
SIDN Labs
https://sidnlabs.nl

May 31st, 2018

Technical Report

Title: When the Dike Breaks: Dissecting DNS Defenses During
DDoS

Authors: Giovane C. M. Moura, John Heidemann, Moritz Müller,
Ricardo de O. Schmidt, and Marco Davids

Technical Report: ISI-TR-725

Citation:

• Giovane C. M. Moura, John Heidemann, Moritz Müller, Ri-
cardo de O. Schmidt and Marco Davids. When the Dike
Breaks: Dissecting DNS Defenses During DDoS (ex-
tended). Technical Report ISI-TR-725. USC/Information
Sciences Institute.

• Bibtex:

@techreport{Moura18a,

author = {Moura, Giovane C. M. and Heidemann, John and M{\"u}ller,

Moritz and de O. Schmidt, Ricardo and Davids, Marco},

title = {When the Dike Breaks: Dissecting {DNS}

Defenses During {DDoS} (extended)},

institution = {USC/Information Sciences Institute},

year = {2018},

sortdate = {2018-05-30},

number = {ISI-TR-725},

month = may,

keywords = {anycast, dns, ddos, root ddos},

url = {https://www.isi.edu/%7ejohnh/PAPERS/Moura18a.html},

pdfurl = {https://www.isi.edu/%7ejohnh/PAPERS/Moura18a.pdf},

otherurl = {ftp://ftp.isi.edu/isi-pubs/tr-709.pdf},

copyrightholder = {authors}

}

1

https://sidnlabs.nl

When the Dike Breaks:
Dissecting DNS Defenses During DDoS (extended)

USC/ISI Technical Report ISI-TR-725

May 2018

Giovane C. M. Moura

SIDN Labs and TU Delft

John Heidemann

USC/Information Sciences

Institute

Moritz Müller

SIDN Labs and University of

Twente

Ricardo de O. Schmidt

University of Passo Fundo

Marco Davids

SIDN Labs

ABSTRACT
The Internet’s Domain Name System (DNS) is a frequent

target of Distributed Denial-of-Service (DDoS) attacks, but

such attacks have had very different outcomes—some attacks

have disabled major public websites, while the external ef-

fects of other attacks have been minimal. While on one hand

the DNS protocol is a relatively simple, the system has many

moving parts, with multiple levels of caching and retries and

replicated servers. This paper uses controlled experiments

to examine how these mechanisms affect DNS resilience and

latency, exploring both the client side’s DNS user experience,
and server-side traffic. We find that, for about 30% of clients,

caching is not effective. However, when caches are full they

allow about half of clients to ride out server outages. Caching

and retries together allow up to half of the clients to toler-

ate DDoS attacks that result in 90% query loss, and almost

all clients to tolerate attacks resulting in 50% packet loss.

While clients may get service during an attack, tail-latency

increases for clients. For servers, retries during DDoS attacks

increase normal traffic up to 8×. Our findings about caching

and retries help explain why users see service outages from

real-world DDoS events, but minimal visible effects from

others.

KEYWORDS
DNS, recursive DNS servers, caching

1 INTRODUCTION
DDoS attacks have been growing in frequency and intensity

for more than a decade. Large attacks have grown from

100Gb/s in 2012 [4] to over 1 Tb/s in 2017 [30], and 1.7 Tb/s

in 2018 [16, 21]. Such attacks are sourced from large botnets

(for example, with Mirai peaking at 600k hosts [3]), fueled

by the continued deployment of new devices. Gigabit-size

attacks are commodities today, selling for a few dollars via

DDoS-as-a-Service [40].

The Internet’s Domain Name System (DNS) is a popular

target of DDoS attacks. DNS is a very visible target, since

name resolution is a necessarily step in almost any Internet

activity. Root DNS servers have seen multiple attacks over

more than a decade [22, 29, 37, 38, 48], as well as threats

of attacks [44]. Other authoritative DNS servers have also

been attacked, with the huge October 2016 against Dyn [14]

resulting in disruptions at a number of prominent websites,

including Twitter, Netflix and the New York Times [30].

The outcome of these attacks on services has varied consid-
erably. The October 2016 Dyn attack is noted for disruption

to websites that were using Dyn as their DNS provider, and

extortion attempts often include DDoS [31]. However, mul-

tiple attacks on the DNS Root have occurred with, as far as

has been reported, no visible service outages [37, 38].

