computers. When placing this proposal before those users, the PL community should recall a premise stated by
Backus for the first popular language:

It was our belief that if FORTRAN, during its first few months, were to translate any reasonable “scientific” program
only half as fast as its hand-coded counterpart, then acceptance of our system would be in serious danger. . . To this
day I believe that our emphasis on object-program efficiency rather than on language design was basically correct. I
believe that had we failed to produce efficient programs, the widespread use of languages like FORTRAN would have
been seriously delayed. . . . [T]he next revolution in programming will take place only whenboth of the following
requirements have been met: (a): a new kind of programming language,1 far more powerful than those of today,
has been developed and (b): a technique has been found for executing its programs at not much greater cost than of
today’s programs. [4, p. 29]

A justification for this requirement is provided by his description of what later came to be calledstrength reduction
discussed below [4, p. 34][1].

In contrast to this wisdom is the fact that even FORTRAN compilers do not now deliver the relative performance
that Backus envisioned. Supercomputing depends on libraries like BLAS3 [16], which are often hand-coded by the
manufacturer to deliver the performance that sells its big iron. Current scientific codes use BLAS3 functions like
assembly code—as if the target of compilers is not the hardware, but a model BLAS3 machine. In turn, the standard
source code for which hardware is tailored is BLAS3—not the recursive blocking anticipated here.

Yet, underneath BLAS3 there remains FORTRAN’s column-major representation, whose displacement is the target
of this paper. Although BLAS3 performance is used later as an ideal benchmark, there is little hope of reproducing
that performance through compilers that will not generate code that fine. Perhaps they should.

1His contemporary Turing Lecture suggests a functional style [5].

2

1.2 Onward

A major result of this paper is a demonstration of BLAS3 performance from a quadtree algorithm coded in C. That
is, we show BLAS3 performance using Morton-ordered matrices and a quadtree algorithm that takes advantage of
it. It is little more complex than the classic dot-product code, and relatively easy even, if one sees past its length to
appreciate its symmetry. a problem here is that the latter code enjoys traditional compiler support (such as strength
reduction, automatic blocking, and loop unrolling), but we had to simulate equivalent compilation (especially recursion
unfolding.) Performance is within 10% of BLAS3DGEMM on the SGI R8000 with a huge main memory and negligible
caching for floating-point numbers; that is, without paging or caching. When run on an SGI R10000 with small
memory and with both paging and caching, the BLAS3 code is left in the dust: 24 times slower.

This paper collects, consolidates, and clarifies the relationships among cartesian indexing, Morton indexing, Ah-
nentafel indexing, level-order indexing, and of course row-major, column-major and Morton orders. Also reviewed
and extended are the remarkably efficient implementations of (additive) group operations on dilated integers that pro-
vide the common strength reductions on cartesian indexing to Morton-order matrices [41]. [15].

The new results are BLAS3 performance from Morton order and divide-and-conquer recursion, which lend them-
selves nicely to parallelism although they are not explored here [21, 12], as well as a review of transformations
available to compilers to support this representation. Together, they suggest new formulations for old algorithms and,
perhaps even, new ones. They offer high locality to solutions for many matrix problems, regardless of the memory
parameters of the target machine.

This insensitivity has been described ascache obliviousbecause sizes of blocks to suit cache need never be
specified, especially at compile time [23]. This perspective contrasts with blocking that is dependent on page-size
[35, 18, 37] or cache-size [3, 10, 11, 32, 29, 47]. Indeed, much promising work on dense matrix computation us-
ing quadtrees and Morton order has appeared recently [12, 13, 21, 23, 28, 33, 43]. It follows earlier work on linked
quadtrees that was aimed at sparse problems [6, 27]. This all follows its impact on graphics, and both geographic and
spatial databases [40]. The beautiful features of Morton ordering are being rediscovered and redispersed because they
have not yet been absorbed deeply into PL practice.

This paper has five sections. The second defines and explores the perspective of arrays as trees, reflected in Morton
order, level order, and Ahnentafel and cartesian indexing. The third presents arithmetic on dilated integers that allows
Morton order to support row and column traversal, of both elements and blocks. The next section presents timing
results on matrix multiplication, exploring improvements that compilers should support. The fifth section concludes.

2 Basic Definitions

Morton presented his ordering in 1966 to index frames in a geodetic data base [36, 39]. He defines the indexing of the
“units” in a two-dimensional array much as in Figure 1, and he points out the truncated indices available for enveloping
blocks (subtrees), similar to Figure 2. Finally, he points out the conversion to and from cartesian indexing available
through bit interleaving.

This interleaving is formalized below, but a quick description of it will orient the reader. Consider the hexidec-
imal constantevenBits=0x55555555 from C; it has all the even bits set and all odd bits cleared. So,odd-
Bits=evenBits<<1 has the value0xaaaaaaaa , its complement. Now imagine a cartesian row indexi with its
significant bits “dilated” so that they occupy those set inoddBits . Similarly, a cartesian column indexj is dilated
so its significant bits occupy those set inevenBits . If the matrixA is stored as a vector,a, in Morton order, then
ai;j can be accessed as C’sa[i+j] regardlessof the size of the matrix. (Try this fori = 4 andj = 8 in Figure
1; the Morton index is0x020 + 0x040 or 9610.) C programmers can writea[i][j] for this reference, but only
after already fixing row length (or its stride) at compile time; or they writea[i*rowStride +j] when the stride
is determined at run time.

The definitions that follow will narrow to two-dimensional arrays: matrices. The early ones are general, for
higher-dimensions; ad-dimensional array is represented as a2d-ary tree.

2.1 Arrays

Definition 1 In the followingm = 2d is the degree of the tree appropriate to the dimensiond.

If the maximal order in any dimension isn then the tree has maximal leveldlgne.

3

0 1

4 5

2 3

6 7

10 11

14 15

8 9

12 13

3

4 5

7

9

31

32 48

63

79

80

95

96

111

112

127

143

144

159

175 191

192

207

208

240

255

1

2 6

8

1411

1213

15

64

223

224160 176

15

239

10

0

47

160

128

0

0 1 2 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-

0 1 2 3

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33

i

4i+1
4i+0

4i+2
4i+3

0 4 -1l

0 1 2 30 0 2 3i = 1 0 1 1 2 2 3 3
0 0 0 11 2 1 0j = 1 3 2 3 2 3 2 3

Figure 1: Row-major indexing of a4� 4 matrix, analogous Morton indexing (embedded in a larger one), and Morton
indexing of the order-4 quadtree.

Definition 2 A complete array haslevel-order index0. A subarray (block) at level-order indexi is either a scalar, or
it is composed ofm subarrays, with indicesmi+ 1;mi+ 2; : : : ;mi+m.

Definition 3 The root of an array hasMorton-orderindex0. A subarray (block) at Morton-order indexi is either a
unit (scalar), or it is composed ofm subarrays, with indicesmi+ 0;mi+ 1; : : : ;mi+ (m� 1) at the next level.

So Morton indexing is zero-based at every level. The difference between the level-order index of a block at levell in
an array and its Morton-order index is(ml � 1)=(m� 1):

Theorem 1 The difference between the level-order index of a block at levell in an array and its Morton-order index
is (ml � 1)=(m� 1):

The difference is the number of nonterminal nodes above levell. Since each level is indexed by its zero-based scheme,
it is necessary to know the level, as well as the Morton index, to identify a node. Figure 3 illustrates for a4�4 matrix.

