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In this paper we describe the ARM Scalable Vector
Extension (SVE). Several goals guided the design of the
architecture. First was the need to extend the vector process-
ing capability associated with the ARM AArch64 execution
state to better address the compute requirements in domains
such as high performance computing (HPC), data analytics,
computer vision and machine learning. Second was the de-
sire to introduce an extension that can scale across multiple
implementations, both now and into the future, allowing
CPU designers to choose the vector length most suitable
for their power, performance and area targets. Finally, the
architecture should avoid imposing a software development
cost as the vector length changes and where possible reduce
it by improving the reach of compiler auto-vectorization
technologies.

We believe SVE achieves these goals. It allows im-
plementations to choose a vector register length between
128 and 2048 bits. It supports a vector length agnostic
programming model which allows code to run and scale
automatically across all vector lengths without recompila-
tion. Finally, it introduces several innovative features that
begin to overcome some of the traditional barriers to auto-
vectorization.

1 INTRODUCTION

Architecture extensions are often somewhat conservative
when they are first introduced and are then expanded as
their potential becomes better understood and transistor
budgets increase. Over the course of 15 years, ARM has
expanded and improved support for SIMD. Starting with
32-bit integer-only SIMD instructions using the integer reg-
ister file in ARMv6-A [1] to 64 and 128-bit SIMD instructions
sharing the floating point register file in the most recent
incarnation of Advanced SIMD in ARMv7-A and ARMv8-
A [2].

These extensions efficiently target media and image pro-
cessing workloads, which typically process structured data
using well-conditioned DSP algorithms. However, as our
partners continue to deploy ARMv8-A into new markets we
have seen an increasing demand for more radical changes
to the ARM SIMD architecture, including the introduction
of well known technologies such as gather-load and scatter-
store, per-lane predication and longer vectors.

But this raises the question, what should that vector
length be? The conclusion from over a decade of research
into vector processing, both within ARM [3], [4], and taking
inspiration from more traditional vector architectures, such
as the CRAY-1 [5], is that there is no single preferred vector
length. For this reason, SVE leaves the vector length as an
implementation choice (from 128 to 2048 bits, in increments
of 128 bits). Importantly the programming model adjusts
dynamically to the available vector length, with no need
to recompile high-level languages or to rewrite hand-coded
SVE assembly or compiler intrinsics.

Of course, longer vectors are only part of the solution
and achieving significant speedup also requires high vector
utilization. At a high level, the key SVE features enabling
improved auto-vectorization support are:

• Scalable vector length increasing parallelism while
allowing implementation choice.

• Rich addressing modes enabling non-linear data
accesses.

• Per-lane predication allowing vectorization of loops
containing complex control flow.

• Predicate-driven loop control and management re-
duces vectorization overhead relative to scalar code.

• A rich set of horizontal operations applicable to
more types of reducible loop-carried dependencies.

• Vector partitioning and software-managed spec-
ulation enabling vectorization of loops with data-
dependent exits.

• Scalarized intra-vector sub-loops permitting vec-
torization of loops with more complex loop-carried
dependencies.

The remainder of this paper is organized as follows. In
Section 2 we introduce the SVE architecture and the vector
length agnostic programming model. Saliant features of the
architecture are demonstrated with examples. Section 3 dis-
cusses the implications for compilers with a focus on auto-
vectorization. Section 4 outlines some of the implementation
challenges. Section 5 presents early performance data based
on a representative model and an experimental compiler.
Finally, Section 6 concludes.

2 SVE OVERVIEW

In this section we more fully describe the architectural state
and key features introduced by SVE and, where appropriate,
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(a) SVE registers (b) SVE predicate organization

Fig. 1: SVE architectural state - vector registers (Z0–Z31), predicate registers (P0–P15), the first-fault register (FFR) and
exception-level specific control registers (ZCR EL1–ZCR EL3)

we illustrate these with code examples.

2.1 Architectural State
SVE introduces new architectural state, shown in Fig. 1a.
This state provides thirty-two new scalable vector registers
(Z0–Z31). Their width is implementation dependent within
the aforementioned range. The new registers extend the
thirty-two 128-bit wide Advanced SIMD registers (V0–V31)
to provide scalable containers for 64-, 32-, 16-, and 8-bit data
elements.