An important factor in DNS resilience is heavy use of

caching—we believe that differences in use of DNS caching

contribute to the very different outcomes when DNS is sub-

ject to DDoS attack. Yet understanding DNS caching is dif-

ficult, with requests traveling from stub resolvers in web

browsers and at client computers, to recursive resolvers at
ISPs, which in turn talk to multiple authoritative DNS servers.
There are many parts involved to fully resolve a DNS name

like www.example.com: while the goal is an IP address (an A

or AAAA DNS record), multiple levels of the hierarchy (root,

.com, and .example.com) are often on on different servers

(requiring NS records), and DNSSEC may require additional

information (RRSIG, DNSKEY, and DS records). Each of these

records may have different cache lifetimes (TTLs), by choice

of the operator or because of DNS cache timeouts.We explore

caching through controlled experiments (§3) and analysis of

real-world use (§4).

Another factor in DNS resilience is recursives that retry

queries when do not receive an answer. Recursives fail to

receive answers occasionally due to packet loss, but perva-

sively during a DDoS attack.We examine how retries interact

www.example.com
.com
.example.com

with caching to mitigate DDoS attacks for loss during DDoS

attacks (§5) and their effects on authoritatives (§6).

This paper assesses DNS resilience during DDoS attacks,

with the goal of explaining different outcomes from different

attacks (§8) through understanding the role of DNS caching,

retries, and use of multiple DNS recursive resolvers. It is

common knowledge that these factors “help”, but knowing

how and how much each contributes builds confidence in

defenses. We consider this question both as an operator of

an authoritative server, and as a user, defining the DNS user
experience latency and reliability users should expect.

Our first contribution is to build an end-to-end under-

standing of DNS caching. Our key result is that caching often
behaves as expected, but about 30% of the time clients do not
benefit from caching. While prior work has shown DNS reso-

lution infrastructure can be quite complex [43], we establish

a baseline DNS user experience by assessing the prevalence

of DNS caching in the “wild” through both active measure-

ments (§3) and through analysis of passive data from two

DNS zones (.nl and the root zone §4).

Our second contribution is to show that DNS mechanisms
of caching and retries provide significant resilience client user
experience during denial-of-service (DDoS) attacks (§5). For
example, about half of the clients continue to receive service

during a full outage when caches are primed. Often DDoS

attacks cause very high loss but not a complete outage. Even

with very heavy query loss (90%) on all authoritatives, full

caches protect half of the clients, and retries protect 30%.

With a DDoS that causes 50% packet loss, nearly all clients

succeed, although with greater latency than typical.

Third, we show that there is a large increase in legiti-

mate traffic during DDoS attacks—up to 8× the number of

queries (§6). While DNS servers are typically heavily over-

provisioned, this result suggests the need to review by how

much. It also shows the importance that stub and recursive

resolvers follow best practices and exponentially back-off

queries after failure so as to not add fuel to the DDoS fire.

Our final contribution is to suggest why users have seen

relatively little impact from root servers DDoSes, while cus-

tomers from some DNS providers quickly felt attacks (§8).

When cache lifetimes are longer than the duration of a

DDoS attack, many clients will see service for names popular

enough to be cached. While many websites use short cache

timeouts to support control with DNS-based load balancing,

they may wish to consider longer timeouts as part of strate-

gies for DDoS defense. Retries provide additional coverage,

preventing failures during large attacks.

All public datasets from this paper is available [23], with

our RIPE Atlas data also available from RIPE [34]. Privacy

concerns prevent release of .nl and Root data (§4).

Stub Resolver
e.g.: OS/applications

Recursives
(1st level

e.g.: modem)

Recursives
(nth level)

e.g: ISP resolv.

Authoritative
Servers

e.g.: ns1.example.nl

Stub

R1a
CR1a

R1b CR1b

Rna
CRna

... Rnn
CRnb

AT1 ... ATn

Figure 1: Relationship between stub resolver (yellow),
recursive resolvers (red) with their caches (blue), and
authoritative servers (green).

2 BACKGROUND
As background, we briefly review the components of the

DNS ecosystem and how they interact with IP anycast.

2.1 DNS Resolvers: Stubs, Recursives, and
Authoritatives

Figure 1 shows the relationship between three components of

DNS resolvers: stubs and recursives resolvers and authorita-

tive servers. Authoritative servers (authoritatives hereafter)

are servers that know the contents of a given DNS zone and

can answer queries without asking other servers [11].

Resolvers on the other hand, are servers that can ask, on

behalf of others, queries to other servers [19]. Stub resolvers
run directly on clients and query one or a few recursive
resolvers (shortened to stubs and recursives here). Recursives

perform the full resolution of a domain name, querying one

or more authoritatives, while caching responses to avoid

repeatedly requesting popular domains (e.g., .com or .google.

com). Sometimes recursives operate in multiple tiers, with

clients talking directly to R1 resolvers, that forward queries

to other Rn resolvers, that ultimately contact authoritatives.

In practice, stubs are part of the client OS or browser,

recursives are provided by ISPs, and authoritatives are run by

DNS providers or large organizations. Multi-level recursives

might have R1 at a home router and Rn in the ISP, or might

occur in large, public DNS providers.

