
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL.7, NO. 2, APRIL 1999 Page 1 of 15

Consistent Overhead Byte Stuffing
Stuart Cheshire and Mary Baker, Member, IEEE

Abstract—Byte stuffing is a process that encodes a sequence of
data bytes that may contain ‘illegal’ or ‘reserved’ values, using a
potentially longer sequence that contains no occurrences of these
values. The extra length is referred to here as the overhead of the
encoding. To date, byte stuffing algorithms, such as those used by
SLIP, PPP and AX.25, have been designed to incur low average
overhead, but little effort has been made to minimize their worst-
case overhead. However, there are some increasingly popular
network devices whose performance is determined more by the
worst case than by the average case. For example, the transmis-
sion time for ISM-band packet radio transmitters is strictly lim-
ited by FCC regulation. To adhere to this regulation, the current
practice is to set the maximum packet size artificially low so that
no packet, even after worst-case overhead, can exceed the trans-
mission time limit.

This paper presents a new byte stuffing algorithm, called Con-
sistent Overhead Byte Stuffing (COBS), which tightly bounds the
worst-case overhead. It guarantees in the worst case to add no
more than one byte in 254 to any packet. For large packets this
means that their encoded size is no more than 100.4% of their
pre-encoding size. This is much better than the 200% worst-case
bound that is common for many byte stuffing algorithms, and is
close to the information-theoretic limit of about 100.07%. Fur-
thermore, the COBS algorithm is computationally cheap, and its
average overhead is very competitive with that of existing algo-
rithms.

Index Terms—Packet, Serial, Transmission, Framing, Byte
stuffing

I.   INTRODUCTION

HE PURPOSE of byte stuffing is to convert data packets
into a form suitable for transmission over a serial medium

like a telephone line. When packets are sent over a serial me-
dium there needs to be some way to tell where one packet
ends and the next begins, particularly after errors, and this is
typically done by using a special reserved value to indicate
packet boundaries. Byte stuffing ensures, at the cost of a po-
tential increase in packet size, that this reserved value does not
inadvertently appear in the body of any transmitted packet. In
general, some overhead (additional bytes transmitted over the
serial medium) is inevitable if we are to perform byte stuffing
without loss of information.

Current byte stuffing algorithms, such as those used by Se-
rial Line IP (SLIP) [RFC1055], the Point-to-Point Protocol
(PPP) [RFC1662] and AX.25 (Amateur Packet Radio)
[ARRL84], have highly variable per-packet overhead. For ex-

ample, using conventional PPP byte stuffing, the total over-
head (averaged over a large number of packets) is typically
1% or less, but this overhead is not consistent for all packets.
Some packets incur no overhead at all, while others incur
much more; in principle some could increase in size by as
much as 100%. High-level Data Link Control (HDLC) uses a
bit stuffing technique [ECMA-40] that has a worst-case ex-
pansion of only 20%, but bit-oriented algorithms are often
harder to implement efficiently in software than byte-oriented
algorithms.

While large variability in overhead may add jitter and un-
predictability to network behavior, this problem is not fatal for
PPP running over a telephone modem. An IP host [RFC791]
using standard PPP encapsulation [RFC1662] need only make
its transmit and receive buffers twice as large as the largest IP
packet it expects to send or receive. The modem itself is a
connection-oriented device and is only concerned with trans-
mitting an unstructured stream of byte values. It is unaware of
the concept of packet boundaries, so unpredictability of packet
size does not directly affect modem design.

In contrast, new devices are now becoming available, par-
ticularly portable wireless devices, that are packet-oriented,
not circuit-oriented. Unlike telephone modems these devices
are aware of packets as distinct entities and consequently im-
pose some finite limit on the maximum packet size they can
support. Channel-hopping packet radios that operate in the
unlicensed ISM (Industrial/Scientific/Medical) bands under
the FCC Part 15 rules [US94-15] are constrained by a maxi-
mum transmission time that they may not exceed. If the over-
head of byte stuffing unexpectedly doubles the size of a
packet, it could result in a packet that is too large to transmit
legally. Using conventional PPP encoding [RFC1662], the
only way to be certain that no packets will exceed the legal
limit is to set the IP maximum transmission unit (MTU) to half
the device’s true MTU, despite the fact that it is exceedingly
rare to encounter a packet that doubles in size when encoded.

Halving the MTU can significantly degrade the performance
seen by the end-user. For example, assuming one 40-byte TCP
acknowledgement for every two data packets [RFC1122], a
Metricom packet radio with an MTU of 1000 bytes achieves a
maximum end-user throughput of 5424 bytes per second
[Che96]. Halving the MTU to 500 bytes reduces the maximum
end-user throughput to 3622 bytes per second, a reduction of
roughly 33%, which is a significant performance penalty.

Although, as seen from experiments presented in this paper,
packets that actually double in size rarely occur naturally, it is
not acceptable to ignore the possibility of their occurrence.
Without a factor-of-two safety margin, the network device
would be open to malicious attack through artificially con-
structed pathological packets. An attacker could use such
packets to exploit the device’s inability to send and/or receive
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worst-case packets, causing mischief ranging from simple de-
nial of service attacks to the much more serious potential for
exploiting array-bounds errors such as the one in the Unix
‘finger’ dæmon exploited by the infamous Internet Worm of
1989 [RFC1135].

One way to avoid the performance degradation of halving
the MTU might be to set the IP MTU closer to the underlying
device MTU, and then use some kind of packet fragmentation
and reassembly to handle those packets that, when encoded,
become too large to send. Packet fragmentation is not without
cost though, as Chris Bennett reported in [Ben82] where he
wrote, “As well as the global overheads such as endpoint de-
lay, fragmentation generates overheads for other components
of the system — notably the intermediate gateways.”

One kind of packet fragmentation is link-layer fragmenta-
tion (‘transparent fragmentation’). While this could work, re-
quiring link-layer software to perform fragmentation and reas-
sembly is a substantial burden to impose on device driver
writers. In [Kent87], Kent and Mogul wrote “… transparent
fragmentation has many drawbacks … gateway implementa-
tions become more complex and require much more buffer
memory …” Fragmentation and reassembly also provides
more opportunities for software bugs [CA-96.26] and adds
protocol overhead, because the link-layer packet headers have
to contain additional fields to support the detection and reas-
sembly of fragments at the receiving end.

A second way to use fragmentation would be to avoid add-
ing a new layer of fragmentation and reassembly at the device
level, and instead to use IP’s own existing fragmentation and
reassembly mechanisms, but this also has problems. One
problem is that in current networking software implementa-
tions IP fragmentation occurs before the packet is handed to
the device driver software for transmission. If, after encoding
by the device driver, a particular packet becomes too large to
send, there is no mechanism for the driver to hand the packet
back to IP with a message saying, “Sorry, I failed, can you
please refragment this packet into smaller pieces and try
again?” Also, some software goes to great lengths to select an
optimal packet size. It would be difficult for such software to
cope with an IP implementation where the MTU of a device
varies for every packet. Finally, it is unclear, if we were to
create such a mechanism, how it would handle the IP header’s
‘Don’t Fragment’ bit without risking the creation of path MTU
discovery [RFC1191] ‘black holes’.

All these problems could be avoided if we used a byte
stuffing algorithm that did not have such inconsistent behav-
ior. This paper presents a new algorithm, called Consistent
Overhead Byte Stuffing (COBS), which can be relied upon to
encode all packets efficiently, regardless of their contents. It is
computationally cheap, easy to implement in software, and has
a worst-case performance bound that is better even than
HDLC’s bit stuffing scheme. All packets up to 254 bytes in
length are encoded with an overhead of exactly one byte. For
packets over 254 bytes in length the overhead is at most one
byte for every 254 bytes of packet data. The maximum over-
head is therefore roughly 0.4% of the packet size, rounded up
to a whole number of bytes.

Using Consistent Overhead Byte Stuffing, the IP MTU may
be set as high as 99.6% of the underlying device’s maximum
packet size without fear of any packet inadvertently exceeding
that limit. Thus COBS provides better end-user performance
than existing mechanisms, because COBS enables a given
piece of hardware to send larger IP packet payloads.

