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Abstract. The array-computational model pioneered by Iverson’s lan-
guages APL and J offers a simple and expressive solution to the “von
Neumann bottleneck.” It includes a form of rank, or dimensional, poly-
morphism, which renders much of a program’s control structure im-
plicit by lifting base operators to higher-dimensional array structures.
We present the first formal semantics for this model, along with the first
static type system that captures the full power of the core language.
The formal dynamic semantics of our core language, Remora, illuminates
several of the murkier corners of the model. This allows us to resolve some
of the model’s ad hoc elements in more general, regular ways. Among
these, we can generalise the model from SIMD to MIMD computations,
by extending the semantics to permit functions to be lifted to higher-
dimensional arrays in the same way as their arguments.
Our static semantics, a dependent type system of carefully restricted
power, is capable of describing array computations whose dimensions
cannot be determined statically. The type-checking problem is decidable
and the type system is accompanied by the usual soundness theorems.
Our type system’s principal contribution is that it serves to extract the
implicit control structure that provides so much of the language’s expres-
sive power, making this structure explicitly apparent at compile time.

1 The Promise of Rank Polymorphism

Behind every interesting programming language is an interesting model of com-
putation. For example, the lambda calculus, the relational calculus, and finite-
state automata are the computational models that, respectively, make Scheme,
SQL and regular expressions interesting programming languages. Iverson’s lan-
guage APL [7], and its successor J [10], are interesting for this very reason. That
is, they provide a notational interface to an interesting model of computation:
loop-free, recursion-free array processing, a model that is becoming increasingly
relevant as we move into an era of parallel computation.

APL and J’s array-computation model is important for several reasons. First,
the model provides a solution to Backus’s “von Neumann bottleneck” [1]. Instead
of using iteration or recursion, all operations are automatically aggregate oper-
ations. This lifting is the fundamental control flow mechanism. The iteration
space associated with array processing is reified as the shape of the arrays being



processed. Though the paradigm is not without implementation challenges of its
own, it at least holds out the promise of eliminating the heroic measures required
by modern compilers (e.g., the construction of program-dependency graphs and
their difficult associated decision procedures [20]) to extract parallelism through
the serialised program’s obfuscatory encoding.

Second, operator lifting provides a form of polymorphism based on operands’
rank, or dimensionality. An operation defined for arguments of one rank is auto-
matically defined for arguments of any higher rank. They are thus parameterized
over the ranks of their inputs. The operator for scalar addition is also used for
adding a vector to a matrix, a scalar to a three-dimensional array, and so forth.

Third, despite its great expressive power, the core computation model is sub-
Turing. Lifting operations to work on aggregate structures means the control
structure is embedded in the data structure. With a finite data structure rep-
resenting the program’s control structure, all iteration is bounded. Thus APL’s
computational model has the potential to occupy a “sweet spot” in language de-
sign: increased analytic power without surrendering significant expressiveness.

1.1 Addressing the Model’s Shortcomings

Iverson received a Turing award for the design of APL, and the language is
often cited as an example of beautiful design [4]. Yet the language—and its
accompanying model of computation—has received little study from the formal-
semantics research community. Iverson worked almost entirely isolated from the
rest of the programming-language research community, even adopting his own
private nomenclature for his sui generis language mechanisms. Iverson never
developed a formal semantics, or a static type system for his language designs.
The beautiful, crystalline structure of the core language accreted non-general
ad hoc additions. For example, APL’s reduction operator is able to correctly
handle empty vectors when the function being folded across the vector is a
built-in primitive such as addition or min: base cases are provided for these
functions. Programmers who wish to reduce empty vectors with programmer-
defined functions, however, are out of luck.

We address many of the shortcomings of the model and its associated lan-
guage. First, we define a core language that expresses the essence of the rank-
polymorphic array-processing model, along with a formal semantics for the lan-
guage. Besides eliminating ambiguity and pinning down the corner cases, de-
veloping the formal semantics enabled us to replace some of APL and J’s ad
hoc machinery with regular, general mechanisms. Our treatment of higher-order
functions, for example, is much more general; this, in turn, allows us to extend
the basic array-lifting model to permit arrays of functions (that is, in the function
position of a function application) as well as arrays of arguments. This effectively
generalises the language’s computational model from SIMD to MIMD.

With the essence of the array-computational model captured by our untyped
core language and its dynamic semantics, we then develop Remora, a language
whose static type system makes the rank polymorphism of a program term
explicit. Our type system is a significant result for four reasons:



Soundness We provide a safety theorem connecting the well-typed term judge-
ment to the dynamic semantics of the language. Our type system guarantees
that a well-typed term will never become stuck due to the shape or rank of an
array argument failing to meet the requirements of its operator.

Expressiveness It permits typing a term that produces an array whose shape is
itself a computed value. Our type system is based on Xi’s Dependent ML[18]
and tuned to the specific needs of Remora’s rank polymorphism.

Decidability Despite its expressive power, the dependent elements of Remora’s
type system are constrained to make the type-checking problem decidable.

Control structure It exposes the iteration space. Recall that the point of Iverson’s
rank polymorphism is to permit programmers to write programs using element
operators that are automatically lifted to operate across the iteration space of
the aggregate computation. This means that Remora’s static types make the
implicit, unwritten iteration structure of a Remora term explicit. In short, our
static semantics provides the key “hook” by which compilers can reason about
the structure of the computation.

We have implemented the semantics we present using PLT Redex [6]. Our
hope (for future work) is that we can exploit this type information to compile
programs written in the rank-polymorphic array computation model efficiently:
either by translating the reified iteration-space axes of an array back to a seri-
alised, nested-loop computation, or by parallelising the program.

Note that Remora is not intended as a language comfortable for human
programmers to write array computations. It is, rather, an explicitly typed,
“essential” core language on which such a language could be based.

2 Background: Array-Oriented Programming

2.1 Iverson’s Model

The essence of Iverson’s array-oriented programming model, which appeared
in APL [7] and was later expanded in its successor J [10], is treating all data
as regular, i.e., hyperrectangular, arrays. The individual scalar elements of an
array, such as numbers or booleans, are referred to as atoms. Every r-dimensional
array has a shape, which is a vector of length r giving the dimensions of the
hyperrectangle in which its atoms are laid out. The value r is called the array’s
rank : for example, a matrix has rank 2, a vector has rank 1, and a scalar is taken
to have rank 0. An array can be represented using only its shape and its atoms.

The notation we will use for arrays looks like [2, 3, 5]3, meaning a 3-vector
whose atoms are 2, 3, and 5. A rank 0 array will be written [12]•, with • de-
noting an empty shape vector. We write [9, 8, 7, 6, 5, 4]2,3 for a 2 × 3 matrix,
[2, 4, 6, 8, 1, 3, 5, 7]2,2,2 for a 2 × 2 × 2 array, and so on. For readability, it is
sometimes convenient to write arrays in a matrix-like layout:



[
9 8 7
6 5 4

]
2,3

An array may also be written with unevaluated expressions:[
(− 10 1) (− 10 2) (− 10 3)

]
3

Rank Polymorphism and Frame/Cell Decomposition An array can be
viewed at several different ranks. A 4 × 3 numeric matrix can be viewed as a
4× 3 frame of scalar cells, a 4-element frame of 3-vector cells, or a scalar frame
whose single cell is a 4× 3 matrix. More generally, a rank-r array can be viewed
r + 1 different ways: from a rank r frame containing rank 0 cells to a rank 0
frame containing a single rank r cell.

