
A preliminary version of this paper appears in the proceedings of the 36th International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT 2017), c© IACR 2017, DOI: 10.1007/978-3-319-56617-7 18. This is the full version.

0-RTT Key Exchange with Full Forward Secrecy

Felix Günther1, Britta Hale2, Tibor Jager3, and Sebastian Lauer4

1 Technische Universität Darmstadt, Germany, guenther@cs.tu-darmstadt.de
2 NTNU, Norwegian University of Science and Technology, Trondheim,

britta.hale@item.ntnu.no
3 Paderborn University, tibor.jager@upb.de

4 Ruhr-University Bochum, sebastian.lauer@rub.de

Abstract. Reducing latency overhead while maintaining critical security guar-
antees like forward secrecy has become a major design goal for key exchange
(KE) protocols, both in academia and industry. Of particular interest in this re-
gard are 0-RTT protocols, a class of KE protocols which allow a client to send
cryptographically protected payload in zero round-trip time (0-RTT) along with
the very first KE protocol message, thereby minimizing latency. Prominent ex-
amples are Google’s QUIC protocol and the upcoming TLS protocol version 1.3.
Intrinsically, the main challenge in a 0-RTT key exchange is to achieve forward
secrecy and security against replay attacks for the very first payload message sent
in the protocol. According to cryptographic folklore, it is impossible to achieve
forward secrecy for this message, because the session key used to protect it must
depend on a non-ephemeral secret of the receiver. If this secret is later leaked
to an attacker, it should intuitively be possible for the attacker to compute the
session key by performing the same computations as the receiver in the actual
session.
In this paper we show that this belief is actually false. We construct the first
0-RTT key exchange protocol which provides full forward secrecy for all trans-
mitted payload messages and is automatically resilient to replay attacks. In our
construction we leverage a puncturable key encapsulation scheme which permits
each ciphertext to only be decrypted once. Fundamentally, this is achieved by
evolving the secret key after each decryption operation, but without modifying
the corresponding public key or relying on shared state.
Our construction can be seen as an application of the puncturable encryption
idea of Green and Miers (S&P 2015). We provide a new generic and standard-
model construction of this tool that can be instantiated with any selectively secure
hierarchical identity-based key encapsulation scheme.

1 Introduction

AUTHENTICATED KEY EXCHANGE AND TLS. The Transport Layer Security (TLS)
protocol is the most important cryptographic security mechanism on the Internet today,
with TLS 1.2 being the most recent standardized version [16] and TLS 1.3 under devel-
opment [40]. As one core functionality TLS provides an (authenticated) key exchange
(AKE) which allows two remote parties to establish a shared cryptographic key over an
insecure channel like the Internet. The study of provable security guarantees for AKE

http://dx.doi.org/10.1007/978-3-319-56617-7_18

protocols was initiated by the seminal work of Bellare and Rogaway [4]; the huge body
of work on cryptographic analyses of the TLS key exchange(s) includes [26,28,5,17].

THE DEMAND FOR LOW-LATENCY KEY EXCHANGE. Classical AKE protocols like
TLS incur a considerable latency overhead due to exchanging a relatively large number
of protocol messages before the first actual (application) data messages can be trans-
mitted under cryptographic protection. Latency is commonly measured in round-trip
time (RTT), indicating the number of rounds/round trips messaging has to take before
the first application data can be sent. Even very efficient examples of high-performance
AKE protocols like HMQV [27] need at least two messages (i.e., 1-RTT) before either
party can compute the session key.

0-RTT KEY EXCHANGE. Reducing the latency overhead of key exchange protocols
to zero round-trip time (0-RTT) while maintaining reasonable security guarantees has
become a major design goal both in academia [36,29,23,44] and industry [38,40].5 In
terms of practical designs, the two principal protocols are Google’s QUIC protocol [38]
and the 0-RTT mode drafted for the upcoming TLS version 1.3 [40]. While the latter
is still in development, QUIC is already implemented in recent versions of the Google
Chrome and Opera web browsers, is currently used on Google’s web servers, and has
been proposed as an IETF standard (July 2015).

As authentication and establishment of cryptographic keys in 0-RTT without prior
knowledge is impossible, 0-RTT key-exchange protocols must leverage keying material
obtained in some prior communication to establish 0-RTT keys. Consequently, one very
common approach, employed in particular in QUIC, is based on the Diffie–Hellman key
exchange and is essentially comprised of the following steps (see also Figure 1):
1. From prior communication (which may be a key exchange or some out-of-band

communication), the client obtains a “medium-lived” (usually a couple of days)
server configuration. This server configuration contains a Diffie–Hellman share gs

(with g being a generator of an algebraic group) for which the server knows s, and
is signed under a public signing key certified for belonging to the server.

2. In the 0-RTT key exchange, the client knowing gs now picks a secret exponent x at
random and sends the share gx to the server. It also directly computes a preliminary,
0-RTT key K1 from the Diffie–Hellman value gxs. In immediate application, this
key can be used to send cryptographically protected (0-RTT) application data along
with the client’s key-exchange message.

3. The server responds with a freshly chosen, ephemeral Diffie–Hellman share gy

which is used by both the server and the client to compute the actual session key
K2 from gxy . All further communication throughout the session is subsequently
protected under K2.

An alternative approach, pursued in the latest TLS 1.3 drafts, is to derive the 0-RTT key
from a pre-shared symmetric key. Note that this requires storing secret key informa-

5 Beyond the pure cryptographic protocol, round trips may also be induced by lower-layer trans-
port protocols. For example, the TCP protocol requires 1-RTT for its own handshake before a
higher-level cryptographic key exchange can start. Here we focus on the overhead round-trip
time caused by the cryptographic components of the key-exchange protocol.

2

Client Server

(previous communication)

Signsk(g
s)

0-RTT key exchange:
gx

[0-RTT data]K1

gy

[further data]K2

K1 ← gxs K1 ← gxs

K2 ← gxy K2 ← gxy

Fig. 1. The typical outline of a 0-RTT key exchange. Key K1 can be used immediately to send
0-RTT data, key K2 is used for all further communication.

tion on the client between sessions. In contrast, we consider 0-RTT key establishment
protocols, which do not require secret information to be stored between sessions.

ISSUES WITH 0-RTT KEY EXCHANGE. As outlined, the 0-RTT key-exchange design
elegantly allows clients to initiate a secure connection with zero latency overhead, ad-
dressing an important practical problem. Unfortunately, all protocols that follow this
format—including QUIC and TLS 1.3 as well as academic approaches [23,44]—face
at least one of the following two very undesirable drawbacks.

Forward Secrecy. Recall that forward secrecy essentially demands that transmitted
data remains secret even if an attacker learns the secret key of one communication
partner. From contemporary insight, this is considered a standard and crucial security
goal of modern key exchange protocols, as it addresses data protection in the presence
of passive key compromises or mass surveillance. Observe that a 0-RTT key exchange
of the form outlined above, however, cannot provide forward secrecy for the 0-RTT
application data transmitted from the client to the server. As such data is protected under
the key K1, derived from gxs, an attacker which eavesdrops on the communication and
later compromises the server’s secret exponent s (possibly long after the session has
finished) can easily compute K1 and thus decrypt the 0-RTT data sent. This drawback
is clearly acknowledged in the design documents of QUIC and TLS 1.3 and one of
the main reasons to upgrade to a second, forward-secret key K2. Notably, the lack
of forward secrecy for TLS 1.3 0-RTT is true of both the original Diffie–Hellman-
based and the latest pre-shared key (PSK) variants of the protocol, albeit under different
assumptions on which key is learned by the attacker [42,39,40,29].

In 2005, Krawczyk stated that it was not possible to obtain forward secrecy for
implicitly-authenticated 2-message protocols in a public-key authentication context,
if there was no pre-existing shared state [27]. Subsequent works referenced this idea
prominently, but often dropped one or more of the original conditions [11,30,8]. De-
spite modeling changes and arguments to the contrary in relation to 1-round protocols
[13,15], and work on forward secrecy for non-interactive key-exchange (NIKE) pro-

3

tocols [37], the assumption that forward secrecy is fundamentally impossible under
limited rounds has perpetuated. In particular, the QUIC crypto specification accepts an
“upper bound on the forward security of the connection” for 0-RTT handshakes [31].
Likewise, this limitation is accepted as seemingly inherent in academic 0-RTT de-
signs [23,44], and early discussions around the development of TLS 1.3 go so far as
to claim that forward secrecy “can’t be done in 0-RTT” [43].

Replay Attacks. In a replay attack, an attacker aims at making the receiver accept
the same payload twice. Specifically, replay attacks in the example 0-RTT protocol
given can take the form of replaying the client’s Diffie–Hellman share gx or the 0-RTT
data sent. Observe that, without further countermeasures, an adversary can simply re-
play (potentially multiple times) a recorded client message gx, making the server de-
rive the same key K1 as in the original connection, and then replay the client’s 0-RTT
data which the server can correctly decrypt and would therefore process. Depending
on the application logic, such replays can lead to severe security issues. For example,
an authenticated request (e.g., via login credentials or cookie tokens) might allow an
adversary to replay client actions like online orders or financial transactions.

One potential countermeasure, implemented in QUIC, is essentially to store all seen
client values gx (in a certain time frame encoded in an additional nonce value) in order
to detect and reject repeated requests with the same value and nonce.6 Notably, this
solution induces a substantial management overhead and arguably is acceptable only
for certain server configurations. As such, the solution is not elegant, but effectively
prevents the same key from being accepted twice by a server. We remark, though, that
on a higher level applications may resend data under a later-derived key in common
web scenarios, essentially rendering replay attacks on the application layer unavoidable
in such cases [41,19].

Low-latency key-exchange designs proposed thus far widely accepted the afore-
mentioned drawbacks on forward secrecy and replay protection as inherent to the 0-RTT
environment. This assumption paves the way for the following research question for
the design of modern, low-latency authenticated key-exchange protocols: Can a key-
exchange protocol establish a cryptographic key in 0-RTT while upholding strong
forward-secrecy and replay protection guarantees?

CONTRIBUTIONS. In this work we introduce the notion of forward-secret one-pass key
exchange and a generic construction of such a protocol, resolving the aforementioned
open problem. Notable features of this protocol are summarized as follows.