All the data stuffing algorithms discussed in this paper, in-
cluding COBS, have execution times that are O(n) with re-
spect to the size of the data set being stuffed. The constant
factor varies depending on the algorithm and the implementa-
tion, but all the algorithms execute in linear time.

The remainder of this paper proceeds as follows: The next
section describes two widely used methods for performing
data stuffing, HDLC bit stuffing and PPP byte stuffing.

Section III describes our new framing protocol, called Con-
sistent Overhead Byte Stuffing (COBS). COBS guarantees
that for all packets, no matter what their contents, the over-
head will be small. In addition to the basic algorithm, Section
III also presents a simple variant called Zero Pair Elimination
(COBS/ZPE) which improves on straight COBS’s average
performance at the expense of a fractionally higher worst-case
bound.

Sections IV and V compare the costs of HDLC, conven-
tional PPP, and COBS for encoding the same data packets. In
the least favorable case for COBS, network traffic consisting
predominantly of small packets, COBS is found to add on av-
erage less than 0.5% additional overhead compared to con-
ventional PPP. Although this is a small price for the perform-
ance benefit of being able to use much larger packets, it is
possible to eliminate even this cost. COBS/ZPE achieves an
average overhead lower than PPP’s, even for small-packet
traffic, without giving up COBS’s advantage of also guaran-
teeing a very low bound on worst-case overhead. Section IV
considers the expected overhead from a theoretical point of
view, for data consisting of uniformly distributed random
eight-bit values. Real network traffic often does not have a
uniform distribution of byte values, so Section V presents ex-
perimental results comparing COBS with conventional PPP
for real network traffic.

Section VI presents our conclusions.

II.   CURRENT DATA STUFFING ALGORITHMS

When packet data is sent over any serial medium, a protocol
is needed by which to demarcate packet boundaries. This is
done by using a special bit-sequence or character value to in-
dicate where the boundaries between packets fall. Data stuff-
ing is the process that transforms the packet data before
transmission to eliminate any accidental occurrences of that
special framing marker, so that when the receiver detects the
marker, it knows, without any ambiguity, that it does indeed
indicate a boundary between packets. Some communications
protocols use bit stuffing algorithms (which operate on a bit-
by-bit basis), and some use byte stuffing algorithms (which
operate on a byte at a time).

Both bit stuffing and byte stuffing in general increase the
size of the data being sent. The amount of increase depends on
the patterns of values that appear in the original data and can
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vary from no overhead at all to, in the worst case for PPP,
doubling the packet size. Bit stuffing and byte stuffing are dis-
cussed in more detail below.

HDLC [ECMA-40] uses a bit stuffing scheme. It uses the
binary sequence 01111110, called the Flag Sequence, to mark
boundaries between packets. To eliminate this pattern from the
data, the following transformation is used: whenever the
transmitter observes five ones in a row, it inserts a zero imme-
diately following. This eliminates the possibility of six con-
secutive ones ever occurring inadvertently in the data. The re-
ceiver performs the reverse process: After observing five ones
in a row, if the next binary digit is a zero it is deleted, and if it
is a one then the receiver recognizes it as one of the special
framing patterns. This process of inserting extra zeroes (‘bit
stuffing’ or ‘zero insertion’) increases the transmitted size of
the data. In the worse case, for data that consists entirely of
binary ones, HDLC framing can add 20% to the transmitted
size of the data.

This kind of bit-level insertion and deletion is easy to im-
plement in the hardware of a serial transmitter, but is not easy
to implement efficiently in software. Software gets efficiency
from working in units of 8, 32, or more, bits at a time, using
on-chip registers and wide data buses. Algorithms that are
specified in terms of individual bits can be hard to implement
efficiently in software because it can be difficult to take good
advantage of the processor’s ability to operate on bytes or
words at a time. For this reason it is more common for soft-
ware algorithms to use byte stuffing.

PPP uses a byte stuffing scheme [RFC1662]. It operates in
terms of bytes instead of bits and uses a byte with value 0x7E
(the same as the HDLC Flag Sequence) to mark boundaries
between packets. To eliminate this value from the data pay-
load, the following transformation is used: everywhere that
0x7E appears in the data it is replaced with the two-character
sequence 0x7D,0x5E. 0x7D is called the Control Escape byte.
Everywhere that 0x7D appears in the data it is replaced with
the two-character sequence 0x7D,0x5D. The receiver per-
forms the reverse process: whenever it sees the Control Escape
value (0x7D) it discards that byte and XORs the following
byte with 0x20 to recreate the original input.

On average this byte stuffing does reasonably well, in-
creasing the size of purely random data by a little under 1%,
but in the worst case it can double the size of the data being
encoded. This is much worse than HDLC’s worst case, but
PPP byte stuffing has the advantage that it can be imple-
mented reasonably efficiently in software.

PPP’s byte stuffing mechanism, in which the offending byte
is prefixed with 0x7D and XORed with 0x20, allows multiple
byte values to be eliminated from a packet. For example, PPP
byte stuffing can facilitate communication over a non-
transparent network by eliminating all ASCII control charac-
ters (0x00-0x1F) from the transmitted packet data. It is equally
possible to do this using a COBS-type algorithm [Che98], but
the subject of this paper is the minimal byte stuffing necessary
to facilitate reliable unambiguous packet framing, not exten-
sive byte stuffing to compensate for non-transparency of the
underlying network.

A more exhaustive treatment of framing and data stuffing
can be found in [Che98].

III.   CONSISTENT OVERHEAD BYTE STUFFING ALGORITHMS

This section begins by describing the data encoding format
used by COBS and the procedure for converting packet data to
and from that encoded format. It then describes some of the
properties and implications of using COBS encoding, and de-
scribes a variant of COBS called COBS/ZPE which has
slightly different properties. COBS is described in terms of
detecting packet boundaries in a stream of bytes, but it can
also be used equally well to decode a raw bit-stream, and this
section concludes by describing how this is achieved.

A.  COBS Syntax and Semantics

COBS performs a reversible transformation on a data packet
to eliminate a single byte value from it. Once eliminated from
the data, that byte value can then safely be used as the framing
marker without risk of ambiguity.

For the description that follows, zero was chosen as the
framing value to be eliminated. In practice zero is a good
value to choose for a real-world implementation because ze-
roes are common in binary computer data, and COBS per-
forms marginally better when it has many bytes to eliminate.
However, elimination of some value other than zero can be
achieved with only trivial changes to the algorithm, such as
the addition of a simple post-processing step (like XORing all
the output bytes with the value to be eliminated) [Che97]
[Che98].

COBS first takes its input data and logically appends a sin-
gle zero byte. (It is not necessary actually to add this zero byte
to the end of the packet in memory; the encoding routine sim-
ply has to behave as if the added zero were there.)

COBS then locates all the zero bytes in the packet (includ-
ing the added one), and divides the packet at these boundaries
into one or more zero-terminated chunks. Every zero-
terminated chunk contains exactly one zero byte, and that zero
is always the last byte of the chunk. A chunk may be as short
as one byte (i.e. a chunk containing just a solitary zero byte) or
as long as an entire packet.

COBS encodes each zero-terminated chunk using one or
more variable length COBS code blocks. Chunks of 254 bytes
or fewer are encoded as a single COBS code block. Chunks
longer than 254 bytes are encoded using multiple code blocks,
as described later in this section. After a packet’s constituent
chunks have all been encoded using COBS code blocks, the
entire resulting aggregate block of data is completely free of
zero bytes, so zeroes can then be placed around the encoded
packet to mark clearly where it begins and ends.

A COBS code block  consists of a single code byte, followed
by zero or more data bytes. The number of data bytes is de-
termined by the code byte. Fig. 1 shows some examples of
valid COBS code blocks and the corresponding zero-
terminated data chunks they represent.