Every function has an expected rank for each of its arguments. The expected
rank can be a natural number n, indicating that the argument should be viewed
as containing rank n cells contained in a frame of unspecified rank. Simple arith-
metic functions such as + and log expect arguments with rank 0, i.e., scalars.
Applying a function expecting a rank n input to an array of higher rank n′ ap-
plies the function to the array’s n-cells, collecting the multiple outputs into the
remaining n′ − n dimensional frame. A function can also have expected rank of
∞; such functions consume an entire array of arbitrarily high rank, so they are
never lifted. For example, length extracts the first element of an array’s shape
vector—how long the array is. The programmer may write a function with neg-
ative argument rank −n. Lifting then breaks arguments into a rank n frame
around cells of unspecified rank (the “−n-cells”), and then the function’s body
processes each cell. A function with −1 argument rank which finds its argument’s
length effectively extracts the second dimension instead of the first.

∗ [1, 2, 3]3 [10]• 7→ ∗ [1, 2, 3]3 [10, 10, 10]3 7→ [(∗ 1 10), (∗ 2 10), (∗ 3 10)]3

+ [10, 20, 30]3

 1 2
3 4
5 6


3,2

7→ +

 10 10
20 20
30 30


3,2

 1 2
3 4
5 6


3,2

7→

 (+ 10 1) (+ 10 2)
(+ 20 3) (+ 20 4)
(+ 30 5) (+ 30 6)


3,2

Fig. 1. Automatic expansion of array arguments

To lift a function of multiple arguments, the frames must be brought into
agreement by duplicating the cells of the smaller-framed argument (the new ele-
ments are underlined in Figure 1). After this duplication, all arguments’ frames
are the same; this permits the cell-wise function application. The way argument
arrays are expanded to the same frame means that function application is only
valid if one argument’s frame is a prefix of the other argument’s frame. This is
the prefix agreement rule introduced by J.



Manipulating the Iteration Space Under this implicit lifting, the iteration
space is the argument frame rather than a sequence of loop indices. The pro-
grammer is not required to consider the shape of the array as would be necessary
when operating on a nested vector with nested calls to map. A function writ-
ten to alter an RGB pixel can be used as-is to make the same transformation
on every pixel in an image or video. If the transformation is the same for all
three color channels, it can simply be written as a scalar function. Generalizing
the lifting to multiple arguments, an interpolation function can be used on a
matrix of “low” and “high” points with a vector of estimated points. J also in-
cludes several second-order operators for manipulating the iteration space. For
example, reduce collapses the −1-cells of an array to a single −1-cell using a
specified binary operator, such as using * to transform [2, 4, 5]3 into 2 ∗ 4 ∗ 5.
The prefix and suffix operators apply a function to the successive prefixes or
suffixes of an array, viewing the array as a list of cells with unspecified rank. The
results are then put together as cells in a list. A sum function could be applied by
prefix to [2, 4, 5]3 to compute the running sum, [2, 6, 11]3. Some operations such
as convolution make use of a sliding window iteration pattern, using a window

operator which applies a given function over a sliding window of a given shape
and assembles the results in a frame corresponding to possible window positions.

The programmer can use the rerank operator to change the argument rank
of a function. The vector-matrix sum example in Figure 1 effectively treats the
vector as a column by duplicating its 0-cells. If + is reranked to expect a vector
argument, the 1-cell (i.e., the entire vector) is duplicated, so it is used as a row
vector. This reorientation technique generalizes to higher-ranked arrays.

By reranking append, the programmer can stitch together arrays by sequenc-
ing them on a chosen axis. For example, applying append to two matrices will
place the vectors (i.e., rows) of one matrix after those of the other. This requires
that they have the same number of columns. It produces a matrix with as many
rows as the two arguments combined. If append is reranked to 1, then it acts on
corresponding pairs of vectors, so the two matrices are required to have the same
number of rows. Each scalar in a row corresponds to one column in the matrix.
Thus the number of columns in the resulting matrix is the sum of the numbers
of columns in the argument matrices. Reranking also allows the programmer to
reduce along any chosen axis. The argument is split into cells of the chosen
rank, each cell is reduced along its major axis, and the results are reassembled
in the wrapper function’s frame.

Boxes Wrapping an array in a box makes it appear scalar, even if it contains
a non-scalar array. This makes it possible to safely produce and consume non-
regular arrays. Boxes are handled explicitly—a common pattern in J code for
operating on boxed data is to compose box, the desired operator, and unbox.

2.2 Related Work

Originally, APL implicitly lifted scalar functions to aggregate functions via point-
wise application, either on a scalar and an aggregate or on two aggregates of the



same shape. APL was later enriched with attribution of rank to functions, mean-
ing the rank a function expects its arguments to have. This led to the “frame of
cells” view of an array and gave a sensible way to lift functions defined only for
aggregates to operate on aggregates of even higher rank. J uses the more general
lifting rule, prefix agreement, which allows the aggregate lifting to handle ar-
rays of non-identical shape. J retains APL’s distinction between data, first-order
functions, and second-order functions. Implicit aggregate lifting is still limited
to first-order functions.

The design of J still handles many situations through specially-chosen default
behavior. For example, 0 and the space character are designated as “fill” elements
and used to pad shape-mismatched cells resulting from an application so that
they can all be assembled into the same frame. An unfortunate consequence is
that applying the composition of two functions may have a different result from
applying one function and then the other.

Thatte [16] described automatic lifting based on using coercion to insert map,
transpose, etc. where needed, but this system is limited to lifting scalar oper-
ations. It cannot, for example, automatically construct vector-matrix addition.

Ragan-Kelley et al. present Halide [14], a language for graphics processing. In
Halide, the computation to do at each pixel is written separately from the strat-
egy for ordering and parallelizing the pixels’ instances of that computation. This
is a similar idea to Single Assignment C’s WITH-loops [15]. Halide is, however,
designed specifically for image processing pipelines rather than general numeric
programming, which limits its lifting to the pixel-to-image case.

Xi’s Dependent ML [18] addressed the intractability of static type checking
in dependently-typed languages by limiting type indices to a separate, simpler
language. This technique makes it possible to check type equivalence without
having to check equivalence of program terms, which themselves may include
indexed types which must be checked for equivalence, and so on. An index erasure
pass converts a well-typed Dependent ML program into an ML program with
the same behavior. By adding singleton types for numbers, bounds checking for
array accesses can be done by the type system instead of at run time [19].

Like Remora, Trojahner and Grelck’s Qube [17] uses a type system based on
Dependent ML to statically verify structural constraints in array computation.
However, Remora and Qube differ significantly in both their dynamic and static
semantics. Qube, strictly speaking, does not address the “von Neumann” bottle-
neck: programmers still specify their programs down at the scalar-computation
level, using expressions that explicitly index elements from arrays. The structure
of the loop is also specific to the function being lifted and the array arguments to
which it is being applied, whereas Remora’s implicit lifting frees the programmer
from having to specify this detail.

Qube’s type system, then, is a device for guaranteeing dynamic safety, but
does not support the implicit lifting that gives APL its noted elegance and
concision. Qube’s heavy use of explicit array indexing necessitates the use of
singleton and range types, which in turn restrict the programmer’s ability to
write code that depends on user input.



