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Abstract

A new model for mechanical computing is demonstrated that requires
only two basic parts: links and rotary joints. These basic parts are com-
bined into two main higher level structures: locks and balances, which
suffice to create all necessary combinatorial and sequential logic required
for a Turing-complete computational system. While working systems have
yet to be implemented using this new approach, the mechanical simplicity
of the systems described may lend themselves better to, e.g., microfabri-
cation, than previous mechanical computing designs. Additionally, simu-
lations indicate that if molecular-scale implementations could be realized,
they would be far more energy-efficient than conventional electronic com-
puters.

1 Introduction

Methods for mechanical computation are well-known. Simple examples include
function generators and other devices which are not capable of general purpose
(Turing-complete) computing (for review, see [1]), while the earliest example
of a design for a mechanical general purpose computer is probably Babbage’s
Analytical Engine, described in 1837 . One of the very first modern digital
computers was a purely mechanical device: the Zuse Z1, completed in 1938 .
At a time when silicon-based electronic computers are pervasive, powerful,
and inexpensive, the motivation for studying mechanical computer architectures
is not immediately obvious. However, many research groups are currently inves-
tigating mechanical, electromechanical, and biochemical alternatives to conven-
tional semiconductor computer architectures because of their unique potential
advantages. For example, mechanical systems can withstand much higher tem-
perature and radiation exposure than their electronic counterparts, and hence
may be useful in certain niche applications . DNA computing makes use of
vast numbers of molecules to solve computational problems in parallel Eﬂ
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Figure 1: A 4-Bar Linkage in two configurations, left-leaning (left) and right-
leaning (right)

One potential advantage of these many alternative computing architectures
is energy efficiency. The new mechanical approach presented in this paper is
particularly well-suited for implementing physically reversible logic gates. Re-
versible logic gates are one alternative technology that can, in principle, sidestep
fundamental limitations of complementary metal-oxide-semiconductor (CMOS)
transistors, and thus facilitate computers that operate with vastly reduced en-
ergy dissipation [10-14].

While previous designs for mechanical computing vary greatly, the few de-
signs capable of general purpose computing require a substantial number of
basic parts, such as various types of sliding plates, gears, linear motion shafts
and bearings, springs (or other energy-storing means), detents, ratchets and
pawls, and clutches.

The use of many parts brings with it a number of potential problems, such
as increased friction, higher mass, and increased device complexity. Such issues
can reduce performance and increase the difficulty of manufacturing. However,
reducing the number, complexity, and mass of parts in a mechanical computer
is not a simple task due to the need to provide both universal combinatorial
logic (e.g., AND, NAND, NOR, etc.) and sequential logic (memory).

Sequential logic in particular, being the basis for memory, requires the abil-
ity to conditionally decouple logic elements from current inputs. This is because
memory cannot be only a deterministic result of just current inputs, otherwise
previous states cannot be saved. Storing information, which is easily accom-
plished in electronic systems using latches or flip-flops, is not as easily accom-
plished in a mechanical system which may have to actually connect and discon-
nect parts of the system from each other (e.g., using a clutch-like mechanism)
at appropriate times. This paper demonstrates that mechanical computers can
be greatly simplified by using only two parts: links and rotary joints.

2 Computing With Only Two Parts

Links are stiff, truss-like structures. Rotary joints are used to connect links
in a manner that only allows rotational movement in a single plane. Perhaps
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Figure 2: The mobile linkage (left) is free to move, while the non-mobile linkage
(right) is static.
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Figure 3: A lock in the (0, 0) position (top), a lock in the (1, 0) position (bottom
left), and a lock in the (0,1) position (bottom right). The (1,1) position is
prohibited by the linkage geometry. See Fig. [I6] for additional discussion.

counterintuitively, no type of clutch-like mechanism is required. All parts of the
system can remain permanently connected and yet still provide all necessary
combinatorial and sequential logic.

2.1 4-Bar Linkages

To demonstrate how this can be accomplished, we start with a simple, well-
known mechanism, the 4-bar linkage (also referred to as a 3-bar linkage in
some literature — the 4th bar is provided by the anchor block or base and is
sometimes ignored for naming purposes). The 4-bar linkage relies only upon
links and rotary joints. A 4-bar linkage can rotate around its anchored rotary
joints (denoted by a circle with a triangle, while unanchored rotary joints are
just circles), allowing, for example a “left-leaning” configuration to rotate into
a “right-leaning” configuration (see Fig. .

Note that, while a 4-bar linkage could assume many positions, we focus on
the use of two distinct positions. This is because two positions can be used to
signify 0 and 1, which is convenient when creating a system for binary comput-



ing. The actual angle traversed by the links when moving from, e.g., left-leaning
to right-leaning is not critical. As diagrammed, it is approximately 45 degrees,
but could be more or less as long as the design supports reliably differentiating
between two positions; one representing 0, and the other representing 1.