We introduce Ahnentafel indices because we find them immensely useful to identify blocks at all levels [48].
Algorithms that use recursive-descent (divide-and-conquer) to descend to a block of arbitrary size, or to return the
index of a selected block, need only this single index to identify any subtree. But treat them only as identification
numbers because there are gaps in the sequence between levels. Conversions among Ahnentafel indices, cartesian
indices, Morton order, and level order are easy.

Ahnentafel indices come to us from genealogists who invented them for encoding one’s pedigree as a binary,
family tree. This generalization tom-ary trees is new.
Definition 4 [14] A complete array hasAhnentafelindexm� 1. A subarray (block) at Ahnentafel indexa is either a
scalar, or it is composed ofm subarrays, with indicesma+ 0;ma+ 1; : : : ;ma+ (m� 1).

Theorem 2 The nodes at levell have Ahnentafel indices from(m � 1)ml to ml+1 � 1. The gap in indices between
levell � 1 and levell isml(m� 2) + 1.

Theorem 3 The level of a node with Ahentafel indexa is l = blogmac = blogm
a

m�1
c. The difference between the

Ahnentafel index and the level-order index is(ml+1(m � 2) + 1)=(m � 1): The difference between the Ahnentafel
index and the Morton-order index is(m� 1)ml:

The bothersome gaps between levels in Ahnentafel indexing do not arise in binary trees; Figure 4 illustrates. The
strong similarity between level-order and Ahnentafel indexing in this common case perhaps explains why the latter
is often overlooked. For instance, Knuth’s level-order indexing, based at one, is off-by-one relative to our level-order
indexing [31, p. 401], but on binary trees it coincides with Ahnentafel indexing.

4

k

4k+0 4k+1 4k+2 4k+3

3•4l 4l+1-1

Base ten

Base two

Base four

13 14 1512

3

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

300 301 302 303 310 311 312 313 320 321 322 323 330 331 332 333

i = 0 0 1 1 0 0 1 1 2 2 3 3 2 2 3 3
j = 0 1 0 1 2 3 2 3 0 1 0 1 2 3 2 3

1
1

00000
11111

00000
00000

 1
1

00000
11111

00000
11111

 1
1

00000
11111

11111
00000

 1
1

00000
11111

11111
11111

1
1

11111
00000

00000
00000

 1
1

11111
00000

00000
11111

 1
11111

11111
00000

11111
00000

 1
1

11111
00000

11111
11111

1
1

11111
11111

00000
00000

 1
1

11111
11111

00000
11111

 1
1

11111
11111

11111
00000

 1
1

11111
11111

11111
11111

1
1

00000
00000

00000
00000

 1
1

00000
00000

00000
11111

 1
1

00000
00000

11111
00000

 1
1

00000
00000

11111
11111

Figure 2: Ahnentafel indexing of the order-4 quadtree.

l4
3 4 −1

i

4i+24i+1 4i+3 4i+4

1 2 3 4

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

 4i

i=0
Σ
-1l

0 1 2 30 0 2 3i = 1 0 1 1 2 2 3 3
0 0 0 11 2 1 0j = 1 3 2 3 2 3 2 3

1
5 6

7 8
2

9 10

11 12

3
13 14

15 16
4

17 18

19 20

0

Figure 3: Level-order indexing of the order-4 quadtree and the associated submatrices.

2.2 Matrices

Hereafter, we assumed = 2 for matrices; som = 4. In all the figures, the cartesian indices of the leaves appear in
outlined font below the tree.
Corollary 1 The difference between level-order index of a matrix block at level l and its Morton-order index is(4l �
1)=3.
Corollary 2 The gap in Ahnentafel indices between levell� 1 andl is 22l+1 + 1.
Corollary 3 The difference between the Ahnentafel index of a block or element at levell of a matrix and its level-order
index is(22l+3 + 1)=3. The difference between its Ahnentafel and its Morton-order index is3 � 4l:

Definition 5 Let w be the number of bits in a (short) word. Eachqk is a modulo-4 digit (orquat). Eachqk is
alternatively expressed asqk = 2ik + jk whereik andjk are bits.
Cartesian indices will havew bits; Morton indices (and, later, dilated integers) have2w bits.
Theorem 4 [36] The Morton index

w�1X

k=0

qk4
k = 2

w�1X

k=0

ik4
k +

w�1X

k=0

jk4
k:

corresponds to the cartesian indices: row
Pw�1

k=0 ik2
k and column

Pw�1

k=0 jk2
k

5

0

3 4 5 6

1 2

7 8 9 10 11 12 13 14

2 -1l 2 -2l+1

i

2i+1 2i+2

0 1 2 3 4 5 6 7i =

1

4 5 6 7

2 3

8 9 10 11 12 13 14 15

1

10 11

100 101 110 111

1000 1010 1011 1100 10111001 1110 1111

2l 2 -1l+1

i

2i 2i+1

0 1 2 3 4 5 6 7i =

Figure 4: Level-order vs. Ahnentafel indexing of a binary tree.

The quats, read in order of descending subscripts, select a path from the root to the node, as in Figure 2.
Corollary 4 Let l = blog4 ac. The Ahnentafel index,a =

Pl

k=0 qkr
k corresponds to the Morton index

Pl�1

k=0 qkr
k .

Of course, the set of bits,fikg, are the odd-numbered bits in the Morton index, and thefjkg are just the even-
numbered bits; and also, without Corollary 3’s two high-order1 bits, also in an Ahnentafel index. This is Morton’s bit
interleaving of cartesian indices.

Ad hoccode to convert from cartesian indices to a Morton index by shuffling bits, or the inverse conversion that
deals out the bits, can be expensive in processor cycles. If register-local, it seems either to be logarithmic in the
magnitude of the indices (looping to shift/mask bit-by-bit) or to require table look-up (say, byte-by-byte). Fortunately,
as the next section shows, most conversions can be elided.

Definition 6 The integer
�!
b =
Pw�1

k=0 4k as a bit pattern has1’s only in even bits.

In C code,
�!
b is calledevenBits 2. Also useful is

 �
b = 2

�!
b : the complementary mask,oddBbits .3 By masking a

Morton index with
�!
b and2

�!
b , one extracts the bits of the column and row cartesian indices. Morton describes how

to use these to obtain indices of neighbors. Easy identification of neighbors makes the indexing attractive for graphics
in two dimensions and for spatial data bases in three.

It is remarkable how often these basic properties of Morton ordering have been reintroduced in different contexts
[8, 9, 21, 30, 38, 46]. Samet gives an excellent history [40].4

When first introduced, it might seem that Morton indexing is poor for large arrays that are not square or whose size
is not near a power of two, because it seems to waste space. With the valid elements justified to the north and west, the
“wasted” space lands in the south and east. It can be viewed as padding, perhaps all zeroes. However, the perceived
waste is merelyaddressspace. In hierarchical memory only its margin will ever be swapped into cache. That is, the
“wastage” exists only within the logical/physical addressing of swapping disk; little valuable, fast memory is lost.

With these orders defined and the various index translations among them understood, we can summarize the
programmer’s view of Morton order:

� The elements of a matrix (an array) are mapped onto memory in Morton order.

� Row and column traversals can still be handled. See the next section.

� Restrict blocking to submatrices implicit in the quadtree (those with Ahnentafel indices.)