2.2 Authoritative Replication and IP
Anycast

Replication of a DNS service is important to support high

reliability and capacity and to reduce latency. DNS as two

complementary mechanisms to replicate service. First, the

protocol itself supports nameserver replication of DNS ser-

vice for a zone (.nl or example.nl), where multiple servers

operate on different IP addresses, listed by that zone’s NS

records. Second, each of these servers can run from multi-

ple physical locations with IP anycast by announcing the

same IP address from each and allowing Internet routing

2

.nl
.nl
ns1.example.nl
.com
.google.com
.google.com
.nl
example.nl

Anycast Recursive (R)

Stub

R1

R3

R2

R4

R5

AT

Anycast

Unicast

Figure 2: Stub resolver and Anycast Recursive

(BGP) to associate clients with each anycast site. Nameserver

replication is recommended for all zones, and IP anycast is

used by most large zones such as the DNS Root and most

top-level domains [22, 39]. IP anycast is also widely used

by public resolvers, recursive resolvers that are open for use

by anyone on the Internet, such as Google Public DNS [12],

OpenDNS [25], Quad9 [33], and 1.1.1.1 [1].

Figure 2 illustrates the relationship of elements in the

DNS infrastructure when anycast is in place. The recursive

resolver R is announced using an anycast prefix from five

different anycast sites (R1 to R5). Each anycast site can have

multiple servers, with DNS traffic designated to them by load

balancing algorithms.

When the stub resolver sends a DNS query to the anycast

address of R, BGP forwards the query to the nearest site

(R3 in this example) of R—note that “nearest” metrics can

vary [9]. The BGP mapping between source and anycast

destination is known as anycast catchment, which under

normal conditions is very stable across the Internet [47]. On

receiving the query, R3 contacts the pertinent authoritative
AT to resolve the queried domain name. The communication

from R3 to AT is done using R3’s unicast address, ensuring
the reply from AT is sent back to R3 instead of any other

anycast site from R. On receiving the answer from AT , R3
replies to the stub resolver with the answer to its query; and

for this reply R3 uses its anycast address as source.

2.3 DNS Caching with Time-to-Live (TTLs)
DNS depends on caching to reduce latency to users and

load on servers. Authoritatives provide responses that are

then cached in applications, stub resolvers, and recursive

resolvers. We next describe its loose consistency model.

An authoritative resolver defines the lifetime of each re-

sult by its Time-to-Live (TTL); although TTLs is not usually

exposed to users, this information is propagated through

recursive resolvers.

Once cached, results cannot be invalidated directly; the

only way to refresh a response with a new result is to wait

for the TTL to expire. Operators therefore set TTLs careful.

Content delivery networks (CDNs) often use DNS to steer

users to different content servers. They therefore use very

short TTLs (60 seconds or less) to force clients to re-query

frequently, providing opportunities to redirect clients with

DNS in response to changes in load or server availability [26].

Alternatively, DNS data for top-level domains often has TTLs

of hours or days. Such long TTLs reduce latency for clients

(the reply can be reused immediately if it is in the cache of

a recursive resolver) and reduce load on servers for com-

monly used top-level domains and slowly changing DNSSEC

information.

3 DNS CACHING IN CONTROLLED
EXPERIMENTS

To understand the role of caching at recursives resolvers in

protection during failure of authoritative servers, we first

must understand how often are cache lifetimes (TTLs) honored.
In the best-case scenario, authoritative DNS operators

may expect clients to be able to reach domains under their

zones even if their authoritative servers are unreachable,

for as long as cached values in the recursives remain “valid”

(i.e., TTL not expired). Given the large variety of recursive

implementations, we pose the following question: from a
user point-of-view, can we rely on recursives caching when
authoritatives fail?
To understand cache lifetimes in practice, we carry out

controlled measurements from thousands of servers. These

measurements determine how well caches work in the field,

complementing our understanding of how open source im-

plementations work from their source code. This study is im-

portant because operational software can vary and large de-

ployments often use heavily customization or closed source

implementations [43].

3.1 Potential Impediments to Caching
Although DNS records should logically be cached for the

full TTL, a number of factors can shorten cache lifetimes in

practice: caches are of limited size, caches may be flushed pre-

maturely, and large resolvers may have fragmented caches.

We briefly describe these factors here; understanding how

often they occur motivates the measurements we carry out.

Caches are of limited size. Unbound, for example, defaults

to a 4MB limit, but the values are configurable. In practice,

DNS results are small enough and caches large enough that

cache sizes are usually not a limiting factor. Recursive re-

solvers may also override record TTLs, imposing either a

minimum or maximum value [46].