Blelloch et al. created NESL [2, 3], which focuses on explicit mapping over
nested one-dimensional arrays. Arrays need not be rectangular—they can be
jagged. It is possible, for example, to have a 2-array whose elements are a 4-
array and a 5-array. Instead of näıvely breaking a parallel map into a task for
each sub-array, the NESL compiler uses a vectorization transformation to treat
nested arrays as flat vectors. This makes it possible to split the aggregate oper-
ation at places other than sub-array boundaries, removing the load imbalance
that had previously been associated with mapping over jagged arrays. Data Par-
allel Haskell [5] has adopted this vectorization technique. Haskell’s existing list
comprehensions are extended into parallel array comprehensions [13]. NESL and
DPH are still based on explicit looping which does not uniformly handle arrays
of varying rank as APL/J and Remora do.

More recent work by Keller et al. [11] shows how to use Haskell’s type sys-
tem to handle operations involving regular arrays in a shape-polymorphic way.
Instances of the typeclass of Shapes provide functions for extracting the rank
and size of an array of that shape as well as for indexing into the array. Func-
tions on arrays can be parameterized over the shape type and can effectively
place lower bounds on the ranks of arrays they accept. This system prevents
errors caused by underranked arguments but not those caused by mismatch in
individual dimensions and does not support the full prefix agreement rule.

Jay and Cockett [9] separated the shape of a data structure from its type. For
operations whose result shape is dependent only on argument shape, it is possible
to evaluate the shape portion of a program separately from the data portion.
Jay puts this to work in FISh [8], where arrays have both shape and element
type. Evaluating only the shapes of a program ensures that shape-related errors
cannot happen at run time, but requiring operators to determine their output
shapes only from their argument shapes is unworkably restrictive. For example,
it disallows critical functions such as iota, reshape, and readvec.

3 An Untyped Array Language

In J, functions are not first-class, and automatic lifting is restricted to first-order
functions. Lifting a function-producing function would allow the application to
produce an array of result functions. For example, in Figure 2, we apply a higher-
order function, curry-add, to two vectors. The result of the first application is
a vector of functions, which we then apply to a vector of numbers. In order to
do this, we must extend the lifting rule.

Function application itself can be thought of as an operation with expected
ranks—that is, in a function-application expression, both function and argument
can be arrays, as shown in the second half of Figure 2. Application requires a rank
0 array of functions and requires the arguments to have ranks expected by those
functions. All functions in the array must agree as to their argument ranks.
[(curry-add 1), (curry-add 2)]2 is a 2-vector of functions which both expect
rank 0 arguments. This gives 2 as the frame for both the function and argument
arrays. Now that the function and argument arrays have the same frame, each



(
[curry-add]•

[
1
2

]
2

)[
20
30

]
2

7→
[

(curry-add 1)
(curry-add 2)

]
2

[
20
30

]
2

7→
[

((curry-add 1) 20)
((curry-add 2) 30)

]
2

[
sum

length

]
2

 8
9
6


3

7→
[

sum

length

]
2

[
8 9 6
8 9 6

]
2,3

7→
[

(sum [8 9 6]3)
(length [8 9 6]3)

]
2

Fig. 2. Lifting the implicit apply

function in the array is applied to corresponding cells in the argument arrays.
We then have [((curry-add 1) 20), ((curry-add 2) 30)]2.

The generalized lifting rule provides a way to express a kind of MIMD compu-
tation not expressible in APL: the program can dynamically construct and apply
an array of distinct functions. In computing a vector mean, we require both the
sum and the length. We can apply [sum, length]2 to a vector, [8, 9, 6]3. The func-
tions consume vectors, so there is only one argument cell. Duplicating this cell
transforms the argument vector into a matrix, [8, 9, 6, 8, 9, 6]2,3. Pointwise appli-
cation then produces a vector of applications, [(sum [8, 9, 6]3), (length [8, 9, 6]3)]2.

3.1 Syntax

e ::= α | x | (e e . . . ) | (unbox (x = e) e) (exressions)

α ::= [l . . . ]n ... | (box e) (arrays)

l ::= b | f | e (array elements)

b base values

f ::= π | (λ [(x ρ) . . . ] e) (functions)

π primitive operators

ρ ::= z | ∞ (argument ranks)

z ∈ Z n,m ∈ N (numbers)

v ::= b | f | [b . . . ]n ... | [f . . . ]n ... | (box v) | [(box v) . . . ]m,n ... (value forms)

E ::= � | (v . . . E e . . . ) | [v . . . E l . . . ]n ... | (box E) (evaluation contexts)

| (unbox (x = E) e)

Fig. 3. Syntax, value domain and evaluation contexts of the untyped array language

Figure 3 presents the syntax and semantic domains for our untyped array
language. We use t . . . to denote a possibly empty sequence, t1 through tk. Thus
t t′ . . . represents a guaranteed-nonempty sequence. We may also use f(t) . . . to
represent f(t1) through f(tk). Expressions include arrays, variables, application
forms, and a let-like form for extracting the contents of a box. An array is either
a sequence of elements tagged with a sequence of naturals representing its shape
or a box containing any expression. Array elements are a broader syntactic class



than expressions, including base values (noted as b) and functions. Arrays are
allowed to syntactically contain sub-arrays; nested arrays are reduced to non-
nested arrays during evaluation. λ-abstractions can only be applied to arrays,
so variables can only represent arrays. A function is either a primitive operator
(noted as π) or a λ-abstraction.

The value forms are arrays with all elements fully evaluated. This allows
them to contain base values or functions but not application forms or variables.
A box is a value as long as it has a value for its contents. An array of box values
is also a value as long as the array is not itself a scalar (i.e., its shape vector
must be nonempty). A scalar array containing a box reduces to the box itself.

The built-in operators include conventional scalar operations, such as +, sqrt,
AND, etc. These all expect their arguments to have rank 0. The common list
operations—head, tail, init, last, and append—have argument rank ∞ so
that they can be used to build and destructure arrays of any rank (by reranking
at finite argument rank). The operations for manipulating the iteration space
described earlier (prefix, reduce, etc.) have argument rank ∞ for both the
function and data arrays they consume, and they can be reranked to any natural
or negative rank.

3.2 Semantics

Figure 4 gives the operational semantics, and figure 5 defines metafunctions used
by the semantics.

The β rule (analogous to β-reduction in the call-by-value λ-calculus) requires
that the function’s argument ranks match the ranks of the arrays being passed
to it. Similarly, the δ rule applies a scalar containing a built-in operator to
arguments which have the operator’s expected argument ranks.

The nat , lift , and map rules form the steps involved in lifting function appli-
cation for function and argument arrays of higher rank. The nat rule is used in
cases where some functions in an application form have infinite or negative argu-
ment rank. Primitives are tagged with the appropriate natural argument ranks
so that subsequent uses of Argrank J·K on this occurrence of the primitive will
recognize it as having the natural rank it takes on for this particular application.

The lift rule expands the function and argument arrays into the application
frame by repeating their cells. In cases where function and argument arrays’
frames are not all prefixes of a single frame, we have a shape mismatch—function
application cannot proceed, so evaluation is stuck (this would raise a “length
error” in J).

After an application has been naturalized and lifted, the map rule converts
function application in which the function and argument arrays are all over-
ranked by the same amount to an array of function applications. In the resulting
array, each application will have a scalar in function position, and all arguments
will have that function’s expected rank. We apply Cells to each argument array
to produce a list of lists of cells. Transposing the nested list produces a nested
list where the first entry contains all of the arguments’ first cells, the second
entry contains all of the arguments’ second cells, and so on. Each of these lists



is used as the arguments for the corresponding cell (i.e., single function) of the
function array. The reduction step produces an array of application forms whose
shape is the frame of the original application form.