� If data is associated also with nonterminal blocks, store it in level order.

� Use Ahnentafel indices or level indices to control recursive-descent algorithms [48].

� With the data justified to the northwest, bounds-checking is only necessary in perimeter recursions toward the
south and east. None is needed in recursions only to the northwest.

2It becomes a very important constant that cannot be loaded as an immediate value, because sign extension fails.
But ((unsigned int)-1)/3) uses two immediates to generate this pattern, regardless of word length.

3 For three-dimensional matrices, one would use patterns of every third bit:0x49249249 and shifted left one and two bits, as well as
complements, like0xb6db6db6 .

4Similar decompositions have been applied to mesh refinement which is a different problem [19, 46,e.g.]. That decomposition generates the
vector space for a much larger (but sparse) matrix.

6

An early context for implementation of this design might be in HASKELL, which provides higher dimension arrays
as aggregates (also, array comprehensions) but does not specify an internal representation. That is, no code depends
on a particular ordering. ML and SCHEME are also available targets, because their specifications only demand arrays
of one dimension. As we have seen, the various orders coincide there, so current implementations comply. They can
be extended with array packages for higher dimensions that use Morton-ordering.

Perhaps not accidentally, these three languages do a good job with recursion in preference to iteration. That
fact delivers implicit encouragement toward recursive-descent algorithms, even though iterative, row- or column-
traversing, code can still be supported, as discussed in the next section. Morton order might open a wider market for
scientific programming in these languages.

3 Cartesian indexing and Morton ordering

The following techniques for cartesian indexing of Morton-order arrays seem to be hardly known, a fact that is un-
fortunate because they make the structure useful for blocking matrices even if only used with cartesian indexing. In
particular, this section newly shows how to compile row and column traversals (of blocks at any level of the tree) with
the reductions in operator strength associated with optimizing compilers.

3.1 Dilated integers

The algebra of dilated integers is surprisingly old. Tocher outlined them in 1954 and under similar constraints to those
again motivating us: non-flat memory with access time dependent on locality, and nearby information more rapidly
accessible [44, p. 53–55]. But how the size of the memory has changed! Tocher needed fast access into a32�32�32
boolean array stored on a drum (4Kb!).

Schrack shows how to effect efficient cartesian indexing from rowi and columnj indices into Morton-order
matrices [41]. The trick is to representi andj as dilated integers, with information stored only in every other bit.
Definition 7 Theeven-dilated representationof j =

Pw�1

k=0 jk2
k is
Pw�1

k=0 jk4
k, denoted�!| :

Definition 8 Theodd-dilated representationof i =
Pw�1

k=0 ik2
k is 2�!{ and is denoted �{ :

Theorem 5 dlg�!| e+ 1 = 2dlg je = dlg �| e:

The arrows suggest the justification of the meaningful bits within a dilated representation.
Theorem 6 A matrix ofm rows andn columns should be allocated a sequential block of ���m� 1 +

���!
n� 1 + 1 scalar

addresses.
This value is, of course, the Morton index of the southeast-most element of the matrix, plus one for (the northwest-
most) one whose Morton index is0. Not all of that sequence need be active; undefined data at the idle addresses will
remain resident in the lowest level of the memory hierarchy. Only data in the active addresses will ever migrate to
cache.
Theorem 7 [41] If “ �” is read as boolean equality, and “=” as integer equality, then for unsigned integers

(�!{ = �!|) � (i = j) � (�{ = �|);

(�!{ < �!|) � (i < j) � (�{ < �|):

So comparison of dilated integers is effected by the same processor commands as those for ordinary integers.
Definition 9 The infix operator̂ indicates bitwise conjunction;_ denotes bitwise disjunction.
Instead of representingi andj internally, represent them as �{ and�!| .
Theorem 8 The Morton index for thehi; jith element of a matrix is �{ _ �!| ; equivalently �{ +�!| .
Often addition is chosen to associate with an adjacent constant addition at compile time. In other contexts, Theorem
12 for instance, disjunction is necessary.

Addition and subtraction of dilated integers can be performed with a couple of minor instructions.
Definition 10 Addition (

!

+;

+) and subtraction (
!

�;

�) of dilated integers:

�!|
!

��!n =
���!
j � n; �{

� �n =
 ���
i� n:

�!|
!

+�!n =
���!
j + n; �{

+ �n =
 ���
i+ n:

7

Theorem 9 [41] �!|
!

��!n = (�!| ��!n) ^
�!
b ; �{

� �n = (�{ � �n) ^
 �
b :

Theorem 10 [41] �!|
!

+�!n = (�!| +
 �
b +�!n) ^

�!
b ; �{

+ �n = (�{ +
�!
b + �n) ^

 �
b :

The representations of twos-complement negative integers can also be dilated, and these computations remain valid.
So, when one of the addends is a constant, a cycle can be saved by using the precomputed dilation of its negation5:
Corollary 5

�!{
!

+�!n = �!{
!

�
���!
(�n); �{

+ �n = �{

�
 ���
(�n):

Theorem 11 In twos-complement arithmetic
�!
b =

��!
(�1);

 �
b =

 �
�1:

The previous two facts suggest that the C loop

for (int i=0; i<n; i++){...}

be compiled toint nn= �
n and

for (int ii=0, ii<nn, i=(ii-oddBits)&oddBits){...}

Theorem 12 When additions are cascaded, the final conjunction can be postponed and done once at the end.

�!|
!

+
�!
k0

!

+
�!
k1

!

+ � � �
!

+
�!
kn = h: : : [([(�!| +

 �
b +
�!
k0) _

 �
b] +

�!
k1) _

 �
b] + � � �

�!
kni ^

�!
b ;

 �{

+
 �
k0

+
 �
k1

+ � � �

+
 �
kn = h: : : [([(�{ +

�!
b +
 �
k0) _

�!
b] +

 �
k1) _

�!
b] + � � �

 �
kni ^

 �
b :

So, if i andj are not represented literally as integers, but translated by the compiler to their images, �{ and�!| ,
the resulting object code can be just a simple translation of what the programmer expects. Code like the following
source might be demanded from the programmer, but it would be better introduced via a transformation by the helpful
compiler:

#define evenBits ((unsigned int) -1)/3)
#define oddBits (evenBits <<1)
#define oddIncrement(i) (i= ((i - oddBits) & oddBits))
#define evenIncrement(j) (j= ((j - evenBits) & evenBits))
...

for (i = 0; i< rowCountOdd ; oddIncrement(i))
for (j = 0; j< colCountEven; evenIncrement(j))

for (k = 0; k< pCountEven ; evenIncrement(k))
c[i + j] += a[i + k] * b[j + 2*k];

The index computations of
�!
k and

 �
k in the innermost loop above reduce to three RISC instructions, plus two to

sum the matrix-element addresses. Although fast constant time, this is still half-again what is available from column-
major representation. With integer/floating processors tuned to column-major this difference may once have mattered.
It no longer does, now that register operations are so fast relative to memory access. It becomes important, tough, for
compilers to provide this arithmetic as loop control.

For three and higher dimensions, it seems best to implement arithmetic only for even-dilated integers, and to
translate other representations from it. Otherwise too many constants6 will occupy too many registers; for matrices
there are only two and addition needs both.

Dilated integers simplify input and output of Morton-ordered matrices in human-readable raster order [9]. Such
convenience is not computationally significant because I/O delays dominate that indexing, but it may be politically
important just to make this matrix representation accessible to the programmers who need to experiment with it.

