
Parsing with
 Derivatives

Matt Might*
University of Utah
matt.might.net

David Darais
Harvard University
david.darais.com

Daniel Spiewak
Wisconsin-Milwaukee
codecommit.com

A Functional Pearl

“I want to do parsing.”

-Me, new Grad Student

“grad-school Vietnam”

“charred remains”

“would-be Ph.D.s”

-Olin Shivers

Parsing should be simple.

Parsing should be functional.

Parsing should be fun.

It is not.

LL vs. LR

vs.LR LALR

Left-recursive?

Right-recursive?

Shift reduce/ tables

Shift reduce/ conflicts

Backtracking

Table management

Ambiguity?

There is a way.

Brzozowski’s derivative.

D e r i v a t i v e s o f R e g u l a r E x p r e s s i o n s

JANUSZ A. BRZOZOWSKI
Princeton University, Princelon, New Jerseyt

Abstract. Kleene's regular expressions, which can be used for describing sequential
circuits, were defined using three operators (union, concatenation and iterate) on sets of
sequences. Word descriptions of problems can be more easily put in the regular expression
language if the language is enriched by the inclusion of other logical operations. However,
il~ the problem of converting the regular expression description to a state diagram, the exist-
ing methods either cannot handle expressions with additional operators, or are made quite
complicated by the presence of such operators. In this paper the notion of a derivative of a
regular expression is introduced atld the properties of derivatives are discussed. This leads,
in a very natural way, to the construction of a state diagram from a regular expression
containing any number of logical operators.

1. Introduction
In the design of sequential circuits, the first step consists of obtaining an

unambiguous description of the circuit behavior. For a certain class of problems,
the language of regular expressions [1-10] greatly simplifies this first step of
synthesis. In general, the richer the language, the easier it will be to write the
problem specification. In this paper we use regular expressions which can have
any number of logical connectives, and describe methods for obtaining state
diagrams from such regular expressions.

We are concerned with the usual model of a finite automaton M [4, 7, 10, 11,
12]. The n binary inputs x~, x2, • • • , x~ of M are represented by a single 2 '~-
valued input x, taking the values from A~ = {0, 1, . . . ,]¢ - 11, where/c = 2 ~.
The internal states of M are ql, q:, • • • , q~ and one of these, qx, is the starting
state of M. The transitions between states are specified by a flow table or by a
state diagram. In the Moore model [11] the outputs are associated with internal
states and are denoted by Z~. ; iu the i~[ealy model [12] the outputs z~ are asso-
ciated with transitions. The results are presented in terms of a Moore machine;
however, the results also apply to Mealy machines with slight modifications
which are pointed out where necessary.

2. Regular Expressions
We define the following operations on sets of sequences: If P and Q are two

sets of sequences of symbols from Ak we have:

This research was supported in part by Bell Telephone Laboratories, Murray Hill, N. J.
The majority of the results presented can also be found in Teeh. Rep. 15, Princeton Uni-
versity, Dept. of Elec. Eng., Digital Systems Lab., Princeton, N. J., March, 1962.

Present address: Department of Electrical Engineering, University of Ottawa, Ottawa
2, Canada.

481

Journal of the Association for Computing Machinery, Vol 11, No. 4 (October, 1964), pp. 481-494

1964

(define-struct ∅ {})
(define-struct ε {})
(define-struct token {value})
(define-struct δ {lang})
(define-struct ∪ {this that})
(define-struct ∘ {left right})
(define-struct ★ {lang})

(define (D c L)
 (match L
 [(∅) (∅)]
 [(ε) (∅)]
 [(δ _) (∅)]
 [(token a) (if (eqv? a c) (ε) (∅))]
 [(∪ L1 L2) (∪ (D c L1) (D c L2))]
 [(★ L1) (∘ (D c L1) L)]
 [(∘ L1 L2) (∪ (∘ (δ L1) (D c L2))
 (∘ (D c L1) L2))]))

(define (nullable? L)
 (match L
 [(∅) #f]
 [(ε) #t]
 [(token _) #f]
 [(★ _) #t]
 [(δ L1) (nullable? L1)]
 [(∪ L1 L2) (or (nullable? L1)
 (nullable? L2))]
 [(∘ L1 L2) (and (nullable? L1)
 (nullable? L2))]))

 (define (recognizes? w p)
 (cond [(null? w) (nullable? p)]
 [else (recognizes? (cdr w) (D (car w) p))]))

(define-struct ∅ {})
(define-struct ε {})
(define-struct token {value})
(define-struct δ {lang})
(define-struct ∪ {this that})
(define-struct ∘ {left right})
(define-struct ★ {lang})

(define (D c L)
 (match L
 [(∅) (∅)]
 [(ε) (∅)]
 [(δ _) (∅)]
 [(token a) (if (eqv? a c) (ε) (∅))]
 [(∪ L1 L2) (∪ (D c L1) (D c L2))]
 [(★ L1) (∘ (D c L1) L)]
 [(∘ L1 L2) (∪ (∘ (δ L1) (D c L2))
 (∘ (D c L1) L2))]))

(define (nullable? L)
 (match L
 [(∅) #f]
 [(ε) #t]
 [(token _) #f]
 [(★ _) #t]
 [(δ L1) (nullable? L1)]
 [(∪ L1 L2) (or (nullable? L1)
 (nullable? L2))]
 [(∘ L1 L2) (and (nullable? L1)
 (nullable? L2))]))

 (define (recognizes? w p)
 (cond [(null? w) (nullable? p)]
 [else (recognizes? (cdr w) (D (car w) p))]))

(define-struct ∅ {})
(define-struct ε {tree-set})
(define-struct token {value?})
(define-lazy-struct δ {lang})
(define-lazy-struct ∪ {this that})
(define-lazy-struct ∘ {left right})
(define-lazy-struct ★ {lang})
(define-lazy-struct → {lang reduce})

(define/memoize (D c p)
 #:order ([p #:eq] [c #:equal])
 (match p
 [(∅) (∅)]
 [(ε _) (∅)]
 [(δ _) (∅)]
 [(token p?) (if (p? c) (ε (set c)) (∅))]
 [(∪ p1 p2) (∪ (D c p1) (D c p2))]
 [(★ p1) (∘ (D c p1) p)]
 [(→ p1 f) (→ (D c p1) f)]
 [(∘ p1 p2) (∪ (∘ (δ p1) (D c p2))
 (∘ (D c p1) p2))]))

(define/fix (parse-null p)
 #:bottom (set)
 (match p
 [(ε S) S]
 [(∅) (set)]
 [(δ p) (parse-null p)]
 [(token _) (set)]
 [(★ _) (set '())]
 [(∪ p1 p2) (set-union (parse-null p1)
 (parse-null p2))]
 [(∘ p1 p2) (for*/set ([t1 (parse-null p1)]
 [t2 (parse-null p2)])
 (cons t1 t2))]
 [(→ p1 f) (for/set ([t (parse-null p1)])
 (f t))]))
 (define (parse w p)
 (cond [(null? w) (parse-null p)]
 [else (parse (cdr w) (D (car w) p))]))

+ Laziness
+ Memoization
+ Fixed points

Brzozowski’s derivative?

3.3 Derivatives of formal languages

A less common, yet still useful, operation on formal languages is the derivative. The left
derivative of a formal language L with respect to character c, denoted DcL, is the remainder
of the strings in the set L for which the character c can be removed from the front:

DcL = {w : cw � L} .

Example 3.1. The left derivative of the set {foo, frak, bar} with respect to the character
c is:

Dc {foo, frak, bar} = {oo, rak} .

�

Where the derivative of a language is computable, it may be possible to a string in that
language using derivatives, thanks to the following rule:

w � Dc(L)
cw � L.

If it is computable to take successive derivatives of a language, and it is possible to test
whether or not one of those derivatives accepts the empty string, then it is possible to use
the derivative to test whether a string is in a language. The algorithm is straightforward:
(1) compute the derivative of the language with respect to each character in the string; and
(2) test whether the resulting language accepts the empty string.

3.3.1 Computing the derivative

For languages composed of other languages through the familiar formal language operations,
it is frequently possible to formulate the derivative of such a language recursively.

For the empty language, the derivative is empty:

Dc⇤ = ⇤.