Caches can be flushed explicitly (at the request of the

cache operator), or accidentally on restart of the software or

reboot of the machine running the cache.

Finally, some recursive resolvers handle very high request

rates—consider a major ISP or public resolver [12, 25, 33].

Large recursive resolvers are often implemented as many

separate recursives behind a load balancer or on IP anycast.

In such cases the caches are fragmented as each machine has

3

1.1.1.1

TTL 60 1800 3600 86400 3600-10min
Probes 9173 9216 8971 9150 9189

Probes (val.) 8725 8788 8549 8750 8772

Probes (disc.) 448 428 422 400 417

VPs 15330 15447 15052 15345 15397

Queries 94856 96095 93723 95780 191931

Answers 90525 91795 89470 91495 183388

Answer (val.) 90079 91461 89150 91172 182731

Answers (disc.) 446 334 323 323 657

Table 1: Caching baseline experiments [34].

its own, independent cache. In practice these will reduce the

cache hit rate.

3.2 Measurement Design
To evaluate caching we use controlled experiments where

we query from specific names to authoritative servers we run

from thousands of RIPE Atlas sites. Our goal is to measure

whether the TTL we define for the RRs of our controlled

domain is honored across recursives.

Authoritative servers:we deploy two authoritatives that
answer for our new domain name (cachetest.nl). We place

the authoritatives on virtual machines in the same datacen-

ter (Amazon EC2 in Frankfurt, Germany), each at a distinct

unicast, IPv4 addresses. Each authoritative runs BIND 9.10.3.

Since both authoritatives are in the same datacenter, they

will have similar latencies to recursives, so we expect recur-

sives to evenly distribute queries between both authoritative

servers [24].

Vantage Points: We issue queries to our controlled do-

main from around 9k RIPE Atlas probes [35]. Atlas Probes

are distributed across 3.3k ASes, with about one third host-

ing multiple VPs. Atlas software causes each probe to issue

queries to each of its local recursive resolvers, so our vantage
points (VPs) are the tuple of probe and recursive. The result

is that we have more than 15k VPs (Table 1).

Queries and Caching: We take several steps to ensure

that caching does not interfere with queries. First, each query
is for a name unique to the probe: each probe requests an

AAAA record for {probeid}.cachetest.nl, where {probeid} is

the probe’s the unique identifier. Each reply is also cus-

tomized. In the AAAA reply we encode three fields that

are used to determine the effectiveness of caching (§3.4).

Each IPv6 address in the answer is the concatenation of four

values (in hex):

prefix is a fixed, 64-bit value (fd0f:3897:faf7:a375)
serial is a 8-bit value, incremented every 10 minutes

(zone file rotation), allowing us to associate replies

with specific query rounds

probeid is the unique Atlas probeID [36] encoded in 8

bits, to associate the query with the reply

ttl is a 16-bit value of the TTL value we configure per

experiment

We increment the serial number in each AAAA record

and reload the zone (with a new zone serial number), every

10 minutes. The serial number in each reply allows us to

distinguish cached results from prior rounds from fresh data

in this round.

Atlas DNS queries timeout after 5 seconds, reporting “no

answer”. We will see this occur in our emulated DDoS events.

For example, a VP with probeID 1414 shall send a DNS

query for AAAA record for the domain name 1414.cach

etest.nl, and should receive AAAA answer in the format

$PREFIX:1:586::3c, where $SERIAL=1and $TTL=60.
We focus on DNS over UDP on IPv4, not TCP or IPv6.

We use send only IPv4 queries from Atlas Probes, and serve

only IPv4 authoritatives, but the IPv6 may be used inside

multi-level recursives. Our work could extend to cover other

protocols, but we did not want to complicate analysis the

the orthogonal issue of protocol selection. . We focus on

DNS over UDP because it is by far the dominant transport

protocol today (more than 97% of connections for .nl [45]

and most Root DNS servers [15]).

Atlas’ Geographic distribution: It is well known that

the global distribution of RIPEAtlas probes is uneven; Europe

has far more than elsewhere [5, 6, 41]. Although quantitative

data analysis might be generally affected by this distribution

bias, our qualitative analysis, contributions and conclusions

do not depend on the geographical location of probes.

3.3 Datasets
We carried out five experiments, varying the cache lifetime

(TTL) and probing frequency from the VPs. Table 1 lists the

parameters of experiments. In the first four measurements,

the probing interval was fixed to 20 minutes, and TTL for

each AAAA was set to 60, 1800, 3600 and 86400 seconds, all

frequently used TTL values. For the fifth measurement we

fixed the TTL value to 3600 seconds, and reduced the probing

interval to 10 minutes to get better resolution of dynamics.