3.2 Space and Bounds

Theorem 6 tells how much address space anm � n matrix occupies, usually more than themn positions containing
data. As already mentioned, if the difference, ���m� 1 +

���!
n� 1 + 1 � mn; is large then most of it will never move

into faster memory. Moreover, the larger the difference, the more remote (and cheaper) will be the bulk of the ad-
dresses allocated. The experiments in Section 4 demonstrate how allocated-but-untouched space does not interfere
with processing.

5Mind the sign bits. Even-dilated addition has an arithmetic-overflow exception that is harder to trap.
6See Foonote 3.

8

Rows:Columns Best Case Worst Case
1:1 100% 33%
1:2 100% 33%
1:3 60% 33%
1:4 66% 22%

Table 1: Portion of allocated address space occupied by rectangular matrices. Unoccupied space never enters cache.

The size of that excess space in a rectangular matrix depends not just on the number of elements, but also on the
ratio of the numbers of rows and columns. WithZ ordering it is more favorable to orient the matrix so that there
are more columns than rows—lest the southwest one fill as the northeast one sits empty—and the symmetry of the
indexing machinery helps encourage that. Alternatively, if there are more rows than columns, as in underconstrained
matrix problems, exchange the roles of �{ and�!| or replaceZ with I ordering in all the definitions.

It is easy to arrive at Table 1 of address space vs. matrix size. The best cases arise with2p rows; the worst occur
with 2p + 1 rows, as the extra row and columns spill into new blocks that must be allocated but sit mostly unused.
Remarkably, however, full space use is possible even with a 1:2 aspect ratio.

In block algorithms, cache hits make it better to iterate through Morton-order sequentially. For instance, ifb is
the initial index of a block from matrixA of sizen=4p that is to be zeroed, it is better to initialize it with a single,
localized loop:

for (int i=0; i<n; i++) A[b+i]=0;

than to use column-major traversal.
Bounds checking on each row and column is elegant. First of all, Theorem 7 provides a fast check of either a

Morton or an Ahnentafel index,a, against predilated row and column bounds:

if ((a &oddBits)<rowCountOdd && (a &evenBits)<colCountEven) ...

For Ahnentafel indices especially, the compiler can do even more. It can precompute two vectors of bounds on
a row or column index at each level of the quadtree. The first,rowBound[] , is a bound on the perimeter of the
matrix, to preclude access to southern and eastern padding. The second,rowDense[] , contains bounds on interior
Ahnentafel indices that are north and west of this perimeter which, once passed, obviates the need for further bounds
checking at any of its subtress/subblocks. Allocate two vectors of sizeh to contain row bounds on the Ahnentafel
indices at each level, whereh is the height of the tree. For both, thehth entry is �r . Thereafter,

rowBound[level-1] = rowBound[level]>>2;

rowDense[level-1] = (rowDense[level] �
�
 �
1) >>2;

Column bounds are to be handled similarly, but with even dilations; we usually test row and column limits simultane-
ously.

One might not be overly precise on Ahnentafel bounds at the perimeter. Because extra space is often allocated to
the south and east anyway, it has been observed to be cheaper to round up the actual bounds on the matrix to, say, the
next multiple of eight and then to treat the margins as “active” padding. For a recursive block algorithm, the alternative
is to detect blocks of size four, two, and one where there will be too few operations; with the smallest block at order
eight, operations on it can be dispatched as unconditional, straight-line, superscalar code that is faster without the
further bounds checking. That is, we choose to treat padding in small marginal blocks as sentinels initialized so they
can participate in the gross algorithm without affecting its net result. Typically this is zeroes to the south or east, and
the identity matrix to the southeast:

for (int j=0; j<n; j= (j-evenBits)&evenbits) A[3*j]=1;

Finally, symmetric matrices and matrix transpose also are easy with Morton or Ahnentafel indices. Ifmis either
kind of index, then the index of its reflected element or (untransposed) block is quickly computed by exchanging its
even and odd bits in a dosido:

((m &evenBits) <<1) + ((m &oddBits) >>1)

9

3.3 Compiler ameliorations

From the beginning of FORTRAN, programmers have expected code improvements from compiling their high-level
programs. The compiler needs knowledge of the algebra of dilated integers for Ahnentafel, Morton, and cartesian
indexing in order to compile good object code.

3.3.1 Unfold and reroll

The most important of these arises more from the foreseeable use of Ahnentafel indices, which follows so simply from
Morton order. Both these indexing schemes fix recursive block sizing to powers of two, index any block consecutively,
and both suggest recursive, divide-and-conquer algorithms.

So, at the leaves of the recursion tree the programmer should expect a compiler “optimization” similar to that
provided to iteration over cartesian indices. Specifically, he should expectunfolding of a level or three of recursions
at the leaves in order to provide the straight-line code to fill an instruction pipe or instruction cache, and to allow
superscalar processing [7]. The analog of loop unrolling, this is especially effective because many architectures are far
less efficient on tight recursions than they are on tight loops; so, recursive code can benefit tremendously from simple
unfolding there. Unsurprisingly C compilers, tuned to iteration, rarely provide this transformation.

But long runs of straight-line code are not sufficient alone. Since unfolding is exponential in the degree of recur-
sion, those runs quickly explode. (For the examples in the next section it rises with powers of eight.) Our experiments
showed that, to achieve a long run from a high degree, it is desirable to unfold more than one level (exponential ex-
plosion) and then to reroll the code back into a shorter loop (linear compression). That is, recursion unfolding is likely
to be followed by an immediate rerolling into a loop. We have observed that the low-level optimizer in even the best
compilers seems to be blind to long, linear runs of code, but attracted to shorter, encapsulated loops.

Rerolling into a shorter loop, especially, requires the algebra of dilated integers as presented in Section 3.1. That
is, the innermost recursions must be rearranged into loops on Morton indices, already manifest as row/column sums
of dilated integers.

3.3.2 Strength reduction

When Morton-order arrays are used with cartesian indices, the ideal compiler will augment the cartesian indices with
their dilated representation, and later try to replace them entirely with that representation. Part of this translation maps
the additive operators on cartesian integers to the Section 3.1 operations.

As this translation is made, however, various induction-variable optimizations could be threatened. The most
important of these isstrength reduction, by which slower operations within a loop are transmogrified to faster ones.
Allen et al. catalog ten opportunities for strength reduction accelerating a loop [1]. Of the ten,sevendepend only on
addition, subtraction, and branching as provided in Section 3.1. The other three occur more rarely (exponentiation, trig
functions, and continuously differentiable functions). Even as integers are translated into dilated notation, therefore,
the reductions that programmers expect from compilers remain accessible if they introduceadditiveoperators.

For instance, we are now building a source-to-source translator for C to translate all matrix declarations, for
instancedouble a[4][8] , into Morton-order representations, likedouble aa[96] . All index expressions on
integers will be transliterated into shadowing expressions on dilated integers; letjj be this even-dilated shadow for
an integer variablej , and letii become �i ; the odd dilation ofi . References likea[i][j] will be translated into
aa[ii+jj] . In the context of purely simple increments onii andjj , the underlyingi andj become useless.