It is important to note that in a parallelogram-type (meaning, the two side
links must be the same length) 4-bar linkage, if an additional link is added to
the center of the linkage, as long as the length and angle is the same as the side
links, the linkage will still rotate around the anchored rotary joints. However,
if the additional link is not the same length, or is not at the same angle, as
the other links, the mechanism will not move (see Fig. [2)). This is because the
additional link will be attempting to pivot through a different arc than the side
links. The effect of this is that the side links and the center link are trying
to move the top link in two different directions at once. This results in the
mechanism binding up, or “locking.” This locking behavior is important in the
creation of “locks,” one of two main higher-level mechanisms used by the system
we describe (the other being the “balance”).

2.2 The “Lock”

A lock is a mechanism composed of two 4-bar linkages, connected in the center
via a connecting link (see Fig. [3)). The connecting link is the same length as the
two side links of each 4-bar linkage, and, in the starting position, is parallel to
all four side links.

In the implementation depicted, the connecting link is affixed to two extra
links at the top, and two at the bottom, each pair of which form a rigid triangle
with the rest of the respective 4-bar linkage. This triangular projection allows
the connecting link to be the same length as the side links. If the triangular
projection were not present and the connecting link had to connect directly to
the horizontal links of the 4-bar linkages, it would not be the same length as the
side links. As already mentioned, this would cause the 4-bar linkages to bind
up, or lock. To function in the intended manner, all of the vertical links must
be the same length and must, at least initially, be parallel to each other.

Obviously, linkages need not have their two positions be left-leaning and
right-leaning. Rather, for binary computing purposes, they just need to have
two distinct positions which can represent 0 and 1. Figure[3|uses the convention
that an input of 0 results in the side links being vertical, while an input of 1
would cause them to lean to the right.

Representative inputs, in the form of linear slides Inputy and Input;, have
been added to Fig. [3] to show the direction of actuation and where input could
be connected. It is assumed that there is one input for each 4-bar linkage, or one
input each for the top and bottom of the lock. In an actual system, lock inputs
would be connected to other parts of the system (e.g., data from memory, or
clock signals). Linear slides are not required.

The lock position depicted in the top of Fig. |3| would be called the (0,0)
position, referring to the state of the inputs. The lefthand portion of Fig.
shows a depiction of the (1,0) state, where Inputy has been set to 1 and thereby
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Figure 4: A balance coupled to two locks. The inactive configuration is shown
on the left. On the right, Locky Input has been activated, followed by activation
of the Balance Input, which in turn activates Qutputy.

pushed its respective 4-bar linkage into the right-leaning configuration. The
(0,1) state is shown in the righthand portion.

The (1,1) state is not possible, and this is a key aspect of a lock. Once one
of the inputs has been set to 1, one side of the lock rotates around both its
anchored rotary joints, and its connecting link. Crucially, while the connecting
link never changes length, it does change angle. As depicted in Fig. [3] once the
lock moves into the (1,0) position, the connecting link is still parallel to the side
links of the top 4-bar linkage, but is no longer parallel to the side links of the
bottom 4-bar linkage. Due to the requirement that, if a 3rd link is present, this
link be both the same length and at the same angle as the side links, once either
the top or bottom 4-bar linkage moves, the other cannot; it is locked. It is for
this reason that the (1,1) position is impossible. Once the lock has moved from
(0,0) to (1,0) or (0,1), the only possible movement is back to the (0,0) position.
Once back to the (0,0) position, either input could be set to 1, but both inputs
can never be set to 1 at the same time.

Note that flexures [15/16] could take the place of rotary joints, allowing a lock
(and other structures) to be monolithic, potentially simplifying manufacture
using, for example, MEMS or NEMS techniques [4,5,7,[17-20]. One might
even argue that by using flexures, an entire computing system can be largely-
monolithic, but as that raises the question of just what a part is, we will use
links and rotary joints for clarity. Note that both flexures and rotary joints can
be quite energy-efficient as they largely avoid sliding friction (which can have
the added benefit of reducing wear [21]).

2.3 The “Balance”

The balance, so named because it is superficially similar to a classic pan balance,
connects an input to a link which has three rotary joints: one at each end, and
one in the center. The input is connected to the center rotary joint. The two
end rotary joints are connected to other structures. Most commonly, these other
structures are locks. The result is that, when the balance input is changed, one
of the side rotary joints remains stationary, while the other moves. Which side



is stationary and which side moves can be determined by data inputs. How
this works in practice is best illustrated by example. Figure [4 depicts a balance
connected to two locks. While the diagrammatic representations have been
simplified slightly, it will be obvious that each lock corresponds to the lock
mechanism depicted in Fig.

The only difference between the locks in Fig. 4] and the lock in Fig. [3]is that
in Fig. [d] rather than having two individual inputs, each lock has one input
that is specific to a given lock, and the other input is supplied indirectly by
the balance, which also has an input. Note that input to balances will often be
supplied by a clock system. Like conventional computers, a multiphase clocking
system is required for the described computing system. Such a clocking system
is assumed to be present; describing how to implement such a system is beyond
the scope of this document, although this too can be accomplished with only
links and rotary joints, if desired.