– The protocol provides full forward secrecy, even for the first message transmitted
from the client to the server, and is automatically resilient to replay attacks. We
provide a rigorous security analysis for which we develop a novel key-exchange
model (in the style of Bellare and Rogaway [4]) that captures the peculiarities of
forward secrecy and replay protection in 0-RTT key exchange.

– The protocol has the simplest message flow imaginable: the client encrypts a session
key and sends it to the server. We do not need to distinguish between preliminary
and final keys but only derive a single session key. The forward secrecy and replay

6 In case of Google this approach amounts to a few gigabytes of data to be held in shared state
between multiple server instances.

4

security of the protocol stem from the fact that the long-term secret key of this
scheme is evolved.

– The construction and security proof are completely generic, based on any one-time
signature scheme and any hierarchical identity-based key encapsulation scheme
(HIBKEM) that needs to provide only a weak form of selective-ID security. This
allows for flexible instantiation of the protocol with arbitrary cryptographic con-
structions of these primitives, adjusted with suitable deployment and efficiency pa-
rameters for a given application, and based on various hardness assumptions.

– The construction and its security analysis are completely independent of a partic-
ular instantiation of building blocks, immediately yielding the first post-quantum
secure 0-RTT key exchange protocol, via instantiation of the protocol with suitable
lattice-based building blocks, such as the HIBE from [1] and the one-time signature
from [34].

– More generally, by instantiating the protocol with different HIBKEM schemes, one
can easily obtain different “cipher suites”, with different security and performance
characteristics. Replacement of a cipher suite is easy, as it does not require a new
security analysis of the protocol. In contrast, several consecutive research papers
were required to establish the security of only the most important basic cipher suites
of TLS [26,28,32].

Our work is inspired by earlier work of Canetti, Halevi, and Katz [9] on forward-secure
public-key encryption and Green and Miers [21] on forward-secret puncturable public-
key encryption. The main novelties in this work are:

– We make the conceptual observation that the tool of forward-secret puncturable
public-key encryption can be leveraged to enable forward-secret 0-RTT AKE.

– We carve out puncturable forward-secret key encapsulation as a versatile building
block and build it in a generic fashion from any HIBKEM scheme, in the standard
model, and from a wide range of assumptions. In contrast, the cunning, but involved
construction by Green and Miers [21] blends the attribute-based encryption scheme
of Ostrovsky, Sahai, and Waters [35] with forward-secret encryption [9]. It there-
fore relies on specific assumptions and, using the Fujisaki-Okamoto transform [20]
to achieve CCA-security, relies on the random-oracle model.

– We formalize 0-RTT key exchange security with forward secrecy. This is a non-
trivial extension of previous models (particularly [24]) in that it needs to take evolv-
ing state, (semi-)synchronized time, and accordingly conditioned forward secrecy
into account in the security experiment.

We consider the established concepts as valuable towards the understanding of forward-
secret 0-RTT key exchange, its foundations, and its connection to, in particular, asyn-
chronous messaging.

HIGH-LEVEL PROTOCOL DESCRIPTION. The basic outline of our protocol is the sim-
plest one can imagine. We use a public-key key encapsulation mechanism (KEM)7 to
transport a random session key from the client to the server. That is, the server is in
possession of a long-term key pair (pk , sk) for the KEM, and the client uses pk to

7 This is essentially a public-key encryption scheme which can only be used to transport random
keys, but not to transport payload messages.

5

encapsulate a key. This immediately yields a 0-RTT protocol, because we can send en-
crypted payload data along with the encapsulated key. However, of course, it does not
yet provide forward secrecy or security against replay attacks.

The key idea to achieve these additional properties is not to modify the protocol,
but to modify the way the server stores and processes its secret key. More precisely, we
construct and use a special puncturable forward-secure KEM (PFS-KEM). Consider
a server with long-term secret key sk . When receiving an encapsulated session key in
ciphertext c1, the server can use this scheme to proceed as follows.
1. It decrypts c1 using sk .
2. The server then derives a new secret key sk\c1 from sk , which is “punctured at

position c1”. This means that sk\c1 can be used to decrypt all ciphertexts except
for c1.

3. Finally, the server deletes sk .
This process is executed repeatedly for all ciphertexts received by the server. That is,
when the server receives a second ciphertext c2 from the same or a different client, it
again “punctures” sk\c1 to obtain a new secret key sk\c1,c2 , which can be used to de-
crypt all ciphertexts except for c1 and c2. Note that this yields forward secrecy, because
an attacker that obtains sk\c1,c2 will not be able to use this key to decrypt c1 or c2, and
thus will not be able to learn the session key of previous sessions.

The drawback of using this approach naı̈vely is that the size of secret keys grows
linearly with the number of sessions, which is of course impractical. For efficiency rea-
sons, we therefore add an additional time component to the protocol, which requires
only loosely synchronized clocks between client and server. Within each time slot, the
size of the secret key grows linearly with the number of sessions. However, at the end
of the time slot, the server is able to “purge” the key, which reduces its size back to a
factor logarithmic in the number of time intervals. We stress that the loose time syn-
chronization is included in our protocol’s design only for efficiency reasons, but is not
needed to achieve the desired security goals.

A particularly beneficial aspect of this approach is that the server’s public key pk
remains static over its entire lifetime (which would typically be 1-2 years in practice, but
longer lifetimes are easily possible), because there is no QUIC-like server configuration
that needs to be frequently updated at client-side. Thus, this yields a protocol without
the need to frequently replace the server configuration gs at the client.

The maximal size of punctured secret keys, and thus the storage requirement of the
protocol, depends on the size of time slots. Longer time slots (several hours or possibly
even a few days, depending on the number of connections during this time) require
more storage, but only loosely synchronized clocks. Short time slots (a few minutes)
require less storage, but more precisely synchronized clocks. These parameters can be
chosen depending on the individual characteristics of a server and the services that it
provides.

RELATED WORK. The idea of forward-secret encryption based on hierarchical identity-
based encryption is due to Canetti, Halevi, and Katz [9]. Pointcheval and Sanders [37]
studied forward secrecy for non-interactive key-exchange protocols based on multilin-
ear maps. Both approaches however only provide coarse-grained forward secrecy with

6

respect to time periods, whereas we aim at a fine-grained, immediate notion of forward
secrecy in the setting of key exchange.

With a similar goal in mind, the previously mentioned work of Green and Miers [21]
achieves forward secrecy in the context of asynchronous messaging. 8 Their construc-
tion blends the attribute-based encryption scheme of Ostrovsky, Sahai, and Waters [35]
with the scheme of Canetti, Halevi, and Katz [9] or, alternatively, with the scheme of
Boneh, Boyen, and Goh [7]. This makes their scheme relatively complex and bound to
specific algebraic settings and complexity assumptions. Moreover, their scheme achieves
only CPA security, and requires the random oracle model [3] and the Fujisaki-Okamoto
transform [20] to achieve CCA security. In contrast, we describe a simple, natural and
directly CCA-secure construction based on any hierarchical identity-based KEM (HI-
BKEM), which can be instantiated from any HIBKEM that only needs to provide weak
selective-ID security.

The security of the QUIC protocol was formally analyzed by Fischlin and
Günther [18] as well as Lychev et al. [33]. Krawczyk and Wee [29] described the
OPTLS protocol as a foundation for TLS 1.3, including a 0-RTT mode. For TLS 1.3,
Cremers et al. [14] conducted a tool-supported analysis of TLS 1.3 including a draft
0-RTT handshake mode, and Fischlin and Günther [19] analyzed the provable security
of both Diffie–Hellman- and PSK-based 0-RTT handshake drafts. Foundational def-
initions and generic constructions of 0-RTT key exchange from other cryptographic
primitives were given by Hale et al. [23]. All these works consider security models and
constructions without forward secrecy of the first message. In a related, but different di-
rection, Cohn-Gordon et al. [12] consider post-compromise security for key-exchange
protocols that use key ratcheting, where the session key is frequently updated during
the lifetime of a single session.

OUTLINE OF THE PAPER. Section 2 introduces the necessary building blocks for our
construction as well as puncturable forward-secret key encapsulation (PFSKEM), be-
fore we provide a generic PFSKEM construction from HIBE. We formalize forward-
secret one-pass key exchange protocols (FSOPKE) in Section 3, together with a corre-
sponding security model. In Section 4 we provide a generic construction of FSOPKE
with server authentication from PFSKEM and prove its security in the FSOPKE model.
In Section 5 we analyze the size of keys and messages for different deployment param-
eters.

2 Generic construction of puncturable encryption

2.1 Building Blocks

Let us begin with recapping the definition and security ofone-time signature schemes,
as well as hierarchical identity-based key encapsulation schemes.

8 Observe that asynchronous messaging and 0-RTT key exchange are conceptually relatively
close. In both settings, a data protection key is to be established while only unilateral commu-
nication is possible. While different, e.g., in constraints for latency and storage overhead, this
in particular implies that our construction can also be employed in the setting of asynchronous
messaging.

7

Definition 1 (One-Time Signatures). A one-time signature scheme OTSIG consists of
three probabilistic polynomial-time algorithms (OTSIG.KGen, OTSIG.Sign,
OTSIG.Vfy).

– OTSIG.KGen(1λ) takes as input a security parameter λ and outputs a public key
pkOT and a secret key skOT

– OTSIG.Sign(skOT ,m) takes as input a secret key and a message m ∈ {0, 1}n.
Output is a signature σ.

– OTSIG.Vfy(pkOT ,m, σ) input is a public key, a message m ∈ {0, 1}n and a sig-
nature σ. If σ is a valid signature for m under pkOT , then the algorithm outputs 1,
else 0.

Consider the following security experiment GsEUF-1-CMA
A,OTSIG (λ) played between a chal-

lenger C and an adversary A.
1. The challenger C computes (pkOT , skOT)

$← OTSIG.KGen(1λ) and runs A with
input pkOT .

2. A may query one arbitrary message m to the challenger. C replies with σ
$←

OTSIG.Sign(skOT ,m).
3. A eventually outputs a message m∗ and a signature σ∗. We denote the event that

OTSIG.Vfy(pkOT ,m
∗, σ∗) = 1 and (m∗, σ∗) 6= (m,σ) by

GsEUF-1-CMA
A,OTSIG (λ) = 1 .

