
50    WI N T ER 20 17  VO L . 42 , N O. 4 	 www.usenix.org

SRE AND SYSADMINPsychological Safety in Operation Teams
J O H N P . L O O N E Y

John Looney is a Systems
Engineer at Intercom, helping
to build a modern SaaS-based
infrastructure platform. Before
that, he was a full-stack SRE

at Google, where he did everything from
rack design and datacenter automation to
ad-serving; he had stops at GFS, Borg, and
Colossus along the way. He wrote a chapter
of the SRE book on automation and is on
the steering committee for USENIX SREcon.
valen@tuatha.org

W hen I worked for Google as a Site Reliability Engineer, I was lucky
enough to travel around the world with a group called “Team
Development.” Our mission was to design and deliver team-

building courses to teams who wanted to work better together. Our work
was based on research later published as Project Aristotle [1]. It found that
the primary indicator of a successful team wasn’t tenure, seniority, or salary
levels but psychological safety.

Think of a team you work with closely. How strongly do you agree with these five statements?

1.	 If I take a chance and screw up, it will be held against me.

2.	 Our team has a strong sense of culture that can be hard for new people to join.

3.	 My team is slow to offer help to people who are struggling.

4.	 Using my unique skills and talents comes second to the objectives of the team.

5.	 It’s uncomfortable to have open, honest conversations about our team’s sensitive issues.

Teams that score high on questions like these can be deemed to be “unsafe.” Unsafe to inno-
vate, unsafe to resolve conflict, unsafe to admit they need help. Unsafe teams can deliver for
short periods of time, provided they can focus on goals and ignore interpersonal problems.
Eventually, unsafe teams will underperform or shatter because they resist change.

Let me highlight the impact an unsafe team can have on an individual, through the eyes of an
imaginary, capable, and enthusiastic new college graduate.

This imaginary graduate, I’ll call her Karen, read about a low-level locking optimization for dis-
tributed databases and realized it applied to the service her team was on-call for. Test results
showed a 15% CPU saving! She excitedly rolled it out to production. Changes to the database
configuration file didn’t go through the usual code-review process, and, unfortunately, it
caused the database to hard-lock-up. There was a brief but total Web site outage. Thankfully,
her more experienced colleagues spotted the problem and rolled back the change inside of 10
minutes. Being professionals, the incident was discussed at the weekly “postmortem” meeting.

1. “If I take a chance, and screw up, it’ll be held against me.”

At the meeting, the engineering director asserted that causing downtime by chasing small
optimizations was unacceptable. Karen was described as “irresponsible” in front of the team.
The team suggested ways to ensure it wouldn’t happen again. Unlike Karen, the director
soon forgot about this interaction.

Karen would never try to innovate without explicit permission again.

2. “Our team has a strong sense of culture, and it’s hard for new people to join.”

The impact on Karen was magnified because no one stood up for her. No one pointed out the
lack of code reviews on the database configuration. No one highlighted the difference between
one irresponsible act and labeling someone “irresponsible.” The team was proud of their sys-
tem’s reliability, so defending their reputation was more important than defending a new hire.

www.usenix.org	   WI N T ER 20 17  VO L . 42 , N O. 4  51

SRE AND SYSADMIN
Psychological Safety in Operation Teams

Karen learned that her team and manager didn’t have her back.

3. “My team is slow to offer help to people who are struggling.”

Karen was new to being on-call for a “production” system, so had
no formal training in incident management, production hygiene,
or troubleshooting distributed systems. Her team was mostly
made up of people with decades of experience, who never needed
training or new-hire documentation. There were no signals that
it was OK for a new graduate to spend time learning these skills.

Karen was terrified of being left with the pager. She didn’t under-
stand how she passed the hiring process, and frequently wondered
why she hadn’t been fired yet. We call this Imposter Syndrome [2].

4. “Using my unique skills and talents comes second to the goals of
the team.”

Karen’s background was in algorithms, data structures, and dis-
tributed computing. She realized the existing system had design
flaws and could never handle load spikes. The team had always
blamed the customers for going over their contracted rates,
which is like blaming weathermen for rain during an Irish barbe-
cue. Strong operations teams need a mix of people from different
backgrounds. It’s not always clear whether a problem will require
understanding a database schema, Ruby debugging, C++ perfor-
mance understanding, product knowledge, or people skills.