For codes 0x01 to 0xFE, the meaning of each code block is
that it represents the sequence of data bytes contained within
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the code block, followed by an implicit zero byte. The zero
byte is implicit — it is not actually contained within the se-
quence of data bytes in the code block.

These code blocks encode data without adding any over-
head. Each code block begins with one code byte followed by
n data bytes, and represents n data bytes followed by one
trailing zero byte. Thus the code block adds no overhead to the
data: a chunk (n+1) bytes long is encoded using a code block
(1+n) bytes long.

These basic codes are suitable for encoding zero-terminated
chunks up to 254 bytes in length, but some of the zero-
terminated chunks that make up a packet may be longer that
that. To cope with these chunks, code 0xFF is defined slightly
differently. Code 0xFF represents the sequence of 254 data
bytes contained within the code block, without any implicit
zero. Defining the maximum length code (0xFF) as an excep-
tion this way allows us to encode chunks that are too long to
be encoded as a single code block. Chunks longer than 254
bytes are encoded using one or more of these special maxi-
mum length code blocks, followed by a single normal code
block. Each special maximum length code block has no im-
plied trailing zero, but the final (normal) code block does in-
clude an implied trailing zero at the end, so this aggregate se-
quence of code blocks correctly encodes the required long
chunk of non-zero data with a single zero byte at the end. Un-
like the other code blocks, this maximum length code block
does add some overhead to the encoded data. 254 bytes of
packet data are encoded using 255 bytes, an overhead of just
under 0.4%.

Fig. 2 shows an example of a 680-byte zero-terminated
chunk (679 non-zero bytes and one zero) which is encoded
using three COBS code blocks. The first two are special
maximum-length (254 data bytes, no implied zero) COBS
code blocks, and the final code block is a standard 172-byte
(171 data bytes and an implied zero) COBS code block. Thus
in this case 680 bytes of user data is encoded using 682 bytes,
an overhead of just under 0.3%.

The meanings of the various COBS code values are summa-
rized in Table 1.

COBS has the property that the byte value zero is never
used as a code byte, nor does it ever appear in the data section
of any code block. This means that COBS takes an input con-

sisting of characters in the range [0,0xFF] and produces an
output consisting of characters only in the range [1,0xFF].
Having eliminated all zero bytes from the data, a zero byte can
now be used unambiguously to mark boundaries between
packets. This allows the receiver to synchronize reliably with
the beginning of the next packet, even after an error. It also
allows new listeners to join a broadcast stream at any time and
without fail receive and decode the very next error free packet.

B.  COBS Encoding Procedure

The job of the COBS encoder is to translate the raw packet
data into a series of COBS code blocks. Breaking the packet
into zero-terminated chunks as described above is a useful
way to understand the logic of COBS encoding, but in practice
it is more efficient to write an encoder that translates from
packet data directly to code blocks, without going through an
intermediate data format.

The encoding routine searches through the first 254 bytes of
the packet looking for the first occurrence of a zero byte. If no
zero is found, then a code of 0xFF is output, followed by the
254 non-zero bytes. If a zero is found, then the number of
bytes examined, n, is output as the code byte, followed by the
actual values of the (n–1) non-zero bytes up to, but not in-
cluding, the zero byte. The zero is then skipped and this proc-
ess is repeated until all the bytes of the packet (including the
final zero which is logically appended to every packet) have
been encoded. Fig. 3 shows an example of packet encoding.

The implementation of COBS is very simple. The Appendix
gives complete C source code listings to perform both COBS
encoding and decoding.

There is a small optimization that may be performed in one
particular situation. The reason for logically appending a zero
to every packet before encoding is that all code blocks except
code 0xFF represent a block of data that ends with an implied
zero. If the data to be encoded did not actually end with a zero
there might be no valid COBS encoding of that data. Adding a
zero to the end of every packet circumvents this problem.

01

02 x

03 x y

0C H e l l o W o r l d

x

x y

H e l l o W o r l d

00

00

00

00

Fig. 1.   Example code blocks and the data chunks they represent.
Each COBS code block begins with a single code byte (shown
shaded), followed by zero or more data bytes.

FF xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx00

FF xxxxxxxxxxxxxxxxxAC xxxxxxxxxxxx

Fig. 2.   Encoding oversized chunks.

Code Followed by Meaning

0x00 (not applicable) (not allowed)

0x01 no data bytes A single zero byte

n (n–1) data bytes The (n–1) data bytes,
followed by a single zero

0xFF 254 data bytes The 254 data bytes,
not followed by a zero

Table 1.   Code values used by consistent overhead byte stuffing.

0045 00 2C 4C 79 00 00 40 06 4F 37

Output:

Input:

02 45 01 04 2C 4C 79 01 05 40 06 4F 37

00

Fig. 3.   Example COBS encoding showing input (with a phantom
zero logically appended) and corresponding zero-free output, with
code bytes shown shaded for clarity.



CHESHIRE AND BAKER: CONSISTENT OVERHEAD BYTE STUFFING Page 5 of 15

However, if by chance the packet happens naturally to end
with a maximum length 0xFF code block then there is no need
to logically append a zero in order to make it encodable. This
optimization can be performed without ambiguity, because the
receiver will observe that the decoded packet does not end
with a zero, and hence will realize that in this case there is no
trailing zero to be discarded in order to recreate the original
input data. In practice, the gain achieved by this optimization
is very slight, but it is useful from a theoretical standpoint. It
simplifies analysis of the algorithm’s behavior by allowing us
to say that COBS encoding adds “no more than one byte of
overhead for every 254 bytes of packet data.” Without this
optimization, that statement would not be true for packets
containing an exact multiple of 254 bytes and no zeroes; these
packets would incur one extra byte of overhead.

C.  Behavior of COBS

COBS encoding has low overhead (on average 0.23% of the
packet size, rounded up to a whole number of bytes) and fur-
thermore, for packets of any given length, the amount of over-
head is virtually constant, regardless of the packet contents.
This section offers an intuitive understanding of why the over-
head of COBS is so uniform, in marked contrast to the over-
head of PPP and other two-for-one byte stuffing schemes,
which are extremely variable.

COBS encoding has low overhead because, in most cases,
the size of each code block is exactly the same as the size of
the data sequence it encodes. For all of the code blocks 0x01
to 0xFE, the code block contains one code byte and (n–1) non-
zero data bytes. The data represented by that code block is the
(n–1) data bytes followed by a single zero byte at the end.
Hence n input bytes are encoded using exactly n output bytes,
so the output size is the same as the input size. Even for code
block 0xFF where there is no implied zero and 255 output
bytes are used to encode 254 input bytes, the overhead is just
0.4%.

COBS encoding overhead has very low variability com-
pared to other byte stuffing algorithms like PPP. To see why
this is so we need to understand how overhead is generated in
byte stuffing algorithms. For any byte stuffing algorithm like
PPP or COBS, each byte in a packet either generates no over-
head, or it generates some fixed amount x. In a given packet of
length n bytes, if the proportion of bytes that are overhead-
generating is p, then the total overhead for the packet will be
npx bytes. For all of today’s byte stuffing algorithms, x has
some fixed value, but the values of n and p are determined by
the size of the packet being encoded and the nature of the data
in that packet.

For PPP, overhead is incurred whenever a byte has one of
the reserved values 0x7D or 0x7E. On average for uniformly
distributed data, only one byte out of every 128 is a reserved
value. This occurrence is relatively rare — less than 0.8% of
the bytes — but when it does occur the cost is relatively high
— an encoding overhead of 100% for that particular byte. All
the other byte values — the vast majority — incur no over-
head. Thus for PPP x=1 and, for the average packet, p=1/128.

For COBS, the behavior has the opposite characteristics.
Overhead is not the rare case; it is the common case. Overhead
is not generated by occurrences of the reserved value, it is
generated by the large majority of bytes that are not the re-
served value zero: If more than 254 bytes are encountered
without finding a single zero, then one byte of overhead is
generated. Fortunately, although overhead is the common
case, the one byte of overhead generated is amortized over 254
bytes, making the cost per byte very small. The rare event of
encountering a zero can be viewed as an occasional lucky bo-
nus: both the zero and some number of non-zero bytes that
preceded it are then encoded with no overhead at all. Thus for
COBS the proportion of bytes that are overhead-generating is
high — usually the majority of the bytes in the packet — but
the amount of overhead each one generates, x, is only 1/254.