Explicit, row-major indexing likea[i*rowStride +j] cannot be transliterated homomorphically, but a refer-
ence likea[����������i � rowStride +jj] will first be addressed via strength reduction to eliminate the multiplication. When
this reference is wrapped in a loop incrementingi , then the usual strength reduction translates the multiplication into
product+=rowStride with each iteration. Then, with odd-dilated shadows forproduct androwStride , the
addition from Theorem 10 or Corollary 5 suffices to complete the transliteration.

The fact that row and column traversals are tractableandsupported by strength reduction means that many legacy
codes using cartesian indices can successfully be recompiled to the Morton-order representation. A significant obsta-
cle, however, is represented by overlays that should have long ago been set aside by virtual memory.

10

4 A motivating example

Perhaps trite as a theoretical example, matrix multiplication is perfect for the purposes of studying the representation
of arrays and for experimenting with programming transformations on it. First of all, matrix multiplication is an
algorithm representative of the marketplace of scientific computation. Indeed it is the critical step in many numeric
algorithms, and others that don’t use it explicitly do use coincident resources. Its asymptotic bounds on time and
space, and its pattern of memory use are typical.

Expressed either iteratively or recursively, furthermore, it is a simple algorithm; experiments can be controlled. It
has the critical characteristic of computation-intensive algorithms: that time is superlinear in space. So, effects from
access to slower memory will always show up in timings of problems sufficiently large to use it. Finally, it typically
uses parallel processing, even though parallelism is not tested here; this matrix representation and the algorithms tested
are suited to it [21].

We had been exploring the clean expression of block-oriented divide-and-conquer algorithms over quadtrees. This
effort began as exercises in applied functional programming, but developed a life of its own as we developed such
algorithms forLU decomposition, including undulant pivoting and exact arithmetic and more recently forQR fac-
torization [48, 20]. Others have implementedLU and Cholesky factorization and other classic algorithms over the
quadtree representation [45, 27, 22].

Since we seek style and consistent representation before raw performance, translating internal blocks to and from
column-major representation just to get impressive BLAS3 performance fromDGEMM is not a choice [12, 13]. The
idea is to explore a uniform representation, and to discover the support it needs, as well as the algorithms it suggests.

Morton-order representation also fits Strassen’s algorithm perfectly [42, 26]. We advocate a homogeneous matrix
representation for all these algorithms. Morton-order indexing works well in our experiments; we have attained BLAS3
performance with a homogeneous matrix representation.

4.1 Experimental results

Our underlying effort here is a source-to-source synthesis from the matrix-multiplication code in Figure 5 which was
originally motivated by performance under parallel processing and hierarchical memory. It has the property that one
of the three blocks in play at any level of the quadtree remains in cache between two successive calls. The exercise in
hand-compilation uses Morton order and only two compiling techniques: unfolding of base cases (with rerolling), and
strength reduction on the computation and bounding of indices. Machine parameters, like cache size, was used only
late in the game, and an optimizing compiler could use these far better.

The Figure 5 algorithm is implemented using Ahnentafel indices to control the recursion. Theoffset is set to the
Corollary 3 difference between Ahnentafel and Morton indices, and presubtracted from all matrix references. Bounds
checking follows Section 3.2. The arguments toup mult anddown mult are actually passed in local registers
in order to avoid stack use; since the Ahnentafel computations can be inverted simply by a shift, they need not be
stacked. Moreover, the base case is unfolded from1� 1 to 8� 8 in order to avoid excessive overhead from function
call and to take advantage of superscalar processing (like loop unrolling). Balanced scheduling of parallel processes is
suggested by extra braces in the figure; statements separated only by semicolons remain sequential because of shared
write addresses [21].

4.2 Experiments

Timings were run on three machines:

� Sun 400 MHz UltraSPARC-II v9 processor including sparcv9 floating-point and 1Gb main memory (shared),
16Kb on-chip instruction cache, 16Kb on-chip data cache, and 4Mb secondary cache. CompilerCC with opti-
mization-fast .

� SGI 195MHz R10000 ip30 processor with R10010 floating-point chip and 128 Mb main memory, 32 Kb instruc-
tion cache, 32Kb data cache. Secondary unified instruction/data cache of 1 Mb. CompilerCC with optimization
-Ofast -64 .

11

#define nw(i) (i*4+0)
#define ne(i) (i*4+1)
#define sw(i) (i*4+2)
#define se(i) (i*4+3)
#define pop(i) (i/4)

int offset;
register Scalar* A_matrix, B_matrix, C_matrix;

void multiply (Matrix a, Matrix b, Matrix c) {
offset = a.offset;
A_matrix = a.matrix;
B_matrix = b.matrix;
C_matrix = c.matrix;
up_mult (3, 3, 3);

}

static void dn_mult (register Index i_C, register Index i_A, register Index i_B) {
/* All assertions about cache refer to extreme corners of */
/* the named quadrant. */

if (outOfBounds(i_A) || outOfBounds(i_B)) {}
else if (i_A >= offset)

C_matrix[i_C-offset] += A_matrix[i_A-offset] * B_matrix[i_B-offset];
else { /* Precondition: one extreme block of C_ne,A_nw, or B_ne in cache. */
{{dn_mult (ne (i_C), nw (i_A), ne (i_B)); /* Leaving C_ne_nw in cache. */

up_mult (ne (i_C), ne (i_A), se (i_B));} /* Leaving B_se_ne in cache. */
{dn_mult (se (i_C), se (i_A), se (i_B)); /* Leaving C_se_nw in cache. */

up_mult (se (i_C), sw (i_A), ne (i_B));}} /* Leaving A_sw_nw in cache. */
{{up_mult (sw (i_C), sw (i_A), nw (i_B)); /* Leaving C_sw_nw in cache. */

dn_mult (sw (i_C), se (i_A), sw (i_B));} /* Leaving B_sw_ne in cache. */
{up_mult (nw (i_C), ne (i_A), sw (i_B)); /* Leaving C_nw_nw in cache. */

dn_mult (nw (i_C), nw (i_A), nw (i_B));}}
/* Postcondition: extreme blocks of C_nw, A_nw, B_nw in cache. */

}
}

static void up_mult (register Index i_C, register Index i_A, register Index i_B) {
if (outOfBounds(i_A) || outOfBounds(i_B)) {}
else if (i_A >= offset)

C_matrix[i_C -offset] += A_matrix[i_A -offset] * B_matrix[i_B -offset];
else { /* Precondition one extreme block of C_nw,A_nw, or B_nw in cache. */
{{up_mult (nw (i_C), nw (i_A), nw (i_B)); /* Leaving C_nw_ne in cache. */

dn_mult (nw (i_C), ne (i_A), sw (i_B));} /* Leaving B_sw_nw in cache. */
{up_mult (sw (i_C), se (i_A), sw (i_B)); /* Leaving C_sw_ne in cache. */

dn_mult (sw (i_C), sw (i_A), nw (i_B));}} /* Leaving A_sw_nw in cache. */
{{dn_mult (se (i_C), sw (i_A), ne (i_B)); /* Leaving C_se_nw in cache. */

up_mult (se (i_C), se (i_A), se (i_B));} /* Leaving B_se_ne in cache. */
{dn_mult (ne (i_C), ne (i_A), se (i_B)); /* Leaving C_ne_nw in cache. */

up_mult (ne (i_C), nw (i_A), ne (i_B));}}
/* Postcondition: extreme blocks of C_ne, A_nw, B_ne in cache. */

}
}

Figure 5: Two-miss algorithm for quadtree matrix multiply [21].