Karen proposed a new design, based on technology she’d used
during her internship. Her coworkers were unfamiliar with the
new technology and considered it too risky. Karen dropped her
proposal without discussion. She wanted to write code and build
systems, not have pointless arguments.

5. “It’s uncomfortable to have open, honest conversations about
our team’s sensitive issues.”

When a large customer traffic spike caused the product to be
unavailable for a number of hours, the CEO demanded a meet-
ing with the operations team. Many details were discussed, and
Karen explained that the existing design meant it could never
deal with such spikes and mentioned her design. Her director
reminded her that her design had already been turned down
at an Engineering Review and promised the CEO they could
improve the existing design.

Karen discussed the meeting with one of her teammates after-
wards. She expressed dismay that the director couldn’t see that
his design was the root-cause of their problems. The teammate
shrugged and pointed out that the team had delivered a really
good service for the last five years and had no interest in arguing
about alternate designs with the director.

Karen left work early to look for a new job. The company didn’t
miss her when she left. After all, she was “reckless, whiny and
had a problem with authority.” They didn’t reflect on the design

that would have saved the company from repeated outages that
caused a customer exodus.

How to Build Psychological Safety into Your Own
Team
What is special about Operations that drives away so many
promising engineers and suffers others to achieve less than their
potential?

We know that success requires a strong sense of culture, shared
understandings and common values. We have to balance that
respect for our culture with an openness to change it as needed.
A team—initially happy to work from home—needs to co-locate
if they take on interns. Teams—proud that every engineer is
on-call for their service—may need to professionalize around a
smaller team of operations-focused engineers as the potential
production impact of an outage grows.

We need to be thoughtful about how we balance work people love
with work the company needs to get done. Good managers are
proactive about transferring out an engineer who is a poor fit for
their team’s workload. Great managers expand their team’s remit
to make better use of the engineers they have, so they feel their
skills and talents are valued. Engineers whose skills go unused
grow frustrated. Engineers ill-equipped to succeed at assigned
work will feel set up to fail.

Make Respect Part of Your Team’s Culture
It’s hard to give 100% if you spend mental energy pretending
to be someone else. We need to make sure people can be them-
selves by ensuring we say something when we witness disre-
spect. David Morrison (Australia’s Chief of the Army) captured
this sentiment perfectly in his “the standard you walk past is
the standard you accept” [3] speech. Being thoughtless about
people’s feelings and experiences can shut them down. Some
examples where I’ve personally intervened:

◆◆ Someone welcomes a new female project manager to the team,
assumes they aren’t technical, and uses baby words to explain
a service. I highlight the new PM has a PhD in CS. No harm
was intended, and the speaker was mortified that their good-
humored introduction was inappropriate.

◆◆ In a conversation about people’s previous positions, someone
mentioned they worked for a no-longer-successful company,
and a teammate mocked them for being “brave enough” to
admit it. I pointed out that mocking people is unprofessional
and unwelcome, and everyone present understood a “line” that
hadn’t been visible previously.

◆◆ A quiet, bright engineer consistently gets talked over by
extroverts in meetings. I point out to the “loud” people that we
were missing an important viewpoint by not ensuring everyone
speaks up. Everyone becomes more self-aware.

52    WI N T ER 20 17  VO L . 42 , N O. 4 	 www.usenix.org

SRE AND SYSADMIN
Psychological Safety in Operation Teams

It’s essential to challenge lack of respect immediately, politely,
and in front of everyone who heard the disrespect. It would have
been wonderful had someone reminded Karen’s director, in front
of the group, that Karen wasn’t irresponsible, the outage wasn’t a
big deal, and the team should improve their test coverage.

Make Space for People to Take Chances
Some companies talk of 20% time. Intercom, where I work, has
“buffer” weeks, in between some of our six-week sprints [4]. Peo-
ple often take that chance to scratch an itch that was bothering
them, without impacting the external commitments the team
has made. Creating an expectation that everyone on the team
has permission to innovate, and encouraging the whole team to
go off-piste at the same time, sends a powerful message.