Because of these two opposite kinds of behavior, PPP and
COBS generate overhead in opposite ways. The encoding
overhead of PPP can be characterized as the sum of a series of
high-cost low-probability events, whereas the overhead of
COBS can be characterized as a series of high-probability
low-cost events. For PPP to encode a packet with low over-
head, it requires that the proportion of overhead-generating
bytes in the packet be small. In the pathological case where
every byte in the packet generates overhead, p=1 and the size
of the packet doubles. In contrast, COBS already assumes that
most bytes generate overhead, so the worst possible case
where every byte generates overhead is hardly any different
from the average case. For the same reason, the best case for
COBS is also hardly any better than the average case. Because
x is so small, the final encoded size of the data is very insensi-
tive to the proportion p of bytes that are overhead-generating.

To summarize: The best case for COBS is one byte of over-
head, and the worst case is one byte for every 254 bytes of
packet data. This is good for large packets, but has an unfortu-
nate side effect for small packets. Every packet 254 bytes or
smaller always incurs exactly one byte of overhead, no more,
no less.

We regard one byte of overhead a small price to pay in ex-
change for vastly more predictable overhead and the conse-
quent significant performance gains we get from the ability to
send much larger IP packets. However, there could be circum-
stances where any cost, however small, is unacceptable. To
address this concern the next section presents a minor modifi-
cation to basic COBS called Zero Pair Elimination (ZPE),
which exhibits better performance for small packets.

D.  Zero Pair Elimination

In experiments on real-world data (see Section V) we ob-
served not only that zero is a common value in Internet traffic,
but furthermore that adjacent pairs of zeros are also very
common, especially in the headers of small TCP/IP packets.
To take advantage of this property of real-world traffic, we
created a variant of COBS where the maximum encodable se-
quence length is slightly shortened, freeing some of the high-
numbered codes for other uses. These codes are reassigned to
indicate sequences ending with a pair of implicit zeroes. Any
reduction in the maximum sequence length increases the
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worst-case overhead, so the maximum length should not be
reduced by too much. With our packet traces we found that re-
assigning 31 codes gives good performance without sacrific-
ing too much of the good worst-case bound that makes COBS
useful [Che98]. For other protocols and traffic mixes the ‘op-
timum’ cut-off point may be different, but it should be re-
membered that the benefit of COBS (and COBS/ZPE) encod-
ing is that it is extremely insensitive to the nature of the data
being encoded. The penalty for picking the ‘wrong’ cut-off
point is very slight.

In COBS/ZPE codes 0x00 to 0xDF have the same meaning
as in basic COBS, and code 0xE0 encodes the new maximum
length sequence of 223 bytes without an implicit zero on the
end. This change in code assignments gives COBS/ZPE a
worst-case overhead of one byte in 223, or about 0.45%.
Codes 0xE1 to 0xFF encode sequences that end with an im-
plicit pair of zeroes, containing, respectively, 0 to 30 non-zero
data bytes. These new code meanings are summarized in
Table 2.

Reassigning some of the codes to indicate sequences ending
with a pair of implicit zeroes has the good property that now
some of the code blocks are smaller than the data they encode,
which helps mitigate the one-byte overhead that COBS adds.
Fig. 4 shows an example of a small packet (actually the begin-
ning of a real IPv4 packet header) that gets one byte smaller as
a result of encoding using COBS/ZPE.

The disadvantage of using COBS/ZPE is a slightly poorer
worst-case overhead — about 0.45% instead of 0.40% — but
this is still a very small worst-case overhead. In fact, as de-
scribed in Section V, when a typical mix of real-world net-
work traffic is encoded using COBS/ZPE, it actually gets
smaller by about 1%. PPP byte stuffing cannot compete with
this since PPP never makes any packet smaller.

COBS/ZPE is useful because pairs of zeroes are common in
packet headers. Also, the trend towards aligning packet fields
on 64-bit boundaries in high-performance protocols some-
times results in padding zeroes between fields. These padding
zeroes waste precious bandwidth on slow wireless links. Using
COBS/ZPE as the link-layer encoding for these slower links
can help to mitigate this effect by encoding these patterns
more efficiently. This increased efficiency for zero pairs

makes it more attractive to use a single packet format on all
networks, instead of designing different application-layer
protocol formats for different speeds of network.

Although for certain packets COBS/ZPE does result in
some reduction in size, COBS/ZPE should not be thought of
as a general purpose compression algorithm, and it is not in-
tended to compete with more sophisticated (and more compu-
tationally expensive) compression algorithms such as Huff-
man encoding [Huff52] [Knu85] and Lempel Ziv [LZ77]
[Wel84]. Although, like PPP, these compression algorithms
may have good average performance, for some data they can
make the packet bigger instead of smaller [Hum81], and it can
be hard to predict how much bigger they may make a packet
in the worst case, which is contrary to our goal of ensuring a
tight bound on worst-case performance.

It is also not clear that there is a great benefit to applying
heavyweight compression at the link layer, since the majority
of compressible data is much more effectively compressed be-
fore it even reaches the IP layer using data-specific algorithms
such as JPEG [ISO10918] for images and MPEG [ISO11172]
for video. In the case of data that has been encrypted, it is not
possible to apply heavyweight compression at the link layer
because data that has been properly encrypted is not com-
pressible [Pra97].

ZPE is a lightweight technique that works well for small
packets that contain zero pairs, without sacrificing the primary
benefit of COBS: an aggressive bound on worst-case over-
head, even for packets that may be large and contain no zero
pairs.

E.  Lower-Level Framing

COBS is defined in terms of byte operations. This means
that there also needs to be some underlying mechanism to de-
tect where the byte boundaries fall in the bit-stream. When
used over an RS-232 serial port [RS-232-C], the start/stop bits
perform this function (not very reliably [Che98]), at a cost of
20% extra overhead. HDLC framing is usually more efficient,
but it too, in the worst case, can add as much as 20% over-
head. COBS’s twin benefits of guaranteeing to always resyn-
chronize immediately after error and guaranteeing to do so
without adding excessive overhead are somewhat diminished
if the bit-level framing is not similarly well behaved.

Fortunately, with the choice of an appropriate bit-level
framing pattern, COBS-encoded data becomes self-framing,
and no separate lower-layer bit stuffing is needed. All that is
required to make this work is a bit-level framing pattern cho-
sen so that it can never occur anywhere in COBS-encoded
data. If the framing pattern cannot inadvertently appear, there
is no need for any bit stuffing mechanism to eliminate it.

Code Followed by Meaning

0x00 (not applicable) (not allowed)

0x01-
0xDF

(n–1) data bytes The (n–1) data bytes,
followed by a single zero

0xE0 223 data bytes The 223 data bytes,
not followed by a zero

0xE1-
0xFF

(n–225) data bytes The (n–225) data bytes,
followed by a pair of zero bytes

Table 2.   Code values used by consistent overhead byte stuffing with
zero-pair elimination. Codes 0x01 to 0xDF have the same meaning as
in basic COBS, but codes 0xE0 to 0xFF are reassigned to have new
meanings.

0045 00 2C 4C 79 00 00 40 06 4F 37

Output:

Input:

E2 45 E4 2C 4C 79 05 40 06 4F 37

00

Fig. 4.   Example COBS/ZPE encoding showing input (with a phan-
tom zero logically appended) and corresponding zero-free output. For
clarity, COBS code bytes are shown shaded.
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Finding an appropriate framing pattern is easy. Since
COBS-encoded data contains no zero bytes, we know that
there is at least one binary ‘1’ bit somewhere in every byte.
This means that in a bit-stream of COBS-encoded data there
can be no contiguous run of more than fourteen zero-bits,
which suggests a candidate for the COBS end-of-packet
marker: a run of fifteen (or more) zero-bits.