After the application forms generated by map reduction have been evaluated,
we have an array of arrays. The collapse rules transform a nested array into a
non-nested array. If the inner arrays’ shapes differ, we have a shape mismatch,
and evaluation is stuck (this would induce J’s “filling” behavior mentioned in 2.2,
potentially causing unexpected results). For collapse1, the resulting array con-
tains the concatenated atoms of the inner arrays. Its shape results from prepend-
ing the shape of the outer array onto the shape of the inner arrays. In the case
of a scalar array containing a box, collapse2 reduces to just the box.

Once a box’s contents are evaluated, the unbox rule substitutes that value
into another expression. A function with an unbox form in its body can be used
to post-process another operation’s result cells to make sure their shapes match.

The Empty-Frame Dilemma We require separate rules, lift0 and map0 , for
cases where an application form’s principal frame shape contains one or more
zeroes. Such a frame contains no cells, so the lifted function is not applied at
all. With no cells to generate, the result is an empty array, but there is no clear
way to choose the shape of the result array. That is, both a 2× 0× 7× 24 array
and a 2 × 0 × 365 array are empty arrays—they both have no elements. But
they are not at all the same array. If we are lifting a function across a 2 × 0
frame of argument cells, how can we determine the shape of the result cells? The
resulting array’s shape must at least start with the principal frame. The rest
of the shape is left to a nondeterministic choice, but a language may choose to
make a stronger guarantee about how m . . . will be chosen.

For example, in J, when a function is lifted to apply over an empty frame,
it is probed (at run time) by applying it to a cell whose atoms are all 0 or
the space character ’ ’ to determine the result cell shape (the cell itself is then
discarded). Unfortunately, this is not safe with an effectful function or one whose
result shapes are input-dependent, and it relies on having a bounded number of
data types. It is one of J’s more awkward corner cases, one that we will be able
to resolve cleanly by means of the type system developed in the next section.

Another option is to always consider the resulting cell shape to be scalar
unless some concrete cells are available to show otherwise. Lifted functions are
often functions on scalars, and this allows scalar operations to behave as expected
on empty arrays. The reduction rules could also be changed to make applying
in an empty frame a dynamic error.

3.3 Sample Code

We present here several examples of code in our untyped language. As noted
earlier, it is intended as a core, not surface, language.

A well-known case of manipulating the iteration space is sum:

(λ [(xs 1)] ([reduce]• [+]• ([append]• [0]1 xs)))



Applying term abstraction:(
[(λ [(x n) . . . ] e)]• v . . .

)
7→β e [(x ← v) . . . ]

where nj = Rank JvjK, for each j

Applying primitive operator:(
[π]• v . . .

)
7→δ δ(π, v . . . )

where 〈n . . . 〉 = Argrank JπK
nj = Rank JvjK, for each j

Rewriting with natural argument ranks:
([f . . . ]n ... v . . . )
7→nat ([f ′ . . . ]n ... v . . . )

where Argrank JfjK /∈ Nk for some j
f ′ = Naturalize Jf , v . . . K

Pointwise application:
([f . . . ]n ... v . . . )
7→map

[
([f ]• α . . . ) . . .

]
n ...

where f . . . is a nonempty sequence
〈n . . . 〉 = Argrank JfjK, for each j
0 < k = Rank JvjK− nj , for each j

((α . . . ) . . . ) = (Cellsn JvK . . . )>

Empty frame:
([f . . . ]n ... v . . . )
7→lift0 [ ]n′ ...m ...

where 〈ρ . . . 〉 = Argrank JfjK, for each j
ρj ∈ N for each j
0 ∈ n ′ . . . = MaxJn . . . ,

Frameρ JvK , . . . K
Rank JvjK− ρj not same for all j
m . . . chosen nondeterministically

Empty function:
([ ]n ... v . . . )
7→map0 []n ... m ...

where m . . . chosen nondeterministically

Converting nested to non-nested:
[α . . . ]n ...
7→collapse1 [Atoms JαK . . . ]n ... ShapeJαK

where no α contains a var or app form
no α is a box
all α have the same shape

Converting scalar of boxes to box:
[box v ]• 7→collapse2 box v

Extracting the contents of a box:
(unbox x = (box v) e) 7→unbox e[x ← v ]

Duplicating cells:
([f . . . ]n ... v . . . )
7→lift

(
Dup0,n′ ...

q
[f . . . ]n ...

y
Dupρ,n′ ...m′ ... JvK . . .

)
where 〈ρ . . . 〉 = Argrank JfjK, for each j

ρj ∈ N for each j
0 /∈ n ′ . . . = Max Jn . . . ,Frameρ JvK . . . K
the ρj-cells of vj have shape m ′ . . .
Rank JvjK− ρj is not the same for all j

Fig. 4. Small-step operational semantics for an untyped array language



Rank : Val ⇀ N
Rank

q
[l . . . ]n ...

y
= length(n . . . )

Argrank : Fun → Rank∗

Argrank J(λ [(x ρ) . . . ] e)K = ρ . . .

Naturalize : Fun ×Val∗ ⇀ Fun
Naturalize J(λ [(x ρ) . . . ] e), v . . . K

= (λ [(x n) . . . ] e)
where ni = ρi if ρi ∈ N

ni = Rank JviK + ρi if −ρi ∈ N
ni = Rank JviK if ρi =∞

Frame : Rank ×Val ⇀ N∗
Frameρ

q
[l . . . ]m ... n ...

y
= (m . . . )

where length(n . . . ) = ρ

Max : N∗∗ ⇀ N∗
Max J(n . . . )K = n . . .
Max J(n0 . . . ), (n1 . . . ) . . . , (nm . . . )K

= (n0 . . . )
if Max J(n1 . . . ) . . . , (nm . . . )K v (n0 . . . )

= Max J(n1 . . . ) . . . , (nm . . . )K
if (n0 . . . ) v (n1 . . . )

Dup : Rank × N∗ ×Val → Val
Dupρ, n ... m ... J[l . . . ]d ... K

= [(l ′ . . . )k . . . ]n ... m ...

where length(m . . . ) = ρ
k =

∏ρ
j=1 nj

((l ′ . . . ) . . . ) = Cellsρ J[l . . . ]d ... K

Cells : N×Val ⇀ Val∗

Cellsn
q
[l1 . . . lm lm+1 . . . l2m . . . lp−m+1 . . . lp]c ... d ...

y

= [l1 . . . lm]d ... [lm+1 . . . l2m]d ... . . . [lp−m+1 . . . lp]d ... ,
where length(d . . . ) = n∏n

i=1(di) = m

Fig. 5. Metafunctions used in array semantics

We can take advantage of automatic lifting for a simple dotprod operator:

(λ [(xs 1) (ys 1)] ([sum]• ([∗]• xs ys)))

We can convolve a signal with a filter by using dotprod with the reverse of
one argument in a sliding window over the other:

(λ[(filter 1) (signal 1)]
([window]• ([length]• filter)

[(λ [(seg 1)] ([dotprod]• seg ([reverse]• filter)))]• signal))

Iverson included many composition forms and operators. However, λ allows
the programmer or library implementor to define them. A simple compose op-
erator for two unary functions can be defined as:

(λ [(f 0)(g 0)] [(λ [(x∞)] (f (g x)))]•)

J’s fork form applies two functions (referred to as “tines”) to the same input
and then applies a third function to their results:

(λ [(f 0)(g 0)(h 0)] ([(λ [(x∞)] (f (g x) (h x)))]•)

A simple use of fork is computing the arithmetic mean:

(λ [(xs 1)] (([fork]• [/]• [sum]• [length]•) xs)



The fork divides the sum of its input by its length. The outer λ modifies
the argument rank of the resulting function, so the function produced by fork

is only applied to lists.
J also uses a hook form (based on the S combinator) for applying a binary

function to an argument and a transformed version of that same argument.

