Parsing with Derivatives

A Functional Pearl

Matt Might*
University of Utah matt.might.net
David Darais
Harvard University david.darais.com
Daniel Spiewak Wisconsin-Milwaukee codecommit.com

"I want to do parsing."

-Me, new Grad Student

"grad-schoolVietnam"

"charred remains"

"would-be Ph.D.s"
-Olin Shivers

Parsing should be simple.

Parsing should be functional.

Parsing should be fun.

It

LL vs. LR

LR vs. LALR

Left-recursive?

Right-recursive?

Shift / reduce tables

Shift / reduce conflicts

Backtracking

Table management

Ambiguity?

There is a way.

Brzozowski's derivative.

1964

Derivatives of Regular Expressions

Janusz A. Brzozowski
Princeton University, Princeton, New Jersey \dagger

Abstract

Kleene's regular expressions, which can be used for describing sequential circuits, were defined using three operators (union, concatenation and iterate) on sets of sequences. Word descriptions of problems can be more easily put in the regular expression language if the language is enriched by the inclusion of other logical operations. However, in the problem of converting the regular expression description to a state diagram, the existing methods either cannot handle expressions with additional operators, or are made quite complicated by the presence of such operators. In this paper the notion of a derivative of a regular expression is introduced and the properties of derivatives are discussed. This leads, in a very natural way, to the construction of a state diagram from a regular expression containing any number of logical operators.


```
(define-struct \varnothing {})
(define-struct \varepsilon {})
(define-struct token {value})
(define-struct \delta {lang})
(define-struct u {this that})
(define-struct 。 {left right})
(define-struct \star {lang})
(define (D c L)
    (match L
\begin{tabular}{|c|c|}
\hline ［（ \(\varnothing\) ） & （ \(\varnothing\) ）］ \\
\hline ［（ \(\varepsilon\) ） & （ \(\varnothing\) ）］ \\
\hline ［（\％＿） & （ \(\varnothing\) ）］ \\
\hline ［（token a） & （if（eqv？a c）（ \(\varepsilon\) ）（ø））］ \\
\hline ［（u L1 L2） & （u（D c L1）（D c L2））］ \\
\hline ［（＊L1） & （ \({ }^{(D ~ c ~ L 1) ~ L)] ~}\) \\
\hline ［（＊L1 L2） &  \\
\hline & （。（D c L1）L2））］）） \\
\hline
\end{tabular}
```

(define (nullable? L)
(match L
$[(\varnothing) \quad$ \#f]
[(ع) \#t]
[(token _) \#f]
[(${ }^{(}$_ $)$\#t]
[(δ L1) (nullable? L1) $]$
[(u L1 L2) (or (nullable? L1)
(nullable? L2))]
[(。 L1 L2) (and (nullable? L1)
(nullable? L2))]))
(define (recognizes? w p)
(cond [(null? w) (nullable? p)]
[else (recognizes? (cdr w) (D (car w) p))]))

```
(define-struct \varnothing}<l\mp@code{{})
(define (D c L)
    (match L
\begin{tabular}{|c|c|}
\hline [( \(\varnothing\) ) & ( \(\varnothing\) )] \\
\hline [ \((\varepsilon)\) & ( \(\varnothing\) )] \\
\hline [(\% _) & ( \(\varnothing\) ) ] \\
\hline [(token a) & (if (eqv? a c) ( \(\varepsilon\) ) (ø)) ] \\
\hline [(u L1 L2) & (u (D c L1) (D c L2) )] \\
\hline [(* L1) & ( 0 ( \({ }^{\text {c L }}\) ) L)] \\
\hline [(* L1 L2) & (u (o ( \(\mathrm{O}_{\text {L1) }}(\mathrm{D}\) c L2) ) \\
\hline & (。 (D c L1) L2))])) \\
\hline
\end{tabular}
(define (nullable? L)
    (match L
        [(\varnothing)
        [(token _) #f]
        [(\star _) #t]
        [(\delta L1) (nullable? L1)]
        [(u L1 L2) (or (nullable? L1)
                            (nullable? L2))]
        [(\circ L1 L2) (and (nullable? L1)
                            (nullable? L2))]))
    (define (recognizes? w p)
        (cond [(null? w) (nullable? p)]
            [else (recognizes? (cdr w) (D (car w) p))]))
```

$$
\begin{aligned}
& \text { + Laziness } \\
& \text { + Memoization } \\
& \text { + Fixed points }
\end{aligned}
$$

Brzozowski's derivative?