For the empty-string language, the derivative is also empty:

Dc {�} = ⇤.

For one-character languages:

Dc {c} = {�}
Dc {c�} = ⇤ if c ⇥= c�.

34

1. Filter:
 Keep every string starting with c.

2. Chop:
 Remove c from the start of each.

foo frak bar

Df

foo frak

Df

oo rak

Df

Recognition algorithm

• Derive with respect to each character.

• Does the derived language contain ε?

Deriving atomic languages

✏ ⌘ {""}
c ⌘ {c}
; ⌘ {}

(define-struct ∅ {})
(define-struct ε {})
(define-struct token {value})

3.3 Derivatives of formal languages

A less common, yet still useful, operation on formal languages is the derivative. The left
derivative of a formal language L with respect to character c, denoted DcL, is the remainder
of the strings in the set L for which the character c can be removed from the front:

DcL = {w : cw � L} .

Example 3.1. The left derivative of the set {foo, frak, bar} with respect to the character
c is:

Dc {foo, frak, bar} = {oo, rak} .

�

Where the derivative of a language is computable, it may be possible to a string in that
language using derivatives, thanks to the following rule:

w � Dc(L)
cw � L.

If it is computable to take successive derivatives of a language, and it is possible to test
whether or not one of those derivatives accepts the empty string, then it is possible to use
the derivative to test whether a string is in a language. The algorithm is straightforward:
(1) compute the derivative of the language with respect to each character in the string; and
(2) test whether the resulting language accepts the empty string.

3.3.1 Computing the derivative

For languages composed of other languages through the familiar formal language operations,
it is frequently possible to formulate the derivative of such a language recursively.

For the empty language, the derivative is empty:

Dc⇤ = ⇤.

For the empty-string language, the derivative is also empty:

Dc {�} = ⇤.

For one-character languages:

Dc {c} = {�}
Dc {c�} = ⇤ if c ⇥= c�.

34

3.3 Derivatives of formal languages

A less common, yet still useful, operation on formal languages is the derivative. The left
derivative of a formal language L with respect to character c, denoted DcL, is the remainder
of the strings in the set L for which the character c can be removed from the front:

DcL = {w : cw � L} .

Example 3.1. The left derivative of the set {foo, frak, bar} with respect to the character
c is:

Dc {foo, frak, bar} = {oo, rak} .

�

Where the derivative of a language is computable, it may be possible to a string in that
language using derivatives, thanks to the following rule:

w � Dc(L)
cw � L.

If it is computable to take successive derivatives of a language, and it is possible to test
whether or not one of those derivatives accepts the empty string, then it is possible to use
the derivative to test whether a string is in a language. The algorithm is straightforward:
(1) compute the derivative of the language with respect to each character in the string; and
(2) test whether the resulting language accepts the empty string.

3.3.1 Computing the derivative

For languages composed of other languages through the familiar formal language operations,
it is frequently possible to formulate the derivative of such a language recursively.

For the empty language, the derivative is empty:

Dc⇤ = ⇤.

For the empty-string language, the derivative is also empty:

Dc {�} = ⇤.

For one-character languages:

Dc {c} = {�}
Dc {c�} = ⇤ if c ⇥= c�.

34

 (define (D c L)
 (match L
 [(∅) (∅)]
 [(ε) (∅)]
 [(token a) (cond [(eqv? a c) (ε)]
 [else (∅)])]
 [(δ _) (∅)]

 [(∪ L1 L2) (∪ (D c L1)
 (D c L2))]
 [(★ L1) (∘ (D c L1) L)]
 [(∘ L1 L2) (∪ (∘ (δ L1) (D c L2))
 (∘ (D c L1) L2))]))

 (define (D c L)
 (match L
 [(∅) (∅)]
 [(ε) (∅)]
 [(token a) (cond [(eqv? a c) (ε)]
 [else (∅)])]
 [(δ _) (∅)]

 [(∪ L1 L2) (∪ (D c L1)
 (D c L2))]
 [(★ L1) (∘ (D c L1) L)]
 [(∘ L1 L2) (∪ (∘ (δ L1) (D c L2))
 (∘ (D c L1) L2))]))

 (define (D c L)
 (match L
 [(∅) (∅)]
 [(ε) (∅)]
 [(token a) (cond [(eqv? a c) (ε)]
 [else (∅)])]
 [(δ _) (∅)]

 [(∪ L1 L2) (∪ (D c L1)
 (D c L2))]
 [(★ L1) (∘ (D c L1) L)]
 [(∘ L1 L2) (∪ (∘ (δ L1) (D c L2))
 (∘ (D c L1) L2))]))

Dc(�) = ;

Dc(�) = ;

 (define (D c L)
 (match L
 [(∅) (∅)]
 [(ε) (∅)]
 [(token a) (cond [(eqv? a c) (ε)]
 [else (∅)])]
 [(δ _) (∅)]

 [(∪ L1 L2) (∪ (D c L1)
 (D c L2))]
 [(★ L1) (∘ (D c L1) L)]
 [(∘ L1 L2) (∪ (∘ (δ L1) (D c L2))
 (∘ (D c L1) L2))]))

Dc{c} = �

Dc{c0} = ⇥ if c �= c0

Dc{c} = �

Dc{c0} = ⇥ if c �= c0

 (define (D c L)
 (match L
 [(∅) (∅)]
 [(ε) (∅)]
 [(token a) (cond [(eqv? a c) (ε)]
 [else (∅)])]
 [(δ _) (∅)]

 [(∪ L1 L2) (∪ (D c L1)
 (D c L2))]
 [(★ L1) (∘ (D c L1) L)]
 [(∘ L1 L2) (∪ (∘ (δ L1) (D c L2))
 (∘ (D c L1) L2))]))

Deriving regular languages

L = � � {""}
L = c � {c}
L = ⇥
L = L1 ⇤ L2

L = L1 · L2

L = L?
1

(define-struct ∪ {this that})
(define-struct ∘ {left right})
(define-struct ★ {lang})

For a concatenated language:

Dc(L1 · L2) = (DcL1 · L2) ⌃ (L�
1 · DcL2).

For a union language:

Dc(L1 ⌃ L2) = {w : cw ⌅ L1 ⌃ L2}
= {w : cw ⌅ L1 or cw ⌅ L2}
= {w : w ⌅ DcL1 or w ⌅ DcL2}
= {w : w ⌅ DcL1} ⌃{ w : w ⌅ DcL2}
= DcL1 ⌃DcL2.

For an intersection language:

Dc(L1 ⌥ L2) = DcL1 ⌥DcL2.

For a complemented language:

DcL =
�
w : cw ⌅ L

⇥

= {w : cw ⇧⌅ L}
= {w : not cw ⌅ L}
= {w : cw ⌅ L}
= {w : w ⌅ DcL}
= DcL.

For a di�erence language:

Dc(L1 � L2) = DcL1 �DcL2.

For an option language:

Dc(L
?) = DcL.

For an exponentiated language, where n ⇤ 1:

Dc(L
n) = (DcL) · Ln�1.

For a closure language:

Dc(L
⇥) = (DcL) · L⇥.

For a non-empty closure language:

Dc(L
+) = (DcL) · L⇥.

35

For a concatenated language:

Dc(L1 · L2) = (DcL1 · L2) ⌃ (L�
1 · DcL2).

For a union language:

Dc(L1 ⌃ L2) = {w : cw ⌅ L1 ⌃ L2}
= {w : cw ⌅ L1 or cw ⌅ L2}
= {w : w ⌅ DcL1 or w ⌅ DcL2}
= {w : w ⌅ DcL1} ⌃{ w : w ⌅ DcL2}
= DcL1 ⌃DcL2.

For an intersection language:

Dc(L1 ⌥ L2) = DcL1 ⌥DcL2.

For a complemented language:

DcL =
�
w : cw ⌅ L

⇥

= {w : cw ⇧⌅ L}
= {w : not cw ⌅ L}
= {w : cw ⌅ L}
= {w : w ⌅ DcL}
= DcL.

For a di�erence language:

Dc(L1 � L2) = DcL1 �DcL2.

For an option language:

Dc(L
?) = DcL.