In each experiment, queries were sent from about 9k Atlas

probes. Out of these, 400-448 were disregarded given they

either do not return an answer (Probes disc.). Ultimately,

each experiment was carried with 15k VPs when consider-

ing each Atlas probe’s recursive resolvers. A few queries do

not receive valid DNS answers; for example, answers with

various DNS error codes (for example, SERVFAIL and RE-

FUSED [20]). We discard these replies from our dataset and

consider only successful replies. (Around 3.5% to 4.9% of an-

swers are discarded across measurements due to errors or

the return of NS records instead of the desired AAAA.)

4

cachetest.nl
{probeid}.
cachetest.nl
1414.cachetest.nl
1414.cachetest.nl
.nl

TTL 60 1800 3600 86400 3600-10m
Answers (valid) 90079 91461 89150 91172 182731

1-answer VPs 38 51 49 35 17

Warm-up (AAi) 15292 15396 15003 15310 15380

Duplicates 25 23 25 22 23

Unique 15267 15373 14978 15288 15357

TTL as zone 14991 15046 14703 10618 15092

TTL altered 276 327 275 4670 265

AA 74435 21574 10230 681 11797

CC 235 29616 39472 51667 107760

CCdec. 4 5 1973 4045 9589

AC 37 24645 24091 23202 47262

TTL as zone 2 24584 23649 13487 43814

TTL altered 35 61 442 9715 3448

CA 42 179 305 277 515

CAdec. 7 3 21 29 65

Table 2: Valid DNS answers (expected/observed)

Overall, the ∼9k probes sent, 20 minute pacing (T = 20)

results in about 93-96k queries to cachetest.nl, and measure-

ments with 10 minute pacing result in about double that

many queries.

3.4 TTL distribution: expected vs. observed
We next investigate how often recursive resolvers honor

the full TTL provided by authoritative servers. Our goal is

to classify the valid DNS answers from Table 1 into four

categories, based on where the answer comes from, and

where we expect it to come from:

AA answers expected and correctly from the authorita-

tive

CC expected and correct from a recursive cache (cache

hits)

AC answers from the authoritative, but expected to be

from the recursive’s cache (a cache miss)

CA answers from a recursive’s cache, but expected from

the authoritative (an extended cache)

To determine if a query should be answered by the cache

of the recursive, we track the state of prior queries and re-

sponses, and the estimated TTL. Tracking state is not hard

since we know the initial TTL and all queries to the zone,

and we encode the serial number and the TTL in the AAAA

reply (§3.2).

Cold Caches and Rewriting TTLs: We first consider

queries made against a cold cache (the first query of a unique

name) to test how many recursives override the TTL. We

know that this happens at some sites, such as Amazon EC2

where the default recursive resolver caps all TTLs to 60 s [32].

Table 2 shows the results of our five experiments, in which

we classify the valid answers from Table 1. Before classifying

them, we first disregard VPs that had only one answer (1-

answer VPs) since we cannot evaluate their caches status

with one answer only (maximum 51 VPs out of 15,000 for

 0

 20000

 40000

 60000

 80000

 100000

 120000

60s 1800s 3600s 86400s 3600s-10m

Miss: 0.0%

Miss: 32.6%

Miss: 32.9%

Miss: 30.9%

Miss: 28.5%

re
m

a
in

in
g
 q

u
e
ri
e
s

Experiment

AA
CC

AC
CA

Figure 3: Classification of subsequent answers with
warm cache

the experiments). Then, we classify the remaining queries as

Warm-up queries AAi, all of which are type AA (expected

and answered by the authoritative server).

We see some duplicate responses; for these we use the

timestamp of the very first AAi received. We then classify

each unique AAi by comparing the TTL value returned by

the recursive with the expected TTL that is encoded in the

AAAA answer (fixed per experiment). The TTL as zone line
counts the answers we expect to get, while TTL altered shows
that a few hundred recursive resolvers alter the TTL. If these

two values differ by more than 10%, we report TTL altered.

We see that the vast majority of recursives honor small

TTLs, with about 2% truncating them (275 to 327 of about

15000, depending on the experiment’s TTL). We and others

(§7) see truncation from multiple ASes. The exception is for

queries with day-long TTLs (86400 s), where 30% of recur-

sives shorten it. We conclude that wholesale TTL shortening

does not occur, at least for TTLs of an hour or less.

TTLs with Warm Cache: We next consider a warm

cache—subsequent queries where we believe the recursive

should have the prior answer cached and classify them ac-

cording to the proposed categories (AA, CC, AC, and CC).

Figure 3 shows a histogram of this classifications (num-

bers shown on Table 2). We see that most answers we re-

ceive show expected caching behavior. For 60 s TTLs (the

left bar), we expect no queries to be cached when we re-

query 20minutes (1200 s) later, and we see no cache hits.

We see only a handful of CA-type replies, where we expect

the authoritative to reply and the recursive does instead.