Be careful that “innovation time” isn’t the only time people should
take chances. I’ve worked with one company in the car industry
that considers “innovation time” to be 2:30 p.m. on Tuesdays!

Imagine how grateful Karen would have been had a senior engi-
neer at the Engineering Review offered to work on her design
with her so that it was more acceptable to the team. Improve
people’s ideas rather than discounting them.

Make It Obvious When Your Team Is Doing Well
One engineer describes his experience of on-call as “being like
the maintenance crew at the fairground. No one notices our
work, until there is a horrible accident.” Make sure people notice
when your team is succeeding.

I love how my team writes goals on Post-It notes at our daily
standups and weekly goal meetings. These visible marks of suc-
cess can be cheered as they are moved to the “done” pile. But we
can also celebrate glorious failure.

Many years ago, when I was running one of Google’s storage
SRE teams, we were halfway through a three-year project to
replace the old Google File System. Through a confluence of bad
batteries, firmware bugs, poor tooling, untested software, an
aggressive rollout schedule, and two power cuts, we lost a whole
storage cell for a number of hours. Though all services would
have had storage in other availability zones, the team spent three
long days and three long nights rebuilding the cluster. Once it
was done, they—and I—were dejected. Demoralized. Defeated.
An amazing manager (who happened to be visiting our office)
realized I was down, and pointed out that we’d just learned more
about our new storage stack in those three days than we had in the
previous three months. He reckoned a celebration was in order.

I bought some cheap sparkling wine from the local supermarket
and, with another manager, took over a big conference room for a
few hours. Each time someone wrote something they learned on
the whiteboard, we toasted them. The team that left that room
was utterly different from the one that entered it.

I’m sure Karen would have loved appreciation for her uncovering
the team’s weak non-code test coverage and their undocumented
love of uptime-above-all-else.

Make Your Communication Clear and Your
Expectations Explicit
Rather than yelling at an engineering team each time they have
an outage, help them build tools to measure what an outage is,
a Service Level Objective that shows how they are doing, and a
culture that means they use the space between their objective
and reality to choose to do the most impactful work.

When discussing failures, people need to feel safe to share all rel-
evant information, with the understanding that they will be judged
not on how they fail, but how their handling of failures improved
the team, their product, and the organization as a whole. Teams
with operational responsibilities need to come together and discuss
outages and process failures. It’s essential to approach these as fun
learning opportunities, not root-cause-obsessed witch-hunts.

I’ve seen a team paralyzed, trying to decide whether to ship an
efficiency win that would increase end-user latency by 20%. A
short conversation with the product team resulted in updates to
the SLO, detailing “estimated customer attrition due to different
latency levels,” and the impact that would have on the company’s
bottom line. Anyone on the team could see in seconds that low-
latency was far more important than hardware costs and instead
drastically over-provisioned.

If you expect someone to do something for you, ask for a specific
commitment—“When might this be done?”—rather than assum-
ing everyone agrees on its urgency. Trust can be destroyed by
missed commitments.

Karen would have enjoyed a manager who told her in advance
that the team considered reliability sacred and asked her to work
on reliability improvements rather than optimizations.

Make Your Team Feel Safe
If you are inspired to make your team feel more psychologically
safe, there are a few things you can do today:

1.	 Give your team a short survey (like the questions listed above),
and share the results with your team.

2.	 Discuss what “safety” means to your team; see if they’ll share
when they felt “unsafe.”

3.	 Build a culture of respect and clear communication, starting
with your actions.

Treat psychological safety as a key business metric, as impor-
tant as revenue, cost of sales, or uptime. This will feed into your
team’s effectiveness, productivity, staff retention, and any other
business metric you value.

www.usenix.org	   WI N T ER 20 17  VO L . 42 , N O. 4  53

SRE AND SYSADMIN
Psychological Safety in Operation Teams

Why Are Operations Teams More Likely to Feel
Unsafe than Other Engineering Teams?
We Love Interrupts and Information
Humans suck at multitasking. Trying to do multiple things at
once either doubles the time the task takes or doubles the mis-
takes [5]. A team that’s expected to make progress with project
work while being expected to be available for interrupt work
(tickets, on-call, walkups) is destined to fail. And yet, operations
attracts people who like being distracted by novel events. Do one
thing at a time. Timebox inbound communications as well as
interrupt time.