For an exponentiated language, where n ⇤ 1:

Dc(L
n) = (DcL) · Ln�1.

For a closure language:

Dc(L
⇥) = (DcL) · L⇥.

For a non-empty closure language:

Dc(L
+) = (DcL) · L⇥.

35

 (define (D c L)
 (match L
 [(∅) (∅)]
 [(ε) (∅)]
 [(token a) (cond [(eqv? a c) (ε)]
 [else (∅)])]
 [(δ _) (∅)]

 [(∪ L1 L2) (∪ (D c L1)
 (D c L2))]
 [(★ L1) (∘ (D c L1) L)]
 [(∘ L1 L2) (∪ (∘ (δ L1) (D c L2))
 (∘ (D c L1) L2))]))

For a concatenated language:

Dc(L1 · L2) = (DcL1 · L2) ⌃ (L�
1 · DcL2).

For a union language:

Dc(L1 ⌃ L2) = {w : cw ⌅ L1 ⌃ L2}
= {w : cw ⌅ L1 or cw ⌅ L2}
= {w : w ⌅ DcL1 or w ⌅ DcL2}
= {w : w ⌅ DcL1} ⌃{ w : w ⌅ DcL2}
= DcL1 ⌃DcL2.

For an intersection language:

Dc(L1 ⌥ L2) = DcL1 ⌥DcL2.

For a complemented language:

DcL =
�
w : cw ⌅ L

⇥

= {w : cw ⇧⌅ L}
= {w : not cw ⌅ L}
= {w : cw ⌅ L}
= {w : w ⌅ DcL}
= DcL.

For a di�erence language:

Dc(L1 � L2) = DcL1 �DcL2.

For an option language:

Dc(L
?) = DcL.

For an exponentiated language, where n ⇤ 1:

Dc(L
n) = (DcL) · Ln�1.

For a closure language:

Dc(L
⇥) = (DcL) · L⇥.

For a non-empty closure language:

Dc(L
+) = (DcL) · L⇥.

35

For a concatenated language:

Dc(L1 · L2) = (DcL1 · L2) ⌃ (L�
1 · DcL2).

For a union language:

Dc(L1 ⌃ L2) = {w : cw ⌅ L1 ⌃ L2}
= {w : cw ⌅ L1 or cw ⌅ L2}
= {w : w ⌅ DcL1 or w ⌅ DcL2}
= {w : w ⌅ DcL1} ⌃{ w : w ⌅ DcL2}
= DcL1 ⌃DcL2.

For an intersection language:

Dc(L1 ⌥ L2) = DcL1 ⌥DcL2.

For a complemented language:

DcL =
�
w : cw ⌅ L

⇥

= {w : cw ⇧⌅ L}
= {w : not cw ⌅ L}
= {w : cw ⌅ L}
= {w : w ⌅ DcL}
= DcL.

For a di�erence language:

Dc(L1 � L2) = DcL1 �DcL2.

For an option language:

Dc(L
?) = DcL.

For an exponentiated language, where n ⇤ 1:

Dc(L
n) = (DcL) · Ln�1.

For a closure language:

Dc(L
⇥) = (DcL) · L⇥.

For a non-empty closure language:

Dc(L
+) = (DcL) · L⇥.

35

 (define (D c L)
 (match L
 [(∅) (∅)]
 [(ε) (∅)]
 [(token a) (cond [(eqv? a c) (ε)]
 [else (∅)])]
 [(δ _) (∅)]

 [(∪ L1 L2) (∪ (D c L1)
 (D c L2))]
 [(★ L1) (∘ (D c L1) (★ L1))]
 [(∘ L1 L2) (∪ (∘ (δ L1) (D c L2))
 (∘ (D c L1) L2))]))

Concatenation?

Needs nullability operator

Nullability

�(L) = ⇥ if ⇥ 2 L

�(L) = ; if ⇥ 62 L

(define-struct δ {lang})

 (define (D c L)
 (match L
 [(∅) (∅)]
 [(ε) (∅)]
 [(token a) (cond [(eqv? a c) (ε)]
 [else (∅)])]
 [(δ _) (∅)]

 [(∪ L1 L2) (∪ (D c L1)
 (D c L2))]
 [(★ L1) (∘ (D c L1) L)]
 [(∘ L1 L2) (∪ (∘ (δ L1) (D c L2))
 (∘ (D c L1) L2))]))

For a concatenated language:

Dc(L1 · L2) = (DcL1 · L2) ∪ (δ(L1) ·DcL2).

For a union language:

Dc(L1 ∪ L2) = {w : cw ∈ L1 ∪ L2}
= {w : cw ∈ L1 or cw ∈ L2}
= {w : w ∈ DcL1 or w ∈ DcL2}
= {w : w ∈ DcL1} ∪ {w : w ∈ DcL2}
= DcL1 ∪DcL2.

For an intersection language:

Dc(L1 ∩ L2) = DcL1 ∩DcL2.

For a complemented language:

DcL =
{
w : cw ∈ L

}

= {w : cw $∈ L}
= {w : not cw ∈ L}
= {w : cw ∈ L}
= {w : w ∈ DcL}
= DcL.

For a difference language:

Dc(L1 − L2) = DcL1 −DcL2.

For an option language:

Dc(L
?) = DcL.

For an exponentiated language, where n ≥ 1:

Dc(L
n) = (DcL) · Ln−1.

For a closure language:

Dc(L
!) = (DcL) · L!.

For a non-empty closure language:

Dc(L
+) = (DcL) · L!.

46

For a concatenated language:

Dc(L1 · L2) = (DcL1 · L2) ∪ (δ(L1) ·DcL2).

For a union language:

Dc(L1 ∪ L2) = {w : cw ∈ L1 ∪ L2}
= {w : cw ∈ L1 or cw ∈ L2}
= {w : w ∈ DcL1 or w ∈ DcL2}
= {w : w ∈ DcL1} ∪ {w : w ∈ DcL2}
= DcL1 ∪DcL2.

For an intersection language:

Dc(L1 ∩ L2) = DcL1 ∩DcL2.

For a complemented language:

DcL =
{
w : cw ∈ L

}

= {w : cw $∈ L}
= {w : not cw ∈ L}
= {w : cw ∈ L}
= {w : w ∈ DcL}
= DcL.

For a difference language:

Dc(L1 − L2) = DcL1 −DcL2.

For an option language:

Dc(L
?) = DcL.

For an exponentiated language, where n ≥ 1:

Dc(L
n) = (DcL) · Ln−1.

For a closure language:

Dc(L
!) = (DcL) · L!.

For a non-empty closure language:

Dc(L
+) = (DcL) · L!.

46

For a concatenated language:

Dc(L1 · L2) = (DcL1 · L2) ∪ (δ(L1) ·DcL2).

For a union language:

Dc(L1 ∪ L2) = {w : cw ∈ L1 ∪ L2}
= {w : cw ∈ L1 or cw ∈ L2}
= {w : w ∈ DcL1 or w ∈ DcL2}
= {w : w ∈ DcL1} ∪ {w : w ∈ DcL2}
= DcL1 ∪DcL2.

For an intersection language:

Dc(L1 ∩ L2) = DcL1 ∩DcL2.

For a complemented language:

DcL =
{
w : cw ∈ L

}

= {w : cw $∈ L}
= {w : not cw ∈ L}
= {w : cw ∈ L}
= {w : w ∈ DcL}
= DcL.

For a difference language:

Dc(L1 − L2) = DcL1 −DcL2.

For an option language:

Dc(L
?) = DcL.

For an exponentiated language, where n ≥ 1:

Dc(L
n) = (DcL) · Ln−1.

For a closure language:

Dc(L
!) = (DcL) · L!.

For a non-empty closure language:

Dc(L
+) = (DcL) · L!.