Definition 2 (Security of One-Time Signatures). We define the advantage of an ad-
versary A in the game GsEUF-1-CMA

A,OTSIG (λ) as

AdvsEUF-1-CMA
A,OTSIG (λ) := Pr

[
GsEUF-1-CMA
A,OTSIG (λ) = 1

]
.

A one-time signature scheme OTSIG is strongly secure against existential forgeries
under adaptive chosen-message attacks (sEUF-1-CMA), if AdvsEUF-1-CMA

A,OTSIG (λ) is a negli-
gible function in λ for all probabilistic polynomial-time adversaries A.

In our generic construction we use a hierarchical identity-based key encapsulation
scheme (HIBKEM) [6]. HIBKEM schemes enable a user to encapsulate a symmetric key
with the recipients identity. An identity at depth t in the hierarchical tree is represented
by a vector ID|t = (I1, · · · , It). Ancestors of the identity ID|t are identities represented
by vectors ID|s = (J1, · · · , Js) with 1 ≤ s < t and Ii = Ji for 1 ≤ i ≤ s.

Definition 3 (HIBKEM [6]). A hierarchical identity-based key encapsulation scheme
HIBKEM consists of four probabilistic polynomial-time algorithms (HIBKEM.KGen,
HIBKEM.Del,HIBKEM.Enc,HIBKEM.Dec).

– HIBKEM.KGen(1λ) takes as input a security parameter λ and outputs an a public
key pk and an initial secret key (or master key) msk , which we refer as the private
key at depth 0. We assume that pk implicitly defines the identity space ID and the
key space K.

– HIBKEM.Del(ID|t, sk ID′|s) takes as input an identity ID|t at depth t and the private
key of an ancestor identity ID′|s at depth s < t or the master key msk. Output is a
secret key sk ID|t.

8

– HIBKEM.Enc(pk , ID) takes a input the public key pk and the target ID. The algo-
rithm outputs a ciphertext CT and a symmetric key K.

– HIBKEM.Dec(sk ID,CT) takes as input a secret key skID and a ciphertext CT. Out-
put is a symmetric key K or ⊥ if decryption fails.

Consider the following selective-ID CPA security experimentGIND-sID-CPA
A,HIBKEM (λ) played

between a challenger C and an adversary A.
1. A outputs the target identity ID∗ on which it wants to be challenged.
2. The challenger generates the system parameters and computes (pk ,msk)

$←
HIBKEM.KGen(1λ). C generates (K0,CT

∗)
$← HIBKEM.Enc(pk , ID∗) andK1

$←
K. Then the challenger sends (Kb,CT

∗, pk) to A where b $← {0, 1}.
3. A may query an HIBKEM.Del oracle. The HIBKEM.Del oracle outputs the secret

key of a requested identity ID. The only restriction is, that the attacker A is not
allowed to ask the HIBKEM.Del oracle for the secret key of ID∗ or any ancestor
identity of ID∗.

4. Finally, A eventually outputs a guess b′. We denote the event that b = b′ by

GIND-sID-CPA
A,HIBKEM (λ) = 1

Definition 4 (Security of HIBKEM). We define the advantage of an adversary A in
the selective-ID game GIND-sID-CPA

A,HIBKEM (λ) as

AdvIND-sID-CPA
A,HIBKEM (λ) :=

∣∣∣∣Pr [GIND-sID-CPA
A,HIBKEM (λ) = 1

]
− 1

2

∣∣∣∣
A hierarchical identity-based key encapsulation scheme HIBKEM is selective-ID CPA-
secure (IND-sID-CPA), if AdvIND-sID-CPA

A,HIBKEM (λ) is a negligible function in λ for all proba-
bilistic polynomial-time adversaries A.

2.2 Puncturable Forward-Secret Key Encapsulation

We now formally introduce the definition of a puncturable forward-secret key encapsu-
lation (PFSKEM) scheme as well as its corresponding correctness definition and secu-
rity notion.

Definition 5 (PFSKEM). A puncturable forward-secret key encapsulation scheme
PFSKEM consists of five probabilistic polynomial-time algorithms (PFSKEM.KGen,
PFSKEM.Enc, PFSKEM.PnctCxt, PFSKEM.Dec, PFSKEM.PnctInt).

– PFSKEM.KGen(1λ) takes as input a security parameter λ and outputs a public key
PK and an initial secret key SK .

– PFSKEM.Enc(PK , τ) takes as input a public key and a time period τ . Output is a
ciphertext CT and a symmetric key K.

– PFSKEM.PnctCxt(SK , τ,CT) input is the current secret key SK , a time period τ
and additionally a ciphertext CT. The algorithm outputs a new secret key SK ′.

– PFSKEM.Dec(SK , τ,CT) takes as input a secret key SK , time period τ and a
ciphertext CT. Output is a symmetric key K or ⊥ if decapsulation fails.

9

– PFSKEM.PnctInt(SK , τ) takes as input a secret key SK and a time interval τ .
Output is a secret key SK ′ for the next time interval τ + 1.

Definition 6 (Correctness of PFSKEM). For all λ, n ∈ N, any (PK ,SK)
$←

PFSKEM.KGen(1λ), any time period τ∗, any (K,CT∗)
$← PFSKEM.Enc(PK , τ∗),

and any (arbitrary interleaved) sequence i = 0, . . . , n − 1 of invocations of SK ′ $←
PFSKEM.PnctCxt(SK , τ,CT) for any (τ,CT) 6= (τ∗,CT∗) or SK ′

$←
PFSKEM.PnctInt(SK , τ) for any τ 6= τ∗ it holds that PFSKEM.Dec(SK ′, τ∗,CT∗) =
K.

Beyond the regular correctness definition above, we further define an extended vari-
ant of correctness which demands that decapsulation under a previously punctured out
time-interval and ciphertext yields an error symbol ⊥.

Definition 7 (Extended Correctness of PFSKEM). For all λ, n ∈ N, any (PK ,

SK)
$← PFSKEM.KGen(1λ), any time period τ∗, any (K,CT∗) $← PFSKEM.Enc(PK ,

τ∗), and any (arbitrary interleaved) sequence i = 0, . . . , n−1 of invocations of SK ′ $←
PFSKEM.PnctCxt(SK , τi,CTi) for any (τi,CTi) or SK ′ $← PFSKEM.PnctInt(SK ′,
τ ′i) for any τ ′i it holds that if (τi,CTi) = (τ∗,CT∗) or τ ′i = τ∗ for some i ∈ {0, . . . ,
n− 1}, then PFSKEM.Dec(SK ′, τ∗,CT∗) = ⊥.

The security of a PFSKEM scheme is defined by the following selective-time CCA
security experiment GIND-sT-CCA

A,PFSKEM (λ) played between a challenger C and an attacker A.
1. In the beginning, A outputs the target time τ∗.
2. The challenger C generates a fresh key pair (PK ,SK)

$← PFSKEM.KGen(1λ). It
computes (CT∗,K∗0)

$← PFSKEM.Enc(PK , τ∗) and selects K∗1
$← K. Addition-

ally, it chooses a bit b $← {0, 1} and then sends (PK ,CT∗,K∗b) to A.
3. A can now ask a polynomial number of the following queries:

– PFSKEM.Dec(τ,CT): The challenger computes K $← PFSKEM.Dec(SK , τ,CT)
and returns K to A.

– PFSKEM.PnctCxt(τ,CT): The challenger runs SK
$← PFSKEM.PnctCxt(

SK , τ,CT) and returns symbol >.
– PFSKEM.PnctInt(τ): The challenger runs SK

$← PFSKEM.PnctInt(SK , τ)
and returns symbol >.

– PFSKEM.Corrupt(): The challenger aborts and outputs a random bit if A has
not queried PFSKEM.PnctCxt(τ∗,CT∗) or PFSKEM.PnctInt(τ∗) before. Oth-
erwise, the challenger returns the current secret key SK to A.

4. A eventually outputs a guess b′. We denote the event that b = b′ by

GIND-sT-CCA
A,PFSKEM (λ) = 1 .

Definition 8 (Security of PFSKEM). We define the advantage of an adversary A in
the selective-time CCA game GIND-sT-CCA

A,PFSKEM (λ) as

AdvIND-sT-CCA
A,PFSKEM (λ) :=

∣∣∣∣Pr [GIND-sT-CCA
A,PFSKEM (λ) = 1

]
− 1

2

∣∣∣∣
10

A puncturable forward-secret key encapsulation scheme PFSKEM is selective-time
CCA-secure (IND-sT-CCA), if AdvIND-sT-CCA

A,PFSKEM (λ) is a negligible function in λ for all
probabilistic polynomial-time adversaries A.

2.3 A Generic PFSKEM Construction from HIBKEM

We have now set up the necessary building blocks for our generic PFSKEM construc-
tion. In this construction, we deploy a HIBKEM scheme over a binary hierarchy tree
comprising time intervals in the upper part and identifiers within these intervals in the
lower part. The latter identifiers are carefully crafted to be public keys of a one-time
signature scheme, conveniently enabling our construction to achieve CCA security.

We start with a short description of the binary tree, where the root node has the label
ε. The left child of a node under label n is labeled with n0 and the right child with n1. In
a HIBKEM scheme every identity IDi is represented by a node ni of the hierarchy tree
T and with sk i we denote the secret key corresponding to node ni. The root node has
the corresponding master secret key msk of the HIBKEM scheme. To identify specific
nodes in the tree we need the following functions.

– Parent(T, n). On input of a description of a tree T and a node n, this function
outputs the label of the direct ancestor of n or ⊥ if it does not exists.

– Sibling(T, n). On input of a description of a tree T and a label of a node n this
function outputs the other child n′ 6= n of the node Parent(T, n) or ⊥ if it does not
exists.

On input of a description of a tree T , a set of secret keys and nodes SK =
{(sk1, n1), . . . , (sku, nu)} and a node n, the following algorithm computes a new set
of secret keys and nodes SK ′. The secret keys in SK ′ can neither be used to derive the
secret key of n nor of its descendants.