Alongside the scalable vector registers, are sixteen scal-
able predicate registers (P0–P15) and a special purpose first-
faulting register (FFR).

Finally, a set of control registers (ZCR EL1–ZCR EL3)
are introduced which give each privilege level the ability to
virtualize (by reduction) the effective vector width.

2.2 Scalable Vector Length
Within a fixed 32-bit encoding space, it is not viable to create
a different instruction set every time a different vector width
is demanded. SVE radically departs from this approach in
being vector length agnostic, allowing each implementation
to choose a vector length that is any multiple of 128 bits
between 128 and 2048 bits (the current architectural upper
limit). Not having a fixed vector length allows SVE to
address multiple markets with implementations targeting
different performance-power-area optimization points.

This novel aspect of SVE enables software to scale
gracefully to different vector lengths without the need for
additional instruction encodings, recompilation or software
porting effort. SVE provides the capabilities for software to
be vector length agnostic through the use of vector partition-
ing while also supporting more conventional SIMD coding
styles requiring fixed-length, multiple-of-N or power-of-two
sub-vectors.

2.3 Predicate-centric Approach
Predication is central to the design of SVE. In this section we
describe the predicate register file, its interaction with other

1 void daxpy(double *x, double *y, double a, int n)
2 {
3 for (int i = 0; i < n; i++) {
4 y[i] = a*x[i] + y[i];
5 }
6 }

(a) Daxpy C code

1 // x0 = &x[0], x1 = &y[0], x2 = &a, x3 = &n
2 daxpy_:
3 ldrsw x3, [x3] // x3=*n
4 mov x4, #0 // x4=i=0
5 ldr d0, [x2] // d0=*a
6 b .latch
7 .loop:
8 ldr d1, [x0, x4, lsl #3] // d1=x[i]
9 ldr d2, [x1, x4, lsl #3] // d2=y[i]
10 fmadd d2, d1, d0, d2 // d2+=x[i]*a
11 str d2, [x1, x4, lsl #3] // y[i]=d2
12 add x4, x4, #1 // i+=1
13.latch:
14 cmp x4, x3 // i < n
15 b.lt .loop // more to do?
16 ret

(b) Daxpy ARMv8-A scalar code

1 // x0 = &x[0], x1 = &y[0], x2 = &a, x3 = &n
2 daxpy_:
3 ldrsw x3, [x3] // x3=*n
4 mov x4, #0 // x4=i=0
5 whilelt p0.d, x4, x3 // p0=while(i++<n)
6 ld1rd z0.d, p0/z, [x2] // p0:z0=bcast(*a)
7 .loop:
8 ld1d z1.d, p0/z, [x0, x4, lsl #3] // p0:z1=x[i]
9 ld1d z2.d, p0/z, [x1, x4, lsl #3] // p0:z2=y[i]
10 fmla z2.d, p0/m, z1.d, z0.d // p0?z2+=x[i]*a
11 st1d z2.d, p0, [x1, x4, lsl #3] // p0?y[i]=z2
12 incd x4 // i+=(VL/64)
13.latch:
14 whilelt p0.d, x4, x3 // p0=while(i++<n)
15 b.first .loop // more to do?
16 ret

(c) Daxpy ARMv8-A SVE code

Fig. 2: Equivalent C, scalar and SVE representations of the
Daxpy kernel
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daxpy_: 

8

a

7

x[]

6 5 4

y[]

&x &y &a 3

x0 x1 x2 x3 x4 p0 z0 z1 z2 x4 p0 z0 z1 z2

0 0

0 T T 0 F T T T

0 T T 8 8 0 F T 0 8 8T T 8

0 T T 8 8 5 4 0 F T 0 8 8T T 8 0 6 5 4

2 F T 8 8 0 6 41 32

0 T T 8 8 5 4 1 0 0 F T 0 8 8T T 8 0 6 5 4 0 2 1 0

2 F T 8 8 0 6 0 2

0 T T 8 8 5 4 41 32 0 F T 0 8 8T T 8 0 6 5 4 0 50 41 32

2 F T 8 8 0 6 0 50

2 T T 8 8 5 4 41 32 4 F T 0 8 8T T 8 0 6 5 4 0 50 41 32

4 F T 8 8 0 6 0 50

2 F T 8 8 5 4 41 32 4 F F 0 8 8F F 8 0 6 5 4 0 50 41 32

4 F F 8 8 0 6 0 50

instr.