46

 (define (D c L)
 (match L
 [(∅) (∅)]
 [(ε) (∅)]
 [(token a) (cond [(eqv? a c) (ε)]
 [else (∅)])]
 [(δ _) (∅)]

 [(∪ L1 L2) (∪ (D c L1)
 (D c L2))]
 [(★ L1) (∘ (D c L1) L)]
 [(∘ L1 L2) (∪ (∘ (δ L1) (D c L2))
 (∘ (D c L1) L2))]))

 (define (D c L)
 (match L
 [(∅) (∅)]
 [(ε) (∅)]
 [(token a) (cond [(eqv? a c) (ε)]
 [else (∅)])]
 [(δ _) (∅)]

 [(∪ L1 L2) (∪ (D c L1)
 (D c L2))]
 [(★ L1) (∘ (D c L1) L)]
 [(∘ L1 L2) (∪ (∘ (δ L1) (D c L2))
 (∘ (D c L1) L2))]))

To recognize?

Need to compute nullability

�(⇥) = ⇥

�(c) = �
�(�) = �

�(L1 ⇥ L2) = �(L1) ⇥ �(L2)

�(L1 · L2) = �(L1) · �(L2)

�(L?
1) = ⇥

�(⇥) = ⇥

�(c) = �
�(�) = �

�(L1 ⇥ L2) = �(L1) ⇥ �(L2)

�(L1 · L2) = �(L1) · �(L2)

�(L?
1) = ⇥

 (define (nullable? L)
 (match L
 [(∅) #f]
 [(ε) #t]
 [(token _) #f]
 [(δ L1) (nullable? L1)]

 [(★ _) #t]
 [(∪ L1 L2) (or (nullable? L1)
 (nullable? L2))]
 [(∘ L1 L2) (and (nullable? L1)
 (nullable? L2))]))

(define (recognizes? w L)
 (if (null? w)
 (nullable? L)
 (recognizes? (cdr w) (D (car w) L)))))

How about context-free grammars?

Recursive regular expressions.

Problem

L = L · x
� �

L = L · x
� �

L = L · x
� �

L = L · x
� �

Problem

L = L · x
� �

L = L · x
� �

L = L · x
� �

L = L · x
� �

D
x

L = D
x

L · x
� �

D
x

L = D
x

L · x
� �

(D 'x L) = (D 'x (∪ (∘ L 'x)
 ε))

 = (∪ (∪ (∘ (D 'x L) 'x)
 (∘ (δ L) (D 'x 'x)))
 (D 'x ε))

(D 'x L) = (D 'x (∪ (∘ L 'x)
 ε))

 = (∪ (∪ (∘ (D 'x L) 'x)
 (∘ (δ L) (D 'x 'x)))
 (D 'x ε))

(D 'x L) = (D 'x (∪ (∘ 'x L)
 ε))

 = (∪ (∪ (∘ (D 'x 'x) L)
 (∘ (δ 'x) (D 'x L)))
 (D 'x ε))

(D 'x L) = (D 'x (∪ (∘ 'x L)
 ε))

 = (∪ (∪ (∘ (D 'x 'x) L)
 (∘ (δ 'x) (D 'x L)))
 (D 'x ε))

Solution?

(define-
(define-
(define-

(define-

-struct ∪ {this that})
-struct ∘ {left right})
-struct ★ {lang})

-struct δ {lang})

(define-struct ∅ {})
(define-struct ε {})
(define-struct token {value})

(define-
(define-
(define-

(define-

-struct ∪ {this that})
-struct ∘ {left right})
-struct ★ {lang})

-struct δ {lang})

lazy
lazy
lazy

lazy

(define-struct ∅ {})
(define-struct ε {})
(define-struct token {value})

Problem

�(L) = �(L) · �(x)
� �(⇥)

Problem

�(L) = �(L) · �(x)
� �(⇥)

Solution?

Fix it.

 (match L
 [(∅) #f]
 [(ε) #t]
 [(token _) #f]
 [(δ L1) (nullable? L1)]

 [(★ _) #t]
 [(∪ L1 L2) (or (nullable? L1)
 (nullable? L2))]
 [(∘ L1 L2) (and (nullable? L1)
 (nullable? L2))]))

(nullable? L)(define

 (match L
 [(∅) #f]
 [(ε) #t]
 [(token _) #f]
 [(δ L1) (nullable? L1)]

 [(★ _) #t]
 [(∪ L1 L2) (or (nullable? L1)
 (nullable? L2))]
 [(∘ L1 L2) (and (nullable? L1)
 (nullable? L2))]))

(nullable? L)(define/fix
#:bottom #f

GEN

OUT

IN

KILL

(define/fix (stmt)
 #:bottom ∅
 (- (∪ (stmt) (stmt))
 (stmt)))

(define/fix (stmt)
 #:bottom ∅
 (apply ∪ (map (preds stmt))))

GEN

OUT

IN

KILL
IN

OUT

Grammar unfolds forever

Solution?

Memoize

 (match L
 [(∅) (∅)]
 [(ε) (∅)]
 [(token a) (cond [(eqv? a c) (ε)]
 [else (∅)])]
 [(δ _) (∅)]

 [(∪ L1 L2) (∪ (D c L1)
 (D c L2))]
 [(★ L1) (∘ (D c L1) L)]
 [(∘ L1 L2) (∪ (∘ (δ L1) (D c L2))
 (∘ (D c L1) L2))]))

(define (D c L)

 (match L
 [(∅) (∅)]
 [(ε) (∅)]
 [(token a) (cond [(eqv? a c) (ε)]
 [else (∅)])]
 [(δ _) (∅)]

 [(∪ L1 L2) (∪ (D c L1)
 (D c L2))]
 [(★ L1) (∘ (D c L1) L)]
 [(∘ L1 L2) (∪ (∘ (δ L1) (D c L2))
 (∘ (D c L1) L2))]))

(define (D c L)/memoize
#:order [([L #:eq] [c #:equal])]

It works!

(For recognizing.)

What about parsing?

Dc : L ! LDc : L ! LDc : L ! LDc : L ! L

Dc : L ! LDc : L ! LP(A, T) P(A, T)

P(A, T) = A⇤ ! P(T ⇥A⇤)

 (match L
 [(∅) (∅)]
 [(ε) (∅)]
 [(token a) (cond [(eqv? a c) (ε)]
 [else (∅)])]
 [(δ _) (∅)]

 [(∪ L1 L2) (∪ (D c L1)
 (D c L2))]
 [(★ L1) (∘ (D c L1) L)]
 [(∘ L1 L2) (∪ (∘ (δ L1) (D c L2))
 (∘ (D c L1) L2))]))

(define (D c L)/memoize
#:order [([L #:eq] [c #:equal])]

 (match L
 [(∅) (∅)]
 [(ε) (∅)]
 [(token a) (cond [(eqv? a c) (ε)]
 [else (∅)])]
 [(δ _) (∅)]

 [(∪ L1 L2) (∪ (D c L1)
 (D c L2))]
 [(★ L1) (∘ (D c L1) L)]
 [(∘ L1 L2) (∪ (∘ (δ L1) (D c L2))
 (∘ (D c L1) L2))]))

(define (D c L)/memoize
#:order [([L #:eq] [c #:equal])]

 [(→ L1 f) (→ (D c L1) f)]))

_)
(set c))]

5.5 The repetition combinator
It is easiest to define the Kleene star of a partial parser p 2
P(A, T) in terms of concatenation, union and reduction, so that
p? 2 P(A, T ⇤):

p? = (p � p?) ! �(head , tail).head : tail

[✏ # {hi} .

The colon operator (:) is the sequence constructor, and hi is the
empty sequence.

6. Derivatives of parser combinators
If we can generalize the derivative to parsers and over parser com-
binators, then we can construct parse forests using derivatives. But
first, we must consider the question:

“What is the derivative of a parser?”

Intuitively, the derivative of a parser with respect to the charac-
ter c should be a new parser. It should have the same type as the
original parser; that is, if the original parser consumed the alphabet
A to construct parse trees of type X , then the new parser should do
the same. Formally:

Dc : P(A, T) ! P(A, T).

But, how should the derived parser behave?
It should act as though the character c has been consumed, so

that if the string w is supplied, it returns parses for the string cw.
However, it also needs to strip away any null parses that come back.
If it didn’t strip these, then null parses containing cw would return
when trying to parse w with the derived parser. It is nonsensical for
a partial parser to expand its input. Thus:

Dc(p) = �w.p(cw)� (bpc(✏)⇥ {cw}).
To arrive at a framework for parsing, we can solve this equation for
the partial parser p in terms of the derivative:

Dc(p) = �w.p(cw)� (bpc(✏)⇥ {cw})
iff Dc(p)(w) = p(cw)� (bpc(✏)⇥ {cw})
iff p(cw) = Dc(p)(w) [(bpc(✏)⇥ {cw}).