– PunctureTree(T,SK , n). Create an empty set SK ′ := {}. Then, for all tuples
(sk i, ni) in SK :
• If ni is neither an ancestor nor a descendant of n in the tree and if ni 6= n, then

set SK ′ := SK ′ ∪ (sk i, ni) and SK := SK \ {(sk i, ni)}.
If there is a remaining node n′ with its secret key sk ′ in SK and if n′ is an ancestor
of n, then set ntmp := n, and while Parent(ntmp) 6= ⊥:
• if n′ is an ancestor of Sibling(ntmp) then SK ′ :=
SK ′ ∪ {HIBKEM.Del(Sibling(ntmp), sk ′),Sibling(ntmp))}

• ntmp := Parent(ntmp).
Output is the set of secret keys and nodes SK ′.
Illustrating the described algorithm, we provide an example in Figure 2, with a tree

where the nodes are labeled as described earlier. SK consists of the tuple {(msk, ε)},
where msk is the initial secret key of a HIBKEM. We would like to puncture the secret
key SK for the input n01. In order to do so, we must delete all keys in SK that can
be used to derive the secret keys for the nodes with label “01” or with the prefix “01”.
For this, we run the algorithm PunctureTree with input (T,SK , 01). In Figure 2 the
gray nodes denote the labels for which we have to derive the secret keys within the new
PFSKEM secret key SK ′. The secret keys in SK ′ can only be used to generate secret
keys for identities which are not ancestors or descendants of the punctured node “01”.

11

In the following, an identifier ID = τ ||pkOT consisting of a time interval τ and a
one-time signature public key pkOT is a leaf in a HIBKEM tree T . The public key PK
and the initial secret key SK of the PFSKEM construction are, respectively, the public
key pk and a pair consisting of the initial secret key of the HIBKEM scheme with the
label of the root node (msk, ε).

ϵ

0

00

000 001

01

010 011

1

10

100 101

11

110 111

SK ′ = {(sk00, 00), (sk1, 1)}, SK = {(msk, ϵ)}

Fig. 2. Hierarchy tree with secret key SK′, under initial secret key SK

To obtain a symmetric key at time τ , one can use the encapsulation algorithm of the
HIBKEM scheme with input (PK , τ ||pkOT). Correspondingly, the secret key SK of the
PFSKEM scheme can be punctured via the previously defined algorithm
PunctureTree(T,SK , n) by deleting the secret key for the identity ID = τ ||pkOT in
the HIBKEM scheme including all secret keys of ancestors of ID. Particularly, this can
be accomplished by using the previously defined algorithm PunctureTree(T,SK , n).
Decapsulation uses the secret key of the identity ID = τ ||pkOT with a ciphertext CT
and outputs the symmetric key or ⊥ if the key is already deleted or the signature of the
ciphertext is not valid.

The described generic construction is presented in Figure 3.

As we establish next, our PFSKEM construction is selective-time CCA-secure (ac-
cording to Definition 8) if the underlying HIBKEM scheme is IND-sID-CPA-secure and
the OTSIG scheme is sEUF-1-CMA-secure (cf. Definitions 4 and 2).

Theorem 1. For any efficient polynomial-time adversary A in the IND-sT-CCA game
there exist efficient polynomial-time algorithms BHIBKEM and BOTSIG such that

AdvIND-sT-CCA
A,PFSKEM (λ) ≤ AdvIND-sID-CPA

BHIBKEM,HIBKEM(λ) + AdvsEUF-1-CMA
BOTSIG,OTSIG(λ) .

12

– PFSKEM.KGen(1λ). On input of a security parameter λ generate
(pk,msk)

$← HIBKEM.KGen(1λ) and output PK := pk and SK := (msk, ε).

– PFSKEM.Enc(PK , τ). On input of a public key PK and a time in-
terval τ , generate (pkOT , skOT)

$← OTSIG.KGen(1λ). Next, compute
(CTHIBKEM,K)

$← HIBKEM.Enc(pk , τ ||pkOT) and σ $← OTSIG(skOT ,CTHIBKEM).
Then, set CTPFSKEM = (CTHIBKEM, σ, pkOT) and output K and CTPFSKEM.

– PFSKEM.PnctCxt(SK , τ,CTPFSKEM). Parse CTPFSKEM as (CTHIBKEM, σ, pkOT)
and let T be the description of the HIBKEM tree. Compute
SK ′ = PunctureTree(T,SK , τ ||pkOT) and output the new secret key SK′.

– PFSKEM.Dec(SK , τ,CTPFSKEM). Parse CTPFSKEM as (CTHIBKEM, σ, pkOT). If
OTSIG.Vfy(pkOT ,CTHIBKEM, σ) = 0 output ⊥. Else:
• If SK contains sk ID for ID = τ ||pkOT , then output

K
$← HIBKEM.Dec(sk ID,CTHIBKEM).

• If SK contains an ancestor node nj of the node with label
ID = τ ||pkOT , then compute sk ID

$← HIBKEM.Del(ID, sk j) and output
K

$← HIBKEM.Dec(sk ID,CTHIBKEM).
• Otherwise output ⊥.

– PFSKEM.PnctInt(SK , τ). Compute SK ′ = PunctureTree(T,SK , τ) where T is a
description of the hierarchy tree. Output the new secret key SK′.

Fig. 3. Generic PFSKEM construction from a HIBKEM and a one-time signature scheme.

Proof. An attacker A on the PFSKEM scheme outputs a target time period τ∗ and can
make the queries described in the security experiment for PFSKEM schemes.

Let (CT∗PFSKEM,K
∗
b) = ((CT∗HIBKEM, σ

∗, pk∗OT),K
∗
b) be the challenge we have to

compute for the PFSKEM attacker and let E denote the event that the attacker A never
queries PFSKEM.Dec(τ,CTPFSKEM = (CTHIBKEM, σ, pkOT)) where (CTHIBKEM, σ) 6=
(CT∗HIBKEM, σ

∗), pkOT = pk∗OT , and OTSIG.Vfy(pkOT ,CTHIBKEM, σ) = 1 in the
security game. The probability for A to win the security game is

Pr
[
GIND-sT-CCA
A,PFSKEM (λ) = 1

]
= Pr

[
GIND-sT-CCA
A,PFSKEM (λ) = 1 ∩ E

]
+ Pr

[
GIND-sT-CCA
A,PFSKEM (λ) = 1 ∩ ¬E

]
≤ Pr

[
GIND-sT-CCA
A,PFSKEM (λ) = 1 ∩ E

]
+ Pr [¬E]

In case event ¬E occurs, A asks for a decapsulation PFSKEM.Dec(τ,CTPFSKEM =
(CTHIBKEM, σ, pkOT)) where (CTHIBKEM, σ) 6= (CT∗HIBKEM, σ

∗) with pkOT = pk∗OT
and OTSIG.Vfy(pkOT ,CTHIBKEM, σ) = 1 in the security game. This means that
CTHIBKEM 6= CT∗HIBKEM or σ 6= σ∗ (or both). Hence, (CTHIBKEM, σ) is a valid strong
existential forgery under the OTSIG scheme. Outputting this forgery, we can use A to
build an attacker BOTSIG to break the sEUF-1-CMA security of OTSIG whenever A
triggers event ¬E. Therefore,

Pr[¬E] = AdvsEUF-1-CMA
BOTSIG,OTSIG(λ) .

13

Next, we build an adversary BHIBKEM against the IND-sID-CPA security of the
HIBKEM. BHIBKEM generates a fresh key pair (pk∗OT , sk

∗
OT)

$← OTSIG.KGen(1λ).
Then, BHIBKEM starts A to obtain τ∗, sends ID = τ∗||pk∗OT to the HIBKEM challenger
and receives a challenge (Kb,CT

∗
HIBKEM) with the public key pkHIBKEM. BHIBKEM sets

PK = pkHIBKEM and computes the signature σ∗ for CT∗HIBKEM. BHIBKEM continues to
run A with the challenge (CT∗PFSKEM = (CT∗HIBKEM, σ

∗, pk∗OT),K
∗
b = Kb) and the

public key PK . BHIBKEM provides answers to the queries defined in the selective-time
CCA security experiment GIND-sT-CCA

A,PFSKEM (λ) as follows:
– PFSKEM.Dec(τ,CTPFSKEM = (CTHIBKEM, σ, pkOT)) with τ 6= τ∗: BHIBKEM can

query the HIBKEM challenger for the secret key of identity τ ||pkOT , because
τ ||pkOT is not an ancestor identity of τ∗||pk∗OT . With the secret key it is possi-
ble to decapsulate the key for CT∗HIBKEM.

– PFSKEM.Dec(τ,CTPFSKEM = (CTHIBKEM, σ, pkOT)): BHIBKEM can query the
HIBKEM challenger for the secret key of identity τ∗||pkOT .

– PFSKEM.Corrupt: If adversary A did not call PFSKEM.PnctCxt(τ∗,CT∗) or
PFSKEM.PnctInt(τ∗) before, then BHIBKEM aborts and outputs a random bit, else
BHIBKEM can query the HIBKEM challenger for all secret keys of the requested
identities and send them to A.

In the end A outputs a guess b′ and BHIBKEM forwards b′ to the HIBKEM challenger as
its own output. BHIBKEM wins if A outputs the right b′. The security experiment can be
simulated correctly if event E occurs. Therefore we have

Pr
[
GIND-sID-CPA
BHIBKEM,HIBKEM(λ) = 1

]
= Pr

[
GIND-sT-CCA
A,PFSKEM (λ) = 1 ∩ E

]
Putting the above bounds together, we obtain

AdvIND-sT-CCA
A,PFSKEM (λ)

=

∣∣∣∣Pr [GIND-sT-CCA
A,PFSKEM (λ) = 1

]
− 1

2

∣∣∣∣
=

∣∣∣∣Pr [GIND-sT-CCA
A,PFSKEM (λ) = 1 ∩ E

]
+ Pr

[
GIND-sT-CCA
A,PFSKEM (λ) = 1 ∩ ¬E

]
− 1

2

∣∣∣∣
≤

∣∣∣∣Pr [GIND-sT-CCA
A,PFSKEM (λ) = 1 ∩ E

]
− 1

2

∣∣∣∣+ Pr
[
GIND-sT-CCA
A,PFSKEM (λ) = 1 ∩ ¬E

]
≤

∣∣∣∣Pr [GIND-sID-CPA
BHIBKEM,HIBKEM(λ) = 1

]
− 1

2

∣∣∣∣+ Pr[¬E]

which yields

AdvIND-sT-CCA
A,PFSKEM (λ) ≤ AdvIND-sID-CPA

BHIBKEM,HIBKEM(λ) + AdvsEUF-1-CMA
BOTSIG,OTSIG(λ)

ut

14

3 Forward-Secret One-Pass Key Exchange Protocols

3.1 Syntax

Protocols in a 0-RTT–like setting, where only one message is transmitted between two
key exchange protocol partners, have been the object of previous design interest. In
particular, a similar scenario was considered by Halevi and Krawczyk under the notion
of one-pass key exchange [24]. Aiming for efficiency and optimal key management, we
extend their setting by allowing shared state between several executions of the protocol
and introduce a discretized notion of time.