There are assumed to be two main rules governing the mechanism shown in
Fig. 4l and these rules would be enforced by the overall system; they are not
inherent in the mechanism depicted:

1. Either the Locky Input, or the Locky Input, but never both, must be set
to 1.

2. The lock inputs and the balance input must be set sequentially, not simul-
taneously.

Given these rules, the operation of the mechanism is as follows. Each step
could be thought of as a different clock phase (which implicitly enforces the
second rule above):

1. The mechanism starts with all inputs set to 0.
e This means that neither lock is locked.
2. Either the Lockg Input is set to 1, or the Lock; Input would be set to 1.

e This results in locking one of the locks.
e Locking one of the locks constrains which side of the balance can
move.
3. The balance’s input is set to 1.
e Since only one side of the balance is free to move, the balance input
is transmitted down the path which is free to move.
e This produces an output of 1 at either Outputy or Outputy, depend-

ing on which lock input was set to 1.

This provides one example of performing simple logic that can, for example,
be used to route data, shunting inputs down one path or another based on the
states of Locky and Lock; .
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Figure 5: A balance- and lock-based NAND Gate, using dual rail logic (i.e.
two-links per bit).

Note that this simple logic and conditional routing has been accomplished
using only links and rotary joints, which are solidly connected at all times. No
gears, clutches, switches, springs, or any other mechanisms are required (keeping
in mind that the input mechanisms shown are representative; an actual system
may use a different input implementation).

3 Universal Combinatorial Logic

Although the previous example could be thought of as performing simple logic,
it is perhaps more useful for routing data. The mechanism in Fig. [f] cannot
provide all the logic necessary for a complete computational system. However,
it is possible to create all necessary logic using nothing but locks and balances
(and a few extra links and rotary joints to route and/or copy data).

Any traditional 2-input logic gate, including AND, NAND, NOR, NOT, OR,
XNOR and XOR, can be created directly from the appropriate combination of
locks and balances. While most of these gates are illustrated in the Appendix,
there is no need to address each in detail to prove that universal logic can be
created using links and rotary joints. This is because it is well-known that
NAND alone suffices to create all necessary combinatorial logic (i.e., all other
logic can be created from combinations of NAND gates [22]). Therefore, as a
proof of the fact that links and rotary joints suffice to create the combinatorial
logic required for a Turing-complete computing system, Fig. [5| shows how a
NAND gate can be implemented. (Note that reversible gates can also be created
using only links and rotary joints, and a Fredkin gate is also demonstrated in
the Appendix).
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Figure 6: A 1-bit full adder, performing the logical operation described in Fig.[7]
A table of the schematic symbols used in this drawing is provided in the Ap-

pendix (Fig. .

INPUTS OUTPUTS
A A, B, B, Cin, Cin, Sum; | Sum, | Cout; Cout,
0 1 0 1 0 1 0 1 0 1
0 1 0 1 1 0 1 0 0 1
0 1 1 0 0 1 1 0 0 1
0 1 1 0 1 0 0 1 1 0
1 0 0 1 0 1 1 0 0 1
1 0 0 1 1 0 0 1 1 0
1 0 1 0 0 1 0 1 1 0
1 0 1 0 1 0 1 0 1 0

Figure 7: Logic table for the 1-bit full adder shown in Fig. [6]



While substantially more complex than the previous example, the NAND
gate functions on the same principle of using locks and balances to implement
logic. In this example, a set of inputs are connected to a set of locks. The inputs
determine which side of each lock is locked. Another input (a clock signal in
this example) is then used to actuate a main balance, the movement of which
cascades through a series of additional balances and locks. Each balance moves
either its top side or its bottom side, in accordance with the state of the locks
to which it is connected. This results in a final output lock either having its top
half or its bottom half move forward.

In Fig.[5] conceptually there are two binary inputs, A and B, and one binary
output, X. The physical model used for the inputs and output is that a single
1-bit input or output is broken into two separate input or output links (we will
refer to this as the “two-input system”, although it is also called “dual rail
logic” [2325]). For example, the A input is composed of inputs Ay and A;. If
the value of A is to be set to 0, the Ag input moves. If the value of A is to be set
to 1, the Ay input moves. Ay and A; are not permitted to move simultaneously
(which is logically obvious since a value cannot be set to 0 and 1 at the same
time). The same applies to the input B and output X.

Note that Fig. [5| is just a single example, used as a proof due to the well-
known universal nature of NAND. Using multiple NAND gates to create other
logical functions may not always be efficient, and as previously mentioned, we
have also shown that any of the standard 2-input logic gates can be implemented
directly using locks and balances (see Appendix).

An example of a more complex logic function is shown in Fig.[6] This device
performs addition with carry on one bit (Fig. E[) These devices can be cascaded
together to perform addition on more than one bit, as shown in Fig.

4 Sequential Logic

Having demonstrated that all necessary combinatorial logic can be created using
only links and rotary joints (assembled into locks and balances), we turn to
sequential logic. The outputs of the NAND gate depicted in Fig. [flare dependent
solely upon the current inputs. Such a mechanism provides no way of storing
previous inputs or the results of previous logical operations because the outputs
return to zero when the inputs and clock return to zero; it provides no means for
creating memory. To demonstrate the creation of a simple memory mechanism,
we describe the design of a small shift register, again only using links and rotary
joints.