1

2

3

4

5

6

8

9

0

1

2

3

ldrsw x3, [x3]

mov x4, #0

whilelt p0.d, x4, x3

ld1rd z0.d, p0/z, [x2]
.loop:

ld1d z1.d, p0/z, [x0,x4,lsl #3]

ld1d z2.d, p0/z, [x1,x4,lsl #3]

fmla z2.d, p0/m, z1.d, z0.d

st1d z2.d, p0, [x1,x4,lsl #3]

incd x4

.latch:

whilelt p0.d, x4, x3

b.first .loop

ret
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instr.

3y[] 50 41 32

3
y[]

50

41 32

3 2 1 0 ............

… memory

… scalar register

… predicate register

… vector register

… otherintr.… loop controlintr.

256-bit128-bit

Fig. 3: Cycle by cycle example of daxpy with n = 3 and hardware vector lengths of 128- and 256-bit

TABLE 1: SVE condition flags overloading

Flag SVE Condition
N First Set if first element is active
Z None Set if no element is active
C !Last Set if last element is not active
V Scalarized loop state, else zero

architectural state, and how the use of predicates enables a
number of advanced features.

2.3.1 Predicate registers

The predicate register file is organized and used as follows:
Sixteen scalable predicate registers (P0–P15) Control

of general memory and arithmetic operations is restricted
to P0–P7, however, predicate-generating instructions (e.g.
vector compares), and instructions working solely on predi-
cates (e.g. logical operations) can use the full set P0-P15 (see
Fig. 1a). This balance has been validated by analyzing com-
piled and hand-optimized codes, and mitigates the predi-
cate register pressure observed on other architectures [6].

Mixed element size control Each predicate consists of
eight enable bits per 64-bit vector element, allowing down
to per byte-granularity. For any given element size only the
least significant bit is used as the enable. This is important
for vectorizing code containing multiple data types (see
Fig. 1b).

Predicate conditions Predicate generating instructions
(e.g. vector compares and logical operations) in SVE reuse
the AArch64 NZCV condition code flags, which in the
context of predication are interpreted differently as shown
in TABLE 1.

Implicit order Predicates are interpreted in an implicit
least- to most-significant element order, corresponding to
a an equivalent sequential ordering. We refer to the first
and last predicate elements and associated conditions with
respect to this order.

2.3.2 Predicate-driven loop control
Predication is used for fundamental loop control in SVE.
In other SIMD architectures that support predication such
as ICMI [7] and AVX-512 [8], generating the governing
predicate of a loop often requires a test of the induction
variable. This is typically done by calculating the sequence
of incrementing values in a vector register and then using
that vector as input to a predicate-generating instruction
(e.g. a vector comparison).

There are two sources of overhead associated with this
approach. First, a vector register is ”wasted” to store the
sequence, and second, auto-vectorizing compilers tend to
align all SIMD instructions in a loop to the largest element
size, thus resulting in a potential loss of throughput when
the size of the induction variable is larger than the size of
the data elements processed within the loop.

To overcome these limitations in common-case scenarios,
SVE includes a family of while instructions that work with
scalar count and limits to populate a predicate with the loop
iteration controls that would have been calculated by the
corresponding sequential loop. Note that if the loop counter
is close to the maximum integer value, then while will
handle potential wrap-around behaviour consistently with
the semantic of the original sequential code. Similarly to
other predicate-generating instructions, while also updates
the condition flags.

The example in Fig. 2 demonstrates some of these con-
cepts. It shows the Daxpy1 loop in both C, ARMv8-A scalar
assembly, and ARMv8-A SVE assembly2. Notice that there is
no overhead in instruction count for the SVE version Fig. 2c
when compared to the equivalent scalar code Fig. 2b, which
allows a compiler to opportunistically vectorize loops with
an unknown trip count.