The work of Barker [Bar53] and Artom [Art72] gives fur-
ther guidance about the choice of an appropriate framing pat-
tern. The framing pattern should not only be one that does not
appear in the data stream, but also one that cannot appear in
any overlap between the marker and the data stream. A fram-
ing marker consisting of just a run of zero-bits would not meet
this requirement. It could never appear entirely within the en-
coded packet data, but appending this framing marker to the
end of an encoded packet could result in an ambiguous situa-
tion. This is because nothing prevents an encoded packet from
ending with as many as seven consecutive zero-bits. Upon
seeing a long run of zero-bits, the receiver does not have any
simple reliable way to tell which, if any, of those zero-bits
actually belong to the tail of the previous packet, and which
bits belong to the framing marker. This ambiguity can be
solved by refining the definition of the framing marker to be a
one-bit followed by fifteen zero-bits:

1000000000000000

Unintended occurrences of the framing marker are now
eliminated, because any sequence made by concatenating bits
from the end of a packet with bits from the start of the marker
will result in a sequence that has at least one one-bit some-
where in the middle. This cannot be mistaken for a framing
marker because the framing marker has no one-bits in the
middle.

COBS bit-level framing can be defined to use a synchro-
nous idle sequence, or an asynchronous idle sequence, as ap-
propriate to the application requirements. Using a synchronous
idle sequence, the end-of-packet marker is a one-bit followed
by exactly fifteen zero-bits. If the link is idle and there are no
packets to transmit, then these 16-bit end-of-packet markers
are transmitted back-to-back continuously until there is a
packet to transmit. Using an asynchronous idle sequence, the
end-of-packet marker is a one-bit followed by fifteen or more
zero-bits. In this case, after the basic end-of-packet marker has
been sent, an idle line can simply be filled with as many zero-
bits as are needed to bridge the gap until there is another
packet to send. So that the receiver knows when the next
packet begins, the asynchronous framing marker is defined to
be a one-bit, followed by fifteen or more zero-bits, and then
another one-bit, as shown below:

100000000000000 ... 01

For a line that is mostly busy, the synchronous idle specifi-
cation is marginally better, because the framing marker is only
16 bits long, compared to the 17-bit minimum length of the
asynchronous idle framing marker, so there is slightly less
overhead.

For a line that is mostly idle, the asynchronous idle specifi-
cation is marginally better, because packets can be sent with
slightly less delay. Using synchronous idle markers, if an idle
line has just begun transmitting its next idle end-of-packet
marker when an outgoing packet arrives at the interface, the
packet will have to wait for 15 bit-times before it can be sent.
Using asynchronous idle, the interface could immediately send
the start bit and begin sending the packet after a delay of only
one bit-time.

Used with either of these framing marker definitions, COBS
guarantees a very tight bound, not only on the number of
bytes, but also on the total number of bits required to transmit
a data packet.

IV.   THEORETICAL ANALYSIS

This section presents a theoretical analysis of the behavior
of COBS and COBS/ZPE in comparison to two other tech-
niques, HDLC bit stuffing and PPP byte stuffing. It compares
the best-case, worst-case, and average case-encoding over-
head, given uniformly distributed random data.

HDLC and PPP are chosen for comparison because both
work reliably and are reasonably efficient, and as a result both
are widely used in today’s software. They are arguably the ca-
nonical examples respectively of bit and byte stuffing.

It is useful to calculate the expected performance for uni-
form random data, because data that is properly compressed
and/or encrypted has a uniform distribution of byte values.
Data that is well-compressed must in general have a uniform
distribution of byte values, because if it did not then Huffman
encoding [Huff52] could be used trivially to compress the data
further, contradicting the description of the data as being ‘well
compressed’. For similar reasons encryption algorithms seek
to maximize the entropy of the data so as to maximize the
strength of the encryption [Pra97]. Compressed data already
makes up a large part of Internet traffic: For example, World-
Wide Web traffic has grown to exceed all other Internet traffic
sources combined, whether measured by number of packets,
number of bytes, or number of flows [Braun94] [Thom97],
and furthermore, 65% of World-Wide Web traffic is com-
pressed GIF or JPEG image data [Gwert96]. We expect to see
an increasing awareness of security issues on the Internet in
the future, resulting in a similar increase in encrypted data.
However, at the present time not all traffic is compressed
and/or encrypted, so actual performance on today’s real pack-
ets is shown in Section V.

The section concludes with a discussion of the trade-off
between minimizing the encoding overhead and minimizing
the delay imposed on the stream of data being encoded.

A.  Best Case Overhead

The best case for HDLC bit stuffing is a packet that contains
no occurrences of five binary ones in a row. In this case,
HDLC encoding adds no overhead to the packet at all.

The best case for PPP byte stuffing is a packet that contains
no occurrences of the reserved (0x7D or 0x7E) characters. In
this case, PPP encoding adds no overhead to the packet at all.
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The best case for COBS is a packet with plenty of zeroes, so
that nowhere in the packet is there any contiguous sequence of
more than 254 non-zero bytes. In this case, each block is en-
coded with no overhead at all. Counting the phantom zero that
has to be added to every packet before encoding, this results in
a best-case overhead of a single byte, for any size of packet.

The best case for COBS/ZPE is a packet composed entirely
of zeroes. In this case, each pair of zeroes is encoded as a one-
byte code, 0xE1, resulting in an approximate halving of packet
size. As with basic COBS, a phantom zero is still appended to
the tail of every packet, so the best-case encoded size is half of
the length n of the packet plus one byte, rounded up to an in-
teger number of bytes, meaning packet size is reduced by:

n −
n + 1

2
 
 

 
 =

n −1

2
 
 

 
 

bytes

B.  Worst-Case Overhead

The worst case for HDLC bit stuffing is a packet that con-
tains nothing but binary ones. In this case, HDLC encoding
adds one bit for every five, giving an overhead of 20%.

The worst case for PPP byte stuffing is a packet that con-
sists entirely of reserved (0x7D or 0x7E) characters. In this
case, encoding doubles the size of the packet, giving an over-
head of 100%.

The worst case for both COBS and COBS/ZPE is a packet
that contains no zeroes at all. In the case of basic COBS, each
sequence of 254 bytes of packet data is encoded using 255
bytes of output data, giving one byte of overhead for every
254 bytes of packet data. The maximum overhead is 1/254

(roughly 0.4%) of the packet size, rounded up to a whole
number of bytes. For example, a maximum size IP packet over
Ethernet is 1500 bytes long, and in the worst possible case
COBS would add an overhead of six bytes to a packet of this
size. In the case of COBS/ZPE, each sequence of 223 bytes of
packet data is encoded using 224 bytes of output data, giving
one byte of overhead for every 223 bytes of packet data. The
maximum overhead is 1/223 (roughly 0.45%) of the packet size,
rounded up to a whole number of bytes. For example, in the
worst possible case COBS/ZPE would add an overhead of
seven bytes to a maximum size Ethernet packet.

C.  Expected Overhead

Knowing each algorithm’s extremes is useful, but it is also
useful to know the average overhead because that tells us how
efficiently the algorithm uses the underlying medium, in the
sense of what overall proportion of its intrinsic capacity we
expect to be available for carrying data and what proportion
we expect to be consumed by encoding overhead. Since byte
stuffing is a process that takes as input a packet composed of
characters from an alphabet of 256 possible symbols and gives
as output a packet composed of characters from an alphabet of
only 255 possible symbols, in general there must be some
overhead. Exactly how much longer a particular packet be-
comes may or may not depend on the contents of that packet,
depending on the algorithm being used. With some algorithms

there may be fortunate packets that incur no overhead at all,
but information theory tells us that for random data the aver-
age overhead must be at least:

log 256

log 255
−1 ≈ 0.0007063,or roughly 0.07%

This theoretical bound gives us a metric against which to
judge different byte stuffing schemes. Some algorithms may
be able to beat this bound for some packets, but there is no al-
gorithm whose average performance over all packets can beat
this bound. Perhaps more significantly, this average perform-
ance bound tells us that no algorithm can ever have a worst-
case bound better than 0.07063%. If any algorithm did have a
worst-case bound better than this, that would necessarily mean
that its average performance over all inputs would also be
better than 0.07063%, and we know that cannot be the case.