A shift register can be built by combining locks and balances to create cells
which are the logical equivalent of electronic flip-flops. Each cell of a shift regis-
ter is related to its neighbor by virtue of relying upon a preceding or succeeding
clock phase, as appropriate. This enables the copying and shifting of data
through the shift register, rather than deterministically setting the contents of
the entire shift register simultaneously.



Figure 8: Left: Shift register cell in the (0,0) blank state; Center: Shift register
cell with input (1,0) prior to clock actuation; Right: Shift register cell with

input (1,0) after clock actuation
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Figure 9: A two-cell shift register (left) shown with a plot of a four-phase clock
cycle (right). In this example, the clock signal of Cell 1 is driven by Clock 1

and the clock signal of Cell 2 is driven by Clock 2.
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upper right show the cam at four rotations with only one of the four links. The
collection of all four waveforms is shown in the right hand portion of Fig. [0
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4.1 A Shift Register Cell

The left side of Fig. [8 depicts a single shift register cell with an input of (0,0),
or what may be referred to as the blank state. Using the two-input system
(i.e. dual rail logic), the other two possible inputs consist of zero, represented
as (1,0), and one, represented as (0,1). The (1,1) state is generally not used, as
that state would not permit either side of the balance to move. Note that the
blank state suffers from the opposite problem: Both sides of the balance could
move. However, the clock signal would not be driven to 1 while the locks are in
the blank state, so this is not a practical problem.

Before delving into the actual use of shift register cells, a brief description
of the major parts of a cell is in order. First, it is notable that the left-hand
portion of a cell is identical to Fig.[d] consisting of a balance which is connected
to a top lock (Holding Area Lockg) and a bottom lock (Holding Area Locky).
The balance is actuated by a clock signal, again, just like Fig. @] The only
difference is the addition of an extra lock, the Output Lock, which is connected
to the outputs of the left side of the mechanism and in turn provides the final
output for the cell. The easiest way to visualize how a cell works is to step
through the movements.

Starting from the blank state, an input is set. Since this mechanism uses
the two-input system, either the Lockq input is set to 1, or the Lock; input is
set to one, but not both. If we assume that Lockq is set to 1, the movement
results in the mechanism being in the state depicted in the center of Fig.

In the center of Fig. [8] Holding Area Locky has moved its upper side. This
results in the lower side of that lock locking. However, since shift registers are
dependent upon multiphase clocking, note that the input at Lockg has not yet
had any effect on the Output Lock. For that to occur, the balance must be
actuated, which does not occur until the next clock phase.

During the next clock phase, the balance is actuated (set from 0 to 1, in this
case). Since Lockg has locked its lower half, which is connected to the upper
side of the balance, upon actuation, the balance can only move its lower side.
This movement propagates to the Output Lock, resulting in the state depicted
on the right side of Fig.

The reason the left two locks are referred to as Holding Area Locks may now
be apparent: They temporarily hold the input data prior to clock actuation. An
input to these locks does not instantly result in an output at the Output Lock.
Rather, the clock must actuate first, which results in copying the value, be it
0 or 1, from the holding area locks to the Output Lock. Note that we adopt
the convention that, with respect to the input locks, the top lock is associated
with an input of 0, while on the Output Lock, the top half is associated with an
output of 1. This is because, due to how the mechanism is diagrammed, when
an input of 1 is set at the top input lock, an output of 1 ends up at the bottom
half of the Output Lock, and vice-versa. The mechanism could be easily altered
to change this, but as it is currently represented, from a naming perspective it
is easiest to have the 0 input result in a 0 output, and the 1 input result in a 1
output.

12



Thus far, we have only needed two clock phases: On the first phase, the
inputs are set, and on the second phase, the balance actuates and the inputs
are copied from the holding locks to the Output Lock. However, in an actual
system, additional phases would be used. The subsequent examples assume
four-phase clocking.

4.2 Connecting Cells

Figure [J] depicts a two cell shift register to illustrate how two cells would be
connected and to explain how data would move from one cell to the next. In
this figure, Cell 1 and Cell 2 are each equivalent to the mechanism depicted in
Fig.[8] The connecting links connect the output from Cell 1 to the inputs to Cell
2. Both cells also have a connection to a clock signal created by a mechanism
such as that shown in Fig.

The operation of a single cell has already been described. Now, demonstrat-
ing how Cell 1 passes data to Cell 2 will illustrate the function of a minimal
shift register. The sequence of events is as follows:

1. At time ¢t = 0, the clock input for Cell 1 has been set to 0, and the data
inputs have been set for Cell 1.

e Kither the upper or lower lock of Cell 1 is locked, depending on which
input was set to 1.

2. During the transition from ¢ = 0 to t = 1/4, the clock signal for Cell 1 is
set to 1.

e This results in the unlocked side of the Cell 1 balance moving, which
in turn moves the upper (if the input value was 1) or the lower (if
the input was 0) half of the output lock.

e Cell 1’s output lock in turn moves the appropriate connecting link,
locking one of Cell 2’s holding area locks. This has effectively copied
the data from Cell 1’s output lock into one of Cell 2’s holding area
locks.

e Note that the output lock of Cell 2 still has not moved.