The same example is illustrated in Fig. 3, which steps
through the SVE version of the code, at both 128-bit and
256-bit vector lengths. The diagram shows the intermediate

1. Daxpy - double precision Ax plus y.
2. Note that for brevity these examples are sub-optimal.
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architectural state, for predicate P registers and vector Z
registers, and the relative instructions required to process
four array elements at two different vector lengths. We
refer the reader to the SVE reference manual [2], and the
VLA programming whitepaper [9] for more guidance on the
instructions used, but sadly a full narrative for this example
is beyond the word limit of this paper.

2.3.3 Fault-tolerant Speculative Vectorization
To vectorize loops with data-dependent termination con-
ditions, software has to perform some operations specula-
tively before the condition can be resolved. For some types
of instructions, such as simple integer arithmetic, this is
harmless because there are no side effects. However, for
instructions that may have side effects when operating on
invalid addresses, it is necessary to have mechanisms in
place to avoid those side effects.

In SVE, this is achieved with the introduction of a first-
fault mechanism for vector load instructions. This mecha-
nism suppresses memory faults if they do not result from
the first active element3 in the vector. Instead, the mech-
anism updates a predicate value in the first-fault register
(FFR) to indicate which elements were not successfully
loaded following a memory fault.

Fig. 4 shows an example with a gather load that spec-
ulatively loads from addresses held in register Z3. In the
first iteration, FFR is initialized to all true. The translations
of A[0] and A[1] succeed, but the address A[2] is invalid
(e.g., unmapped) and it fails without taking a trap. Instead,
positions corresponding to A[2] and A[3] in the FFR are set
to false. For the second iteration, the positions corresponding
to A[0] and A[1] in the instruction predicate register P1 will
be set to false and FFR to all-true again. In this case, A[2] fails
again but, since it is now the first active element, traps to the
OS to service the fault or terminate the program if it is an
illegal access.

Fig. 5 shows how speculative vectorization with the
first-faulting mechanism allows vectorization of the strlen
function. The ldff1b instruction loads the characters in
s and sets the FFR positions starting from the first faulty
address to false, so only the successful positions remain set
to true. The FFR predicate value is transferred to P1, which
predicates the subsequent instructions that check for the end
of string character. Following a memory fault, the next loop
iteration will retry the faulty access but now as the first
active element and will trap.

This flexible mechanism allows fault-tolerant speculative
vectorization of loops with data-dependent terminations,
such as strlen, that would not be vectorized safely otherwise.

2.3.4 Dynamic Exits
The previous section shows an example of how SVE vector-
izes a loop without an explicit iteration count. The technique
that has been used is called vector partitioning and it consists
of operating on a partition of safe elements in response to
dynamic conditions.

Partitions are implemented using predicate manipulat-
ing instructions and are inherited by nested conditions

3. Note that we use the term active element to the refer to an element
within a vector for which the governing predicate for that element is
set true.

Fig. 4: Example of speculative gather load controlled by the
first-fault register FFR

1 int strlen(const char *s) {
2 const char *e = s;
3 while (*e) e++;
4 return e - s;
5 }

(a) Strlen C code

1 // x0 = s
2 strlen:
3 mov x1, x0 // e=s
4 .loop:
5 ldrb x2, [x1], #1 // x2=*e++
6 cbnz x2, .loop // while(*e)
7 .done:
8 sub x0, x1, x0 // e-s
9 sub x0, x0, #1 // return e-s-1
10 ret

(b) Unoptimized ARMv8 scalar strlen

1 // x0 = s
2 strlen:
3 mov x1, x0 // e=s
4 ptrue p0.b // p0=true
5 .loop:
6 setffr // ffr=true
7 ldff1b z0.b, p0/z, [x1] // p0:z0=ldff(e)
8 rdffr p1.b, p0/z // p0:p1=ffr
9 cmpeq p2.b, p1/z, z0.b, #0 // p1:p2=(*e==0)
10 brkbs p2.b, p1/z, p2.b // p1:p2=until(*e==0)
11 incp x1, p2.b // e+=popcnt(p2)
12 b.last .loop // last=>!break
13 sub x0, x1, x0 // return e-s
14 ret

(c) Unoptimized ARMv8 SVE strlen

Fig. 5: Equivalent C, scalar and SVE representations of strlen
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and loops. In this way, vector partitioning is a natural way
to deal with uncounted loops with data-dependent exits
(do-while, break, etc). Vectorized code must guarantee that
operations with side-effects following a loop exit must not
be architecturally performed. This is achieved by operating
on a before-break vector partition, then exiting the loop if a
break was detected.