I. Filter:

Keep every string starting with c.
2. Chop:

Remove c from the start of each.

foo frak bar

foo frak

00
 rak

Recognition algorithm

- Derive with respect to each character.
- Does the derived language contain ε ?

Deriving atomic languages

$$
\begin{aligned}
& \epsilon \equiv\{\| "\} \\
& c \equiv\{c\} \\
& \emptyset \equiv\}
\end{aligned}
$$

(define-struct \varnothing
(define-struct ε (define-struct token \{value\})

$D_{c} \emptyset=$

$D_{c} \emptyset=\emptyset$

(define (D c L)

(define (D c L) (match L
(define (D c L) (match L [\varnothing)
(ø)]

$$
D_{c}(\epsilon)=
$$

$$
D_{c}(\epsilon)=\emptyset
$$

(define (D c L) (match L

$$
[(\varepsilon) \quad(\varnothing)]
$$

$D_{c}\{c\}=\epsilon$

$$
\begin{aligned}
D_{c}\{c\} & =\epsilon \\
D_{c}\left\{c^{\prime}\right\} & =\emptyset \text { if } c \neq c^{\prime}
\end{aligned}
$$

(define (D c L) (match L

[(token a)
 (cond [(eqv? a c) (ε)] [else
 (ø)]]]

Deriving regular languages

$$
\begin{aligned}
& L_{1} \cup L_{2} \\
& L_{1} \cdot L_{2} \\
& L_{1}^{\star}
\end{aligned}
$$

(define-struct u \{this that $\}$)

(define-struct 。 \{left right\}) (define-struct \star \{lang\})
$D_{c}\left(L_{1} \cup L_{2}\right)$

$$
\begin{aligned}
D_{c}\left(L_{1} \cup L_{2}\right) & =\left\{w: c w \in L_{1} \cup L_{2}\right\} \\
& =\left\{w: c w \in L_{1} \text { or } c w \in L_{2}\right\} \\
& =\left\{w: w \in D_{c} L_{1} \text { or } w \in D_{c} L_{2}\right\} \\
& =\left\{w: w \in D_{c} L_{1}\right\} \cup\left\{w: w \in D_{c} L_{2}\right\} \\
& =D_{c} L_{1} \cup D_{c} L_{2} .
\end{aligned}
$$

(define (D c L) (match L

$$
\left[\begin{array}{ll}
\left(\begin{array}{ll}
u & \text { L1 L2 })
\end{array}\right. & \left.\left(\begin{array}{ll}
(\mathrm{U} & (\mathrm{D} \\
& (\mathrm{D} \\
\mathrm{c} & \text { L2 }
\end{array}\right)\right)
\end{array}\right.
$$

$D_{c}\left(L^{\star}\right)=$

$$
D_{c}\left(L^{\star}\right)=\left(D_{c} L\right) \cdot L^{\star}
$$

(define (D c L) (match L

$$
[(\star \text { L1) } \quad(\circ(\mathrm{D} \text { c L1) }(\star \operatorname{L1}))]
$$

Concatenation?