3. During the transition from ¢ = 1/4 to t = 1/2, the clock signal for Cell 2
is set to 1.

e This copies the data from Cell 2’s holding area locks into Cell 2’s
output lock.

4. During the transition from ¢ = 1/2 to t = 3/4, the clock for Cell 1 is reset
to 0.

e As a result, Cell 1’s output lock, and hence the connecting links to
Cell 2, retract to the 0 position (regardless of the values still stored
in Cell 1’s holding area cells).

13
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Figure 11: A 4-cell shift register driven by a four-phase clock, shown at time
t = 3/4. The last three cells are set to state 1 and the first cell in the blank state.
Animations of this mechanism operating in forward and reverse are available
at [26] and respectively. Solid models available online at .

5. During the transition from ¢ = 3/4 to t = 1, the clock for Cell 2 is reset
to 0.

This cycle then repeats itself as new data is input into Cell 1. In step 2
above, it is noted that the output lock of Cell 2 still has not moved. This
behavior allows shift register cells to store previous data. This is a key differ-
ence between combinatorial and sequential logic. The state of the NAND gate
described previously is completely determined by the current data and clock
inputs. However, this is not true of shift registers. For example, a shift register
with four cells that is driven by a four-phase clock is able to store one bit. One
of the four clock phases will always be active for one of the four cells, and thus
one of the four cells will contain information. When combined with transition
logic to handle input and write enable, this allows the mechanism to act like a
mechanical analog of an electronic flip-flop, thereby forming the basis for mem-
ory storage. To aid in the visualization of how this mechanism works, a 4-cell
shift register is diagrammed in Fig. and an animated version is available

online (see also Fig. [13).

4.3 Power Source and Clock Generation

The clock signal essentially functions as a synchronized power source. Multi-
phase power/clock signals were proposed for electronic low-power adiabatic logic
systems in . An example multiphase clock signal is shown in Fig. El The
amplitude and shape of the clock waveform are somewhat arbitrary, provided
that

1. There is sufficient overlap between adjacent clock phases when they are
active: there must be a time when two adjacent clock phases are both
active.

14



State Feedback

Transition
Input Logic
*

State
Memory

—======7

Clock Phase 1 —T

Clock Phase 2

Clock Phase 3

Clock Phase 4

Output
—_—

Figure 12: Block diagram of a generic Moore machine adapted for a four-phase
clock. The state memory is implemented as a chain of shift register cells, similar
to those shown in Fig. [11] and Fig.

STATE FEEDBACK

TRANSITION
LOGIC

INPUTS

L =
\; ;j

o]

0—<L

9%

Rotating Cam
Clock Phase 4

Clock Phase |

STATE ME!
OUTPUT

OUTPUTS
Data Out,

Data Out,

MORY &
LOGIC

CLOCK
GENERATION

Figure 13: A simple state machine. The main components are highlighted for
comparison with Fig. This state machine implements the transition table
shown in Fig. A table of the schematic symbols used in this drawing is
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Figure 15: Eight 1-bit full adders (wide blocks) are cascaded using ripple carry.
As described in Section [£.2] multiple blocks can be cascaded using a four-phase
clock. Narrow blocks are shift register cells, which form a delay line that stores
portions of the results during computation. The final result appears on the
outputs (right side) after two full clock cycles.
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Figure 16: Analyzing lock holding force. In the ideal case (upper left) the lock
has two overlapping sets of solutions: 6y = 0,67 # 0 and 6y # 0,60, = 0, with a
kinematic branch point at 6y = 0,60, = 0. Link flexibility can be modeled
by replacing one of the links with a spring (lower left). The contour plot shows
level sets of spring energy as a function of input angles. In the ideal case, an
arbitrarily large force can be locked without effecting the other input. In the
more realistic case including link flexibility, a small holding force on one input
can hold a large force on the other input.
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2. There is sufficient dwell time: there must be a duration of time when a
clock phase is completely inactivated.

There are many ways that a suitable multiphase clock signal can be generated,
both purely mechanically and otherwise. Examples include but are not limited
to cams and followers (see Fig. Fig. and Fig. ; linkage-based dwell
mechanisms; devices based on crankshafts, springs, and mechanical stops; and
electrically driven MEMS comb actuators.

4.4 Finite State Machines

Combinatorial and sequential logic can be combined to build finite state ma-
chines. A block diagram of a generic Moore machine adapted for a four-phase
clock is shown in Fig. [[2} Transition logic is implemented using the method
described in Section State memory is implemented using a chain of shift
register cells as described in Section A detailed example of a state machine
is shown in Fig. This machine functions essentially as a one bit memory, as
described in the state transition table in Fig.