We conclude that under normal operations (with authorita-

tives respond), recursive resolvers do not serve stale results

(as has been proposed when the authoritative cannot be

reached [17]).

For longer TTLs we see cache misses (AC responses) frac-

tions of 28 to 33%. information from recursives caches. Most

of the AC answers did not alter the TTL (AC-over), i.e., the
cache miss was not due to TTL manipulations (Table 2). We

do see many TTL modifications (about 42%) when the TTL

5

cachetest.nl

TTL 60 1800 3600 86400 3600-10m
AC Answers 37 24645 24091 23202 47,262

Public R1 0 12000 11359 10869 21955

Google Public R1 0 9693 9026 8585 17325

other Public R1 0 2307 2333 2284 4630

Non-Public R1 37 12645 12732 12333 25307

Google Public Rn 0 1196 1091 248 1708

other Rn 37 11449 11641 12085 23599

Table 3: AC answers public resolver classification.

is 1 day TTLs (86400 s). Some recursives may have a upper

limit for TTL, and one day is considered a long TTL.

We conclude that DNS caches are fairly effective, with

cache hits about 70% of the time. This estimate is likely

a lower bound: we are the only users of our domain, and

popular domains would see cache hits due to requests from

other users. We only see TTL truncation for day-long TTLs.

This result will help us understand the role of caching when

authoritatives are under stress.

3.5 Public Recursives and Cache
Fragmentation

Although we showed that most requests are cached as ex-

pected about 30% are not. We know that many DNS requests

are served by public recursive resolvers today, several of

which exist [1, 12, 25, 33]. We also know that public recur-

sives often use anycast and load balancing [43] and that that

can result in caches that are fragmented (not shared) across

many servers. We next examine how many cache misses

(type AC replies) are due to public recursives.

Although we control queriers and authoritative servers,

theremay bemultiple levels of recursive resolvers in between.

From Figure 1, we see the querier’s first-hop recursive (R1)
and the recursive that queries the authoritative (Rn). For-
tunately, queries and replies are unique, so we can relate

queries to the final recursive knowing the time (the query

round) and the query source. For each query q, we extract
the IP address of Rn and compare against a list of IP ad-

dresses for 96 public recursives (Appendix B) we obtain from

DuckDuckGo search for “public dns” done on 2018-01-15.

Table 3 reexamines the AC replies from Table 2. With

the exception of the measurements with TTL of 60 s, nearly

half of AC answers (cache misses) are from queries to public

R1 recursives, and about three-quarters of these are from

Google’s Public DNS. The other half of cache misses start at

non-public recursives, but 10% of these eventually emerge

from Google’s DNS.

Besides identifying public recursives, we also see evidence

of cache fragmentation in answers from caches (CC and CA).

Sometimes we see serial numbers in consecutive answers

decrease. For example, one VP reports serial numbers 1, 3, 3,

7, 3, 3, suggesting that it is querying different recursives, one

with serial 3 and another with serial 7 in its cache. We show

these occurrences in Table 2 as CCdec. and CAdec. With

longer TTLs we see more cache fragmentation, with 4.5% of

answers showing fragmentation with day-long TTLs.

From these observations we conclude that cache misses

result from several causes: (1) use of load balancers or anycast

where servers lack shared caches, (2) first-level recursives

that do not cache and have multiple second-level recursives,

and (3) caches that clear between or somewhat long probing

interval (10 or 20 minutes). Causes (1) and (2) occur in public

resolvers (confirmed by Google [12]) and account for about

half of the cache misses in our measurements.

4 CACHING IN A PRODUCTION ZONE
In §3 we showed that about one-third of queries to not con-

firm with caching expectations, based on controlled experi-

ments to our test domain. We next examine this question for

.nl, the country code domain (ccTLD) for the Netherlands

and the Root (.) DNS zone. With traffic from “the wild” and

a measurement target used by millions, this section uses a

domain popular enough to stay in-cache at recursives.

4.1 Requests at .nl’s Authoritatives
We next apply this methodology to data for the .nl country-

code top-level domain (ccTLD).

Methodology:We use passive observations of traffic to

the .nl authoritative servers. We extract the source IP address

from A-record queries for the domains ns[1-5].dns.nl. We

analyze caching of referrals in Appendix C.

For each target name in the zone and source (some recur-

sive server, identified by IP address), we build a timeseries

of all requests and compute their interarrival time, ∆. Fol-
lowing the classification from §3.4, we label queries as: AC
if ∆ < TTL, showing an unnecessary query to the authorita-

tive; AA if ∆ = TTL, an expected cache refresh; and CA if

∆ > TTL, a delayed cache refresh. (We do not see cache hits

and so there are no CC events.)