Needs nullability operator

Nullability

$$
\begin{aligned}
& \delta(L)=\epsilon \text { if } \epsilon \in L \\
& \delta(L)=\emptyset \text { if } \epsilon \notin L
\end{aligned}
$$

(define-struct δ \{lang\})

(define (D c L) (match L
[($\boldsymbol{\sigma}_{2}$) (ø)]

$$
D_{c}\left(L_{1} \cdot L_{2}\right)=
$$

$$
D_{c}\left(L_{1} \cdot L_{2}\right)=\left(D_{c} L_{1} \cdot L_{2}\right)
$$

$$
D_{c}\left(L_{1} \cdot L_{2}\right)=\left(D_{c} L_{1} \cdot L_{2}\right) \cup\left(\delta\left(L_{1}\right) \cdot D_{c} L_{2}\right)
$$

(define (D c L) (match L

$$
\begin{aligned}
& \text { [(。 L1 L2) }
\end{aligned}
$$

（define（D c L） （match L
$[(\varnothing)$
$[(\varepsilon)$
$[($ token a）
［（ δ＿）
［（u L1 L2）
$\left[\begin{array}{ll}\left(\begin{array}{ll}\star & \text { L1 }\end{array}\right) \\ \left(\begin{array}{lll}\circ & \text { L1 } & \text { L2 })\end{array}\right]\end{array}\right.$
（ \varnothing ）
（ø）］
（cond［（eqv？a c）（ ε ）］ ［else（ø）］）］
（ \varnothing ）］
（u（D c L1）
（D c L2））］
（。（D c L1）L）］
（u（。（ \quad L1）（D c L2）） （。（D c L1）L2））］））

To recognize?

Need to compute nullability

$$
\begin{aligned}
& \delta(\epsilon)=\epsilon \\
& \delta(c)=\emptyset \\
& \delta(\emptyset)=\emptyset
\end{aligned}
$$

$\delta\left(L_{1} \cup L_{2}\right)=\delta\left(L_{1}\right) \cup \delta\left(L_{2}\right)$
 $\delta\left(L_{1} \cdot L_{2}\right)=\delta\left(L_{1}\right) \cdot \delta\left(L_{2}\right)$
 $\delta\left(L_{1}^{\star}\right)=\epsilon$

(define (nullable? L)
(match L

$$
\begin{aligned}
& {[(\varnothing)} \\
& {[(\varepsilon)}
\end{aligned}
$$

[(token _)
[(ठ L1)

$$
[(\star \quad \text { _) \#t] }
$$

(or (nullable? L1)
(nullable? L2))]
[(。 L1 L2) (and (nullable? L1)
(nullable? L2))]))
(define (recognizes? w L)
(if (null? w) (nullable? L)
(recognizes? (cdr w) (D (car w) L)))))

How about context-free grammars?

Recursive regular expressions.

Problem

$$
L=L \cdot \mathrm{x}
$$

$$
\bigcup \epsilon
$$

Problem

$$
D_{\mathrm{x}} L=D_{\mathrm{x}} L \cdot \mathrm{x}
$$

$$
\bigcup \epsilon
$$

(${ }^{\prime} \times \mathrm{L}$) $=$

$$
\begin{aligned}
& =(u)(u \text { (o (D 'x L) 'x) } \\
& \text { (。 (} \delta \text { L) (D 'x 'x))) } \\
& \text { (} \left.\mathrm{D}^{\prime} \mathrm{x} \varepsilon\right) \text {) }
\end{aligned}
$$

(${ }^{\prime} \times \mathrm{L}$) $=$

$$
\begin{aligned}
& (D \quad ' x L)=(D \quad ' x(u(\circ \quad \text { 'x L) } \\
& \text { ع)) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (D 'x } \varepsilon \text {)) }
\end{aligned}
$$

Solution?
(define-struct \varnothing
(define-struct ε (define-struct token \{value\})
(define-struct u \{this that\}) (define-struct 。 \{left right\}) (define-struct \star \{lang\})
(define-struct δ \{lang\})
(define-struct \varnothing
(define-struct ε \{\})
(define-struct token \{value\})
(define-lazy-struct u \{this that\}) (define-lazy-struct 。 \{left right\}) (define-lazy-struct \star \{lang\})
(define-lazy-struct δ \{lang\})

Problem

$$
\begin{aligned}
\delta(L) & =\delta(L) \cdot \delta(\mathrm{x}) \\
& \cup \delta(\epsilon)
\end{aligned}
$$

Problem

$$
\begin{aligned}
& =\delta(L) \cdot \delta(\mathrm{x}) \\
& \cup \delta(\epsilon)
\end{aligned}
$$

Solution?