12

� SGI 75MHz R8000 ip21 processor with R8010 floating-point chip and 2 Gb main memory 8-way interleaved,
16 Kb instruction cache, 16Kb data cachebut not for floats. Secondary unified instruction/data cache of 4 Mb.
CompilerCC with optimization-Ofast -64 .

The matrices are square, of the order given in the first column. We have run extensive experiments on the Morton-
order representation and the statistics grow smoothly. There are no hiccoughs due to striding, for instance, because the
blocking is inherently sequential in memory. These matrix sizes apear in our earlier paper on the parallel algorithm
[21].

The original three algorithms are

BLAS3: The manufacturer’sDGEMM library routine. That on the Sun and the SGI R100000 seem to be sensi-
tive to matrices with orders that are powers of two; probably striding trouble with the column-major
representation.

INPROD: The usual three-nested-loop inner-product matrix multiplication on column-major matrices, similar to
that in Section 3.1. The stride is the number of rows and, so, there is an obvious sensitivity to orders
that are powers of two, where memory addresses clash.

INPROD4: This is the first test on Morton-ordered matrices. The algorithm is essentially that in Section 3.1, but it
has been blocked to a4� 4 “element.” That is, the loops increment in steps of �4 or�!4 , and the body
of the inner loop is an in-line4 � 4 matrix multiply. Compilers on ordinaryfor loops provide such
blocking and unrolling; with the strange loop control we had to synthesize ours by hand.

QUADTREE8: Figure 5 with the base case unfolded thrice (8� 8) and then rerolled to a loop iterated four times.

The last algorithm tests several features that a good compiler would inject into a recursive algorithm on Ahnentafel
indices. That is, the unfolded base case of 512 multiply-adds was rolled into a loop on 16 dot-products of vectors of
size 8. This transformation was done by hand, again, and is only one of many possibilities for handling this problem.
It was difficult to shape the strange index patterns into something that a loop-oriented C compiler would optimize.
This one worked.

Both bounds vectors in Section 3.2 were used, and so the code of Figure 5 was duplicated: for the general case of
perimeter blocks and for the case where both factors are dense, in the center of the array. No further bounds testing
occurred in the latter case.

Blocks at the perimeter were forced to be8� 8 even if this overlapped into padding; the padding had been preset
to zero, and so would not corrupt the aggregate product. If this algorithm were appliedwithin another program,
it would only be applied to blocks in the Morton/Ahnentafel indexing and, so, this wash into “unallocated” space
would never occur except at the global perimeter. If blocking were regularized—as it is with Morton indexing—the
strategy of requiring this minimal block size seems reasonable for any representation; bounds checking at less than
this granularity seems to be wasteful in all blocked algorithms.

4.3 Results

These results are typical times expressed to three decimal places, but accurate only to two. In all three tables, the order
is immediately followed by theMIN imum time to do the necessary floating-point multiply-add operations, computed
only from the architecture and clock speed; it ignores memory access. An immediate observation is that even the
BLAS3 code on the UltraSPARC is running at less than half the specified flop rate. If the manufacturer’s BLAS does
not take advantage of its superscalar processor, we cannot expect its C compiler to do any better.

The columns to the right present the number of voluntary swaps reported by UNIX’sgetrusage . This measure
is presented in order to report thrashing of the paging algorithm. We could have presented the number of major page
faults instead, but they track this swap count, which is quietly zero without any paging.

Both the BLAS3 and the INPROD codes on the UltraSPARC and the R10000 exhibit a sensitivity to matrix striding
(Tables 2 and 3). This is not visible with BLAS3 on the R8000,7 although INPROD still shows it (Table 4). The
Morton-order representation does not exhibit this problem because its blocking does not “stride” through the array.

7BLAS3 times in Table 4 are old [21] because there remains a problem linking to a revised library. So swapping information is not available,
though surely zero in its monster memory.

13

Order min BLAS3 INPROD INPROD4 QUADTREE8 BLAS3 INPROD INPROD4 QUADTREE8
time col-major Morton order to 8� 8 basis Volun. swp. Volun. swp. Volun. swp. Volun. swp.

1023 2.68 7.97 276.1 27.6 19.06 0 0 0 0
1024 2.69 7.57 392 27.5 19.1 0 0 0 0
1025 2.69 7.80 269.8 28.2 19.94 0 0 0 0
1116 3.48 10.0 259.7 37.3 24.78 0 0 0 0
1280 5.25 15.17 747.5 57.5 37.1 0 0 0 0
1536 9.05 26.17 1313 69.1 64.1 0 0 0 0
1792 14.4 41.9 1817 172 101.9 0 0 0 0
1854 16.0 47.2 1211 194.3 113.2 0 0 0 0
2047 21.5 90.7 1960 264.3 151.4 0 1 0 0
2048 21.5 99.8 3243 263.5 151.4 0 0 0 0
2049 21.5 100.8 1760 265.6 154.7 0 0 0 0
2108 23.0 69.3 1804 290.9 164.9 0 2 0 3
2340 32.1 94.1 2469 397 227.7 0 0 0 0
3050 71.0 212.3 5660 889 500 0 0 0 0
4095 172 1324 14,480 2255 1203 2719 0 36 0
5000 313 996 28,530 4085 2240 5310 64,890 55,347 66,118

Table 2: Uniprocessor running times (seconds) and voluntary swaps for 4 algorithms on SUN ULTRASPARC-II

Order min BLAS3 INPROD INPROD4 QUADTREE8 BLAS3 INPROD INPROD4 QUADTREE8
time col-major Morton order to 8� 8 basis Volun. swp. Volun. swp. Volun. swp. Volun. swp.

1023 5.49 8.68 24.53 24.83 8.72 2 0 0 0
1024 5.51 8.47 61.2 24.84 8.71 0 0 0 0
1025 5.52 10.23 29.85 30.15 14.18 0 518 582 582
1116 7.13 9.26 14.73 37.88 15.69 0 619 637 635
1280 10.8 14.51 31.45 55.32 24.11 0 812 784 787
1536 18.6 24.84 124.8 95.82 37.3 8 1175 1142 1063
1792 29.5 45.2 126.6 152.2 57.4 12 1610 1613 1327
1854 32.7 51.4 137.5 170.5 65.1 44 1722 1740 1681
2047 44.0 189.9 673 227.1 91.9 4160 2207 2086 2472
2048 44.1 151.0 1039 225.9 88.0 4150 2205 2087 2361
2049 44.2 154.9 670 273.7 142.3 4600 7371 4480 7610
2108 48.1 125.7 307.2 286.7 140.2 5750 7814 4660 7650
2340 65.7 209.8 1279 387 188.4 11,140 47,100 5710 11,260
3050 145.5 7634 26,350 862 382 927,000 2,481,000 15,750 21,500
4095 352 20,690 66,864 34,800 879 2,180,000 5,990,000 4,230,000 46,500

Table 3: Uniprocessor running times (seconds) and voluntary swaps for 4 algorithms on SGI R10000

14

Order min BLAS3 INPROD INPROD4 QUADTREE8 BLAS3 INPROD INPROD4 QUADTREE8
time col-major Morton order to 8� 8 basis Volun. swp. Volun. swp. Volun. swp. Volun. swp.