Definition 9 (FSOPKE). A forward-secret one-pass key exchange (FSOPKE) protocol
supporting τmax time periods and providing mutual or unilateral (server-only) authen-
tication consists of the following four probabilistic algorithms.

FSOPKE.KGen(1λ, r, τmax)→ (pk , sk). On input the security parameter 1λ, a role r ∈
{client, server}, and the maximum number of time periods τmax ∈ N, this algorithm
outputs a public/secret key pair (pk , sk) for the specified role.

FSOPKE.RunC(sk , pk)→ (sk ′, k,m). On input a secret key sk and a public key pk ,
this algorithm outputs a (potentially modified) secret key sk ′, a session key k ∈
{0, 1}∗ ∪ {⊥}, and a message m ∈ {0, 1}∗ ∪ {⊥}.

FSOPKE.RunS(sk , pk ,m)→ (sk ′, k). On input of a secret key sk , a public key pk ,
and a message m ∈ {0, 1}∗, this algorithm outputs a (potentially modified) secret
key sk ′ and a session key k ∈ {0, 1}∗∪{⊥}. For a unilateral authenticating protocol,
pk = ⊥ indicates that the client is not authenticated.

FSOPKE.TimeStep(sk , r)→ sk ′. On input a secret key sk and an according role r ∈
{client, server}, this algorithm outputs a (potentially modified) secret key sk ′.

We say that a forward-secret one-pass key exchange protocol is correct if:
– for all (pk i, sk i)← FSOPKE.KGen(1λ, client, τmax),
– for all (pk j , sk j)← FSOPKE.KGen(1λ, server, τmax),
– for any n ∈ N with n < τmax and all
• sk ′i ← FSOPKE.TimeStepn(sk i, client)
• sk ′j ← FSOPKE.TimeStepn(sk j , server)

(where FSOPKE.TimeStepn indicates n iterative applications of
FSOPKE.TimeStep),

– for all (sk ′′i , ki,m)← FSOPKE.RunC(sk ′i, pk j),
– and for all
• (sk ′′j , kj)← FSOPKE.RunS(sk ′j , pk i,m)

(for mutual authentication)
• resp. (sk ′′j , kj)← FSOPKE.RunS(sk ′j ,⊥,m)

(for unilateral authentication),
it holds that ki = kj .

A forward-secret one-pass key exchange protocol is used by a client and a server
party as follows. First of all, both parties generate public/secret key pairs (pk , sk) ←
FSOPKE.KGen(1λ, r, τmax) for their according role r = client resp. r = server. To

15

proceed in time (step-wise), they can invoke FSOPKE.TimeStep on their respective
secret keys (up to τmax − 1 times). Two parties holding secret keys in the same time
frame then communicate by the client running FSOPKE.RunC on its secret key and
the public key of its intended partner, obtaining the joint session key and a message;
transmitting the latter to the server. The server then invokes FSOPKE.RunS on its secret
key, the (intended) client’s public key (or ⊥ in case of unilateral authentication), and
the obtained message, which outputs, by correctness, the same joint session key.

Note that this (0-RTT) session key is the only session key derived. Unlike in QUIC
and TLS 1.3, we demand that this key immediately enjoys full forward secrecy and re-
play protection, making an upgrade to another key unnecessary. This demand is realized
via the forthcoming security model in Section 3.2.

3.2 Security Model

We denote by I = C ∪̇ S the set of identities modeling both clients (C) and servers
(S) in the system, each identity u ∈ I being associated with a public/secret key
pair (pku, sku). Here, the public-key part pku is generated once and fixed, whereas
sku can be modified by (the sessions of) the according party over time. Each identity u
moreover holds the local, current time in a variable denoted by τu ∈ N, initialized
to τu ← 1.

In our model, an adversary A interacts with several sessions of multiple identities
running a forward-secret one-pass key exchange protocol. We denote by πiu the i-th ses-
sion of identity u and associate with each session the following internal state variables:

– role ∈ {client, server} indicates the role of the session. We demand that role =
client resp. role = server if and only if u ∈ C resp. u ∈ S.

– id ∈ I indicates the owner of the session (e.g., u for a session πiu).
– pid ∈ I ∪ {⊥} indicates the intended communication partner, and is set exactly

once. Setting pid = ⊥ is possible if role = server to indicate the client is not
authenticated. Initially, pid = ⊥ can also be set (if role = server) to indicate that
the client’s identity is to be learned within the protocol (i.e., post-specified).

– trans ∈ {0, 1}∗ ∪ {⊥} records the (single) sent, resp. received, message.
– time ∈ N records the time interval used when processing the sent, resp. received,

message.
– key ∈ {0, 1}∗ ∪ {⊥} is the session key derived in the session.
– keystate ∈ {fresh, revealed} indicates whether the session key has been revealed.

Initially keystate = fresh.
We write, e.g., πiu.key when referring to state variables of a specific session.

Definition 10 (Partnered sessions). We say that two sessions πiu and πjv are partnered
if

– πiu.trans = πjv.trans, i.e., they share the same transcript,
– πiu.time = πjv.time, i.e., they run in the same time interval,
– πiu.role = client ∧ πjv.role = server, i.e., they run in opposite roles,
– πiu.pid = πiv.id, i.e., the server session is owned by the client’s intended partner,

and

16

– πiu.id = πiv.pid ∨ πjv.pid = ⊥, i.e., the client session is owned by the server’s
intended partner or the server considers its partner to be unauthenticated.

We assume the adversary A controls the network, is responsible for transporting
messages, and hence allowed to arbitrary modify, drop, or reorder messages. It interacts
with the key exchange protocol and sessions via the following queries.

NewSession(u, role, pid,m). Initializes a new session of identity u ∈ I, taking
role role ∈ {client, server} and intended communication partner pid ∈ I ∪ {⊥}
(where pid = ⊥ for a server session indicates an unauthenticated client partner). If
role 6= server, we require that m = ⊥.
If role = client, invoke (sku, k,m) ← FSOPKE.RunC(sku, pkpid), else invoke
(sku, k)← FSOPKE.RunS(sku, pkpid,m), where pk⊥ = ⊥.
Register a new session πiu with role = role, id = u, pid = pid, trans = m, time =
τu, and key = k.
If role = client, return m. If role = server, return ⊥ if k = ⊥, and > otherwise.

Reveal(πiu). Reveals the session key of a specific session, if derived.
If πiu.key 6= ⊥, set πiu.keystate← revealed and return key, else return ⊥.

Corrupt(u). Corrupts the long-term state of an identity u ∈ I. This query can be asked
at most once per identity u and, from this point on, no further queries to (sessions of)
u are allowed.
Let Corrupt(u) be the ς-th query issued by A; we set ςcorru ← ς , where ςcorru =
∞ for uncorrupted identities. Likewise, we record the identity’s current time τu at
corruption and set τ corru ← τu.
Return sku.

Tick(u). Forward the state of some identity u ∈ I by one time step by invoking sku ←
FSOPKE.TimeStep(sku). Record the new time as τu ← τu + 1.

Test(πiu). Allows the adversary to challenge a derived session key and is asked exactly
once. This oracle is given a secret bit btest ∈ {0, 1} chosen at random in the security
game.
If πiu.key = ⊥, return ⊥.
Set τ t ← πt.time. If btest = 0, return πiu.key, else return a random key chosen
according to the probability distribution specified by the protocol.

Definition 11 (Security for FSOPKE). Let FSOPKE be a forward-secret one-pass key
exchange protocol and A a PPT adversary interacting with FSOPKE via the queries
defined above in the following game GFSOPKE-sec

A,FSOPKE :
– The challenger generates keys and state for all parties u ∈ I as (pku, sku) ←

FSOPKE.KGen(1λ) and chooses a random bit btest
$← {0, 1}.

– The adversary A receives (u, pku) for all u ∈ I and has access to the queries
NewSession, Reveal, Corrupt, Tick, and Test. Record for the Test query, being the
ςtest-th query, the tested session πt.

– Eventually, A stops and outputs a guess b ∈ {0, 1}.
The challenger outputs 1 (denoted by GFSOPKE-sec

A,FSOPKE = 1) and say the adversary wins
if b = btest and the following conditions hold:
1. πt.keystate = fresh, i.e., A has not issued a Reveal query to the test session.

17

2. πjv.keystate = fresh for any session πjv such that πjv and πt are partners, i.e., A
has not issued a Reveal query to a session partnered with the test session.

3. ςcorru > ςtest for u = πt.id, i.e., the owner of the test session has not been corrupted
before the Test query was issued.

4. if πt.role = client and ςcorrv 6= ∞, for v = πt.pid, then one of the following must
hold:

– There exists a session πjv partnered with πt, i.e., a session of the intended server
partner processed the client session’s message in the intended time interval.

– τ t < τ corrv , i.e., the intended partner was corrupted in a time interval after
that of the tested session.

5. if πt.role = server and πt.pid 6= ⊥, then ςcorrv > ςtest for v = πt.pid, i.e., the
intended client partner of a tested server session has not been corrupted before the
Test query was issued.

6. if πt.role = server and πt.pid = ⊥, then there exists a session πjv partnered with πt,
i.e., when testing a server session without authenticated partner, there must exist an
honest communication partner to the tested server session πt.

Otherwise, the challenger outputs a random bit. We say that FSOPKE is secure if the
following advantage function is negligible in the security parameter:

AdvFSOPKE-sec
A,FSOPKE (λ) :=

∣∣∣∣Pr [GFSOPKE-sec
A,FSOPKE = 1

]
− 1

2

∣∣∣∣ .
Remark 1. Notably, our security model requires both forward secrecy and replay pro-
tection from a FSOPKE protocol. Furthermore, it captures unilateral authentication (of
the server) and mutual authentication simultaneously.

As expected, we restrict Reveal on both partner sessions involved in the test session
(conditions 1 and 2). However, our notion of partnering in Def. 10 lends more power to
an adversary than is typically provided. Partnering is defined not only with respect to the
session transcripts, partner IDs, and roles, but also with respect to time. Consequently,
if the two sessions are not operating within the same time interval, Reveal queries are,
in fact, permitted on the intended partner session to the test session – even if all other
aspects of partnering are fulfilled (condition 2).