(define (nullable? L)
(match L
$[(\varnothing)$
$[(\varepsilon)$
[(token _)
[(δ L1)
[(${ }^{\star}$ _ $)$
[(u L1 L2)
[(。 L1 L2)
\#f]
\#t]
\#f]
(nullable? L1)]
\#t]
(or (nullable? L1)
(nullable? L2))]
(and (nullable? L1) (nullable? L2))]))

(define/fix (nullable? L)

 \#:bottom \#f(match L

$$
\begin{aligned}
& \text { [}(\varnothing) \\
& \text { [}(\varepsilon) \\
& \text { [(token _) } \\
& \text { [(}{ }^{\text {L L1) }} \\
& \text { [(}{ }^{\star} \text { _) } \\
& \text { [(u L1 L2) } \\
& \text { [(。 L1 L2) }
\end{aligned}
$$

\#f]
\#t]
\#f]
(nullable? L1)]
\#t]
(or (nullable? L1)
(nullable? L2))]
(and (nullable? L1) (nullable? L2))]))

(define/fix (OUT stmt)
\#:bottom \varnothing
(- (u (IN stmt) (GEN stmt)) (KILL stmt)))
(define/fix (IN stmt)
\#:bottom \varnothing
(apply u (map OUT (preds stmt))))

Grammar unfolds forever

Solution?
Memoize
（define（D c L）
（match L

$$
\begin{aligned}
& {[(\varnothing)} \\
& {[(\varepsilon)} \\
& {[(\text { token a) }} \\
& {\left[\left(\delta _\right)\right.} \\
& {\left[\left(\begin{array}{l}
\text { L L1 L2 })
\end{array}\right.\right.} \\
& {[(\star \operatorname{L1})} \\
& {[(\circ \mathrm{L} 1 \mathrm{~L} 2)}
\end{aligned}
$$

（ \varnothing ）］
（ø）］
（cond［（eqv？a c）（ ε ）］ ［else
（ø）］］］
$(\varnothing)]$
（u（D c L1）
（D c L2））］
（。（D c L1）L）］
（u（。（ δ L1）（D c L2））
（。（D c L1）L2））］）
（define／memoize（D c L）
\＃：order［（［L \＃：eq］［c \＃：equal］）］
（match L

$$
\begin{aligned}
& \text { [(} \varnothing \text {) } \\
& \text { [}(\varepsilon) \\
& \text { [(token a) } \\
& \text { [(} \delta \text { _) } \\
& \text { (ø)] } \\
& \text { [(u L1 L2) } \\
& \text { (u (D c L1) } \\
& \text { (D c L2))] } \\
& \text { [(* L1) } \\
& \text { [(。 L1 L2) } \\
& \text { (} \varnothing \text {)] } \\
& \text { (ø)] } \\
& \text { (cond [(eqv? a c) (} \varepsilon \text {)] } \\
& \text { [else } \\
& \text { [(} \delta \text { _) } \\
& \text { (ø)] } \\
& \text { (u (D c L1) } \\
& \text { (。 (D c L1) L)] } \\
& \text { (u (。 (} \quad \text { L1) (D c L2)) } \\
& \text { (。(D c L1) L2))])) }
\end{aligned}
$$

It

(For recognizing.)

What about parsing?