Fig. 5 shows how vector partitioning is used to vector-
ize the strlen function. Section 2.3.3 describes how the
ldff1b instruction loads values speculatively. The rdffr
instruction reports the partition of safely loaded values. This
is used by the cmpeq instruction to just compare the safe
(correct) values with zero. Furthermore, the brkbs instruc-
tion generates a sub-partition bounded by the loop break
condition and computes the last condition accordingly.

2.3.5 Scalarized intra-vector sub-loops

Complex loop-carried dependencies are a significant barrier
to vectorization that SVE can help to address. One approach
to overcoming those is to split a loop (loop fission) into
an explicitly serial part, allowing the rest of the loop to
be profitably vectorized. However, in many cases, the cost
of unpacking and packing the data to work on it serially
negates any performance uplift. To reduce that cost, SVE
provides support for serially processing elements in place
within a vector.

An example of this problem is traversing a linked list, as
there is a loop-carried dependency between each iteration
(Fig. 6a). By applying loop fission the loop is split into a
serial pointer chase followed by a vectorizable loop (Fig. 6b).

Fig. 6c shows how SVE vectorizes this code. The first part
is the serialized pointer chase. The pnext instruction allows
operating on active elements one-by-one by setting P1 to
the next active element and computing the last condition.
The cpy instruction inserts scalar register X1 into the vector
register Z1 at this position. Then, the ctermeq instruction
is used to detect the end of the list (p == NULL) or the
end of the vector (by testing the last condition set by the
pnext instruction). The b.tcont branch checks this and
continues with the serial loop if more pointers are available
and needed.

The partition of loaded pointers is computed into P2.
In this case, the vectorized loop is just performing the
exclusive-or operation. Finally, all the vector elements in z0
are combined with a horizontal exclusive-or reduction using
the eorv instruction. In this example, the performance
gained may not be sufficient to justify using vectorization
for this loop, but it serves to illustrate the principle applica-
ble to more profitable scenarios.

2.4 Horizontal Operations

Another problem for traditional SIMD processing is the
presence of dependencies across multiple loop iterations.
In many cases, these dependencies can be resolved using a
simple horizontal reduction operation. Unlike normal SIMD
instructions, horizontal operations are a special class of
instructions that operate across the elements of the same
vector register. SVE has a rich set of horizontal operations
including both logical, integer and floating-point reductions

1 struct {uint64 val; struct node *next} *p;
2 uint64 res = 0;
3 for (p = &head; p != NULL; p = p->next)
4 res ˆ= p->val;

(a) Linked-list loop carried dependency

1 for (p = &head; p != NULL; ) {
2 for (i = 0; p != NULL && i < VL/64; p = p->next)
3 p’[i++] = p; // collect up to VL/64 pointers
4 for (j = 0; j < i; j++)
5 res ˆ= p’[j]->val; // gather from pointer vector
6 }

(b) Split loop: serial pointer chase, and vectorizable loop

1 // P0 = current partition mask
2 dup z0.d, #0 // res’= 0
3 adr x1, head // p = &head
4 loop:
5 // serialized sub-loop under P0
6 pfalse p1.d // first i
7 inner:
8 pnext p1.d, p0, p1.d // next i in P0
9 cpy z1.d, p1/m, x1 // p’[i]=p
10 ldr x1, [x1, #8] // p=p->next
11 ctermeq x1, xzr // p==NULL?
12 b.tcont inner // !(term|last)
13 brka p2.b, p0/z, p1.b // P2[0..i] = T
14 // vectorized main loop under P2
15 ld1d z2.d, p2/z, [z1.d, #0] // val’=p ->val
16 eor z0.d, p2/m, z0.d, z2.d // res’ˆ=val’
17 cbnz x1, loop // while p!=NULL
18 eorv d0, p0, z0.d // d0=eor(res’)
19 umov x0, d0 // return d0
20 ret

(c) Split-loop ARMv8 SVE code

Fig. 6: Separation of loop carried dependencies for partial
vectorization of linked-lists

as well as strictly-ordered reduction for floating-point (e.g.
fadda4).