Fortunately, we’ll never have to deal with the “left-over” null parses
in practice. With a full parser, these null parses are discarded:

bpc(cw) = bDc(p)c(w).

Given their similarity, it should not surprise that the derivative
of a partial parser resembles the derivative of a language:

• The derivative of the empty parser is empty:

Dc(;) = ;.

• The derivative of the null parser is also empty:

Dc(✏) = ;.

• The derivative of the nullability combinator must be empty,
since it at most parses the empty string:

Dc(�(L)) = ;.

• The derivative of a single-character parser is either the null
reduction parser or the empty parser:

Dc(c
0) =

(
✏ # {c} c = c0

; otherwise.

This rule is important: it allows the derived parser to retain frag-
ments of the input string within itself. Over time, as successive

derivatives are taken, the parser is steadily transforming itself
into a parse forest with nodes like this.

• The derivative of the union is the union of the derivative:

Dc(p [q) = Dc(p) [Dc(q).

• The derivative of a reduction is the reduction of the derivative:

Dc(p ! f) = Dc(p) ! f .

• The derivative of concatenation requires nullability, in case the
first parser doesn’t consume any input:

Dc(p � q) = (Dc(p) � q) [(�(p) � Dc(q)).

• The derivative of Kleene star peels off a copy of the parser:

Dc(p
?) = (Dc(p) � p?) ! �(h, t).h : t

The rules are so similar to the derivative for languages that we can
modify the implementation of the derivative for languages to arrive
at a derivative suitable for parsers:

(define/memoize (D c L)

#:order ([L #:eq] [c #:equal])

(match L

[(empty) (empty)]

[(eps* T) (empty)]

[(� _) (empty)]

[(char a) (if (equal? a c)

(eps* (set c))

(empty))]

[(alt L1 L2) (alt (D c L1) (D c L2))]

[(cat L1 L2) (alt (cat (D c L1) L2))

(cat (� L1) (D c L2))]

[(rep L1) (cat (D c L1) L)]

[(red L f) (red (D c L) f)]))

(Because pairing and list-building in Lisps both use cons, there is
no reduction around the derivative of repetition.)

6.1 Parsing with derivatives
Parsing with derivatives is straightforward—until the last character
has been consumed. To parse, compute successive derivatives of
the top-level parser with respect to each character in a string. When
the string is depleted, supply the null string to the final parser. In
code, the parse function has the same structure as matches?:

(define (parse w p)

(if (null? w)

(parse-null p)

(parse (cdr w) (D (car w) p))))

The question of interest is how to define parse-null, which pro-
duces a parse forest for the null parses of its input.

Yet again, an equational theory guides:

b;c(✏) = {}
b✏ # T c(✏) = T

b�(p)c = bpc(✏)
bp [qc(✏) = bpc(✏) [bqc(✏)
bp � qc(✏) = bpc(✏)⇥ bqc(✏)

bp ! fc(✏) = {f(t1), . . . , f(tn)}
where {t1, . . . , tn} = bpc(✏)

bp?c(✏) = (bpc(✏))⇤

 (define/fix (parse-ε p)
 #:bottom (set)
 (match p
 [(ε S) S]
 [(∅) (set)]
 [(δ p) (parse-ε p)]
 [(token _) (set)]

 [(★ _) (set '())]
 [(∪ p1 p2) (set-union (parse-ε p1)
 (parse-ε p2))]
 [(∘ p1 p2) (for*/set ([t1 (parse-ε p1)]
 [t2 (parse-ε p2)])
 (cons t1 t2))]
 [(→ p1 f) (for/set ([t (parse-ε p1)])
 (f t))]))

(define (recognizes? w L)
 (if (null? w)
 (nullable? L)
 (recognizes? (cdr w) (D (car w) L)))))

(define (parse w L)
 (if (null? w)
 (parse-ε L)
 (parse (cdr w) (D (car w) L)))))

Demo

P(A, T) = A⇤ ⇥ P(T �A⇤)

⇥P⇤(A, T) = A⇤ � P(T)p � P(A, T)
⇥p⇤(w) = {t : (t, �) � p(w)}

w � �w0.

(
{(w,w00

)} w0
= ww00

⇥ otherwise.

� � ⇥w.{(�, w)}

⇥ � �w.{}

p ⇥ P(A,X)

q ⇥ P(A, Y)

p · q ⇥ P(A,X � Y)

p · q = �w.{((x, y), w00) : (x,w0) ⇥ p(w), (y, w00) ⇥ q(w0)}

p 2 P(A,X)

q 2 P(A,X)

p [q 2 P(A,X)

p [q = �w.p(w) [q(w)

f ⇥ X � Y

p ⇥ P(A,X)

p � f ⇥ P(A, Y)

p � f = �w.{((f(x), w0) : (x,w0) ⇥ p(w)}

Dc : L ! L

Dc : P(A, T) ! P(A, T)

Dc : bPc(A, T) ! bPc(A, T)

p ⇤ P(A, T)

Dc(p) = ⇥w.p(cw)� (⇧p⌃(�)⇥ {cw})
p(cw) = Dc(p)(w) ⌅ (⇧p⌃(�)⇥ {cw})

Dc(c) = � ! ⇥�.c

Dc(c
0) = ; if c 6= c0

Dc(p · q) =
(
Dc(p) · q � ⇤⇥ L(p)
Dc(p) · q ⌅ (� � ⇥�.⇧p⌃(�)) ·Dc(q) otherwise.

Dc(p [q) = Dc(p) [Dc(q)

Dc(p ! f) = Dc(p) ! f

More in paper

• Theory: From languages to parsers

• Optimization: Grammar compaction

• Discussion: Complexity & performance

Implementation

www.ucombinator.org/projects/parsing/

Reference implementations, test cases, test grammars.

http://www.ucombinator.org/parsing/
http://www.ucombinator.org/parsing/

どうもありがとう
http://www.ucombinator.org/projects/parsing/

http://www.ucombinator.org/parsing/
http://www.ucombinator.org/parsing/

どうもありがとう
http://www.ucombinator.org/projects/parsing/

PLDI 2012
Beijing, China

Submission: 6 Nov 2011

http://www.ucombinator.org/parsing/
http://www.ucombinator.org/parsing/

Complexity?

Theory

A note on repetition The rule for repetition can mislead. If the
interior parser can parse null, then there are an infinite number
of parse trees to return. However, in terms of descriptiveness, one
gains nothing by allowing the interior of a Kleene star operation
to parse null—Kleene star already parses null by definition. So, in
practice, we can replace that last rule by:

bp?c(✏) =
(
{hi} p cannot parse null
undefined otherwise.

What we have at this point are mutually recursive set constraint
equations that mimic the structure of the nullability function for
languages. Once again, the least fixed point is a sensible way of
interpreting these equations. Thus, Kleene’s fixed-point theorem,
via define/fix, returns the set of full null parses:

(define/fix (parse-null p)

#:bottom (set)

(match l

[(empty) (set)]

[(eps* T) T]

[(� L) (parse-null L)]

[(char _) (set)]

[(alt p1 p2) (set-union (parse-null p1)

(parse-null p2))]

[(cat p1 p2) (for*/set ([t1 (parse-null p1)]

[t2 (parse-null p2)])

(cons t1 t2))]

[(red p1 f) (for/set ([t (parse-null p1)])

(f t))]

[(rep _) (set ’())]))

It assumes that the null parse of each node is initially empty.

7. Performance and complexity
The implementation is brief. The code is pure. The theory is ele-
gant. So, how does this perform in practice? In brief, it is awful.

We constructed a parser for Python 3.1. On one-line examples,
it returns interactively. Yet, it takes just under three minutes to
parse a (syntactically valid) 31-line input. The culprit? The size
of the grammar within the parser can grow exponentially with the
number of derivatives. (The rule for concatenation is to blame.)
Specifically, the grammar can double in size under the derivative.
The cost model for parsing with derivatives is:

number of derivatives
⇥ cost of derivative
+ cost of fixed point at the end.