$$
D_{c}: \mathbb{L} \rightarrow \mathbb{L}
$$

$D_{c}: \mathbb{P}(A, T) \rightarrow \mathbb{P}(A, T)$

$$
\mathbb{P}(A, T)=A^{*} \rightarrow \mathcal{P}\left(T \times A^{*}\right)
$$

（define／memoize（D c L）
\＃：order［（［L \＃：eq］［c \＃：equal］）］
（match L

$$
\begin{aligned}
& \text { [(} \varnothing \text {) } \\
& \text { [}(\varepsilon) \\
& \text { [(token a) } \\
& \text { [(} \delta \text { _) } \\
& \text { (ø)] } \\
& \text { [(u L1 L2) } \\
& \text { (u (D c L1) } \\
& \text { (D c L2))] } \\
& \text { [(* L1) } \\
& \text { [(。 L1 L2) } \\
& \text { (} \varnothing \text {)] } \\
& \text { (ø)] } \\
& \text { (cond [(eqv? a c) (} \varepsilon \text {)] } \\
& \text { [else } \\
& \text { [(} \delta \text { _) } \\
& \text { (ø)] } \\
& \text { (u (D c L1) } \\
& \text { (。 (D c L1) L)] } \\
& \text { (u (。 (} 0 \text { L1) (D c L2)) } \\
& \text { (。(D c L1) L2))] }
\end{aligned}
$$

(define/memoize (D c L)
\#:order [([L \#:eq] [c \#:equal])]
(match L

$$
\begin{aligned}
& {[(\varnothing)} \\
& {\left[\left(\varepsilon _\right)\right.} \\
& {[(\text {token a) }} \\
& {[(\delta \quad)} \\
& {\left[\left(\begin{array}{l}
\text { L L1 L2 })
\end{array}\right.\right.} \\
& {[(\star \operatorname{L1})} \\
& {[(\circ \text { L1 L2) }} \\
& {[(\rightarrow \text { L1 f) }}
\end{aligned}
$$

$$
(\varnothing)]
$$

$$
(\varnothing)]
$$

(cond [(eqv? a c) ($\varepsilon($ set c))] [else

$$
(\varnothing)]
$$

(u (D c L1)
(D c L2))]

$$
(\circ(\mathrm{D} \subset \mathrm{~L} 1) \mathrm{L})]
$$

$$
(\cup(\circ(\delta L 1)(D \subset L 2))
$$

$$
(\circ(\mathrm{D} \text { c L1) L2) })])
$$

$$
(\rightarrow(D \quad c \text { L1) f)] }))
$$

$$
\begin{aligned}
\lfloor\emptyset\rfloor(\epsilon) & =\{ \} \\
\lfloor\epsilon \downarrow T\rfloor(\epsilon) & =T \\
\lfloor\delta(p)\rfloor & =\lfloor p\rfloor(\epsilon) \\
\lfloor p \cup q\rfloor(\epsilon) & =\lfloor p\rfloor(\epsilon) \cup\lfloor q\rfloor(\epsilon) \\
\lfloor p \circ q\rfloor(\epsilon) & =\lfloor p\rfloor(\epsilon) \times\lfloor q\rfloor(\epsilon) \\
\lfloor p \rightarrow f\rfloor(\epsilon) & =\left\{f\left(t_{1}\right), \ldots, f\left(t_{n}\right)\right\} \\
& \text { where }\left\{t_{1}, \ldots, t_{n}\right\}=\lfloor p\rfloor(\epsilon) \\
\left\lfloor p^{\star}\right\rfloor(\epsilon) & =(\lfloor p\rfloor(\epsilon))^{*}
\end{aligned}
$$

(define/fix (parse- p)
\#:bottom (set)
(match p
$\left[\begin{array}{ll}(\varepsilon S) & S]\end{array}\right.$
[(\varnothing)
(set)]
[(δ p) (parse- p)]
[(token _) (set)]

[(* _)	(set '())]	
[(u p1 p2)	(set-union	(parse-ع p1)
		(parse- $\mathrm{p}^{\text {2) }}$)]
[(\% p1 p2)	(for*/set	([t1 (parse-ع p1)]
		[t2 (parse-ع p2)])
		(cons t1 t2))]
$[(\rightarrow p 1$ f)	(for/set	([t (parse-¢ p1)])
		(f t))])

(define (recognizes? w L)
(if (null? w) (nullable? L)
(recognizes? (cdr w) (D (car w) L)))))

(define (parse w L)