Dataset: At the time of our analysis (February 2018) there

were 8 authoritative servers for the .nl zone. We collect traffic

for the 4 unicast and one anycast authoritative servers, and

store the data in ENTRADA [49] for analysis.

Since our data for .nl is incomplete, and we know recur-

sives will query all authoritatives over time [24], our analysis

represents a conservative estimate of TTL violations—we

expect to miss some CA-type queries from resolvers to non-

monitored authoritatives.

We collect data for a period of six hours on 2018-02-22

starting at 12:00 UTC. We only evaluate recursives that sent

at least five queries for our domains of interest, omitting infre-

quent recursives (they do not change results noticeably). We

discard duplicate queries, for example, a few retransmissions

6

.nl
.
.nl
.nl
ns[1-5].dns.nl
.nl
.nl

��
����
����
����
����
����
����
����
����
����

��

�� ���� ����� ����� ����� ����� ����� ����� �����

�
�
�

���

Figure 4: ECDF of ∆t for recursives with at least 5
queries to ns1-ns5.dns.nl (TTL of 3600 s.)

(less than 0.01% of the total queries). In total, we consider

more than 485k queries from 7,779 different recursives.

Results: Figure 4 shows the ∆t distributions we observed
in our measurements. We see many queries near the origin,

and peaks at 3600 s, 300 s, and 600 s.

About 28% of queries are very frequent, with an inter-

arrival less than 10 s, and 32% of these are sent to multi-

ple authoritatives. We believe these are due to recursives

submitting queries in parallel to speed replies. Since these

closely-timed queries are not related to recursive caching,

we exclude them from analysis. The remaining data is 348k

queries from 7,703 different recursives.

The largest peak is at 3600 s, what was expected: the name

was queried and cached for the full hour TTL, then the next

request causes the name to be re-fetched. These queries are

all of type AA.

The several smaller peaks around 300 s and 600 s, as well

as queries with other times less than 3600 s, correspond to

type AC-queries—queries that could have been supplied from

the cache but were not. These represent about 80% of the

queries, with at least 46% of recursives sending one of these.

These AC queries occur because of TTL limiting, cache

fragmentation, or other reasons that clear the cache. When

we examine specific recursives, we see that about 30% are

from a few resolvers of a Russian ISP. Only about 0.25% of

queries are from Google’s public DNS, because .nl is often

already cached.

We conclude thatmeasurements of popular domainswithin

.nl show that about 30% of queries are from recursives that

honor the full TTL, but most queries will be more frequent.

4.2 Requests at the DNS Root
In this section we perform a similar analysis as for §4.1, in

which we look into DNS queries received at some of the

Root DNS servers, namely A-, B-, C- and D-Root, and create

a distribution of the number of queries received per source

IP address (i.e., per recursive).

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 5 10 15 20 25 30

C
D

F

number of queries

A-Root
B-Root
C-Root
K-Root

Figure 5: Distribution of the number of queries for the
DS record of nl received for each recursive. Dataset: A,
B, C, D DTIL on 2017-04-12t11:00Z for 3 hours.

In this analysis we use data from the DITL (Day In The
Life) dataset of 2017, available at DNS-OARC [10]. We look at

all DNS queries received for the DS record of the domain nl,

during the interval between 11am to 1pm on April 12, 2017

(UTC). Note that the DS record for nl has a TTL of 86400

seconds (24 hours). That is, we do not expect to see multiple

queries for the DS record of nl within the 3-hour interval at

the selected DNS Root servers.

Figure 5 shows the distribution of the number of queries

sent by recursives to the DS record of nl. We see that the

majority (around 80%) of recursives does send only one query

within the 3-hour interval. However, all the Root letters we

looked into have seenmultiple queries from 20% of recursives.

Note that the x-axis is truncated, and we see up to around

360 queries from a single recursive (i.e., source IP address)

within the 3-hour interval. (In this analysis, for the 3-hour

interval of measured data, the sample of unique recursives

varies from 982 for B-Root to 2094 recursives for C-Root.)

5 THE CLIENT’S VIEW OF
AUTHORITATIVES UNDER DDOS

We next evaluate the effects of DDoS attacks on client exper-

iments. This work builds our studies of caching in controlled

experiments (§3) and passive observations (§4) have shown

that it often works, but not always—about 70% of controlled

experiments and 30% of passive observations see full cache

lifetimes. We first consider complete failure of authoritative
servers, then partial failure.

5.1 Emulating DDoS
To emulate DDoS attacks we begin with the same test domain

(cachetest.nl) we used for controlled experiments in §3.2. We

run a normal DNS for some time, querying from RIPE Atlas.