To ensure replay protection, the adversary is allowed to test and reveal matching
sessions of the same role; we only forbid testing and revealing two matching sessions
of opposite roles (via the partnering condition). This explicitly allows for replaying of
a client’s message to two server sessions (i.e., spawning two server sessions on input
of the same client message m) and revealing one server session while testing the other
session. Hence, our model requires that secure protocols prevent replays.

For forward secrecy, corruption of the tested identity is allowed after the Test query
was issued (condition 3). This applies to both clients (if the client identity exists) and
servers.

Server corruption under a tested client session in the 0-RTT setting necessitates spe-
cial considerations (condition 4). First we consider the scenario that the intended partner
server session processes messages in the same time interval as the test query, i.e. τ t. In
this case a tested client’s message must have been processed by the intended partner

18

server session before the server is corrupted9 to exclude the following trivial attack: ob-
serve that an adversary spawning a new client session (with some pid = v, outputting
a message m) which it subsequently tests, may obtain the secret key skv of the (server)
identity v through a Corrupt(v) query such that, by correctness of the FSOPKE proto-
col, it can process message m and derive the correct session key. In this manner, an ad-
versary would always be trivially able to win the key secrecy game. Hence, condition 4
(first item) encodes the strongest possible forward secrecy guarantees in such a sce-
nario: whenever a client’s message has been processed by the server, the corresponding
session key becomes forward-secret w.r.t. compromises of the server’s long-term secret.

Alternatively, we consider the scenario where the intended partner server session
processes messages in a time interval after that used in the tested session, i.e. τ t <
τ corrv . If the server session’s time interval is ahead of that of the tested client session
then different session keys are computed. Yet this implies that there are no immediate
forward secrecy guarantees should the client’s clock be ahead of the server’s time inter-
val, since the server’s clock can be moved forward after corruption of the server. Thus,
condition 4 (second item) gives an additional forward secrecy guarantee: the tested ses-
sion key is forward-secret w.r.t. compromises of the server’s long-term secret for any
future time interval.

As with corruption of the test session identity (condition 3), if a server session is
tested such that a partnered client identity is defined, corruption of the partnered client
is restricted until after the test query has been made (condition 5). We do guarantee
security if the client is corrupted immediately after it has issued the test session mes-
sage, but before the server has processed it, due to potential authentication by the client.
Should the message be signed, for example, such corruption would allow an adversary
to tamper with the message. Thus, for compromises of the client’s long-term secret, we
demand forward secrecy immediately after the server establishes the session key.

For the case of unilateral authentication, we must naturally restrict Test queries
on the server side to cases where an honest partnered client exists (condition 6), as
otherwise the adversary can take the role of the client and hence trivially learns the key.

Finally, all security guarantees are required to be provided independent of the time
stepping mechanism, making the latter a functional property of a FSOPKE scheme
which does not affect the scheme’s security. For example, a scheme could liberally
allow session key establishment even if the states of both of the involved sessions are
off by a number of time steps. While this is beyond the requirements for a correct
scheme, key secrecy still requires that such session keys are secure.

In our model, we do not consider randomness or session-state reveal queries [10,30],
but note that it could be augmented with such queries.

4 Constructions

For the construction of a forward-secret 0-RTT key exchange protocol we now first fo-
cus on the more common case where only the server authenticates. Our construction

9 Recall that the adversary cannot spawn or interact with sessions of a party anymore after
corrupting it.

19

builds on puncturable forward-secure key encapsulation and leverages some synchro-
nization of time between parties in the system. Later, we discuss how to adapt this
construction to scenarios where relying on time synchronization is not an option.

4.1 Construction Based on Synchronized Time

We construct a forward-secret one-pass key exchange protocol in a generic way from
any puncturable forward-secure key encapsulation scheme. For our construction, we
assume that clients and servers hold some roughly synchronized time, but stress that
we are concerned with time intervals rather than exact time and, hence, synchronization
for example on the same day is sufficient for our scheme. Aiming at unilateral (server-
only) authentication, clients do not hold long-term key material (i.e., we have pk = ⊥
for clients) and only (mis-)use their secret key to store the current time interval.

Definition 12 (FSOPKEU Construction). Let PFSKEM be a puncturable forward-
secure key encapsulation scheme. We construct a forward-secret one-pass key exchange
protocol FSOPKEU with unilateral authentication as follows:

FSOPKE.KGen(1λ, r, τmax)→ (pk , sk).
– If r = server: Generate a public/secret key pair (PK ,SK)
← PFSKEM.KGen(1λ). Set pk ← (PK , τmax), τ ← 1, and sk ←
(SK , τ, τmax), and output (pk , sk).

– If r = client: Set pk ← ⊥, τ ← 1, and sk ← (τ), and output (pk , sk).
FSOPKE.RunC(sk , pk)→ (sk ′, k,m). Parse sk = (τ) and pk = (PK , τmax). If τ >
τmax, then abort and output (sk ,⊥,⊥).
Otherwise, compute (CT,K) ← PFSKEM.Enc(PK , τ), set k ← K and m ← CT,
and output (sk , k,m).

FSOPKE.RunS(sk , pk = ⊥,m)→ (sk ′, k). Parse sk = (SK , τ, τmax). If SK = ⊥
or τ > τmax, then abort and output (sk ,⊥).
Compute K← PFSKEM.Dec(SK , τ,m). If K = ⊥, then abort and output (sk ,⊥).
Otherwise, issue SK ′ ← PFSKEM.PnctCxt(SK , τ,m). Let sk ← (SK ′, τ, τmax),
set k ← K, and output (sk , k).

FSOPKE.TimeStep(sk , r)→ sk ′.
– If r = server: Parse sk = (SK , τ, τmax). If τ ≥ τmax, then set sk ← (⊥, τ +

1, τmax), and output sk .
Otherwise, let SK ′ ← PFSKEM.PnctInt(SK , τ), set sk ← (SK ′, τ +1, τmax),
and output sk .

– If r = client: Parse sk = (τ), set sk ← (τ + 1), and output sk .

Correctness follows from the correctness of the underlying PFSKEM scheme; the
details are omitted here due to space limitations.

Security Analysis. We now investigate the security of our construction and show that
it is a secure forward-secret one-pass key exchange protocol with unilateral authentica-
tion.

20

Theorem 2. The FSOPKEU construction from Definition 12 is a secure FSOPKE pro-
tocol (with unilateral authentication). Formally, for any efficient adversary A in the
FSOPKE-sec game there exists an efficient algorithm B such that

AdvFSOPKE-sec
A,FSOPKEU

(λ) ≤ nI · τ̂max · ns · AdvIND-sT-CCA
B,PFSKEM (λ) ,

where nI = |I| is the maximum number of identities, τ̂max is the maximum time inter-
val for any session, and ns is the maximum number of sessions.

Proof. Let A be an adversary against the security of FSOPKEU. We proceed in a se-
quence of games, bounding the introduced difference in A’s advantage for each step.
By Advi we denote A’s advantage in one of the i-th game.

Game 0. This is the original security experiment, with adversarial advantage Adv0 =
AdvFSOPKE-sec

A,FSOPKEU
(λ).

Game 1. Here we let the challenger upfront guess a server identity s∗ ∈ I, associated
with public/secret key pair (pk∗, sk∗), and let it abort the game if this is not the identity
involved in the test session. I.e., if a server session is tested (i.e., πt.role = server) this
is the session owner s∗ = πt.id, while, if a client session is tested (πt.role = client) it
is the intended partner (s∗ = πt.pid). Let nI = |I|. Then

Adv0 ≤ nI · Adv1 .

Game 2. Now theA guesses the time interval τ∗ = πt.time in which the tested session
ran, and aborts if the guess is incorrect. Letting τ̂max denote the maximum value π.time
for any session π, it follows that

Adv1 ≤ τ̂max · Adv2 .

Game 3. Continuing from Game 2 the challenger aborts if it does not correctly guess
the involved client session πtc (i.e., πtc.role = client) for which one of the following two
conditions holds:

– either πtc = πt, i.e., πtc is the tested session, or
– πtc is partnered with the tested (server) session πt.

For the second case, observe that if a server is tested, by condition 6 of the FSOPKE-sec
security game in Def. 11, there must exist such a partnered client session πtc with
πtc.pid = πt.id in order for A to win.

Denoting ns as the total number of sessions, we have

Adv2 ≤ ns · Adv3 .

Furthermore, observe that by Def. 7, if a server session is tested, session πt must ac-
tually be the first accepting session owned by s∗ that is partnered with πtc in order
for A to win. Recall that the first such accepting session, by correctness, derives a
key K 6= ⊥ as K ← PFSKEM.Dec(SK ∗, τ∗,m) (where m = πt.trans) and hence
invokes SK ∗ ← PFSKEM.PnctCxt(SK ∗, τ∗,m). Any later such accepting session
would hence, by Def. 7, derive K = ⊥ through K ← PFSKEM.Dec(SK ∗, τ∗,m), so
an adversary would be given ⊥ as the response to its Test query and cannot win.

21

Game 4. In this game hop, we replace the key k∗ derived in the tested session πt by one
chosen uniformly at random from the output space of PFSKEM.Dec. We show that any
adversary that distinguishes the change from Game 3 to Game 4 with non-negligible
advantage can be turned into an algorithm B which wins in GIND-sT-CCA

A,PFSKEM with the same
advantage.

In this reduction, B first outputs the time interval τ∗ guessed in Game 2 as the time
interval it wants to be challenged on in GIND-sT-CCA

A,PFSKEM . It then obtains a challenge public
key PK ∗, which it associates with the server identity s∗ within the pk∗ = (PK ∗, τmax)
guessed in Game 1. For all other identities u ∈ I \ {s∗}, algorithm B generates appro-
priate public/secret key pairs on its own following FSOPKE.KGen. In particular, it gen-
erates PFSKEM keys for all other server identities s ∈ S\{s∗}. Furthermore, B obtains
a challenge ciphertext CT∗ and key K∗, with K∗ either being the real key encapsulated
in CT∗ or and independently chosen random one.