(if (null? w)
(parse- L)
(parse (cdrw) (D (car w) L)))))

$$
\begin{aligned}
& \epsilon \equiv \lambda w \cdot\{(\epsilon, w)\} \quad \mathbb{P}(A, T)=A^{*} \rightarrow \mathcal{P}\left(T \times A^{*}\right) \begin{array}{c}
D_{c}(c)=\epsilon \rightarrow \lambda \epsilon . c \\
D_{c}\left(c^{\prime}\right)=\emptyset \text { if } c \neq c^{\prime}
\end{array} \\
& p \in \mathbb{P}(A, T) \quad \emptyset \equiv \lambda w .\{ \} \quad\lfloor\mathbb{P}\rfloor(A, T)=A^{*} \rightarrow \mathcal{P}(T) \\
& \lfloor p\rfloor(w)=\{t:(t, \epsilon) \in p(w)\} \\
& f \in X \rightarrow Y \\
& w \equiv \lambda w^{\prime} \cdot \begin{cases}\left\{\left(w, w^{\prime \prime}\right)\right\} & w^{\prime}=w w^{\prime \prime} \\
\emptyset & \text { otherwise }\end{cases} \\
& p \in \mathbb{P}(A, X) \\
& p \rightarrow f \in \mathbb{P}(A, Y) \quad D_{c}: \mathbb{L} \rightarrow \mathbb{L} \quad D_{c}:\lfloor\mathbb{P}\rfloor(A, T) \rightarrow\lfloor\mathbb{P}\rfloor(A, T) \\
& p \rightarrow f=\lambda w \cdot\left\{\left(\left(f(x), w^{\prime}\right):\left(x, w^{\prime}\right) \in p(w)\right\}\right. \\
& p \in \mathbb{P}(A, X) \\
& p \rightarrow f=\lambda w \cdot\left\{\left(\left(f(x), w^{\prime}\right):\left(x, w^{\prime}\right) \in p(w)\right\} \quad q \in \mathbb{P}(A, X)\right. \\
& D_{c}: \mathbb{P}(A, T) \rightarrow \mathbb{P}(A, T) \\
& p \cup q \in \mathbb{P}(A, X) \\
& p \cup q=\lambda w \cdot p(w) \cup q(w) \\
& D_{c}(p)=\lambda w \cdot p(c w)-(\lfloor p\rfloor(\epsilon) \times\{c w\}) \\
& D_{c}(p \cup q)=D_{c}(p) \cup D_{c}(q) \\
& D_{c}(p \cdot q)=\left\{\begin{array}{l}
D_{c}(p) \cdot q \\
D_{c}(p) \cdot q \cup(\epsilon \rightarrow \lambda \epsilon \cdot[p](\epsilon)) \cdot D_{c}(q) \\
\begin{array}{c}
\epsilon \notin \mathcal{L}(p) \\
\text { otherwise. }
\end{array} \\
D
\end{array} D_{c}(p \rightarrow f)=D_{c}(p) \rightarrow f\right. \\
& p \cdot q=\lambda w \cdot\left\{\left((x, y), w^{\prime \prime}\right):\left(x, w^{\prime}\right) \in p(w),\left(y, w^{\prime \prime}\right) \in q\left(w^{\prime}\right)\right\}
\end{aligned}
$$

More in paper

- Theory: From languages to parsers
- Optimization: Grammar compaction
- Discussion: Complexity \& performance

Implementation

www.ucombinator.org/projects/parsing/

Reference implementations, test cases, test grammars.

どうもありがとう

http：／／www．ucombinator．org／projects／parsing／

Beijing，China

Submission： 6 Nov 2011
どうもありがとう
http：／／www．ucombinator．org／projects／parsing／

Complexity?