(λ [(f 0)(g 0)] ([(λ[(x∞)] (f x (g x)))]•)

Without a general recursion operator, iota can be used as a limited form of
the classical unfold, allowing primitive recursion. Using iota to write factorial:

(λ [(n 0)]
(unbox (xs = ([iota]• [n]1))

([reduce]• [∗]• ([+]• [1]• (append [0]1 xs)))))

First, the input scalar is wrapped in a singleton vector and passed to iota to
produce a boxed vector containing [0, . . . , n− 1]. If n = 0, this vector is empty,
and later operations would have an empty frame, so we append 0. We then add
1 to get a vector containing [1, 1, . . . , n]. Reducing by ∗ gives n!.

We can use iota to evaluate a polynomial at a particular point, which uses
arguments of differing rank:

(λ [(coeffs 1) (x 0)]
(unbox (i = ([iota]• ([length]• coeffs)))

([reduce]• [+]• ([∗]• coeffs([ˆ]• x i)))))

We can also construct an iteration space with reshape, which is convenient
if we only need a single atom duplicated many times. The following repeat

operator uses compose iterated over a vector containing a single duplicated atom
to produce a function which applies that atom a given number of times.

(λ [(f∞) (n 0)]
(unbox (fs = ([reshape]• [n]1 f))

([reduce]• [compose]• ([append]• [id]• fs))))

Bounded looping with repeat can be used for finding the transitive closure
of an adjacency matrix. This example uses two additional functions which can
be defined in terms of λ. The dup function transforms a binary function into a
unary one which duplicates its argument and passes two copies to the underlying
binary function. We also use compose’, a variation on the compose function
defined above which produces a binary function, passing two arguments of ranks
1 and ∞ to its second input function and the result to its first input function.

(λ [(adj 2)]
((repeat (hook or (dup ([compose’]•

[(λ [(xs∞)] (reduce or true xs))]•
[(λ [(x 1) (y∞)] (and x y))]•)))

(lg (length adj))) adj))



The function constructed by compose’ applies and to each row of its first ar-
gument (this treats it as a column) and its entire second argument. The result
is a rank 3 array whose matrices are combined using or to produce a matrix
analogous to the matrix product of the original two arguments. Wrapping this
function with dup creates a unary function which transforms a matrix into its
“boolean product” with itself. The hook of or and this adjacency matrix trans-
formation is a function which updates an adjacency matrix to allow paths twice
as long. Finally, this process is repeated (lg (length adj)) = log2(|V |) times.

4 Types for Array-Oriented Programming

In order to eliminate shape-mismatch errors, our type system must be capable
of tracking arrays’ shapes. Dependent typing has been used in the past to im-
plement lists whose types specify their lengths via a natural number index. This
generalizes to an array type which is indexed by a list of natural numbers to spec-
ify its shape. If types can contain arbitrary term expressions, checking whether
two types are equivalent can require checking whether two terms are equivalent.
In order to keep type checking tractable, we use the technique of defining a
separate language of type indices, demonstrated by Xi et al. in Dependent ML
[18]. Separating the term and index languages eliminates the mutual dependence
between type checking and evaluation. An index language should be powerful
enough to express the desired type properties, but also simple enough that check-
ing index equivalence is tractable. In Dependent ML’s case, index equivalence is
checked via integer linear programming. The constraint domain associated with
our index language also includes lists of natural numbers; this combination of
theories is still decidable [12].

4.1 Syntax

Figure 6 gives the syntax for Remora. It includes several new expression and ele-
ment forms. They are introduction and elimination forms for universal types (Tλ
and T-APP), dependent products (Iλ and I-APP), and dependent sums (PACK and
UNPACK). Dependent sums effectively replace boxes from the untyped language.
A type or index abstraction or application form can be used as an element, and it
is a valid expressions as long as its underlying element is also a valid expression.
Multiple type or index abstraction forms in an array can each be given separate
type or index arguments to produce functions of the same type. Remora’s arrays
can have a type annotation rather than just a shape annotation. This ensures
that a concrete type can be determined for an empty array. For non-empty ar-
rays (those of the form [l l ′ . . . ]), a shape annotation is sufficient, and the type
can be reconstructed by inspecting the array elements. It is assumed that similar
type annotations for all expression forms will be generated in type checking, but
these are not included in the regular program syntax.

Types include base types such as Num or Bool (noted as B) and arrays of
a given shape and element type (noted as Aιτ). An index can be a Nat (n.b.,
different from Num), a Shape (noted as (S ι . . . )), or the sum of two indices.



e ::= α | x | (e e′ . . . ) | (Tλ [x . . . ] e) | (T-APP e τ . . . ) (exressions)

| (Iλ [(x γ) . . . ] e) | (I-APP e ι . . . ) | (PACK ι . . . e)τ | (UNPACK (〈x . . . |y〉 = e) e′)

α ::= [l . . . ]τ | [l l ′ . . . ]ι (arrays)

l ::= b | f | e | (Tλ [x . . . ] l) | (T-APP l τ . . . ) | (Iλ [(x γ) . . . ] l) (array elements)

| (I-APP l ι . . . )

f ::= π | (λ [(x τ) . . . ] e) (functions)

τ, σ ::= B | x | Aιτ | (τ . . . → σ) | (∀ [x . . . ] τ) | (Π [(x γ) . . . ] τ) (types)

| (Σ [(x γ) . . . ] τ)

ι, κ ::= n | x | (S ι . . . ) | (+ ι κ) (indices)

γ ::= Nat | Shape (index sorts)

z ∈ Z (numbers)

n,m ∈ N
v ::= [b . . . ]τ | [f . . . ]τ | b | f | (Tλ [x . . . ] l) | (Iλ [(x γ) . . . ] l) (value forms)

| (PACK ι . . . v ) | [(PACK ι . . . v ) . . . ]A(S m n ... )τ

E ::= � | (v . . . E e . . . ) | [v . . . E l . . . ]τ | (T-APP E τ . . . ) (evaluation contexts)

| (I-APP E ι . . . ) | (PACK ι . . . E)τ | (UNPACK (〈x . . . |y〉 = E) e)

Γ ::= · | Γ, (x : τ) (type environments)

∆ ::= · | ∆, x (kind environments)

Θ ::= · | Θ, (x :: γ) (sort environments)

Fig. 6. Syntax for Remora

4.2 Static Semantics

The typing, kinding, and sorting rules are given in Figures 7 and 8. Types are
ascribed to elements (which can themselves be arrays). Rules for base types are
straightforward, but an example rule for numbers is given in Figure 7.