3 COMPILING FOR SVE
The previous sections illustrate many aspects of how to
program SVE. Translating these techniques into a compiler
required us to rethink our compilation strategy because
of the impact of wide vectors, vector length agnosticism,
predication and speculative vectorization with first-faulting
loads.

3.1 Wide Vectors and Vector Length Agnosticism
When compiling for fixed-length vectors such as Advanced
SIMD, one approach is “Unroll and Jam” where a loop
is first unrolled by the number of elements in a vector
and then corresponding operations from each iteration are
merged together into vector operations. This approach is
clearly incompatible with a scalable vector length because
the length is not known at compile time. The solution
is for the vectorizer to directly map scalar operations to
corresponding vector operations. A second challenge is that
knowledge of the constant vector length, VL, often plays a
critical role in vectorization. For example, when handling
induction variables, one might initialize a vector with the

4. fadda - is a strictly-ordered floating-point add reduction, accumu-
lating into a scalar register.
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numbers [0, 1, . . .VL − 1] by loading it from memory and
increment the vector by VL each time round the loop.
SVE addresses this with a family of instructions where the
current vector length is an implicit operand, for example the
index instruction initializes a vector induction variable and
the inc instructions advance an induction variable based on
the current vector length and specified element size.

Vector length agnosticism also impacts register reads and
writes to the stack such as spilling/filling due to register
pressure or passing a vector argument as part of the func-
tion calling convention. Supporting this inside an existing
compiler is challenging because compilers normally assume
that all objects are at a constant offset in the stack frame and
these constants are used in many places within the compiler.
Our solution is to introduce stack regions, where each region
determines what the constant offset represents. For existing
stack regions, constants remain unchanged (i.e., byte offsets)
but regions for SVE registers are dynamically allocated and
the load and store constant offsets within that region are
implicit multiples of VL.

3.2 Predication

Predicates are introduced by a conventional “if conversion”
pass that replaces if-statements with instructions to calculate
predicates and then uses the appropriate predicate on each
operation dominated by the control of the condition.

This approach is extended to handle conditional
branches out of the loop, by inserting a brk instruction that
generates a vector partition where only those lanes prior to
the loop exit condition are active.

3.3 Floating Point

Floating point is a challenge for compiler vectorization be-
cause vectorizing a reduction loop will change the order of
floating point operations which may give a different result
from the original scalar code. Programmers then have to
choose whether they want consistent results by disabling
vectorization or whether they can tolerate some variation to
achieve better performance.

Vector length agnosticism introduces more variation be-
cause a different vector length could cause a different order-
ing and, therefore, a different result. SVE mitigates this by
providing fadda that allows a compiler to vectorize those
cases where the precise order of floating point additions is
critical to correctness.

3.4 Speculative Vectorization

We were able to implement all of the above changes as
extensions of LLVM[10] compiler’s existing vectorization
pass but it was not feasible to support speculative vectoriza-
tion within the existing pass. We implemented speculative
vectorization in a separate pass whose current focus is on
expanding loop coverage rather than generating the highest
quality code.

The new vectorizer works in largely the same way as
LLVM’s current vectorizer but has more advanced predicate
handling to support loops with multiple exits. It splits the
loop body into multiple regions each under the control of

a different predicate. Broadly speaking, these regions repre-
sent instructions that are safe to always execute, instructions
that are required to calculate a conditional exit predicate and
those instructions that occur after the conditional exit. For
the latter two regions we make use of the first faulting loads
and partitioning operations.

4 IMPLEMENTATION CHALLENGES

Encoding space is a scarce resource for a fixed-width instruc-
tion set so one of the early design constraints for SVE was
to limit its overall encoding footprint so as to retain space
for future expansion of the A64 instruction set. To achieve
that, a few different solutions have been adopted in different
areas of the ISA:

Constructive vs. destructive forms: While compilers
find it desirable to have constructive forms of instructions
(i.e. supporting a destination operand distinct from the
source operands), the encoding space required to provide
both predication and constructivity for the entire set of
data-processing operations would have easily exceeded the
projected encoding budget (three vector and one predi-
cate register specifier would require nineteen bits alone,
without accounting for other control fields). The tradeoff
that SVE makes is to provide only destructive predicated
forms of most data-processing instructions, while providing
constructive unpredicated forms of only the most common
opcodes.