Theory

Compaction

$$
\begin{aligned}
\emptyset \circ p=p \circ \emptyset & \Rightarrow \emptyset \\
\emptyset \cup p=p \cup \emptyset & \Rightarrow p \\
\left(\epsilon \downarrow\left\{t_{1}\right\}\right) \circ p & \Rightarrow p \rightarrow \lambda t_{2} \cdot\left(t_{1}, t_{2}\right) \\
p \circ\left(\epsilon \downarrow\left\{t_{2}\right\}\right) & \Rightarrow p \rightarrow \lambda t_{1} \cdot\left(t_{1}, t_{2}\right) \\
\left(\epsilon \downarrow\left\{t_{1}, \ldots, t_{n}\right\}\right) \rightarrow f & \Rightarrow \epsilon \downarrow\left\{f\left(t_{1}\right), \ldots, f\left(t_{n}\right)\right\} \\
\left(\left(\epsilon \downarrow\left\{t_{1}\right\}\right) \circ p\right) \rightarrow f & \Rightarrow p \rightarrow \lambda t_{2} \cdot\left(t_{1}, t_{2}\right) \\
(p \rightarrow f) \rightarrow g & \Rightarrow p \rightarrow(g \circ f) \\
\emptyset^{\star} & \Rightarrow \epsilon \downarrow\{\rangle\} .
\end{aligned}
$$

Practice

Performance

Good enough.

- Parsing
- Analysis
- Parsing
- Analysis

Compaction

$$
p \cdot \emptyset=\emptyset
$$

$$
\begin{aligned}
\emptyset \circ p=p \circ \emptyset & \Rightarrow \emptyset \\
\emptyset \cup p=p \cup \emptyset & \Rightarrow p \\
\left(\epsilon \downarrow\left\{t_{1}\right\}\right) \circ p & \Rightarrow p \rightarrow \lambda t_{2} \cdot\left(t_{1}, t_{2}\right) \\
p \circ\left(\epsilon \downarrow\left\{t_{2}\right\}\right) & \Rightarrow p \rightarrow \lambda t_{1} \cdot\left(t_{1}, t_{2}\right) \\
\left(\epsilon \downarrow\left\{t_{1}, \ldots, t_{n}\right\}\right) \rightarrow f & \Rightarrow \epsilon \downarrow\left\{f\left(t_{1}\right), \ldots, f\left(t_{n}\right)\right\} \\
\left(\left(\epsilon \downarrow\left\{t_{1}\right\}\right) \circ p\right) \rightarrow f & \Rightarrow p \rightarrow \lambda t_{2} \cdot\left(t_{1}, t_{2}\right) \\
(p \rightarrow f) \rightarrow g & \Rightarrow p \rightarrow(g \circ f) \\
\emptyset^{\star} & \Rightarrow \epsilon \downarrow\{\rangle\} .
\end{aligned}
$$

What is a parser?

$$
\mathbb{P}(A, T)=A^{*} \rightarrow \mathcal{P}\left(T \times A^{*}\right)
$$

Input string

$$
\mathbb{P}(A, T)=A^{*} \rightarrow \mathcal{P}\left(T \times A^{*}\right)
$$

Input string
\downarrow

$$
\mathbb{P}(A, T)=A^{*} \rightarrow \underset{\text { Parse tree }}{\mathcal{P}}\left(\underset{\left.\right|_{\text {Pre }}}{\left.T \times A^{*}\right)}\right.
$$

Input string

$$
\mathbb{P}(A, T)=A^{*} \rightarrow \mathcal{P}\left(T \times A^{*}\right)
$$

Remaining input

Parse tree

$$
\lfloor\mathbb{P}\rfloor(A, T)=A^{*} \rightarrow \mathcal{P}(T)
$$

Input string

$$
\lfloor\mathbb{P}\rfloor(A, T)=A^{*} \rightarrow \mathcal{P}(T)
$$

Input string

$$
\begin{array}{|}
\lfloor\mathbb{P}\rfloor(A, T)=A^{*} \rightarrow \mathcal{P}(T) \\
\uparrow
\end{array}
$$

Parse tree

$$
\begin{aligned}
p & \in \mathbb{P}(A, T) \\
\lfloor p\rfloor(w) & =\{t:(t, \epsilon) \in p(w)\}
\end{aligned}
$$