4.5 Scaling to Larger Systems

The method for dealing with scaling is to isolate individual cells in a shift register
(or more generally, individual clocked logic elements, such as Fredkin gates)
by using the four-phase clock. That is, forces along signal lines cannot move
beyond two cells before encountering a locked lock, preventing any accumulation
of forces over long distances. At any point in time, a cell is either blocked from
transmitting forces to adjacent cells, or can transmit forces only to one other
cell (either the predecessor or the successor). An example of a scaled-up system
that avoids force accumulation is shown in Fig.

Un-clocked mechanical logic systems allow forces to accumulate over multiple
logic levels, which can be a problem. It is sometimes advantageous to use logic
systems that span as many logic levels as possible without an intervening clock
to isolate the logic levels. Babbage, in his original design for an adder, used
this idea to propagate the carry along the full length of the register with one
mechanical motion 2], in a manner analogous to what is today called a “carry
lookahead” adder. This is in contrast to the mechanism in Pascal’s calculator,
which used stored energy to propagate a carry along an indefinite length of
wheels [31], analogous to what is now called “ripple carry”. Babbage’s design
is susceptible to force accumulation, whereas Pascal’s is not.

Force accumulation in link logic systems can be mitigated because each lock
acts as a mechanical amplifier, with a small force controlling a much larger
one (see Fig. . In the ideal case of rigid links and perfect pivots, the lock
is kinematically constrained such that an arbitrarily large force on the locked
input will not be transmitted to the other (moved but unlocked) input. This
behavior is enabled by a kinematic branch point [29,[30] at 6y = 0,6; = 0 that
allows for the discrete switching between the two sets of kinematic solutions.
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Actual mechanisms will of course have some flexibility in the links. This
can be modeled in a simple way by replacing one of the links with a spring,
of stiffness k£ and equilibrium length r, as shown in the lower left of Fig.
The contour plot on the right of Fig. [I6] shows the level sets of spring energy
V(00,601) = (k/2)(||po — pi]| — r)?. A test point in the jointspace is shown as a
dot near 6y = 45 degrees, 6; = 0 degrees. Visual inspection of the contours near
this point show that a small motion in #; will result in a large restoring force in
the direction of 8y and a very small deflecting force in the direction of 8y. This
confirms that, even in a physical lock with flexible links, a small holding force
in one input can hold a large force on the other input, provided the activated
input has moved far enough.

4.6 High-density Memory

The state machine in Fig. [13]is closely equivalent to a D flip-flop — it stores one
bit of information on every clock cycle. This circuit is suitable for use in state
machines, but it is not an efficient use of gates for high-density memory applica-
tions. While it departs from the links-and-pivots-only schema, the mechanism
shown in Fig. [17] uses far less gates to store a bit of information. The tradeoff
is that the read/write process is somewhat slower and more involved.

4.7 Reversibility

Close inspection of the shift register chain in Fig. reveals that, if the clock
generating mechanism is operated in reverse, information will propagate back-
ward through the chain, from outputs to inputs. This is a characteristic and
intentional feature of the mechanical link logic architecture. It is well known
that reversible computers can be constructed from reversible logic gates such
as the Fredkin gate [13}/32]. Figure [1§|shows how physically reversible Fredkin
gates can be constructed from links and rotary joints (logic table in Fig. .
Reversibility can be exploited to create computers with extremely low energy
dissipation. This potential application is discussed further in Section [5.4].

5 Implementations and Applications

Mechanical computers have potential applications at the meso-, micro-, and
nano-scales. Applications at the meso- to micro-scale include such disparate
areas as soft robotics [16]/33] and failsafe devices resistant to radiation and elec-
tromagnetic pulse (EMP) [34]. Mechanical computers constructed from nano-
scale components could potentially dissipate much less energy than conventional
CMOS devices, while providing comparable computing performance. Manufac-
turing at such small scales is challenging. The architecture described in this
paper, consisting mainly of links and rotary joints, could be well-suited for such
sizes since it does not require fabricating a large set of complicated components.
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Figure 18: A balance- and lock-based Fredkin (CSWAP) Gate, using a two-link
per bit design (i.e. dual rail logic). This mechanical logic gate is logically and
physically reversible. The logic table implemented is shown in Fig.

INPUTS OUTPUTS
Ain, Aing Bin, Bin, Cin, Cin, Aout; | Aouty | Bout; | Bouty | Cout; @ Cout,
0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 1 0 0 1 0 1 1 0
0 1 1 0 0 1 0 1 1 0 0 1
0 1 1 0 1 0 0 1 1 0 1 0
1 0 0 1 0 1 1 0 0 1 0 1
1 0 0 1 1 0 0 1
1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0

Figure 19: Logic table for reversible Fredkin (CSWAP) gate (see Fig. [I8). Iden-
tical portions of the inputs and outputs are highlighted in the same color as a

guide for the eye.
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Figure 20: On the left, two concepts for inputting signals to the mechanical
computer are shown; two concepts for outputting signals are shown on the
right.

In particular, a molecular version of this architecture could use stiff covalently-
bonded nanotubes for the links and single bonds for the joints.