In practice we can take advantage of the fact that our net-
work traffic is not purely random data, by recognizing that
certain patterns of data occur more frequently than others and
devising an algorithm that encodes this particular mix of data
more efficiently. This allows us to improve our average per-
formance for typical network traffic, but it does not change the
fact that the worst case can never be improved beyond the
theoretical limit.

C.i.  Expected Overhead for HDLC

In [Pap87] Papastavridis shows that in a prefix-synch-
ronized code such as HDLC, if the data is n bits long, the pre-
fix is k+1 bits long, and n»k, the mean number of stuffing bits
is approximately:

n

2 k −1

For HDLC, the prefix referred to is the sequence 0111111,
so k=6. Thus Papastavridis shows that the mean number of
stuffing bits in HDLC-encoded data is roughly one bit in 63.
Note that Papastavridis shows his result in terms of the pro-
portion of stuffing bits expected to be observed in the final
output data, not in terms of the number of stuffing bits the en-
coding algorithm is expected to add to the input data. If in the
output one bit in 63 is a stuffing bit, that is equivalent to say-
ing that the encoding algorithm added one bit for every 62 bits
of input data. Hence, in terms consistent with those used
throughout the rest of this paper, HDLC bit stuffing adds an
average overhead of one bit in 62, or a little over 1.6%.

C.ii.  Expected Overhead for PPP

For PPP the expected overhead is easy to calculate. PPP has
only two distinct behavior patterns: it either reads a single byte
and writes a single byte, or it reads a single byte and writes a
pair of bytes. In uniformly distributed data, the probability that
any given byte will be one of PPP’s two reserved values,
causing PPP to output two bytes instead of one, is 2/256. In a
packet of length n, there will be on average n × 2/256 occur-
rences of reserved values and n × 254/256 occurrences of other
values, giving an expected output length of:
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n × 2 × 2
256  +  n ×1 × 254

256  =  1.0078125n

An expected output length 1.0078125 times the input length
gives an expected overhead of 0.78125%, about 11 times
worse than the theoretical optimum.

C.iii.  Expected Overhead for COBS

For COBS the average overhead is a little harder to calcu-
late than for PPP, since COBS has 255 different behaviors,
rather than just the two that PPP has. In addition, each behav-
ior not only writes a different number of output bytes, each
behavior also reads a different number of input bytes. Since
the number of input bytes read is not always one as it is for
PPP, we must also calculate the average number of bytes read
per code block, and divide the average output by the average
input to determine the overall average overhead.

First we determine the average input per code block by
multiplying the number of bytes each code block consumes by
the probability of that code block occurring, and summing the
results. Likewise we determine the average output per code
block by doing the same calculation using the number of bytes
each code block generates. The ratio of average output divided
by average input gives us the average encoding overhead.

If the first byte the algorithm encounters is a zero, then that
single byte is encoded as a code block. The input in this case
is one byte and the output is one byte and the probability
p(0x01) of this happening is 1/256. If the first byte is not a zero,
but the second byte is, then the algorithm reads two bytes and
outputs two bytes and the probability p(0x02) of this happen-
ing is 255/256 × 1/256. The probability p(n) that the encoder reads
n–1 non-zero bytes (n ≤ 254) followed by a zero is:

255

256
 
 

 
 

n−1

×
1

256

The longest code block, code 0xFF, occurs when the algo-
rithm encounters 254 non-zero bytes without seeing a single
zero. The probability p(255) of this happening is (255/256)

254,
and in this case the algorithm reads 254 bytes and writes out a
block of 255 bytes.

The ratio of average output divided by average input is:

n × p(n)
n=1

254

∑
 
 
  

 
+255 × p(255)

n × p(n)
n=1

254

∑ 
 
  

 
+ 254 × p(255)

≈ 1.002295

The theoretical average overhead for COBS on random data
is therefore a little under 0.23%. This is about 31/4 times worse
than the theoretical optimum, more than three times better
than PPP’s average.

C.iv.  Expected Overhead for COBS/ZPE

As with basic COBS, we calculate the probability of each
code block, and the number of bytes of input and output for
each code block. The probability p(0x01) that the first byte is
a zero and the second is not, resulting in a code 0x01 block, is
1/256 × 255/256. The probability p(0xE1) that both the first and the

second bytes are zero, resulting in a code 0xE1 block, is
1/256 × 1/256. Table 3 enumerates, for each code of the form k+n,
the probability of code block k+n occurring, and the number of
input and output bytes for that code block.

The ratio of average output divided by average input is:

p(n) × out(n)
n=1

255

∑
p(n) × in(n)

n=1

255

∑
≈ 1.002800

The theoretical average overhead for COBS/ZPE on random
data is therefore about 0.28%. This is a little higher than basic
COBS, which is not surprising: The maximum length code
block is about 12% shorter, making it likely to occur more of-
ten, and every time it does occur the amount of overhead if
adds is about 12% higher (0.45% instead of 0.40%).

D.  Encoding Delay

One possible criticism of COBS encoding is that it appears
to add delay to data transmission, whereas HDLC and PPP do
not. The argument is that as each bit is fed to an HDLC en-
coder, the encoder immediately generates its corresponding
output, namely that bit, or that bit followed by a zero stuffing
bit, as appropriate. Likewise, as each byte is fed to a PPP en-
coder, the encoder immediately generates its corresponding
output, namely that byte, or a pair of bytes, as appropriate. In
both cases, for each unit of data the output generation is im-
mediate. The encoder does not have to wait until it has seen
some amount of subsequent input before it is able to decide
what its output will be. In contrast, a COBS encoder may have
to buffer up to 254 bytes of data internally before it generates
any output, which suggests that COBS encoding could add a
significant amount of delay to the data transmission pipeline.

This section addresses this possible criticism in two ways.
The first is to show that delay and worst-case overhead are in-
trinsically linked, so any delay in the COBS algorithm is not
so much a flaw peculiar to the COBS algorithm, but a neces-
sary consequence of achieving a low bound on worst-case
overhead. The second is that the apparent dependency on fu-
ture data, and the consequent apparent encoding delay, are due
to considering bytes as the basic unit of data. If we consider

Base
Code k

Offset
n

Probability
p(k+n)

Input
in(k+n)

Output
out(k+n)

k = 0x00 1≤n<0x20 255

256
 
 

 
 

n−1

× 1

256
× 255

256

n n

k = 0x00 0x20≤n<0xE0 255

256
 
 

 
 

n −1

× 1

256

n n

k = 0x00 n = 0xE0 255

256
 
 

 
 

n−1
n – 1 n

k = 0xE0 1≤n<0x20 255

256
 
 

 
 

n−1

× 1

256
× 1

256
n + 1 n

Table 3.   Code block probabilities for COBS/ZPE.
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the network packet as the basic unit of data, then there is no
dependency on future data, and thus no encoding delay.

D.i.  Relationship Between Delay and Worst-Case Overhead

Any data stuffing algorithm is effectively a finite state ma-
chine that reads input, undergoes state changes, and writes
output. Since in the worst case the output is necessarily longer
than the input, for each n units of data read some number m>n
units of data may have to be written. To minimize worst-case
overhead, we should make m as small as possible. Unless we
plan to allow reading and writing of fractional units of data,
which is beyond the scope of this paper, n and m must be inte-
gers, and the smallest integer greater than n is n+1. Thus the
worst-case encoding ratio can be no better than n+1/n. Conse-
quently, to minimize worst-case overhead, we should make n
as large as possible. The smaller the value of n, the larger the
worst-case encoding overhead. For PPP the amount of data
read before an output is generated is always one byte, so n=1,
and the worst-case encoding ratio is 2:1. For COBS the
amount of data read before an output is generated may be up
to 254 bytes, so n=254, and the worst-case encoding ratio is
255:254.

