
OAuth 2.0 is an elaborate framework, which continuously evolves to address current needs and security considerations. The 
framework is even evolving into a consolidated OAuth 2.1 specification. This cheat sheet offers an overview of current security 
best practices for developers building OAuth 2.x client applications.

OAuth 2.0 best practices for developers
Version 2020.001

Security Cheat Sheet

Use the Authorization Code flow in every redirect scenario

https://courses. pragmaticwebsecurity.com/

Is OAuth 2.0 and OpenID Connect causing you frustration?
Your shortcut to understanding OAuth 2.0 and OIDC is right here Best practices 

for SPAs and APIs

Always use Proof Key for Code Exchange (PKCE)
The client includes a challenge based on a secret in Step 1
The client includes the secret verifier in Step 10

When using refresh tokens, apply additional protection
Rotate refresh tokens and act upon double use of a token 
Invalidate refresh tokens for web applications when ...

– the user explicitly logs out of the security token service
– the user’s session with the security token service expires

Invalidate refresh tokens when the user’s password changes

Include an audience in the flow and in the access tokens
This restricts who accepts the access token in Step 12

Restrict the capabilities of bearer access tokens
Keep the lifetime of access tokens as short as possible
Use scopes to restrict the permissions associated with a token

Use client authentication in Step 10
Prefer key-based authentication over shared client secrets

Encrypt access tokens and refresh tokens in storage
Store the encryption keys using a secret management service

Use proof-of-possession access/refresh tokens
Using sender-constrained tokens requires possession of a secret

Use the Authorization Code flow with PKCE for new projects
The Implicit flow is not broken, but should be phased out

Be careful with using refresh tokens in web applications
Do not use long-lived refresh tokens in the browser

Focus on preventing XSS vulnerabilities in the frontend
XSS results in the complete compromise of the client application

Ensure that refresh tokens are protected (see on the left)

Avoiding the use of LocalStorage is not an XSS defense

Use a system browser instead of an embedded browser
On mobile, use SFSafariViewController or Chrome Custom Tabs

Encrypt access tokens and refresh tokens in storage
Store the encryption keys in a key store provided by the OS

Recommendations for backend clients

Recommendations for frontend web clients

Recommendations for native clients

General recommendations

OAuth 2.0 threat model and security considerations

References

OAuth 2.0 Security Best Current Practice

The OAuth 2.1 Authorization Framework (draft)

https://courses.pragmaticwebsecurity.com
https://tools.ietf.org/html/rfc6819
https://tools.ietf.org/html/draft-ietf-oauth-security-topics
https://tools.ietf.org/html/draft-parecki-oauth-v2-1-01