5.1 Input and Output

In many potential applications where a mechanical computer is constructed for
its particular advantages (low energy dissipation, radiation hardness, etc) it may
still be necessary to interface the mechanical elements to conventional electronic
devices. Figure [20|illustrates a number of concepts for transferring information
in and out of a mechanical computing device. In the top left, a conventional
electrostatic MEMS comb actuator is used to move the (presumably very small)
mechanical input links. In the lower left the input links are moved by a piezo-
electric actuator. On the top right, mechanical links are used to move a MEMS
variable capacitor, the value of which is read off by conventional electronics. On
the lower left an optomechanical scheme is shown where the output links move
a mirror to modulate an optical signal interfaced to standard optoelectronic
components.

Typical input signals will be noisy and asynchronous, with amplitudes ex-
ceeding the allowed range of motion for the logic gates. These signals can be
conditioned using mechanisms such as that shown in Fig.

5.2 Macroscopic Components

A straightforward option for creating macroscale mechanical link logic devices
is shown in Fig. 2] and Fig. 23] Standard pegboard material is used as the
foundation, with 0.25 inch on 1.0 inch centers. Off-the-shelf bolts serve as the
pivots, and the remaining links and locks can be made by 3D printing. While
this is an effective method for quick demonstrations and educational purposes,
it is unlikely to find much practical use outside these niche applications.
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Figure 22: Schematic layout for a simple test mechanism containing a balance,
two locks, and signal routing mechanisms.

Figure 23: CAD model of the test system shown in Fig. 22] implemented with
3D printed components assembled over standard hardware and pegboard. Solid
models available online at .
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5.3 Flexure-based Designs

Flexure joints provide an alternative implementation with similar general per-
formance to pivots. Flexures have the advantage that in many cases, partic-
ularly with MEMS, they are easier to fabricate and often more reliable than
fully functional pivot joints. A conceptual design of a flexure-based mechanical
link logic system is shown in Fig. A systematic method of design allows
all necessary locks, balances, bell cranks, support links, and transmission links
to be implemented in only two layers of material. These layers are shown in
Fig. with solid models avaiable online at |28]. Spot-welds or rigid bonding
between layers, as often used in flip-chip MEMS, holds the layers together at
grid points. Each layer is a monolithic pure 2D pattern, making this approach
well suited for conventional microfabrication techniques such as LIGA, silicon
micromachining, or high-resolution additive manufacturing.

As an example of what could be possible with conventional MEMS technol-
ogy, consider that the minimum feature size of the popular Multi-User MEMS
Processes (MUMPs) commercial program is two microns. If the flexures are
two microns in width, a MEMS implementation of Fig. [24] would cover an area
of 640 x 1070 microns. Counting Fig. 24] as the equivalent of two transistors,
a MEMS system on a silicon die 2.8 cm square could contain the mechanical
equivalent to 2,200 transistors, which is the transistor count in the 4-bit Intel
4004 CPU.

5.4 Atomically Precise Manufacturing

Recently there has been some resurgence of interest [35-37] in molecular ma-
chines created by atomically precise manufacturing [38]. Apart from their ul-
timate miniaturization, molecular machines would offer the advantages of very
low friction and zero wear. Mechanical computers constructed from molecular-
scale atomically-precise components would be highly desirable because of their
potential for combined high performance and low energy dissipation.

5.4.1 Drag on Molecular Rotary Joints

A key performance metric of computers is their energy dissipation. One contri-
bution to dissipation is friction at the rotary joints in each logic gate. Due to
the joint’s small frictional drag, mechanical computers constructed from them
can, in principle, dissipate orders of magnitude less power than conventional
semiconductor computers, while still operating at relatively high speeds.

For instance, Fig. [25shows a lock containing bonded rotary joints |39]. Op-
erating this lock involves rotation at the joints by up to A8 =~ lrad. The
model system analyzed in [40] is an excerpt of the links and joints shown in the
closeup on the right of Fig. From [40, Eq. 2], this rotation dissipates about
2.4 x 10727 J per rotary joint when operating at f = 100 MHz. Operation of
the complete lock, involving multiple joints, would dissipate about an order of
magnitude more. This dissipation is several orders of magnitude smaller than

24



1117
=y
HENY|
L=
] 1 H
1 1 B

Figure 24: A flexure-based implementation of the system shown in Fig. [22]
made of two or three stacked layers (a second outer layer can be added to make
a three-layer assembly for increased rigidity) . Interlayer bonds are shown as
dark dots in the lower right image. Solid models available online at .

25



kgT = 4.1 x 1072'J at T = 300K. Thus at this operating speed, the rotor
frictional dissipation per logic operation would be far below kgT.

Fully exploiting the rotor’s low dissipation for a computer requires avoiding
other sources of dissipation. For instance, the clock system driving the logic
gates could store and release energy to the extent it might be needed to move
up or over any potential barriers that might be encountered [40]. More funda-
mentally, the computer would need to use reversible logic gates based on this
rotary joint, to avoid the minimum kT 'log?2 dissipation from each logically
irreversible bit operation predicted theoretically [32,/41,42] and observed exper-
imentally [43}/44]. Such a machine could perform arbitrarily many computing
operations per dissipated joule by operating at a sufficiently slow clock speed.
The lowest possible energy dissipation would be aided by reducing or even elim-
inating potential barriers in those mechanical degrees of freedom involved in
normal device operation.