The kind judgment is simply a well-formedness check—all well-formed types
are of a single kind. K-Array accepts an array type as well-formed if its under-
lying type is well formed and its index is a Shape. K-Univ binds type variables,
and K-DProd and K-DSum bind index variables at specific sorts. A variable
introduced in a universal type is only allowed to stand for a non-array type. This
is necessary in order to express polymorphic input types like “any scalar,” A(S)t

(with t bound by some ∀). Otherwise, A(S)t could describe any array type.

S-Shape requires that a shape be built from Nats. Constructing an index
with + requires that the summands be Nats, and the result will also be a Nat.

T-App must identify the frame associated with an application form, which
requires identifying the frames associated with the individual terms in the ap-
plication form. Recall that for a map reduction, the frames of every term in
the application must be the same, and for a lift reduction, there must be one
frame which is prefixed by every other frame. Once every term’s frame has been
determined, the next step is to find the largest frame, with the order given by
x v y iff x is a prefix of y. This will be the frame into which the results of the
lifted function will be assembled. If the set of frames has no maximum, then the
function application term is ill-typed.



Γ ;∆;Θ ` l : τ

Γ ;∆;Θ ` num : Num
(T-Num)

(x : τ) ∈ Γ
Γ ;∆;Θ ` x : τ

(T-Var)

τ ∼= σ Γ ;∆;Θ ` l : τ

Γ ;∆;Θ ` l : σ
(T-Equiv)

Γ ;∆;Θ ` lj : τ for each lj ∈ l . . .

Product Jn . . . K = Length Jelt . . . K

Γ ;∆;Θ ` [l . . . ]A(S n ... )τ : A(S n ... )τ
(T-Array)

Γ, (x : τ) . . . ;∆;Θ ` e : σ

Γ ;∆;Θ ` (λ [(x τ) . . . ] e) :

(τ . . . → σ)

(T-Abst)

Γ ;∆;Θ ` e : Aι (σ . . . → τ)

Γ ;∆;Θ ` e′j : Aκjσj for each j

ι′ = Max Jι, κ . . . K

Γ ;∆;Θ `
(
e e′ . . .

)
: Aι′τ

(T-App)

Γ ;∆, x . . . ;Θ ` e : τ

Γ ;∆;Θ ` (Tλ [x . . . ] e) :

(∀ [x . . . ] τ)

(T-TAbst)

Γ ;∆;Θ ` l : (∀ [x . . . ]σ)
∆;Θ ` τj for each j

no τj is an array type

Γ ;∆;Θ ` (T-APP l τ . . . ) :

σ[(x ←t τ) . . . ]

(T-TApp)

Γ ;∆;Θ, (x :: γ) . . . ` e : τ

Γ ;∆;Θ ` (Iλ [(x) . . . ] e) :

(Π [(x γ) . . . ] τ)

(T-IAbst)

Γ ;∆;Θ ` e : (Π [(x γ) . . . ] τ)

Γ ;∆;Θ ` ιj :: γj for each j

Γ ;∆;Θ ` (I-APP e ι . . . ) :

τ [(x ←i ι) . . . ]

(T-IApp)

Γ ;∆;Θ ` e : τ [(x ← ι) . . . ]

Γ ;∆;Θ ` ιj :: γj for each j

Γ ;∆;Θ ` (PACK ι . . . e) : (Σ [(x γ) . . . ] τ)
(T-Pack)

Γ ;∆;Θ ` e : (Σ [(x γ) . . . ]σ)

Γ, y : σ;∆;Θ, (x :: γ) . . . ` e′ : τ

∆;Θ ` τ
Γ ;∆;Θ `

(
UNPACK (〈x . . . |y〉 = e) e′

)
: τ

(T-Unpack)

Fig. 7. Type judgment for Remora



∆;Θ ` τ

∆;Θ ` B
(K-Base)

x ∈ ∆
∆;Θ ` x

(K-Var)

∆;Θ ` τ
Θ ` ι :: Shape
∆;Θ ` Aιτ

(K-Array)

∆;Θ ` τj for each j ∆;Θ ` σ
∆;Θ ` (τ . . . → σ)

(K-Fun)
∆;Θ, (x :: γ) . . . ` τ

∆;Θ ` (Π [(x γ) . . . ] τ)
(K-DProd)

∆;Θ, (x :: γ) . . . ` τ
∆;Θ ` (Σ [(x γ) . . . ] τ)

(K-DSum)
∆, x . . . ;Θ ` τ

∆;Θ ` (∀ [x . . . ] τ)
(K-Univ)

Θ ` ι :: γ

n ∈ N
Θ ` n :: Nat

(S-Nat)
(x :: γ) ∈ Θ
Θ ` x :: γ

(S-Var)
Θ ` ιj :: Nat for each j

Θ ` (S ι . . . ) :: Shape
(S-Shape)

Θ ` ι :: Nat Θ ` κ :: Nat

Θ ` (+ ι κ) :: Nat
(S-Plus)

Fig. 8. Kind and index sort judgments for Remora

The type equivalence relation ∼= is a congruence based on relating nested
array types and non-nested array types. An array of type A(S m ... )(A(S n ... )τ) is
equivalent to an array of type A(S m ...n ... )τ . This is the transformation which
will be made by a collapse step at run time and suggests that the fully-collapsed
version of a type is its canonical form. The reverse is analogous to breaking an
array into its cells. This type equivalence allows us to express restrictions on a
part of a function argument’s shape. For example, append has type:

∀[t] Π [(m Nat)(n Nat)(d Shape)](
A(S m) (Ad t)

) (
A(S n) (Ad t)

)
→
(
A(S (+ m n)) (Ad t)

)
In the untyped language, append has argument rank ∞, but it still requires its
arguments to have the same shape except for their first dimensions. Any two
array types which have the same atom type and whose shapes differ only in the
first dimension can be described using append’s argument types.

4.3 Dynamic Semantics

The reduction relation is given in Figure 9. It assumes every expression has been
annotated with its type (most of these type annotations can be generated me-
chanically). This run time type information is needed to determine the correct
output cell shape for a function application with an empty frame, so type annota-
tions are kept up to date during reduction (they subsume the untyped language’s



shape tags). We use x[(y ←e z) . . . ], x[(y ←t z) . . . ], and x[(y ←i z) . . . ] for sub-
stitution of term, type, and index variables respectively. The untyped language’s
box and nonscalar array of boxes value forms are replaced with analogous sum
and nonscalar array of sums. We replace the evaluation contexts for box and
unbox with analogous contexts for PACK and UNPACK.

Remora’s β, δ, and collapse rules are essentially unchanged from the untyped
language, so they are not repeated. The implicit lifting is now type-directed,
instead of rank-directed. Types include enough information to determine the
correct cell shape for any application form, solving the empty-frame dilemma
from 3.2 and eliminating the nondeterminism.

Pointwise application:(
[f . . . ]

A(S nf ... )(A(S na ... )τ ...→τ
′)

v
A(S nf ... na ... )τ . . .

)A(S nf ... nc ... )τ
′

7→map

[(
[f ]A(S)(A(S na ... )τ ...→τ

′) αA(S na ... )τ . . .
)τ ′

. . .

]A(S nf ... )τ
′

where ρ = length
(
nf . . .

)
> 0

((α . . . ) . . . ) = ((Cellsρ JvK) . . . )>

Duplicating cells:(
[f . . . ]A(S m ... )(A(S n ... )τ ...→τ

′) v
A(S m′ ... )τ . . .