1023 7.14 9.94 22.51 22.38 10.8 * 0 0 0
1024 7.15 9.94 43.72 22.36 10.81 * 0 0 0
1025 7.18 9.97 22.83 22.67 11.48 * 0 0 0
1116 9.27 12.74 36.0 29.38 14.29 * 0 0 0
1280 14.0 19.43 53.37 44.9 21.23 * 0 0 0
1536 24.2 33.6 96.4 77.7 36.5 * 0 0 0
1792 38.4 53.3 167.4 124.5 58.0 * 0 0 0
1854 42.5 58.2 197.2 138.1 64.7 * 0 0 0
2047 57.2 78.7 325 186.0 86.6 * 0 0 0
2048 57.3 79.5 731 186.7 86.7 * 0 0 0
2049 57.4 79.0 327 188.1 89.3 * 0 0 0
2108 62.4 86.5 308 209.4 95.7 * 0 0 0
2340 85.4 116.9 563 315.1 131.2 * 0 0 0
3050 189.2 257.6 1120 819 289 * 0 0 0
4095 458 626 3250 2161 694 * 0 0 0

Table 4: Uniprocessor running times (seconds) and voluntary swaps for 4 algorithms on SGI R8000

Any blocking algorithm uses a block that is, itself, sequential in address space, so the cache addressing is almost
certain to be clean; rarely a block will conflict with another operand’s but never with itself. This observation is already
an endorsement of Morton order.

Surprisingly, the INPROD4 code using Morton order was also quite fast, around thrice BLAS3 speeds across all
three machines. Based on the observation that BLAS3 runs close to machine capacity, we observe that this much
performance for so little coding effort becomes another endorsement.

TheQUADTREE8 algorithm competes very well withDGEMM. On the SGI R8000 it runs within 10% of BLAS3,
which is quite an improvement over the 600% difference of [21]; no parallel performance is offered there, but there is
no reason not to see a similar speedup. The improvement can be attributed to the unfolding, rerolling, register-passing
procedure calls, and to better compiler optimization.

The most surprising result is the relative performance ofQUADTREE8 on the R10000. Noticing its small-machine
context, we observe a 20-fold improvement at order 3050, away from a power-of-two. The wretched performance of
BLAS3 (and column-major INPROD) can be attributed to the caching of the R10000, and paging behavior of the small
main memory. The R10000 does retain floats in primary cache, so Morton order will immediately look better than on
the R8000; this improvement shows for small orders. For larger and larger matrices we can see the 128Mb memory
constraint forcing paging on the column-major representations, and less severly on Morton order. With memory
swapping at two levels, the blocking for column-major cannot keep up. Morton order is not sensitive to a single block
size, however; whatever is the size of a cache or a page, it has a block that fits nicely. As a result, it is paging 100
times less for the larger problems.

Overall, the algorithms using Morton order keep up with, and eventually beat BLAS3 in thisDGEMM race, based
on relatively unspecific C code. They contrast with those tuned by hand or by parametrization of architecture [47].

5 Conclusion

This essay appeals for compiler support for Morton ordering, a different and promising representation of arrays. It has
already been shown to be convenient and effective for expressing parallel algorithms [21, 23] but, as demonstrated here,
it suffers from the quality of compiler support that was thought essential even for the first higher-level programming
language for scientific programming.

Morton-order indices, used for internal representation, is easily converted to/from Ahnentafel indexing, used for
recursion control, and conversions are readily available between them and cartesian indexing, as used by classic codes,
as well as level-order indexing, used to decorate internal nodes of the quadtree structure. Each has its own use, but
the translations among them are readily available. It is particularly convenient that, as late as run time, indexing
proceeds without provision for column-size or striding; good cache use and paging arises from the “right” algorithms

15

and blocking by subtrees.
It is always possible to convert from column-major to Morton order in time proportional to the size of the matrix, so

why bother changing conventions? First, any large conversion is memory intensive, and so especially wasteful. One
can also anticipate successive conversions as several algorithms are applied over different representations. Second,
we need Morton order used extensively to encourage recursive/quadtree, localized algorithms even though cartesian
indexing is also available there. Third, newer languages, like HASKELL [2, 17], have aggregate operations on matrices
that can be cast into any representation; Morton order is ideal for them and this common representation would drop
barriers between them and other languages. Finally, programmers need more support for block-local decompositions
and divide-and-conquer on modern architectures. Morton order leads them to these low-level efficiencies, but they
need the minimal compiler support outlined here.

The INPROD4 results show how programs that only use loops can benefit from run-time locality that would result
from the compiler’s transformation of his matrix into Morton order. It would need to convert hisdo-loop indices into
dilated representation, and to use a block tiling and a schedule that fits the underlying quadtree. Of course, the usual
compiler tricks, like strength reduction must remain.

PL occupies high ground in Computing Research; it provides the tools with which all other work is done. If it is to
fulfill its obligation to help different fields communicate with one another, then it has to listen to what they are already
saying. Morton order has long been in use in several disparate fields, and its interest is yet rising in the oldest ones. So
it is surprising that it has not been adopted by PL as a supported tool. We ask that this happen soon.

6 Acknowledgements

Special thanks to Hanan Samet who provided the earlier references.

References

[1] F. E. Allen, J. Cocke, & K. Kennedy. Reduction of operator strength. In S. W. Muchnick & N. D. Jones (eds.)
Program Flow Analysis: Theory and ApplicationsEnglewood Cliffs, NJ: Prentice-Hall (1981), 79–101.

[2] S. Anderson & P. Hudak. Compilation of HASKELL array comprehensions for scientific computing.Proc. ACM
SIGPLAN ’90 Conf. on Program. Language Design and Implementation, SIGPLAN Not.25, 6 (June 1990),
137–149.

[3] J. M. Anderson, S. P. Amarainghe, & M. S. Lam. Data and computation transformations for multiprocessors.
Proc. 5th ACM SIGPLAN Symp. on Principles and Practice of Parallel Program., SIGPLAN Not.30, 8 (August
1995), 166–178.

[4] J. Backus. The history of FORTRAN I, II, and III. In R. L. Wexelblat (ed.),History of Program. Languages, New
York, Academic Press (1981), 25–45. Also preprinted inSIGPLAN Not.13, 8 (August 1978), 165–180.

[5] J. Backus. Can programming be liberated from the von Neumann style? A functional style and the algebra of its
programs.Commun. ACM21, 8 (August 1978), 613–641.

[6] P. Beckman.Parallel LU Decomposition for Sparse Matrices Using Quadtrees on a Shared-Heap Multiprocessor.
Ph.D. dissertation, Indiana University, Bloomington (1993).

[7] R. M. Burstall & J. Darlington. A transformation system for developing recursive programs.J.ACM24, 1 (Jan-
uary 1977), 44–67.

[8] F. W. Burton & J. G. Kollias. Comment on ‘The explicit quad tree as a structure for computer graphics.’Com-
put. J.26, 2 (May 1983), 188.

[9] F. W. Burton, V. J. Kollias, J. G. Kollias. Real-time raster-to-quadtree and quadtree-to-raster conversion algo-
rithms with modest storage requirements.Angew. Informatik4 (1986), 170–174.

[10] S. Carr & R. B. Lehoucq. Compiler blockability of dense matrix factorizations.ACM Trans. Math. Softw.23, 3
(September 1997).

16

[11] M. Cierniak & W. Li. Unifying data and control transformations for distributed shared-memory machines.
Proc. ACM SIGPLAN ’95 Conf. on Program. Lang. Design and Implementation, SIGPLAN Not.30, 6 (June
1995), 205–217.