The cost of the derivative is proportional to the size of the current
grammar. The cost of the fixed point is quadratic in the size of
the grammar for unambiguous parses in the worst case. Thus, the
worst-case complexity of parsing a grammar of size G over an input
of length n is:

O(n2nG+ (2nG)2) = O(22nG2).

Considering this complexity, it is remarkable that our example
finished at all. That it finished in three minutes is astonishing.

7.1 Example: Growth in the grammar
A glance at run-time behavior on the left-recursive list grammar
exposes the nature of the problem. The image on the left represents
the grammar at the start; the image on the right represents the
grammar after ten derivatives:

or

seq

L R
eps* (set '())

token 1

or

or empty

seq

L R
or

eps* (set '())

empty

seq

L R
or

eps* (set '(() . 1))
seq

L R
or

eps* (set '((() . 1) . 1))
seq

L R
or

eps* (set '(((() . 1) . 1) . 1))
seq

L R
or

eps* (set '((((() . 1) . 1) . 1) . 1))
seq

L R
or

eps* (set '(((((() . 1) . 1) . 1) . 1) . 1))
seq

L R
or

eps* (set '((((((() . 1) . 1) . 1) . 1) . 1) . 1))
seq

L R
or

eps* (set '(((((((() . 1) . 1) . 1) . 1) . 1) . 1) . 1))
seq

L R
or

eps* (set '((((((((() . 1) . 1) . 1) . 1) . 1) . 1) . 1) . 1))
seq

L R

seq

L R

eps* (set '(((((((((() . 1) . 1) . 1) . 1) . 1) . 1) . 1) . 1) . 1)) eps* (set 1)token 1

If one were to zoom in on image on the right, the node on the bot-
tom right is (empty). All of the inbound edges are from concate-
nation nodes—all of these nodes can be discarded.

8. Compaction
Another equational theory shows how to eliminate unnecessary
structure. The empty parser is an annihilator under concatenation
and the identity under union; a null parser is the identity under
concatenation.

It is possible to aggressively perform reductions as pieces of
parse trees emerge. Our implementation utilizes the following sim-
plifications; we use ()) in lieu of (=) to emphasize direction:

; � p = p � ;) ;
; [p = p [;) p

(✏ # {t1}) � p) p ! �t2.(t1, t2)

p � (✏ # {t2})) p ! �t1.(t1, t2)

(✏ # {t1, . . . , tn}) ! f) ✏ # {f(t1), . . . , f(tn)}
((✏ # {t1}) � p) ! f) p ! �t2.(t1, t2)

(p ! f) ! g) p ! (g � f)
;?) ✏ # {hi} .

We can implement these simplification rules in a memoized,
recursive simplification function. When simplification is deeply
recursive and memoized, we term it compaction. If the algorithm
compacts after every derivative, then the time to parse the 31-line
Python file drops from three minutes to two seconds. A graph of the
size of the residual Python grammar with respect to each derivative
hints as to why:

1400 20 40 60 80 100 120

800

0

100

200

300

400

500

600

700

Number of derivatives

Gr
am

m
ar

 s
iz

e

The size of the grammar (and the cost of each derivative) stays
constant.

Warning With mere top-level simplification in lieu of memo-
ization and deep recursive simplification, the grammar still grows
with each derivative, and the cost of parsing the 31-line example
explodes from two seconds to one minute.

Compaction

A note on repetition The rule for repetition can mislead. If the
interior parser can parse null, then there are an infinite number
of parse trees to return. However, in terms of descriptiveness, one
gains nothing by allowing the interior of a Kleene star operation
to parse null—Kleene star already parses null by definition. So, in
practice, we can replace that last rule by:

bp?c(✏) =
(
{hi} p cannot parse null
undefined otherwise.

What we have at this point are mutually recursive set constraint
equations that mimic the structure of the nullability function for
languages. Once again, the least fixed point is a sensible way of
interpreting these equations. Thus, Kleene’s fixed-point theorem,
via define/fix, returns the set of full null parses:

(define/fix (parse-null p)

#:bottom (set)

(match l

[(empty) (set)]

[(eps* T) T]

[(� L) (parse-null L)]

[(char _) (set)]

[(alt p1 p2) (set-union (parse-null p1)

(parse-null p2))]

[(cat p1 p2) (for*/set ([t1 (parse-null p1)]

[t2 (parse-null p2)])

(cons t1 t2))]

[(red p1 f) (for/set ([t (parse-null p1)])

(f t))]

[(rep _) (set ’())]))

It assumes that the null parse of each node is initially empty.

7. Performance and complexity
The implementation is brief. The code is pure. The theory is ele-
gant. So, how does this perform in practice? In brief, it is awful.

We constructed a parser for Python 3.1. On one-line examples,
it returns interactively. Yet, it takes just under three minutes to
parse a (syntactically valid) 31-line input. The culprit? The size
of the grammar within the parser can grow exponentially with the
number of derivatives. (The rule for concatenation is to blame.)
Specifically, the grammar can double in size under the derivative.
The cost model for parsing with derivatives is:

number of derivatives
⇥ cost of derivative
+ cost of fixed point at the end.

The cost of the derivative is proportional to the size of the current
grammar. The cost of the fixed point is quadratic in the size of
the grammar for unambiguous parses in the worst case. Thus, the
worst-case complexity of parsing a grammar of size G over an input
of length n is:

O(n2nG+ (2nG)2) = O(22nG2).

Considering this complexity, it is remarkable that our example
finished at all. That it finished in three minutes is astonishing.

7.1 Example: Growth in the grammar
A glance at run-time behavior on the left-recursive list grammar
exposes the nature of the problem. The image on the left represents
the grammar at the start; the image on the right represents the
grammar after ten derivatives:

or

seq

L R
eps* (set '())

token 1

or

or empty

seq

L R
or

eps* (set '())

empty

seq

L R
or

eps* (set '(() . 1))
seq

L R
or

eps* (set '((() . 1) . 1))
seq

L R
or

eps* (set '(((() . 1) . 1) . 1))
seq

L R
or

eps* (set '((((() . 1) . 1) . 1) . 1))
seq

L R
or

eps* (set '(((((() . 1) . 1) . 1) . 1) . 1))
seq

L R
or

eps* (set '((((((() . 1) . 1) . 1) . 1) . 1) . 1))
seq

L R
or

eps* (set '(((((((() . 1) . 1) . 1) . 1) . 1) . 1) . 1))
seq

L R
or

eps* (set '((((((((() . 1) . 1) . 1) . 1) . 1) . 1) . 1) . 1))
seq

L R

seq

L R

eps* (set '(((((((((() . 1) . 1) . 1) . 1) . 1) . 1) . 1) . 1) . 1)) eps* (set 1)token 1

If one were to zoom in on image on the right, the node on the bot-
tom right is (empty). All of the inbound edges are from concate-
nation nodes—all of these nodes can be discarded.

8. Compaction
Another equational theory shows how to eliminate unnecessary
structure. The empty parser is an annihilator under concatenation
and the identity under union; a null parser is the identity under
concatenation.

It is possible to aggressively perform reductions as pieces of
parse trees emerge. Our implementation utilizes the following sim-
plifications; we use ()) in lieu of (=) to emphasize direction:

; � p = p � ;) ;
; [p = p [;) p

(✏ # {t1}) � p) p ! �t2.(t1, t2)

p � (✏ # {t2})) p ! �t1.(t1, t2)

(✏ # {t1, . . . , tn}) ! f) ✏ # {f(t1), . . . , f(tn)}
((✏ # {t1}) � p) ! f) p ! �t2.(t1, t2)

(p ! f) ! g) p ! (g � f)
;?) ✏ # {hi} .

We can implement these simplification rules in a memoized,
recursive simplification function. When simplification is deeply
recursive and memoized, we term it compaction. If the algorithm
compacts after every derivative, then the time to parse the 31-line
Python file drops from three minutes to two seconds. A graph of the
size of the residual Python grammar with respect to each derivative
hints as to why:

1400 20 40 60 80 100 120

800

0

100

200

300

400

500

600

700

Number of derivatives

Gr
am

m
ar

 s
iz

e

The size of the grammar (and the cost of each derivative) stays
constant.