)σ
7→lift

(
Dup(A(S n ... )τ ...→τ ′),ι

q
[f . . . ]

y
DupA(S m′ ... )τ,ι

Jv K . . .
)σ

where (m . . . ), (m ′ . . . ) . . . not all equal
ι = Max J(m . . . ), (m ′ . . . ) . . . K

Applying a type abstraction:(
T-APP (Tλ [x . . . ] eτ )(∀[x ... ]τ) σ . . .

)τ [(x ←t σ) ... ]
7→Tβ eτ [(x ←t σ) . . . ]

Applying an index abstraction:(
I-APP (Iλ [(x γ) . . . ] eτ )(Π[(x γ) ... ]τ) ι . . .

)τ [(x←i ι) ... ] 7→Iβ eτ [(x ←i ι) . . . ]

Projecting from a dependent sum:(
UNPACK

(
〈x . . . |y〉 = (PACK ι . . . vτ )τ

′)
eσ
)σ
7→proj eσ [(x ←i ι) . . . (y ←e v)]

Fig. 9. Small-step operational semantics for Remora

Tβ and Iβ substitute types and indices for the appropriate type and index
variables. This substitution must be applied to both the body of the type or index
abstraction as well as to its type annotation. Explicit type and index application
effectively replace naturalize steps from the untyped language. Finally, project
substitutes a dependent sum’s witnesses and contents in the body expression.

The sample programs given in section 3.3 are straightforward to express in
Remora. Typed code is given in Appendix B. The translation involves adding
type and index abstractions and applications and replacing rank annotations
with type annotations.



4.4 Type Soundness

We expect a type system which ascribes shapes to arrays to only ascribe shapes
that the arrays will actually have once computed.

Theorem 1 (Type soundness). If ` l : τ , then one of:

– There is some v such that l 7→∗ v
– l diverges
– There exist some E, π, v . . . such that l 7→∗ E[((π v . . . ))], where ` π :

(σ . . . → σ′), and ` vi : σi for each i

That is, a well-typed program completes, diverges, or produces an error due to
partial primitive operations, such as division by zero.

5 Future Work

The transition from a core semantics modeled in PLT Redex to a complete
programming system requires a more flexible surface language and a compiler.
In moving from the untyped core language to Remora, the added code is mostly
type and index applications. Type inference would be necessary in order to make
a surface language based on Remora practical. An interesting challenge in this
setting is that the different type and index arguments can produce different
behavior (e.g., reducing an entire matrix versus reducing its 1-cells).

An implementation of Remora could use type information to inform decisions
about how to parallelize aggregate operations. With a cost model for analyzing
when different cells in an application frame are likely to take significantly differ-
ent amounts of time, a compiler could choose between statically breaking up a
task and leaving the allocation to a work-stealing run-time system.

Stream-like computation is often convenient for tasks such as signal process-
ing, and it could be expressed by generalizing array types to allow an unbounded
dimension. Implicit lifting still has a sensible meaning, as do foldl, scan, and
window. This would allow us to extend Iverson’s rank-polymorphic control mech-
anism to Turing-equivalent programs requiring while-loop computation (for ex-
ample, iterating a numeric solver to a given tolerance).

6 Conclusion

We have given a formal reduction semantics for Iverson’s rank polymorphism
which addresses several shortcomings of the model. Remora generalizes auto-
matic operator lifting to include first-class functions and MIMD computation.
Embedding the core ideas of APL and J in a setting based on λ-calculus com-
bines the expressive power of both models. Our type system rules out errors due
to mismatching argument shapes and still gives the programmer enough freedom
to write code whose result shape cannot be determined until run time.
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Appendix



A Basis Library

The following table lists primitive operators along with their argument ranks
(for the untyped language) and types (for Remora). Free type and index vari-
ables should be considered as bound by universals and dependent products. For
example, the full type of length is:

(
∀ [t]

(
Π [(n Nat) (d Shape)]

(
A(S n)Adt→ A(S)Num

)))

From copy down, all operators produce boxes in the untyped language and
dependent sums in Remora. The types of prefix, suffix, and window use rank-
2 polymorphism. The function passed to them must be parameterized over its
input length in order to be safe to use. Using a family of window functions make it
safe to use a function which is monomorphic in its argument length, but a single
use of prefix and suffix applies a function to arguments of several lengths.

Function Arg. Rank Type

+, -, *, /, ˆ,
mod, and, or

0, 0
(
A(S)Num A(S)Num→ A(S)Num

)
square, sqrt,
exp, log, not

0
(
A(S)Num→ A(S)Num

)
head, last ∞

(
A(S (+ 1 n))Adt→ Adt

)
tail, init ∞

(
A(S (+ 1 n))Adt→ A(S n)Adt

)
append ∞

(
A(S m)Adt A(S n)Adt→ A(S (+ m n))Adt

)
reverse ∞

(
A(S n)Adt→ A(S n)Adt

)
rotate 0,∞

(
A(S)Num A(S n)Adt→ A(S n)Adt

)
length ∞

(
A(S n)Adt→ A(S)Num

)
foldl 0,∞,∞

(
A(S) (Adt Aeu→ Adt) Adt A(S n)Aeu→ Adt

)
foldr 0,∞,∞

(
A(S) (Adt Aeu→ Aeu) Aeu A(S n)Adt→ Aeu

)
reduce 0,∞

(
A(S) (Adt Adt→ Adt) A(S n)Adt→ Adt

)
scan 0,∞

A(S) (Adt Adt→ Adt)
A(S (+ 1 n))Adt

→ A(S (+ 1 n))Adt





Function Arg. Rank Type

readvec none
(
→
(
Σ [(m Nat)] A(S m)Adt

))
copy 1,∞

(
A(S)Num A(S n)Adt→

(
Σ [(m Nat)] A(S m)Adt

))
iota 1

(
A(S n)Num→ (Σ [(d Shape)] AdNum)

)
iota’ 0

(
A(S)Num→

(
Σ [(m Nat)] A(S m)Num

))
iotak 1

(
A(S k)Num→

(
Σ [(n1 Nat) · · · (nk Nat)] A(S n1···nk)Num

))
reshape 1,∞

(
A(S n)Num Adt→ (Σ [(e Shape)] Aet)

)
reshape’ 0,∞

(
A(S)Num Adt→

(
Σ [(n Nat)] A(S n)t

))
reshapek 1,∞

(
A(S k)Num Adt
→
(
Σ [(n1 Nat) · · · (nk Nat)] A(S n1···nk)t

))
prefix,
suffix

0,∞

 (∀ [t]
(
Π [(n Nat)(c Shape)]

(
A(S n)Act→ Aeu

)))
A(S m)Adv

→
(
Σ [(p Nat)] A(S p)Aeu

)


window 0, 0,∞

(∀ [t]
(
Π [(n Nat)(c Shape)]

(
A(S n)Act→ Aeu

)))
A(S)Num A(S m)Adv

→
(
Σ [(p Nat)] A(S p)Aeu

)


windowk 0,∞
(
A(S)

(
A(S k)Adt→ Aeu

)
A(S m)Adt

→
(
Σ [(n Nat)] A(S n)Aeu

) )

B Typed Example Code

A typed version of sum:

(Iλ [(n Nat)] (λ [(xs A(S n)Num)]

([(I-APP (T-APP reduce Num) n (S))]
(S)

[+]
(S)

([(I-APP (T-APP append Num) 1 n (S))]
(S)