Upon casual inspection it may appear that HDLC is able to
beat this performance limit, since its worst-case overhead is
only 20%, yet it is always able to generate an output for every
single bit of input. However, this interpretation is misleading,
because HDLC encoding transfers the delay to the receiving
end of the pipeline. While the HDLC encoder is able to proc-
ess individual bits with no delay, the HDLC decoder is not.
When the HDLC decoder observes a series of one-bits, it is
not able to say whether those one-bits are data bits or the end-
of-frame marker until it has examined the sixth bit to see
whether it is a zero or a one. Hence in the case where it re-
ceives five ones followed by a zero, the HDLC decoder has to
read six bits before it can generate any output, at which time it
can then immediately generate five bits of output. Hence
HDLC does adhere to the general delay/overhead rule de-
scribed above: it has a worst-case encoding ratio of 6:5, and
consequently there is a necessary delay of up to five bits be-
fore the true meaning of a particular bit can be properly de-
termined by the receiver.

To have low overhead we need to have a large value of n,
and to have a large value of n we need to add delay, at the
transmitter and/or at the receiver. This suggests the unhappy
conclusion that it is impossible to have a small worst-case
overhead without also adding a large amount of delay but, as
shown below, this apparent problem may not matter at all.

D.ii.  Units of Data for Encoding Algorithms

At the beginning of this section, we stated that both HDLC
and PPP encoders generate immediate output for each unit of
input they are given. However, for HDLC the unit of input
was a single bit, while for PPP the unit of input was the byte.
If we consider the input to the PPP encoder to be a stream of
bits instead of bytes, then its output is no longer always im-
mediate. Upon being presented with the first bit, the PPP en-
coder may be unable to generate any output. It may have to
wait until it has received the next seven bits to complete the

entire byte before it knows what output it should generate.
However, in practice, PPP encoders are not presented with
data one bit at a time. They are presented with data at least a
byte at a time. In fact, in most networking software, the PPP
encoder is not even presented with single bytes; it is presented
with an entire packet to encode, and the entire packet is en-
coded in a single program loop. One of the reasons for proc-
essing data a packet at a time is that popular network protocols
such as Ethernet [Tan88] [IEEE802.3] and IP [RFC791] do
not carry data as an unstructured stream of bits or bytes over
virtual (or physical) circuits, but as packets, and packets are
the atomic units of data delivery.

In the same way that PPP encoding is more usefully applied
at a per-byte level than at a per-bit level, COBS encoding is
more usefully applied at a per-packet level than at a per-byte
level. Although the COBS encoding of a given byte in general
depends on the values of other nearby bytes, the encoding of
any given packet is idempotent, and is not dependent on
knowledge of any previous or subsequent packets. Since the
kinds of networks considered in this paper use packets as their
basic units, it is reasonable to relax the restriction that the byte
stuffing process should be an idempotent per-byte operation. It
is perhaps unsurprising that giving a byte stuffing algorithm
access to more data allows it to perform better.

E.  Summary

Fig. 5 shows a comparison of the results for PPP and for
COBS, and visually illustrates the dramatic difference be-
tween the narrow range of overheads generated by COBS and
the wide range of overheads that can be generated by PPP.

These average results hold for well-compressed packets
which contain a uniform distribution of byte values, but not all
Internet traffic is well-compressed. In addition, it is not possi-
ble to have fractional bytes of overhead. In theory a 40-byte
IPv4 TCP acknowledgement packet encoded with COBS may
average an overhead of 40 × 0.23% = 0.092 bytes, but in prac-
tice that fraction is rounded up to an entire byte of overhead.
For small packets this rounding up may be a more dominant
contributor to overhead than the actual underlying properties
of the algorithm. To investigate how much effect this potential

0.0% 0.2% 0.8% 100%

PPP
Best
(0%)

PPP
Average
(0.78%)

PPP
Worst
(100%)

COBS
Best

(0.07%)

COBS
Average
(0.23%)

COBS
Worst

(0.40%)

0.4% 0.6%

Fig. 5.   Encoding overhead for a 1500 byte packet. PPP’s best, aver-
age, and worst cases vary widely, in contrast to COBS’s best, average
and worst cases, which fall within a much narrower range.
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problem might have, we encoded traces of real-world network
traffic using both COBS and PPP byte stuffing, and these re-
sults are presented in the next section.

V.   EXPERIMENTAL RESULTS

This section presents the encoding behavior of COBS and
other protocols for real-world network traffic. Real-world
network traffic may not behave the same way as Section IV’s
theoretical traffic. In real-world traffic, small packets are
common, and not all data is compressed and/or encrypted. To
see how these factors affect the algorithms, we gathered traces
of network traffic using tcpdump [Jac89] and compared how
efficiently those packets were encoded by HDLC, PPP, COBS
and COBS/ZPE.

We captured traces of traffic sent both over Metricom
packet radio interfaces [Che96] and over Ethernet. The reason
for studying packet radio traffic as well as Ethernet traffic was
because unlicensed FCC Part 15 radio devices were one of the
main motivations behind the development of consistent over-
head byte stuffing. The performance of wide-area radio inter-
faces is dramatically worse than that of an Ethernet (both in
bandwidth and in latency) and this performance difference
may have an influence on the way people use their network
connection. Consequently, we wanted also to study traffic
patterns in that environment as well as in the more common
Ethernet environment.

Two traces are presented here. The first is a wireless traffic
trace, consisting of predominantly small packets. Just over
half of the packets (51%) in this trace are either TCP ack
packets containing no data, or one-byte TCP data packets,
such as a single keystroke on a remote login connection. The
second trace is a large file transfer containing roughly two
thirds maximum-sized TCP data packets and one third TCP
acks. (63.6% of the IP packets were maximum-sized TCP data
packets and 36.3% were TCP acks.)

For each trace, the packets were encoded using HDLC, PPP,
COBS and COBS/ZPE. For each method a histogram shows
overheads in the range ±30 bytes on the horizontal axis, and
for each of those overheads, the percentage of packets incur-
ring that overhead. This percentage is plotted on a log scale to
show more detail at the low end. For these traces 0.001% of
the packets amounts to less than one packet, and since the only
number of packets less than one is zero packets, 0.001% is
chosen as the base line of the log scale.

In all of our traces, PPP’s worst-case encoding was always
significantly higher than COBS’s worst case. Even so, PPP
never came close to using the full factor-of-two overhead that
is possible. Nevertheless, the fact that we never observed these
pathological packets does not mean that it is safe to engineer a
PPP implementation that does not take them into account.
There is at least one example of real-world traffic that exhibits
frequent reproducible pathological PPP encoding behavior:
voice over IP using G.721 [G721]. During periods of near-
silence, this encoding can sometimes transmit data that is al-
most entirely 0x7E byte values, causing pathological PPP data
expansion [Carl97].

A.  Three-Day Trace

One of our colleagues frequently works at home, and his
sole Internet connection is via a portable ISM-band packet ra-
dio attached to his laptop computer. We collected a trace of all
his packets for a period of three days. The goal was to capture
a representative trace of packets from a user who makes ex-
tensive use of a wireless interface. The trace contains 36,744
IP packets, totalling 10,060,268 bytes of data (including IP
headers and higher layers; not including the link-level header).
The MTU of the wireless interface in this case was 1024
bytes, giving a worst-case COBS overhead for large packets of
five bytes.

However, most of the packets captured were not large; 69%
of the packets were shorter than 254 bytes and necessarily in-
curred exactly one byte of overhead when encoded with
COBS. Moreover, 41% of the packets were exactly 40 bytes
long, which is just the length of a TCP acknowledgement
containing no data. Another 10% of the packets were exactly
41 bytes long, which is the length of a TCP packet containing
just one data byte. Taking these two numbers together, this
means that over half the packets were 40 or 41 bytes long.
Only 15% of the packets were maximum-sized 1024-byte
packets.

The three-day trace is a particularly challenging test case
with which to evaluate COBS, because it contains so many
small packets. The results for this trace file are shown in
Fig. 6.