Context-free parsers

$$
w \equiv \lambda w^{\prime} \cdot \begin{cases}\left\{\left(w, w^{\prime \prime}\right)\right\} & w^{\prime}=w w^{\prime \prime} \\ \emptyset & \text { otherwise }\end{cases}
$$

$$
\epsilon \equiv \lambda w \cdot\{(\epsilon, w)\}
$$

$$
\emptyset \equiv \lambda w \cdot\}
$$

$$
\begin{aligned}
p & \in \mathbb{P}(A, X) \\
q & \in \mathbb{P}(A, Y) \\
p \cdot q & \in \mathbb{P}(A, X \times Y)
\end{aligned}
$$

$$
p \cdot q=\lambda w \cdot\left\{\left((x, y), w^{\prime \prime}\right):\left(x, w^{\prime}\right) \in p(w),\left(y, w^{\prime \prime}\right) \in q\left(w^{\prime}\right)\right\}
$$

$$
p \cdot q=\lambda w \cdot\left\{\left((x, y), w^{\prime \prime}\right):\left(x, w^{\prime}\right) \in p(w),\left(y, w^{\prime \prime}\right) \in q\left(w^{\prime}\right)\right\}
$$

$$
1
$$

Input
$p \cdot q=\lambda w \cdot\left\{\left((x, y), w^{\prime \prime}\right):\left(x, w^{\prime}\right) \in p(w),\left(y, w^{\prime \prime}\right) \in q\left(w^{\prime}\right)\right\}$

Input

First parse
Left overs

$$
p \cdot q=\lambda w \cdot\left\{\left((x, y), w^{\prime \prime}\right):\left(x, w^{\prime}\right) \in p(w),\left(y, w^{\prime \prime}\right) \in q\left(w^{\prime}\right)\right\}
$$

Input
First parse

$$
\begin{aligned}
p & \in \mathbb{P}(A, X) \\
q & \in \mathbb{P}(A, X) \\
p \cup q & \in \mathbb{P}(A, X) \\
p \cup q & =\lambda w \cdot p(w) \cup q(w)
\end{aligned}
$$

$$
\begin{aligned}
& f \in X \rightarrow Y \\
& p \in \mathbb{P}(A, X) \\
p \rightarrow & f \in \mathbb{P}(A, Y) \\
p \rightarrow & f
\end{aligned}=\lambda w \cdot\left\{\left(\left(f(x), w^{\prime}\right):\left(x, w^{\prime}\right) \in p(w)\right\},\right.
$$

Defining the derivative

$$
D_{c}: \mathbb{L} \rightarrow \mathbb{L}
$$

$$
D_{c}: \mathbb{P}(A, T) \rightarrow \mathbb{P}(A, T)
$$

$D_{c}(p)=\lambda w \cdot p(c w)-(\lfloor p\rfloor(\epsilon) \times\{c w\})$

$$
\begin{aligned}
& D_{c}(p)=\lambda w \cdot p(c w)-(\lfloor p\rfloor(\epsilon) \times\{c w\}) \\
& p(c w)=D_{c}(p)(w) \cup(\lfloor p\rfloor(\epsilon) \times\{c w\})
\end{aligned}
$$

$$
\lfloor p\rfloor(c w)=\left\lfloor D_{c}(p)\right\rfloor(w)
$$

Calculating the derivative

$$
\begin{aligned}
D_{c}(c) & =\epsilon \rightarrow \lambda \epsilon . c \\
D_{c}\left(c^{\prime}\right) & =\emptyset \text { if } c \neq c^{\prime}
\end{aligned}
$$

$$
D_{c}(p \cup q)=D_{c}(p) \cup D_{c}(q)
$$

$$
D_{c}(p \rightarrow f)=D_{c}(p) \rightarrow f
$$

$$
D_{c}(p \cdot q)= \begin{cases}D_{c}(p) \cdot q & \epsilon \notin \mathcal{L}(p) \\ D_{c}(p) \cdot q \cup(\epsilon \rightarrow \lambda \epsilon .\lfloor p\rfloor(\epsilon)) \cdot D_{c}(q) & \text { otherwise } .\end{cases}
$$

Further reading

- Brzozowski.JACM 1964.
- Owens, Reppy,Turon. JFP 2010.
- Danielsson. ICFP 2010.