[0]
(S 1)

xs))))

First, reduce is type-applied to Num and index-applied to n and the scalar shape.
It now requires a binary operator on scalar numbers and a list of 1 + n scalar
numbers. The binary operator is +. To construct a list of length 1 + n, we type-
apply append to Num and then index-apply it to 1, n, and the scalar shape,
meaning we intend to append two lists whose contents are scalar numbers and
whose lengths are 1 and n. This means we must provide a list of 1 scalar number

and a list of n scalar numbers. [0]
(S 1)

and xs have types A(S 1)Num and A(S n)Num.
These types are respectively equivalent to A(S 1)A(S)Num and A(S n)A(S)Num. Thus
append will produce an array of type A(+ 1 n)A(S)Num, as required by reduce.
Finally, reduce produces an array of type A(S)Num, i.e., a scalar number, which
is the sum of xs. This gives sum the type:(

Π [(n Nat)]
(
A(S n)Num→ A(S)Num

))
We can then use sum to write dotprod:

(Iλ [(n Nat)] (λ [(xs A(S n)Num) (ys A(S n)Num)] ([(I-APP sum l)](S)([∗](S)xs ys))))



The multiplication subexpression lifts ∗ into a frame with shape (S l), so the
result of the application is typed as A(S l)Num. With sum index-applied to l, it
consumes the A(S l)Num and produces a A(S)Num, the dot product of xs and ys.

Typing compose and fork just requires abstracting over the input, output,
and intermediate shapes and atom types:

(Tλ [s t u] (Iλ [(c Shape) (d Shape) (e Shape)]
(λ [(f A(S) (Adt→ Aeu))

(g A(S) (Acs→ Adt))]
(λ [(x Acs)] (f (g x))))))

(Tλ [s t u v] (Iλ [(a Shape) (b Shape) (c Shape) (d Shape)]
(λ [(f A(S) (Abt Acu→ Adv))

(g A(S) (Aas→ Abt))
(h A(S) (Aas→ Acu))]
(λ [(x Aas)] (f (g x) (h x))))))

With the right type and index arguments, we can write mean:

(Iλ [(n Nat)] (λ [(xs A(S n)Num)]
(((I-App (T-APP fork Num Num Num Num) (S n) (S) (S) (S))

[/]
(S)

[(I-APP sum n)]
(S)

[(I-APP length n (S))]
(S)

) xs)))

While the untyped factorial function transforms the result from iota to a
scalar before allowing it to escape, iota’s range is too broad for a single reduce

to be guaranteed to produce a scalar. This is evident from its type: iota returns
a dependent sum that quantifies the entire shape rather than just one dimension.
This is more general than needed in most situations. The length of the input
to iota will be the rank of its result, and it is common to know statically how
large a vector is being used. The same applies to reshape. Two simple changes
can allow factorial to return a scalar instead of a dependent sum. An iota’

function restricted to scalar input could have output type
(
Σ [(n Nat)] A(S n)Num

)
,

i.e., a vector of unknown length. Alternatively, a family of iota-like functions
each specialized for inputs of length k can return dependent sums with contents
of rank k. In factorial, unfolding with iota1 allows the program to proceed
as in the untyped language:

(λ [(n A(S)Num)]

(UNPACK 〈m|xs〉 = ([iota1]
(S)

[n]
(S 1)

xs)

([(I-APP (T-APP reduce Num) m (S))]
(S)

[∗](S) ([+]
(S)

[1]
(S)

([(I-APP (T-APP append Num) 1 m (S))]
(S)

[0]
(S)

xs)))))

A version using iota’ instead of iota1 would be similar. The choice of a partic-
ular iotak can be made explicitly by the programmer or (in a surface language)
through type reconstruction. An analogous use of reshape1 to write repeat:



(Tλ [t] (Iλ [(d Shape)] (λ [(f A(S) (Adt→ Adt)) (n A(S)Num)]

(UNPACK 〈m|xs〉 = ([(I-APP (T-APP reshape1 (Adt→ Adt)) (S))](S) [n]
(S 1)

f)
([(I-APP (T-APP reduce (Adt→ Adt)) m (S))](S)

[(I-APP (T-APP compose (Adt→ Adt) (Adt→ Adt) (Adt→ Adt))
(S) (S) (S))](S)

([(I-APP (T-APP append (Adt→ Adt)) (S 1) m (S))](S)

[(I-APP (T-APP id t) d)]
(S)

xs))))))

C Type Soundness

We show soundness via progress and preservation.

Lemma 1 (Progress). If ` l : τ , then one of:

– l = v

– There exists some l ′ such that l 7→ l ′

– There exist some E, π, v . . . such that l 7→∗ E[((π v . . . ))], where ` π :
(σ . . . → σ′), and ` vi : σi for each i

The proof is by structural induction on the type derivation. If the last deriva-
tion step is T-Equiv, then the induction hypothesis is the desired result. Oth-
erwise, the last derivation step determines the syntactic form of l .

The interesting cases are T-Array and T-FunApp. For both, the induction
hypothesis states that progress applies to the subterms (array elements or func-
tion and argument arrays). This means that all subterms are values, or there
is a leftmost non-value subterm. In the latter case, the non-value subterm is
either reducible or a context around an out-of-domain application. Therefore,
the array or function application is itself either reducible or a context around an
out-of-domain application.

If all of an array’s element terms are non-array values, then the array is itself
a value. If they are all array values, T-Array requires that they have the same
type, so collapse reduction is possible.

If all of a function application’s terms are values, we must show that a β-, δ-,
map-, or lift-reduction is possible. A well-typed term has no free variables, so the
function and argument arrays’ shapes are known. In order for the application to
be well-typed, T-FunApp requires that there be a principal frame. This means
that the arrays’ frames can be fully described by just the frame rank—i.e., how
overranked the arrays are. If the principal frame has rank 0 (a scalar frame, no
overrank), then β- or δ-reduction can be done (unless the argument arrays are
outside of the primitive operator’s domain). If the arrays are all overranked by
the same amount, then map is applicable. Otherwise, the arrays are overranked
by different amounts, so lift-reduction is possible. ut

Lemma 2 (Preservation). If ` l : τ and l 7→ l ′, then ` l ′ : τ .



This is also shown by induction on type derivations. In each case, it suffices
to show that ` l ′ : τ ′ for some τ ′ equivalent to τ because ` l ′ : τ can then
be reached with T-Equiv. The induction hypothesis gives type preservation for
subterms; it remains to show any reduction steps applied to the whole term will
preserve its type. For terms matching a given type rule (other than T-Equiv,
whose case is trivial), only a few reduction rules may be applied.

Again, the interesting case is T-FunApp, which has several subcases. β-
reduction simply substitutes arguments into a function body (it is only allowed
in a scalar frame). The type derivation for the body of the λ can have the
T-Var uses for its substituted-out variables replaced by the derivations of the
values replacing them. A map reduction converts an application form with type
Aισ to an array of applications. Each application’s type is σ (from applying a
(τ . . . → σ) to τ . . . ), and the array around them has shape ι, so the type of the
full expression is preserved. In a well-typed application, there is a principal frame
ι for lift to target. While lift ’s copying may change the types of the function and
argument arrays, the application frame is unchanged, so the application is still
typed with frame shape ι around the function’s output type. ut

D Implementation

Our PLT Redex model of our array language semantics is available at:
https://github.com/jrslepak/Remora