HDLC incurred a total overhead of 703,607 bits (0.87%).
Over 75% of the packets incurred from one to ten bits of over-
head, but a few packets incurred over 300 bits of overhead.

PPP incurred a total overhead of 36,069 bytes (0.36%). 74%
of the packets incurred no overhead, but some packets in-
curred a significant amount. More than 100 packets incurred
15 bytes of overhead or more, and one packet fell beyond the
scale of the graph with an overhead of 53 bytes. In this trace
no packets incurred more than 53 bytes of overhead, support-
ing the belief that although conventional byte stuffing forces
us to design for a factor-of-two safety margin, in practice that
safety margin is almost entirely unused.

For COBS the overhead is concentrated in a tight spike in
the middle: every packet incurred one to four bytes of over-
head. COBS incurred a total overhead of 57,005 bytes
(0.57%), meaning that even in this unfavorable test case
COBS costs only 0.21% extra compared to PPP, for the bene-
fit of having a tight bound on the worst-case overhead. 74% of
the packets had exactly one byte of overhead, 7% had two
bytes, 8% had three bytes, and 11% had four.

COBS/ZPE maintained a tight bound on worst-case per-
formance while doing on average much better than either PPP
or COBS. For a 1024-byte packet the maximum possible
COBS/ZPE overhead is five bytes, but in fact in this trace no
packet incurred more than four. In addition COBS/ZPE re-
duced the overall size of the data by 26,238 bytes, giving a net
overall saving of 0.26%.
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Fig. 6.   Encoding overhead distribution for three-day trace.
Histograms showing, for each amount of overhead indicated on the
horizontal axis, the percentage of packets that incur that overhead.
All histograms are drawn to the same scale and labelled in bits or
bytes as appropriate.
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Fig. 7. Encoding overhead distribution for MPEG trace.
Histograms showing, for each amount of overhead indicated on the
horizontal axis, the percentage of packets that incur that overhead.
All histograms are drawn to the same scale and labelled in bits or
bytes as appropriate.
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B.  MPEG Trace

With the increasing popularity of the World Wide Web, we
might expect to see large packets and compressed data (par-
ticularly image data) becoming more common on the Internet.
To see how COBS would perform under these conditions we
captured a large bulk transfer of compressed image data. The
data file was MIRV.MPG, a 15.3MB MPEG [ISO11172] file
of an MTV music video, and it was transferred using ftp
[RFC959]. The trace contains 25,858 IP packets, totalling
18,269,430 bytes of data. The MTU of the wireless interface
was 1088 bytes, giving a worst-case COBS overhead for large
packets of five bytes.

The MPEG trace is more favorable to COBS because it
contains many large packets. 63% of the packets were maxi-
mum-sized IP packets, 1088 bytes long. The results for this
trace file are shown in Fig. 7.

HDLC incurred a total overhead of 1,862,796 bits (1.27%)
and this histogram has two visibly separate peaks. The first
peak, one to eight bits, is the result of the overhead from short
(40-byte) ack packets. The second peak, 40-200 bits, is the re-
sult of the overhead from the long (1088-byte) data packets.

PPP incurred a total overhead of 101,024 bytes (0.55%).
36% of the packets (mostly the ack packets) incurred no over-
head. The majority of packets incurred one to ten bytes of
overhead and one packet incurred as much as 20 bytes of
overhead. In this trace no packet incurred more than 20 bytes
of overhead, supporting the belief that conventional byte
stuffing’s required factor-of-two safety margin remains almost
entirely unused in practice.

COBS incurred a total overhead of only 35,410 bytes
(0.19%), and the overhead is concentrated in a tight spike in
the middle: every packet incurred between one and five bytes
of overhead. 77% of the packets had exactly one byte of over-
head. Only 17 packets in the entire trace incurred five bytes of
overhead, and as expected, no packets incurred more than that.

COBS/ZPE maintained a tight bound on worst-case per-
formance while doing on average much better than either PPP
or COBS. For a 1088-byte packet the maximum possible
COBS/ZPE overhead is five bytes, but in fact in this trace no
packet incurred more than four bytes of overhead. In addition
COBS/ZPE reduced the overall size of the data by 161,548
bytes, giving a net overall saving of 0.88%.

VI.   CONCLUSIONS

COBS is a useful addition to our arsenal of techniques for
data communications. It is computationally cheap, easy to im-
plement in software, and gives significant performance bene-
fits by allowing much larger packets to be sent over a given
piece of network hardware.

COBS is easy to implement efficiently in software, even for
primitive microprocessors. In one project at Stanford COBS
has been implemented in hand-written eight-bit assembly code
to allow a small embedded control device to connect to a
wireless interface and communicate with Internet hosts using
UDP/IP [Pog96]. The device needs to be able to send and re-
ceive one-kilobyte blocks of data but does not have enough
memory for either an implementation of TCP or of IP frag-

mentation and reassembly. Without COBS it would have been
much harder to make the device work. We would have had to
add extra memory to the device and would have had to do a lot
of extra development work to implement TCP and/or IP frag-
mentation and reassembly in eight-bit assembly code.

In retrospect it is surprising that COBS or similar techniques
have never been described in the literature before. Perhaps one
reason is that, until the development of unlicensed radio
transmitters under the FCC’s Part 15 ISM band rules, the net-
working community had not confronted the problem of deal-
ing with devices where the maximum transmission size is a
hard limit dictated at the physical level.

COBS has the potential to set a new standard, not only for
packet radio applications, but for all future applications that
require framing and/or byte stuffing.

The benefit of conventional two-for-one substitution en-
codings like PPP, compared to COBS, is that they may encode
small packets with no overhead whereas basic COBS always
adds exactly one byte. However, three factors make this ap-
parent benefit of conventional byte stuffing algorithms less
compelling.

The main factor is that the pressing problem for many new
wireless devices is that of sending large packets, not small
packets. It is the large packets that cause problems, because
the software must be able to ensure that they do not exceed the
device’s physical and regulatory limits.

Another factor is that the move to IPv6 [RFC1883] in the
future means that the very smallest packets, where PPP does
better than COBS, will become increasingly uncommon. In
addition, header compression techniques exist to reduce the
overhead of the packet headers (especially over slow links)
[Deg96], and those header compression techniques reduce the
header size by amounts measured in tens of bytes, dwarfing
concerns about differences of a single byte here and there.

Finally, if even a single byte of overhead is unacceptable, a
trivial modification to COBS to support Zero Pair Elimination
makes it perform better than PPP, even for short packets.
COBS/ZPE beats both PPP’s average overhead and its worst-
case overhead.

Although COBS is described in this paper in terms of eight-
bit bytes, the COBS principle can also be applied to other
word lengths. Further information about this and other aspects
of COBS is available in [Che98].
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APPENDIX

Source Code Listings

/*
 * StuffData byte stuffs “length” bytes of
 * data at the location pointed to by “ptr”,
 * writing the output to the location pointed
 * to by “dst”.
 */

#define FinishBlock(X) (*code_ptr = (X),   \
  code_ptr = dst++, \
  code = 0x01       )

void StuffData(const unsigned char *ptr,
unsigned long length, unsigned char *dst)

{
const unsigned char *end = ptr + length;
unsigned char *code_ptr = dst++;
unsigned char code = 0x01;

while (ptr < end)
{
if (*ptr == 0) FinishBlock(code);
else

{
*dst++ = *ptr;
code++;
if (code == 0xFF) FinishBlock(code);
}

ptr++;
}

FinishBlock(code);
}

Listing 1. COBS encoding in C.

/*
 * UnStuffData decodes “length” bytes of
 * data at the location pointed to by “ptr”,
 * writing the output to the location pointed
 * to by “dst”.
 */

void UnStuffData(const unsigned char *ptr,
unsigned long length, unsigned char *dst)

{
const unsigned char *end = ptr + length;
while (ptr < end)

{
int i, code = *ptr++;
for (i=1; i<code; i++) *dst++ = *ptr++;
if (code < 0xFF) *dst++ = 0;
}

}

Listing 2. COBS decoding in C.
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