Warning With mere top-level simplification in lieu of memo-
ization and deep recursive simplification, the grammar still grows
with each derivative, and the cost of parsing the 31-line example
explodes from two seconds to one minute.

A note on repetition The rule for repetition can mislead. If the
interior parser can parse null, then there are an infinite number
of parse trees to return. However, in terms of descriptiveness, one
gains nothing by allowing the interior of a Kleene star operation
to parse null—Kleene star already parses null by definition. So, in
practice, we can replace that last rule by:

bp?c(✏) =
(
{hi} p cannot parse null
undefined otherwise.

What we have at this point are mutually recursive set constraint
equations that mimic the structure of the nullability function for
languages. Once again, the least fixed point is a sensible way of
interpreting these equations. Thus, Kleene’s fixed-point theorem,
via define/fix, returns the set of full null parses:

(define/fix (parse-null p)

#:bottom (set)

(match l

[(empty) (set)]

[(eps* T) T]

[(� L) (parse-null L)]

[(char _) (set)]

[(alt p1 p2) (set-union (parse-null p1)

(parse-null p2))]

[(cat p1 p2) (for*/set ([t1 (parse-null p1)]

[t2 (parse-null p2)])

(cons t1 t2))]

[(red p1 f) (for/set ([t (parse-null p1)])

(f t))]

[(rep _) (set ’())]))

It assumes that the null parse of each node is initially empty.

7. Performance and complexity
The implementation is brief. The code is pure. The theory is ele-
gant. So, how does this perform in practice? In brief, it is awful.

We constructed a parser for Python 3.1. On one-line examples,
it returns interactively. Yet, it takes just under three minutes to
parse a (syntactically valid) 31-line input. The culprit? The size
of the grammar within the parser can grow exponentially with the
number of derivatives. (The rule for concatenation is to blame.)
Specifically, the grammar can double in size under the derivative.
The cost model for parsing with derivatives is:

number of derivatives
⇥ cost of derivative
+ cost of fixed point at the end.

The cost of the derivative is proportional to the size of the current
grammar. The cost of the fixed point is quadratic in the size of
the grammar for unambiguous parses in the worst case. Thus, the
worst-case complexity of parsing a grammar of size G over an input
of length n is:

O(n2nG+ (2nG)2) = O(22nG2).

Considering this complexity, it is remarkable that our example
finished at all. That it finished in three minutes is astonishing.

7.1 Example: Growth in the grammar
A glance at run-time behavior on the left-recursive list grammar
exposes the nature of the problem. The image on the left represents
the grammar at the start; the image on the right represents the
grammar after ten derivatives:

or

seq

L R
eps* (set '())

token 1

or

or empty

seq

L R
or

eps* (set '())

empty

seq

L R
or

eps* (set '(() . 1))
seq

L R
or

eps* (set '((() . 1) . 1))
seq

L R
or

eps* (set '(((() . 1) . 1) . 1))
seq

L R
or

eps* (set '((((() . 1) . 1) . 1) . 1))
seq

L R
or

eps* (set '(((((() . 1) . 1) . 1) . 1) . 1))
seq

L R
or

eps* (set '((((((() . 1) . 1) . 1) . 1) . 1) . 1))
seq

L R
or

eps* (set '(((((((() . 1) . 1) . 1) . 1) . 1) . 1) . 1))
seq

L R
or

eps* (set '((((((((() . 1) . 1) . 1) . 1) . 1) . 1) . 1) . 1))
seq

L R

seq

L R

eps* (set '(((((((((() . 1) . 1) . 1) . 1) . 1) . 1) . 1) . 1) . 1)) eps* (set 1)token 1

If one were to zoom in on image on the right, the node on the bot-
tom right is (empty). All of the inbound edges are from concate-
nation nodes—all of these nodes can be discarded.

8. Compaction
Another equational theory shows how to eliminate unnecessary
structure. The empty parser is an annihilator under concatenation
and the identity under union; a null parser is the identity under
concatenation.

It is possible to aggressively perform reductions as pieces of
parse trees emerge. Our implementation utilizes the following sim-
plifications; we use ()) in lieu of (=) to emphasize direction:

; � p = p � ;) ;
; [p = p [;) p

(✏ # {t1}) � p) p ! �t2.(t1, t2)

p � (✏ # {t2})) p ! �t1.(t1, t2)

(✏ # {t1, . . . , tn}) ! f) ✏ # {f(t1), . . . , f(tn)}
((✏ # {t1}) � p) ! f) p ! �t2.(t1, t2)

(p ! f) ! g) p ! (g � f)
;?) ✏ # {hi} .

We can implement these simplification rules in a memoized,
recursive simplification function. When simplification is deeply
recursive and memoized, we term it compaction. If the algorithm
compacts after every derivative, then the time to parse the 31-line
Python file drops from three minutes to two seconds. A graph of the
size of the residual Python grammar with respect to each derivative
hints as to why:

1400 20 40 60 80 100 120

800

0

100

200

300

400

500

600

700

Number of derivatives

Gr
am

m
ar

 s
iz

e

The size of the grammar (and the cost of each derivative) stays
constant.

Warning With mere top-level simplification in lieu of memo-
ization and deep recursive simplification, the grammar still grows
with each derivative, and the cost of parsing the 31-line example
explodes from two seconds to one minute.

Practice

⇡ O(nG)

Performance

Good enough.

99%

1%

Parsing Analysis

98%

2%

Parsing Analysis

Compaction

p · � = �

A note on repetition The rule for repetition can mislead. If the
interior parser can parse null, then there are an infinite number
of parse trees to return. However, in terms of descriptiveness, one
gains nothing by allowing the interior of a Kleene star operation
to parse null—Kleene star already parses null by definition. So, in
practice, we can replace that last rule by:

bp?c(✏) =
(
{hi} p cannot parse null
undefined otherwise.

What we have at this point are mutually recursive set constraint
equations that mimic the structure of the nullability function for
languages. Once again, the least fixed point is a sensible way of
interpreting these equations. Thus, Kleene’s fixed-point theorem,
via define/fix, returns the set of full null parses:

(define/fix (parse-null p)

#:bottom (set)

(match l

[(empty) (set)]

[(eps* T) T]

[(� L) (parse-null L)]

[(char _) (set)]

[(alt p1 p2) (set-union (parse-null p1)

(parse-null p2))]

[(cat p1 p2) (for*/set ([t1 (parse-null p1)]

[t2 (parse-null p2)])

(cons t1 t2))]

[(red p1 f) (for/set ([t (parse-null p1)])

(f t))]

[(rep _) (set ’())]))

It assumes that the null parse of each node is initially empty.

7. Performance and complexity
The implementation is brief. The code is pure. The theory is ele-
gant. So, how does this perform in practice? In brief, it is awful.

We constructed a parser for Python 3.1. On one-line examples,
it returns interactively. Yet, it takes just under three minutes to
parse a (syntactically valid) 31-line input. The culprit? The size
of the grammar within the parser can grow exponentially with the
number of derivatives. (The rule for concatenation is to blame.)
Specifically, the grammar can double in size under the derivative.
The cost model for parsing with derivatives is:

number of derivatives
⇥ cost of derivative
+ cost of fixed point at the end.

The cost of the derivative is proportional to the size of the current
grammar. The cost of the fixed point is quadratic in the size of
the grammar for unambiguous parses in the worst case. Thus, the
worst-case complexity of parsing a grammar of size G over an input
of length n is:

O(n2nG+ (2nG)2) = O(22nG2).

Considering this complexity, it is remarkable that our example
finished at all. That it finished in three minutes is astonishing.