Move Prefix: To fulfill the need for fully constructive
predicated forms, SVE introduces a movprfx instruction,
which is trivial for hardware to decode and combine with
the immediately following instruction to create a single
constructive operation. However, it is also permitted to be
implemented as a discrete vector copy, and the result of
executing the pair of instructions with or without combining
them is identical. SVE supports both predicated (zeroing or
merging) and unpredicated forms of movprfx.

Restricted access to predicate registers: To further
reduce the encoding space, as mentioned in section 2.3,
predicated data-processing instructions are restricted to ac-
cess predicate registers P0-P7, while predicate-generating
instructions can typically access all 16 registers.

The solutions described above keep the encoding space
used by SVE below twenty-eight bits (Fig. 7). Aside from
encoding space, a key implementation concern for SVE is
the extra hardware cost required to support the additional
functionality above and beyond Advanced SIMD. A key
decision was to overlay the new vector register file on the
existing SIMD and floating-point register file (see Fig. 1a),
thus minimizing the area overhead, which is especially
relevant for smaller cores.

Furthermore the Advanced SIMD and floating-point in-
structions are required to zero the extended bits of any
vector register which they write, avoiding partial updates,
which are notoriously hard to handle in high-performance
microarchitectures. In addition, the vast majority of SVE
operations can be mapped efficiently onto an existing Ad-
vanced SIMD datapath and functional units, with the nec-
essary modifications for predication and to support a larger
width, if required.
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(a) A64 top-level encoding structure, with SVE occupying a
single 28-bit region.

(b) SVE encoding structure. Some room for future expansion is
left in this region.

Fig. 7: SVE encoding footprint.

While a wider datapath for vector processing is a key
requirement for exploiting the data-level parallelism exhib-
ited by several workloads in the HPC domain, it has to
be coupled with a corresponding improvement in memory
access capabilities and bandwidth. SVE offers a wide range
of contiguous loads and stores with a rich set of addressing
modes, and load-and-broadcast instructions which are able
to duplicate a single element across a vector, typically as
part of the load/store datapath, thus removing the need for
additional permutes in common cases.

Gather-scatter memory operations are an enabling fea-
ture that permit vectorization of loops accessing discon-
tiguous data that would otherwise be unprofitable. They
can benefit from advanced vector load/store units that
can exploit the parallelism [4], but are also amenable to
more conservative approaches that crack them into micro
operations, so long as this is not noticeably slower than a
sequence of scalar loads or stores.

5 SVE PERFORMANCE

We expect the SVE architecture to be implemented by multi-
ple ARM partners, on a variety of micro-architectures. Thus
for our evaluation of SVE we have used several represen-
tative microarchitecture models. For the results we present
here we have chosen a single model of a typical, medium

TABLE 2: Model configuration parameters.

L1 instruction cache 64KB, 4-way set-associative, 64B line
L1 data cache 64KB, 4-way set-associative, 64B line, 12 entry MSHR
L2 cache 256KB, 8-way set-associative, 64B line
Decode width 4 instructions/cycle
Retire width 4 instructions/cycle
Reorder buffer 128 entries
Integer execution 2 x 24 entries scheduler (symmetric ALUs)
Vector/FP execution 2 x 24 entries scheduler (symmetric FUs)
Load/Store execution 2 x 24 entries scheduler (2 loads / 1 store)

Fig. 8: Performance of SVE at 3 different vector lengths (cf.
Section 5)

sized, out-of-order microprocessor, that does not correspond
to any real design, but that we believe gives a fair estimate
of what to expect with SVE. The main parameters of this
model are shown in Table 2.

Instruction execution and register file access latencies in
the model are set to correspond to RTL synthesis results.
For operations that cross lanes (i.e. vector permutes and
reductions), the model takes a penalty proportional to VL.
The cache in the model is a true dual-ported cache with
the maximum access size being the full cache line, 512 bits.
Accesses crossing cache lines take an associated penalty.

Our evaluation uses an experimental compiler, able to
auto-vectorize code for SVE. We have chosen a set of high
performance computing applications, from various well
known benchmark suites [11], [12], [13], [14], [15], [16], [17],
[18]. At present our compiler supports only C and C++,
so the choice of benchmarks are restricted to these lan-
guages. We use the original code from the publicly available
versions of the benchmarks with minor modifications in
a few cases to help guide the auto-vectorizer (e.g., adding
restrict qualifiers or OpenMP simd pragmas).