Operations teams are expected to manage risk and uncertainty
for their organization. We build philosophies for reasoning about
risk and strategies for coping with bad outcomes, defense in
depth, playbooks, incident management, escalation policies, etc.
When humans are exposed to uncertainty, the resultant “infor-
mation gap” results in a hunger for information, often exagger-
ated past the point of utility [6]. This can lead to information
overload in the shape of ludicrously ornate and hard to under-
stand dashboards, torrents of email, alerts, and automatically
filed bugs. We all know engineers who have hundreds of bugs
assigned to them, which they cannot possibly ever fix, but refuse
to mark them “Won’t Fix.” Another pathology is subscribing to
developer mailing lists to be aware of every change being made
to the system. Our love of novelty blinds us to the lack of value in
information we cannot act on.

Admit that most information is not actionable, and be brutal
with your bugs, your mail filters, and your open chat apps.

On-Call and Operations
The stress of on-call is what drives people away from opera-
tions roles. Curiously, 24/7 shifts are not the problem. The real
problem is small on-call rotations that result in long, frequent
shifts. The more time people spend on-call, the more likely they
are to suffer from depression and anxiety [7]. The expectation of
having to act is more stressful than acting itself [8]. It’s one thing
to accept that on-call is part of a job. It’s another to tell your five-
year-old daughter you can’t bring her to the playground.

We can mitigate this stress by ensuring on-call rotations of no
fewer than six people, with time-in-lieu for those with signifi-
cant expectations around response times, or personal life cur-
tailment. Compensate based on time expecting work, not time
doing work. Incident management training or frequent “Wheel of
Misfortune” drills can also reduce stress, by increasing people’s
confidence. Ensure on-call engineers prioritize finding someone
to fix a problem when multiple incidents happen concurrently [9].

Cognitive Overload
Operations teams support software written by much larger
teams. I know a team of 65 SREs that supports software written
by 3,500 software engineers. Teams faced with supporting soft-
ware written in multiple languages, with different underlying
technologies and frameworks spend a huge amount of time try-
ing to understand the system and so have less time to improve it.

To reduce complexity, software engineers deploy more and more
abstractions. Abstractions can be like quicksand. ORM (object-
relational mapping) [10] is a wonderful example of a tool that
can make a developer’s life easy by reducing the amount of time
thinking about database schemas. By obviating the need for
developers to understand the underlying schema, developers no
longer consider how ORM changes impact production perfor-
mance. Operations now need to understand the ORM layer and
why it impacts the database.

Monolithic designs are often easier to develop and extend than
microservices. There can be valid business reasons to avoid
duplication of sensitive or complex code. However, because they
attract heterogeneous traffic classes and costs, they are a night-
mare for operations teams to troubleshoot or capacity plan.

Everyone understands that onboarding of new, evolving soft-
ware strains an operations team. We ignore the burden of
mature “stable” services. There is rarely any glamorous work to
be done on such services, but the team still needs to understand
it. Mature services can silently swamp an operations team.

Ensure teams document the impact of cognitive load on develop-
ment velocity. It has a direct and serious impact on the reliability
of the software, the morale and well-being of the operations
team, and the long-term success of the organization.

Imaginary Expectations
Good operations teams take pride in their work. When there is
ambiguity around expectations of a service, we will err on the
side of caution and do more work than needed. Do we consider
all of our services to be equally important? Are there some we
can drop to “best effort”? Do we really have to fix all bugs logged
against our team, or can we say, “Sorry, that’s not our team’s
focus”? Are our SLAs worded well enough that the entire team
knows where their effort is best directed on any given day? Do
we start our team meeting with the team’s most important top-
ics, or do we blindly follow process?

Ensure there are no magic numbers in your alerts and SLAs; if
your team is being held to account for something, ensure there is
a good reason that everyone understands.