7.1 Example: Growth in the grammar
A glance at run-time behavior on the left-recursive list grammar
exposes the nature of the problem. The image on the left represents
the grammar at the start; the image on the right represents the
grammar after ten derivatives:

or

seq

L R
eps* (set '())

token 1

or

or empty

seq

L R
or

eps* (set '())

empty

seq

L R
or

eps* (set '(() . 1))
seq

L R
or

eps* (set '((() . 1) . 1))
seq

L R
or

eps* (set '(((() . 1) . 1) . 1))
seq

L R
or

eps* (set '((((() . 1) . 1) . 1) . 1))
seq

L R
or

eps* (set '(((((() . 1) . 1) . 1) . 1) . 1))
seq

L R
or

eps* (set '((((((() . 1) . 1) . 1) . 1) . 1) . 1))
seq

L R
or

eps* (set '(((((((() . 1) . 1) . 1) . 1) . 1) . 1) . 1))
seq

L R
or

eps* (set '((((((((() . 1) . 1) . 1) . 1) . 1) . 1) . 1) . 1))
seq

L R

seq

L R

eps* (set '(((((((((() . 1) . 1) . 1) . 1) . 1) . 1) . 1) . 1) . 1)) eps* (set 1)token 1

If one were to zoom in on image on the right, the node on the bot-
tom right is (empty). All of the inbound edges are from concate-
nation nodes—all of these nodes can be discarded.

8. Compaction
Another equational theory shows how to eliminate unnecessary
structure. The empty parser is an annihilator under concatenation
and the identity under union; a null parser is the identity under
concatenation.

It is possible to aggressively perform reductions as pieces of
parse trees emerge. Our implementation utilizes the following sim-
plifications; we use ()) in lieu of (=) to emphasize direction:

; � p = p � ;) ;
; [p = p [;) p

(✏ # {t1}) � p) p ! �t2.(t1, t2)

p � (✏ # {t2})) p ! �t1.(t1, t2)

(✏ # {t1, . . . , tn}) ! f) ✏ # {f(t1), . . . , f(tn)}
((✏ # {t1}) � p) ! f) p ! �t2.(t1, t2)

(p ! f) ! g) p ! (g � f)
;?) ✏ # {hi} .

We can implement these simplification rules in a memoized,
recursive simplification function. When simplification is deeply
recursive and memoized, we term it compaction. If the algorithm
compacts after every derivative, then the time to parse the 31-line
Python file drops from three minutes to two seconds. A graph of the
size of the residual Python grammar with respect to each derivative
hints as to why:

1400 20 40 60 80 100 120

800

0

100

200

300

400

500

600

700

Number of derivatives

Gr
am

m
ar

 s
iz

e

The size of the grammar (and the cost of each derivative) stays
constant.

Warning With mere top-level simplification in lieu of memo-
ization and deep recursive simplification, the grammar still grows
with each derivative, and the cost of parsing the 31-line example
explodes from two seconds to one minute.

or

seq

L R
eps* (set '())

token 1

or

or empty

seq

L R

seq

L R

eps* (set '()) eps* (set 1)token 1

or

orempty

seq

L R
or

eps* (set '())

empty

seq

L R
or

eps* (set '(() . 1))
seq

L R
or

eps* (set '((() . 1) . 1))
seq

L R
or

eps* (set '(((() . 1) . 1) . 1))
seq

L R

seq

L R

eps* (set '((((() . 1) . 1) . 1) . 1)) eps* (set 1)token 1

or

or empty

seq

L R
or

eps* (set '())

empty

seq

L R
or

eps* (set '(() . 1))
seq

L R
or

eps* (set '((() . 1) . 1))
seq

L R
or

eps* (set '(((() . 1) . 1) . 1))
seq

L R
or

eps* (set '((((() . 1) . 1) . 1) . 1))
seq

L R
or

eps* (set '(((((() . 1) . 1) . 1) . 1) . 1))
seq

L R
or

eps* (set '((((((() . 1) . 1) . 1) . 1) . 1) . 1))
seq

L R
or

eps* (set '(((((((() . 1) . 1) . 1) . 1) . 1) . 1) . 1))
seq

L R
or

eps* (set '((((((((() . 1) . 1) . 1) . 1) . 1) . 1) . 1) . 1))
seq

L R

seq

L R

eps* (set '(((((((((() . 1) . 1) . 1) . 1) . 1) . 1) . 1) . 1) . 1)) eps* (set 1)token 1

or

eps* (set '(() . 1))
seq

L R

token 1

or

eps* (set '(((((() . 1) . 1) . 1) . 1) . 1))
seq

L R

token 1

or

eps* (set '((((((((((() . 1) . 1) . 1) . 1) . 1) . 1) . 1) . 1) . 1) . 1))
seq

L R

token 1

What is a parser?

P(A, T) = A⇤ ⇥ P(T �A⇤)

P(A, T) = A⇤ ⇥ P(T �A⇤)

Input string

P(A, T) = A⇤ ⇥ P(T �A⇤)

Input string

Parse tree

P(A, T) = A⇤ ⇥ P(T �A⇤)

Input string

Parse tree

Remaining input

⇥P⇤(A, T) = A⇤ � P(T)

Input string

⇥P⇤(A, T) = A⇤ � P(T)

Input string

Parse tree

⇥P⇤(A, T) = A⇤ � P(T)

p � P(A, T)

⇥p⇤(w) = {t : (t, �) � p(w)}

Context-free parsers

w � �w0.

(
{(w,w00

)} w0
= ww00

⇥ otherwise.

� � ⇥w.{(�, w)}

⇥ � �w.{}

p ⇥ P(A,X)

q ⇥ P(A, Y)

p · q ⇥ P(A,X � Y)

p · q = �w.{((x, y), w00) : (x,w0) ⇥ p(w), (y, w00) ⇥ q(w0)}

p ⇥ P(A,X)

q ⇥ P(A, Y)

p · q ⇥ P(A,X � Y)

p · q = �w.{((x, y), w00) : (x,w0) ⇥ p(w), (y, w00) ⇥ q(w0)}

p ⇥ P(A,X)

q ⇥ P(A, Y)

p · q ⇥ P(A,X � Y)

p · q = �w.{((x, y), w00) : (x,w0) ⇥ p(w), (y, w00) ⇥ q(w0)}

Input

p ⇥ P(A,X)

q ⇥ P(A, Y)

p · q ⇥ P(A,X � Y)

p · q = �w.{((x, y), w00) : (x,w0) ⇥ p(w), (y, w00) ⇥ q(w0)}

Input First parse

p ⇥ P(A,X)

q ⇥ P(A, Y)

p · q ⇥ P(A,X � Y)

p · q = �w.{((x, y), w00) : (x,w0) ⇥ p(w), (y, w00) ⇥ q(w0)}

Input First parse

Left overs

p ⇥ P(A,X)

q ⇥ P(A, Y)

p · q ⇥ P(A,X � Y)

p · q = �w.{((x, y), w00) : (x,w0) ⇥ p(w), (y, w00) ⇥ q(w0)}

Input First parse

Left overs

Second parse

p ⇥ P(A,X)

q ⇥ P(A, Y)

p · q ⇥ P(A,X � Y)

p · q = �w.{((x, y), w00) : (x,w0) ⇥ p(w), (y, w00) ⇥ q(w0)}

Input First parse

Left overs Remainder

Second parse

p 2 P(A,X)

q 2 P(A,X)

p [q 2 P(A,X)

p [q = �w.p(w) [q(w)

f ⇥ X � Y

p ⇥ P(A,X)

p � f ⇥ P(A, Y)

p � f = �w.{((f(x), w0) : (x,w0) ⇥ p(w)}

Defining the derivative

Dc : L ! L

Dc : P(A, T) ! P(A, T)

p ⇤ P(A, T)

Dc(p) = ⇥w.p(cw)� (⇧p⌃(�)⇥ {cw})
p(cw) = Dc(p)(w) ⌅ (⇧p⌃(�)⇥ {cw})

p ⇤ P(A, T)

Dc(p) = ⇥w.p(cw)� (⇧p⌃(�)⇥ {cw})
p(cw) = Dc(p)(w) ⌅ (⇧p⌃(�)⇥ {cw})

bpc(cw) = bDc(p)c(w)

Calculating the derivative

Dc(c) = � ! ⇥�.c

Dc(c
0) = ; if c 6= c0

Dc(p [q) = Dc(p) [Dc(q)

Dc(p ! f) = Dc(p) ! f

Dc(p · q) =
(
Dc(p) · q � ⇤⇥ L(p)
Dc(p) · q ⌅ (� � ⇥�.⇧p⌃(�)) ·Dc(q) otherwise.

Further reading

• Brzozowski. JACM 1964.

• Owens, Reppy, Turon. JFP 2010.

• Danielsson. ICFP 2010.