Figure 8 shows the results of our evaluation. We are
comparing Advanced SIMD with three different configura-
tions of SVE with 128 bit, 256 bit, and 512 bit vector length
respectively. All four simulations use the same processor
configuration, but vary the vector length. There are two
types of results in the figure. The lines in the graph show the
speedup of each SVE configuration compared to Advanced
SIMD. The bars in the graph show the extra vectorization
achieved with SVE compared to Advanced SIMD. This is
measured as the percentage of dynamically executed vector
instructions at a vector length of 128 bits.

One immediate observation from the results is that SVE
achieves higher vector utilization than Advanced SIMD.
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This is due to all the features we have introduced to the
architecture that allow the compiler to vectorize code with
complex control flow, non-contiguous memory accesses, etc.
For this reason SVE can achieve speedups of up to 3× even
when the vectors are the same size as Advanced SIMD. For
example, in the particular case of HACCmk, the main loop
has two conditional assignments that inhibit vectorization
for Advanced SIMD, but the code is trivially vectorized for
SVE.

The figure also demonstrates the benefits of vector length
agnostic code. We can clearly see how performance scales,
simply by running the same executable on implementations
of SVE with larger vectors. This is one of the greatest benefits
of SVE.

There are three clearly identifiable categories of bench-
mark. On the right of the figure we can see a group of
benchmarks that show much higher vectorization with SVE,
and performance that scales well with the vector length (up
to 7×). Some of these benchmarks do not scale as well as
others, and this is mainly due to the use of gather-scatter
operations. Although these instructions enable vectoriza-
tion, our assumed implementation conservatively cracks the
operations and so does not scale with vector length. In other
cases, such as in HimenoBMT, the reason for poor scaling is
bad instruction scheduling by the compiler.

On the left of the figure we can see a group of bench-
marks for which there is minimal, in some cases zero,
vector utilization for both Advanced SIMD and SVE. Our
investigations show that this is due to the way the code
is structured or limitations of the compiler rather than a
shortcoming of the architecture. For example, we know that
by restructuring the code in CoMD we can achieve sig-
nificant improvement in vectorization and execution time.
Also, it should be noted that the toolchain used for these
experiments did not have vectorized versions of some basic
math library functions such as pow() and log(), which
inhibit vectorization of loops in some cases, e.g., in EP.
Finally, there are cases where the algorithm itself is not
vectorizable, for example in Graph500, where the program
mostly traverses graph structures following pointers. We
do not expect SVE to help here, unless the algorithm is
refactored with vectorization in mind.

The third group of benchmarks includes a few where
the compiler has vectorized significantly more code for SVE
than for Advanced SIMD, but we do not see much perfor-
mance uplift. All these cases are due to code generation
issues with the compiler which we are currently addressing.
In SMG2000 for example, a combination of bad instruction
selection compounded by extensive use of gather loads
results in very small benefit for SVE. It is worth noting here
that the Advanced SIMD compiler cannot vectorize the code
at all.

MILCmk is another interesting case, where a series of
poor compiler decisions contributes to performance loss for
SVE compared to Advanced SIMD. In this case the compiler
decides to vectorize the outermost loop in a loop nest gener-
ating unnecessary overheads (the Advanced SIMD compiler
vectorizes the inner loop), and does not recognize some
trivially vectorizable loops as such.

We expect that over time, with improvements to compil-
ers and libraries, many of these issues will be resolved.

6 CONCLUSIONS

SVE opens a new chapter for the ARM architecture in terms
of the scale and opportunity for increasing levels of vector
processing on ARM processor cores. It is early days for SVE
tools and software, and it will take time for SVE compilers
and the rest of the SVE software ecosystem to mature. HPC
is the current focus and catalyst for this compiler work,
and creates development momentum in areas such as Linux
distributions and optimized libraries for SVE, as well as in
tools and software from ARM and third parties.

We are already engaging with key members of the
ARM partnership, and are now broadening that engage-
ment across the open-source community and wider ARM
ecosystem to support development of SVE and the HPC
market, enabling a path to efficient Exascale computing.
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