[12] S. Chatterjee, A. R. Lebeck, P. K. Patnala, & M. Thottenthodi. Recursive array layouts and fast
parallel matrix multiplication.Proc. 11th ACM Symp. Parallel Algorithms and Architectures, 222–231.
http://www.acm.org/pubs/citations/proceedings/spaa/305619/p222-chatterjee/

[13] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, & M. Thottethodi. Nonlinear array
layouts for hierarchical memory systems.Intl. Conf. on Supercomputing, 1999(to appear).
http://info.acm.org/pubs/contents/proceedings/supercomputing/

[14] H. G. Cragon A historical note on binary tree.SIGARCH Comput. Archit. News18, 4 (Dec 1990), 3.

[15] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, & T. von Eicken. LogP:
a practical model of parallel computation.Commun. ACM39, 11 (November 1996), 78–85.

[16] J. Dongarra, J. DuCroz, S. Hammarling, & R. Hanson. An extended set of FORTRAN basic linear algebra sub-
programs.ACM Trans. Math. Softw.14, 1 (March 1988), 1–17.

[17] J. Fasel & P. Hudak. A gentle introduction to HASKELL. SIGPLAN Not.27, 5 (May 1992), T-48–T-53.

[18] P. C. Fischer & R. L. Probert. Storage reorganization techniques for matrix computation in a paging environment.
Commun. ACM22, 7 (July 1979), 405–415.

[19] G. C. Fox. A graphical approach to load balancing and sparse matrix-vector multiplication. In M. Schultz (ed.)
Numerical Algorithms for Modern Parallel Architectures, IMA Vol. in Math. & Appl.13. New York: Springer
(1988) 37–61.

[20] J. Frens.Matrix Factorization Using a Block-Recursive Structure and Block-Recursive Algorithms.PhD disser-
tation, Indiana University, Bloomington (in progress).

[21] J. Frens & D. S. Wise. Auto-blocking matrix multiplication, or tracking BLAS3 performance from source code.
Proc. 1997 ACM Symp. on Principles and Practice of Parallel Program., SIGPLAN Not.32, 7, (July 1997)
206–216.

[22] M. Frigo, C. E. Leiserson, & K. H. Randall. The implementation of the CILK -5 multithreaded language.
Proc. ACM SIGPLAN ’98 Conf. on Program. Language Design and Implementation, SIGPLAN Not.33, 6 (May
1998), 212–223.

[23] M. Frigo, C. E. Leiserson, H. Prokop, & S. Ramachandran. Cache-oblivious algorithms, Extended abstract. Lab
for Computer Science. M.I.T. (May 1999).
http://supertech.lcs.mit.edu/cilk/papers/abstracts/FrigoLePr99.html

[24] Irene Gargantini. An effective way to represent quadtrees.Commun. ACM12, 12 (December 1982), 905–910.

[25] G. H. Golub & C. F. Van Loan.Matrix Computations,1st ed., Baltimore: The Johns Hopkins University Press
(1989), 86.

[26] G. H. Golub & C. F. Van Loan.Matrix Computations3rd ed., Baltimore: The Johns Hopkins University Press
(1996).

[27] P. W. Grant, J. A. Sharp, M. F. Webster, & X. Zhang. Experiences of parallising finite-element problems in a
functional style.Softw. Prac. Exper.25, 9 (September 1995), 947–974.

[28] F. G. Gustavson. Recursion leads to automatic variable blocking for dense linear-algebra algorithms.IBM J.
Res. Develop.41, 6 (November 1997), 737–755.

[29] N. J. Higham. Exploiting fast matrix multiplication within the Level 3 BLAS.ACM Trans. Math. Softw.16, 4
(December 1990), 352–368.

17

[30] Y. C. Hu, S. L. Johnsson & S.H. Teng. High performance Fortran for highly irregular problems.Proc. 6th ACM
SIGPLAN Symp. on Principles and Practice of Parallel Program., SIGPLAN Not.32, 7 (July 1977), 13–24.

[31] D. E. Knuth.The Art of Computer ProgrammingI, Fundamental Algorithms(3rd ed.), Reading, MA: Addison-
Wesley, (1997).

[32] I. Kodukula, N. Ahmed, & K. Pingali. Data-centric Multi-level Blocking.Proc. 1997 ACM Conf. on Pro-
gram. Language Design and Implementation, SIGPLAN Not.32, 7, (May 1997) 346–357.

[33] Dinh Lê. Block, Systolic, and Recursive Block Decompostion Schemes for Randomized Gaussian Elimination.
PhD dissertation, Univ. of California at Los Angeles (1996).

[34] M. Lee & H. Samet. Navigating through triangle meshes implemented as linear quadtrees. Submitted for publi-
cation.http://www.cfar.umd.edu./ftp/TRs/CVL-Reports-1998/TR3900-lee.ps.gz .

[35] A. C. McKellar & E. G. Coffman, Jr. Organizing matrices and matrix operations for paged-memory systems
Commun. ACM12, 3 (March 1969), 153–165.

[36] G. M. Morton. A computer oriented geodetic data base and a new technique in file sequencing. Ottawa, Ontario:
IBM Ltd. (March 1, 1966).

[37] G. Newman Organizing arrays for paged memory systems.Commun. ACM38, 7 (July 1995), 93–103 + 108–110.

[38] J. A. Orenstein & T. H. Merrett. A class of data structures for associative searching.Proc. 3rd ACM SIGACT–
SIGMOD Symp. on Principles of Database Systems(1984), 181–190.

[39] G. Peano. Sur une courbe, qui remplit toute une aire plaine.Mathematische Annalen36 (1890), 157–160.

[40] H. Samet.The Design and Analysis of Spatial Data StructuresReading, MA: Addison-Wesley, (1990),x2.7.

[41] G. Schrack. Finding neighbors of equal size in linear quadtrees and octrees in constant time.CVGIP: Image
Underst.55, 3 (May 1992), 221-230.

[42] V. Strassen. Gaussian elimination is not optimal.Numer. Math.13 (1969), 354–356.

[43] M. Thottethodi, S. Chatterjee, & A. R. Lebeck. Tuning Strassen’s matrix multiplication for mem-
ory efficiency Proc. Supercomputing ’98. Los Alamitos, CA: IEEE Computer Society (1998).
/cdrom/sc98/sc98/techpape/sc98full/thotteth/index.htm

[44] K. D. Tocher. The application of automatic computers to sampling experiments.J. Roy. Statist. Soc. Ser. B16, 1
(1954), 39–61.

[45] S. Toledo. Locality of reference inLU decomposition with partial pivoting.SIAM J. Matrix Anal. Appl.18, 4
(October 1997), 1065–1081.

[46] M. S. Warren. & J. K. Salmon. A parallel hashed oct-tree N-body problem.Proc. Supercomputing ’93.Los
Alamitos, CA: IEEE Computer Society Press (1993), 12–21.

[47] R. C. Whaley & J. J. Dongarra. Automatically tuned linear algebra software.Proc. Supercomputing ’98. Los
Alamitos, CA: IEEE Computer Society (1998).

[48] D. S. Wise. Undulant block elimination and integer-preserving matrix inversion.Sci. Comput. Program.33, 1
(January 1999), 29–85.
http://www.cs.indiana.edu/ftp/techreports/TR418.html

18