A common performance metric for semiconductor devices is (energy dissi-
pated per operation) multiplied by (time per operation). For dissipation due to
velocity-dependent friction, as is the case for rotary joints, dissipation is propor-
tional to speed, hence 1/time for operation requiring a fixed amount of motion,
e.g., 60-degree rotation for the gate operations described in this paper. Hence
the energy*time performance measure is a constant. From [40, Eq. 2], this con-
stant is Egissipated? = krad? for rotation by angle ¢. Supposing a logic operation
corresponds to rotating about 10 joints by about a radian, this energy-time
product is about 10734 J s, using k.q from [40].

For a machine using multiple rotary joints, such as a computer, interactions
between nearby rotors could affect the dissipation. This could constrain how
closely rotors can be placed before interactions significantly increase dissipation.
An experimental study of arrays of molecular rotors on a surface [45] illustrates
the effect of such interactions.

5.4.2 Inertial Effects

The inertial effects of the moving lock components would be small. Consider
the lock shown in Fig. Let us imagine, conservatively, that during operation
half of this structure’s total mass (m = 9 x 10~2?kg) moves sinusoidally, p =
Asin(2w ft), with an amplitude of A = 10nm at a frequency of f = 100 MHz.
The top speed is then vp,q, = 27fA = 6.28 m/s and the maximum acceleration
iS mar = 472f2A = 3.95 x 10°m/s2. The maximum force applied to the
moving mass is then F,.z = M amq: = 3.56pN. This force is three orders
of magnitude below what is required to break a single carbon-carbon bond
(= 6nN). Calculations with HyperChem show that the lateral stiffness of a
single molecular joint of the type shown in Fig. [25|is about kjgterq;r = 130N/nm.
Lateral deflection of this joint under a load of 3.56pN would be less than a
picometer.
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Figure 25: Part of a molecular mechanical logic gate. This molecular machine
consists of 120695 atoms, 87595 carbon and 33100 hydrogen, and occupies a
volume of about 27nm x 32nm x 7nm. The nine rigid links are connected to
each other via a pair of rotary joints. Atomic structure file available online

at [28].

5.4.3 Effect of Large-Scale Design on Drag

The friction evaluation of considered complete rotations of a rotor connected
to a housing solely through the rotary joints. When used in the mechanical
computer discussed in this paper (and as illustrated in Fig. 7 the rotor is
linked to other parts of the gate.

These links increase coupling to the environment, and could affect drag. For
example, the link will reduce the amount of rotor axis tilt and shift, compared
to simulations of an isolated rotor and housing. The link, in effect, stiffens the
rotor against tilt, and is an alternative to local changes in the design that could
also stiffen the joint, e.g., altering the housing size to place the bond in tension
rather than compression. These alternatives are an example of how molecular
machine design goals could be realized either locally or at larger scales by choice
of how the molecular machine is embedded into its environment.

Another instance of a higher-level design choice is arranging designs of neigh-
boring rotary joints to help reduce dissipation. Specifically, the rotary joint has
a small potential barrier to rotation that could be a significant contribution
to dissipation at low temperatures. That is, imperfect recovery of energy stor-
age and release when moving over the rotor potential leads to dissipation. This
could be reduced by arranging the rotors at each end of a link to be offset by
60 degrees, In this case, when one rotor is at a potential minimum the other is
at a maximum. This would keep energy storage and release closer to the rotors
than, say, a storage spring located near the clock input, which could be less
effective at transmitting energy to and from the rotor due to “rubbery” links.
This procedure is analogous to using counterweights with elevators.
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6 Conclusions

Universal combinatorial logic and sequential logic together are known to suffice
for the creation of a general purpose, or Turing-complete, computational system.
Subject to practical limits of time and memory (as in any computer), such a
system can compute anything that can be computed.

We have demonstrated that, using only links and rotary joints, a Turing-
complete computational system can be created. Universal combinatorial logic
has been demonstrated with the design of a NAND gate, while sequential logic,
mimicking electronic flip-flops and sufficient to create memory, has been demon-
strated using cells combined into shift registers.

This design approach is far simpler than any other mechanical Turing-
complete design of which we are aware. Additionally, due to the avoidance
of substantial sliding friction, the “links and rotary joints” paradigm has the
potential to be more power efficient than any previous design of which we are
aware. In fact, simulations suggest that molecular-scale implementations of the
described system would be far more power efficient than conventional electronic
computers.

Acknowledgments
The authors thank Damian G. Allis, Jeremy Barton, and Michael S. Marshall

for useful feedback on earlier versions of this article.

APPENDIX

This appendix contains diagrams that show how common logic gates can be
constructed from locks and balances (Fig. . The included gates are: NOR
(Fig. and XOR (Fig.[28). OR, AND, and XNOR gates can be implemented
by inverting the gates shown - inversion is easily accomplished by simply switch-
ing the “one” and “zero” lines.
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