Our goal is now to have algorithm B (correctly) simulate the security game for A
in such a way that, if K∗ is the real key, it perfectly simulates Game 3, whereas if K∗ is
a randomly chosen key, it perfectly simulates Game 4. To this extent, algorithm B uses
its oracles KGen(), PFSKEM.Dec(), PFSKEM.PnctInt(), and PFSKEM.PnctCxt() given
in the selective ID, selective time CCA security game in Def. 8 as follows, answering
the queries of A in the key exchange game:

NewSession(u, role, pid,m). We distinguish the following cases:

– For all client sessions πiu (u ∈ C) except for the client session πtc guessed in
Game 3, B simulates NewSession queries as specified in the security game.

– For the guessed client session πtc, B does not invoke PFSKEM.Enc but uses its
challenge key K∗ as the session key k and the challenge ciphertext CT∗ as the
output message m. Observe that, through Games 1–3, we ensure that πtc uses
time interval τ∗ and public key pk∗ (and hence the challenge PFSKEM public
key PK ∗) of server s∗.

– For all server sessions πis not owned by the server identity s∗ guessed in Game 1
(i.e., s ∈ S \ {s∗}), B simulates NewSession queries as specified, using the
according (self-generated) secret key sks.

– For all server sessions πis∗ owned by s∗ and not partnered with the guessed client
session πtc, B uses its oracles PFSKEM.Dec and PFSKEM.PnctCxt from the selec-
tive ID, selective time CCA game to simulate the operations for the NewSession
query. Note that, as πis∗ is not partnered with πtc (though having opposite roles
and πtc.pid = s∗), we have (πtc.time, πtc.trans) = (τ∗,CT∗) 6= (πis∗ .time,
πis∗ .trans) and are hence allowed to call the PFSKEM.Dec oracle on this input.

– For the first server session πts∗ owned by s∗ which is partnered with the guessed
client session πtc, B sets the session key to be the challenge key k ← K∗ and
invokes PFSKEM.PnctCxt(τ∗,CT∗). Note that partnering in particular implies
πts∗ holds the same time as πtc and obtains the message of πtc, i.e., πtc.time =
τ∗ = πts∗ .time and πtc.trans = m = πts∗ .trans. Furthermore, PFSKEM.PnctCxt
was not invoked before on (τ∗,CT∗). Hence, by correctness, πts∗ establishes the
same session key K∗ as πtc.

22

– For any further server session πis∗ partnered with πtc, B sets k ← ⊥. By Def. 7,
we know that any such session would obtain⊥ ← PFSKEM.Dec(SK , τ∗,CT∗),
as PFSKEM.PnctCxt has been called before on (τ∗,CT∗).

Reveal(πiu). First, observe that any winning adversary A cannot call Reveal on the
sessions πtc and πts∗ by conditions 1 and 2 of the security model, as one of them is
the tested session and the other, if it exists, is partnered with the tested session.
For all other sessions, B holds the correct key from simulation of the NewSession
queries above, and can therefore respond to according Reveal queries as specified.

Corrupt(u). For the server identity s∗ involved in the tested session πt, B invokes
its PFSKEM.Corrupt oracle to obtain the PFSKEM secret key SK ∗, which it returns
within sk∗ = (SK ∗, τs∗ , τmax). Observe, that if A calls Corrupt(s∗) without losing,
we are ensured that B has called PFSKEM.PnctCxt(τ∗,CT∗) and/or
PFSKEM.PnctInt(τ∗) before Corrupt(s∗), and hence also does not lose in the selective-
time CCA security game:

– If πt = πts∗ is a server session (owned by s∗), condition 3 of the security model
ensures that s∗ can only be corrupted after πt has accepted. In the process of
πt accepting (with πt.time = τ∗ and πt.trans = CT∗), B must have invoked
PFSKEM.PnctCxt(τ∗,CT∗), and therefore before corruption of s∗.

– If πt = πtc is a client session, condition 4 of the security model ensures that either
there exists a partnered server session (πts∗) that processed CT∗ in the time inter-
val τ∗ or that s∗ gets corrupted in a time interval τ corrs∗ > πt.time = τ∗. Hence,
B must have invoked PFSKEM.PnctCxt(τ∗,CT∗) or PFSKEM.PnctInt(τ∗), re-
spectively, before corruption of s∗.10

For any other (client or server) identity u 6= s∗, B maintains the corresponding secret
key sku and can therefore respond to according Corrupt queries as specified.

Tick(u). Algorithm B conducts the time stepping procedures as specified, using its
oracle PFSKEM.PnctInt on the (unknown) secret key SK ∗ corresponding to the
PFSKEM challenge public key PK ∗.

Test(πt). Observe that the tested session πt must be either the client session πtc guessed
in Game 3 or the (first) server session πts∗ owned by s∗ partnered with πtc. Algo-
rithm B, in both cases, simply outputs πt.key = K∗ as the response of the Test
query.

When A stops and outputs a guess b ∈ {0, 1}, B stops as well and outputs b as its own
guess.

Observe that algorithm B correctly answers all queries of A and, in the case that
K∗ is the real key encapsulated in CT∗, perfectly simulates Game 3, while it perfectly
simulates Game 4 if K∗ is chosen independently at random. Algorithm B moreover
obeys all restrictions in the selective ID, selective time CCA security game of Def. 8 if
A adheres to the conditions in the FSOPKE security game.

As B inherits the output of A, a difference between A’s advantage in Game 3 and
its advantage in Game 4 corresponds to the probability difference of B outputting 1 in
the two cases of the selective ID, selective time CCA security experiment. Thus,

Adv3 ≤ Adv4 + AdvIND-sT-CCA
B,PFSKEM (λ) .

10 Recall that πts∗ must have accepted before s∗ is corrupted, as afterwards no further queries to
sessions owned by s∗ are allowed.

23

As in Game 4 the session key k∗ in the tested session is always chosen uniformly at
random the response to the Test query is independent of the challenge bit b and hence
A cannot predict b better than by guessing, i.e., Adv4 ≤ 0. Combining the advantage
bounds in Games 1–4 yields the overall bound. ut

4.2 Variant Without Synchronized Time

For those environments where more relaxed requirements for time synchronization are
preferable, we outline a variant of our forward-secret 0-RTT key exchange construc-
tion above that does not rely on synchronized time. For this variant, we essentially
combine the FSOPKEU construction from Def. 12, restricted to a single time interval,
with the concept of server configurations used in recent key exchange protocol designs,
namely Google’s QUIC protocol [31] and TLS 1.3 with Diffie–Hellman-based 0-RTT
mode [39]. A server configuration here essentially is a publicly accessible string that
contains a semi-static public key, signed with the long-term signing key of the cor-
responding party. Utilizing this string, a forward-secret 0-RTT key exchange protocol
variant without time synchronization then works as follows.

For each time interval (e.g., a set number of days or weeks), servers generate a
PFSKEM key pair (i.e., with τmax = 1), which they sign and publish within a server
configuration. Clients can then retrieve and use the currently offered public key for the
server to establish connections within this time interval.

We stress that, while introducing a slightly higher communication overhead, this
variant offers the same security properties as the time-synchronized one. In particular
recall that, due to puncturing, compromising the semi-static secret key for some time
interval does not endanger the forward secrecy of priorly established connections within
the same time interval. Indeed, the choice of how often to publish new server configura-
tions (i.e., how long the conceptual time intervals are) is a purely functional one, based
on the performance trade-off between storage and computation overhead for PFSKEM
keys covering a shorter or longer interval (and hence more or fewer connections).

5 Analysis

We analyze our protocol for security levels λ ∈ {80, 128, 256}. We instantiate our
scheme based on the DDH-based HIBE scheme from [6] and the discrete log-based one-
time signature scheme from [22, §5.4]. We consider groups with asymmetric bilinear
map e : G1 × G2 → GT where groups are of order p such that p = 22λ for the given
security parameter λ. Thus, an element of Zp can be represented by 2λ bits. We assume
a setting based on Barreto-Naehrig curves [2], where elements of G1 can be represented
by 2λ bits, while elements of G2 have size 4λ bits. In this setting, we can instantiate
our PFS-KEM (and thus our FSOPKE) as follows.

– A ciphertext consist of three elements of G1 (from the HIBE of [6]) plus three
G1-elements for pkOT , plus two Zp-elements for σ. Thus, ciphertexts have size
6× |G1|+ 2× |Zp| = 16λ bits.

– A public key contains 2λ+35 elements of G2, which amounts to 8λ2 +140λ bits.

24

λ |pk | |c| S |sk |
80 7.8 kB 160 B 210 145.9 kB
80 7.8 kB 160 B 216 7.88 MB
80 7.8 kB 160 B 220 125.9 MB

128 18.62 kB 256 B 210 251.9 kB
128 18.62 kB 256 B 216 12.64 MB
128 18.62 kB 256 B 220 201.4 MB
256 70.02 kB 512 B 210 623.3 kB
256 70.02 kB 512 B 216 26.27 MB
256 70.02 kB 512 B 220 417 MB

Fig. 4. Size of public keys and ciphertexts and upper bounds on the size of secret keys for different
choices of the security parameter λ and the number of sessions S per time slot.

– A punctured secret key contains R+S user secret keys of the HIBKEM, each con-
sisting of 3 × |G2| = 12λ bits. Here R = |pkOT | + |τ | denotes the bit-length of
“HIBKEM-identities”, and S denotes the number of sessions per time slot. Assum-
ing a setting with 232 time slots (which should be sufficient for any conceivable
practical application, even with very short time slots), and that a collision-resistant
hash function with range {0, 1}2λ is used to compute a short representation of pkOT
inside the HIBKEM, we have R = 2λ + 32. Thus, the size of the secret key as a
function of S is (S + 2λ+ 32) · 12λ bits.
For different values S ∈ {210, 216, 220} of sessions per time slot, and security pa-

rameters λ ∈ {80, 128, 256}, we obtain the sizes of public keys and messages and the
upper bounds on the size of secret keys displayed in Figure 4.

Acknowledgments

We thank the anonymous reviewers for valuable comments. This work has been co-
funded by the DFG as part of project S4 within the CRC 1119 CROSSING and by
DFG grant JA 2445/1-2. This work was also partially supported by a STSM Grant from
COST Action IC1306.

References

1. Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard
model. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 553–572,
French Riviera, May 30 – June 3, 2010. Springer, Heidelberg, Germany.

2. Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime order.
In Bart Preneel and Stafford Tavares, editors, SAC 2005, volume 3897 of LNCS, pages 319–
331, Kingston, Ontario, Canada, August 11–12, 2006. Springer, Heidelberg, Germany.

3. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73, Fairfax, Virginia, USA,
November 3–5, 1993. ACM Press.

4. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Dou-
glas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 232–249, Santa Barbara,
CA, USA, August 22–26, 1994. Springer, Heidelberg, Germany.

25

5. Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves
Strub, and Santiago Zanella Béguelin. Proving the TLS handshake secure (as it is). In Juan A.
Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages
235–255, Santa Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

6. Olivier Blazy, Eike Kiltz, and Jiaxin Pan. (Hierarchical) identity-based encryption
from affine message authentication. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 408–425, Santa Barbara, CA, USA,
August 17–21, 2014. Springer, Heidelberg, Germany.

7. Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with
constant size ciphertext. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of
LNCS, pages 440–456, Aarhus, Denmark, May 22–26, 2005. Springer, Heidelberg, Germany.

8. Colin Boyd, Yvonne Cliff, Juan Gonzalez Nieto, and Kenneth G. Paterson. Efficient one-
round key exchange in the standard model. In Yi Mu, Willy Susilo, and Jennifer Seberry,
editors, ACISP 08, volume 5107 of LNCS, pages 69–83, Wollongong, Australia, July 7–9,
2008. Springer, Heidelberg, Germany.

9. Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption
scheme. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 255–271,
Warsaw, Poland, May 4–8, 2003. Springer, Heidelberg, Germany.

10. Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of
LNCS, pages 453–474, Innsbruck, Austria, May 6–10, 2001. Springer, Heidelberg, Germany.

11. Sherman S. M. Chow and Kim-Kwang Raymond Choo. Strongly-secure identity-based key
agreement and anonymous extension. In Juan A. Garay, Arjen K. Lenstra, Masahiro Mambo,
and René Peralta, editors, ISC 2007, volume 4779 of LNCS, pages 203–220, Valparaı́so,
Chile, October 9–12, 2007. Springer, Heidelberg, Germany.

12. Katriel Cohn-Gordon, Cas J. F. Cremers, and Luke Garratt. On post-compromise security.
In IEEE 29th Computer Security Foundations Symposium, CSF 2016, pages 164–178, 2016.

13. Cas Cremers and Michele Feltz. One-round strongly secure key exchange with per-
fect forward secrecy and deniability. Cryptology ePrint Archive, Report 2011/300, 2011.
http://eprint.iacr.org/2011/300.

14. Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. Automated analysis
and verification of TLS 1.3: 0-RTT, resumption and delayed authentication. In 2016 IEEE
Symposium on Security and Privacy, pages 470–485, San Jose, CA, USA, May 22–26, 2016.
IEEE Computer Society Press.

15. Cas J. F. Cremers and Michele Feltz. Beyond eCK: Perfect forward secrecy under actor
compromise and ephemeral-key reveal. In Sara Foresti, Moti Yung, and Fabio Martinelli,
editors, ESORICS 2012, volume 7459 of LNCS, pages 734–751, Pisa, Italy, September 10–
12, 2012. Springer, Heidelberg, Germany.

16. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC
5246 (Proposed Standard), August 2008. Updated by RFCs 5746, 5878, 6176.

17. Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A cryptographic
analysis of the TLS 1.3 handshake protocol candidates. In Indrajit Ray, Ninghui Li, and
Christopher Kruegel:, editors, ACM CCS 15, pages 1197–1210, Denver, CO, USA, Octo-
ber 12–16, 2015. ACM Press.

18. Marc Fischlin and Felix Günther. Multi-stage key exchange and the case of Google’s QUIC
protocol. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 14, pages 1193–
1204, Scottsdale, AZ, USA, November 3–7, 2014. ACM Press.

19. Marc Fischlin and Felix Günther. Replay attacks on zero round-trip time: The case of the
TLS 1.3 handshake candidates. In 2017 IEEE European Symposium on Security and Privacy.
IEEE, April 2017.

26

http://eprint.iacr.org/2011/300

20. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages
537–554, Santa Barbara, CA, USA, August 15–19, 1999. Springer, Heidelberg, Germany.

21. Matthew D. Green and Ian Miers. Forward secure asynchronous messaging from puncturable
encryption. In IEEE S&P 2015 [25], pages 305–320.

22. Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group
signatures. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT 2006, volume 4284 of LNCS,
pages 444–459, Shanghai, China, December 3–7, 2006. Springer, Heidelberg, Germany.

23. Britta Hale, Tibor Jager, Sebastian Lauer, and Jörg Schwenk. Simple security definitions for
and constructions of 0-RTT key exchange. Cryptology ePrint Archive, Report 2015/1214,
2015. http://eprint.iacr.org/2015/1214.

24. Shai Halevi and Hugo Krawczyk. One-pass HMQV and asymmetric key-wrapping. In Dario
Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors, PKC 2011, volume
6571 of LNCS, pages 317–334, Taormina, Italy, March 6–9, 2011. Springer, Heidelberg,
Germany.

25. 2015 IEEE Symposium on Security and Privacy, San Jose, CA, USA, May 17–21, 2015.
IEEE Computer Society Press.

26. Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of TLS-DHE in
the standard model. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, vol-
ume 7417 of LNCS, pages 273–293, Santa Barbara, CA, USA, August 19–23, 2012. Springer,
Heidelberg, Germany.

27. Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In Victor
Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 546–566, Santa Barbara, CA,
USA, August 14–18, 2005. Springer, Heidelberg, Germany.

28. Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. On the security of the TLS pro-
tocol: A systematic analysis. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 429–448, Santa Barbara, CA, USA, August 18–22,
2013. Springer, Heidelberg, Germany.

29. Hugo Krawczyk and Hoeteck Wee. The OPTLS protocol and TLS 1.3. In 2016 IEEE
European Symposium on Security and Privacy, pages 81–96. IEEE, March 2016.

30. Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of authenticated
key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors, ProvSec 2007, volume
4784 of LNCS, pages 1–16, Wollongong, Australia, November 1–2, 2007. Springer, Heidel-
berg, Germany.

31. Adam Langley and Wan-Teh Chang. QUIC Crypto. https://docs.google.com/
document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/, May
2016. Revision 20160526.

32. Yong Li, Sven Schäge, Zheng Yang, Florian Kohlar, and Jörg Schwenk. On the security of the
pre-shared key ciphersuites of TLS. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of
LNCS, pages 669–684, Buenos Aires, Argentina, March 26–28, 2014. Springer, Heidelberg,
Germany.

33. Robert Lychev, Samuel Jero, Alexandra Boldyreva, and Cristina Nita-Rotaru. How secure
and quick is QUIC? Provable security and performance analyses. In IEEE S&P 2015 [25],
pages 214–231.

34. Vadim Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval and
Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 738–755,
Cambridge, UK, April 15–19, 2012. Springer, Heidelberg, Germany.

35. Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with non-
monotonic access structures. In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F.
Syverson, editors, ACM CCS 07, pages 195–203, Alexandria, Virginia, USA, October 28–31,
2007. ACM Press.

27

http://eprint.iacr.org/2015/1214
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/

36. W. Michael Petullo, Xu Zhang, Jon A. Solworth, Daniel J. Bernstein, and Tanja Lange.
MinimaLT: minimal-latency networking through better security. In Ahmad-Reza Sadeghi,
Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13, pages 425–438, Berlin, Germany,
November 4–8, 2013. ACM Press.

37. David Pointcheval and Olivier Sanders. Forward secure non-interactive key exchange. In
Michel Abdalla and Roberto De Prisco, editors, SCN 14, volume 8642 of LNCS, pages 21–
39, Amalfi, Italy, September 3–5, 2014. Springer, Heidelberg, Germany.

38. QUIC, a multiplexed stream transport over UDP. https://www.chromium.org/
quic.

39. E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-ietf-
tls-tls13-12. https://tools.ietf.org/html/draft-ietf-tls-tls13-12,
March 2016.

40. E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-ietf-tls-tls13-
18. https://tools.ietf.org/html/draft-ietf-tls-tls13-18, October
2016.

41. Eric Rescorla. 0-RTT and Anti-Replay (IETF TLS working group mailing
list). IETF Mail Archive, https://mailarchive.ietf.org/arch/msg/tls/
gDzOxgKQADVfItfC4NyW3ylr7yc, March 2015.

42. Eric Rescorla. [TLS] Do we actually need semi-static DHE-based 0-RTT?
IETF Mail Archive, https://mailarchive.ietf.org/arch/msg/tls/
c43zNQH9vGeHVnXhAb_D3cpIAIw, February 2016.

43. Nico Williams. [TLS] 0-RTT security considerations (was OPTLS). IETF
Mail Archive, https://mailarchive.ietf.org/arch/msg/tls/
OZwGgVhySbVhU36BMX1elQ9x0GE, November 2014.

44. David J. Wu, Ankur Taly, Asim Shankar, and Dan Boneh. Privacy, discovery, and authentica-
tion for the internet of things. In Ioannis G. Askoxylakis, Sotiris Ioannidis, Sokratis K. Kat-
sikas, and Catherine A. Meadows, editors, ESORICS 2016, Part II, volume 9879 of LNCS,
pages 301–319, Heraklion, Greece, September 26–30, 2016. Springer, Heidelberg, Germany.

28

https://www.chromium.org/quic
https://www.chromium.org/quic
https://tools.ietf.org/html/draft-ietf-tls-tls13-12
https://tools.ietf.org/html/draft-ietf-tls-tls13-18
https://mailarchive.ietf.org/arch/msg/tls/gDzOxgKQADVfItfC4NyW3ylr7yc
https://mailarchive.ietf.org/arch/msg/tls/gDzOxgKQADVfItfC4NyW3ylr7yc
https://mailarchive.ietf.org/arch/msg/tls/c43zNQH9vGeHVnXhAb_D3cpIAIw
https://mailarchive.ietf.org/arch/msg/tls/c43zNQH9vGeHVnXhAb_D3cpIAIw
https://mailarchive.ietf.org/arch/msg/tls/OZwGgVhySbVhU36BMX1elQ9x0GE
https://mailarchive.ietf.org/arch/msg/tls/OZwGgVhySbVhU36BMX1elQ9x0GE

	0-RTT Key Exchange with Full Forward Secrecy