54    WI N T ER 20 17  VO L . 42 , N O. 4 	 www.usenix.org

SRE AND SYSADMIN
Psychological Safety in Operation Teams

Operations Teams Are Bad at Estimating Their Level
of Psychological Safety
Lastly, I’ll leave you with a thought: people who are good at opera-
tions are bad at recognizing psychologically unsafe situations. We
consider occasionally stressful on-call “normal” and don’t feel
it getting worse until we burn out. The curiosity that allows us
to be creative drives us to information overload. Despite being
realistic about how terrible everything is, we stay strongly opti-
mistic that the systems, software, and people we work with will
get better.

I’ve given surveys to deeply troubled teams where every response
seemed to indicate everything was wonderful. I’d love to hear
from people who have experience uncovering such cognitive dis-
sonance in engineers.

References
[1] J. Rozovsky, “Five Keys to a Successful Google Team”:
http://bit.ly/1X0Uygj.

[2] Wikipedia, “Imposter Syndrome,” last edited 9/21/17:
https://en.wikipedia.org/wiki/Impostor_syndrome.

[3] D. Morrison speech transcript: http://bit.ly/2fkDqnu.

[4] Intercom blog, “6 Weeks: Why It’s the Goldilocks of Product
Timeframes”: https://blog.intercom.com/6-week-cycle-for​
-product-teams/.

[5] P. Atchley, “You Can’t Multitask, So Stop Trying,” Harvard
Business Review, Dec 21, 2010: https://hbr.org/2010/12/you​
-cant-multi-task-so-stop-tr.

[6] G. Loewenstein, “The Psychology of Curiosity,” Psychologi-
cal Bulletin, vol. 116, no. 1, 1994: http://bit.ly/2xmqpOE.

[7] A.-M. Nicol and J. S. Botterill, “On-Call Work and Health:
A Review,” Environ Health, vol. 3, 2004: https://www.ncbi.nlm​
.nih.gov/pmc/articles/PMC539298/.

[8] J. Dettmers, T. Vahle-Hinz, E. Bamberg, N. Friedrich, M.
Keller, “Extended Work Availability and Its Relation with
Start-of-Day Mood and Cortisol,” Journal of Occupational
Health Psychology, vol. 21, no. 1, Jan. 2016: https://www.ncbi​
.nlm.nih.gov/pubmed/26236956.

[9] D. O’Connor, “Bad Machinery: Managing Interrupts under
Load,” SREcon15 Europe, USENIX: http://bit.ly/2xWjbnZ.

[10] Wikipedia, “Object-Relational Mapping,” last edited 7/7/17:
https://en.wikipedia.org/wiki/Object-relational_mapping.

http://bit.ly/1X0Uygj
https://en.wikipedia.org/wiki/Impostor_syndrome
http://bit.ly/2fkDqnu
https://blog.intercom.com/6-week-cycle-for-product-teams/
https://blog.intercom.com/6-week-cycle-for-product-teams/
https://hbr.org/2010/12/you-cant-multi-task-so-stop-tr
https://hbr.org/2010/12/you-cant-multi-task-so-stop-tr
http://bit.ly/2xmqpOE
https://www.ncbi.nlm.nih.gov/pubmed/?term=Nicol AM%5BAuthor%5D&cauthor=true&cauthor_uid=15588276
file:///Users/linda/Clients/USENIX/2017%20USENIX/%e2%80%a22017_login_fall:winter/9-Looney/J. S. Botterill
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC539298/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC539298/
https://www.ncbi.nlm.nih.gov/pubmed/?term=Dettmers J%5BAuthor%5D&cauthor=true&cauthor_uid=26236956
https://www.ncbi.nlm.nih.gov/pubmed/?term=Vahle-Hinz T%5BAuthor%5D&cauthor=true&cauthor_uid=26236956
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bamberg E%5BAuthor%5D&cauthor=true&cauthor_uid=26236956
https://www.ncbi.nlm.nih.gov/pubmed/?term=Friedrich N%5BAuthor%5D&cauthor=true&cauthor_uid=26236956
https://www.ncbi.nlm.nih.gov/pubmed/?term=Keller M%5BAuthor%5D&cauthor=true&cauthor_uid=26236956
https://www.ncbi.nlm.nih.gov/pubmed/26236956
https://www.ncbi.nlm.nih.gov/pubmed/26236956
http://bit.ly/2xWjbnZ
https://en.wikipedia.org/wiki/Object-relational_mapping