After caches are warm, we then simulate a DDoS attack by

dropping some fraction or all incoming DNS queries to each

authoritative. (We drop traffic with Linux iptables.) After

we begin dropping traffic, answers come either from caches

7

ns1-ns5.dns.nl
.nl
.nl
nl
nl
nl
nl
nl
cachetest.nl

at recursives or, for partial attacks, from a lucky query that

passes through.

This emulation of DDoS captures traffic loss that occurs

in DDoS attack as router queues overflow. This emulation is

not perfect, since we simulate loss at the last hop-router, but

in real DDoS attacks packets are often lost on access links

near the target. Our emulation approximates this effect with

one aggregate loss rate.

DDoS attacks are also accompanied by queueing delay,

since buffers at and near the target are full. We do not model

queueing delay, although we do observe latency due to re-

tries. In modern routers, queueing delay due to full router

buffers should be less than the retry interval. In addition,

observations during real-world DDoS events show that the

few queries that are successful see response times that are

not much higher than typical [22], suggesting that loss (and

not delay) is the dominant effect of DDoS in practice.

5.2 Clients During Complete
Authoritatives Failure

We first evaluate the worst-case scenario: complete unreach-

ability of all authoritative name servers. Our goal is to under-

stand when and for how long caches cover such an outage.

Table 4 shows the experiments we executed – being A, B,

and C the ones which simulate complete failure. In Experi-

ment A, each VP makes only one query before the DDoS be-

gins. In Experiment B we allow several queries to take place,

and Experiment C allows several queries with a shorter TTL.

Caches Protect Some:We first consider Experiment A,

with one query that warms the cache immediately followed

by the attack. Figure 6a shows these responses over time,

with the onset of the attack the first downward arrow be-

tween 0 and 10 minutes, and with the cache expired after

the second downward arrow between 60 and 70 minutes. We

see that after the DDoS starts but before the cache has fully

expired (between the downward arrows) initially 30% and

eventually 65% of queries fail with wither no answer or a

SERVFAIL error message. While not good, this does mean

that 35% to 70% of queries during the DDoS are successfully
served from the cache. By contrast, shortly after the cache

expires, almost all queries succeed (only 25 VPs or 0.2% of

the total seem to provide stale answers).

Caches Fill at Different Times: In a more realistic sce-

nario, VPs have filled their caches at different times. In Ex-

periment A, caches are freshly filled and should last for a full

hour after the start of attack. Experiment B is designed for

the opposite and worst case: we begin warming the cache

one hour before the attack and query 6 times of each VP.

Other parameters are the same, with the attack lasting for

60 minutes (also the cache duration), but then we restore the

authoritatives to service.

 0

 5000

 10000

 15000

 20000

0 10 20 30 40 50 60 70 80 90 100 110

cache-only cache-expired

an
sw

er
s

minutes after start

OK SERVFAIL No answer

(a) Experiment A: 3600-10min-1down; arrows indicate DDoS
start and cache expiration

 0

 5000

 10000

 15000

 20000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

cache-onlynormal normal

an
sw

er
s

minutes after start

OK SERVFAIL No answer

(b) Experiment B: 3600-10min-1down-1up; arrows indicate
DDoS start and recovery

 0

 5000

 10000

 15000

 20000

0 10 20 30 40 50 60 70 80 90 100110120130140150160170

normal normal

an
sw

er
s

minutes after start

OK SERVFAIL No answer

cache-
only

cache-
expired

(c) Experiment C: 1800-10min-1down-1up; arrows indicate
DDoS start, cache expiration and recovery

Figure 6: Answers received during DDoS attacks.

Figure 6b shows the results of Experiment B. While about

50% of VPs are served from the cache in the first 10 minute

round after the DDoS starts, the fraction served drops quickly

and is at only about 3% one hour later. Three factors are in

play here: most caches were filled 60 minutes before the at-

tack and are timing out in the first round. While the timeout

and query rounds are both 60 minutes apart, Atlas intention-

ally spreads queries out over 5 minutes, so we expect that

some queries happen after 59 minutes and others 61 minutes.

Second, we know some large recursives have fragmented

caches (§3.5), so we expect that some of the successes be-

tween times 70 and 110 minutes are due to caches that were

8

Experiment Parameters
TTL DDoS DDoS queries total probe

failure
in sec. start dur. before dur. interval

A 3600 10 60 1 120 10 100% (both NSes)

B 3600 60 60 6 240 10 100% (both NSes)

C 1800 60 60 6 180 10 100% (both NSes)

D 1800 60 60 6 180 10 50% (one NS)

E 1800 60 60 6 180 10 50% (both NSes)

F 1800 60 60 6 180 10 75% (both NSes)

G 300 60 60 6 180 10 75% (both NSes)

H 1800 60 60 6 180 10 90% (both NSes)

I 60 60 60 6 180 10 90% (both NSes)

Results
Total Valid

VPs Queries
Total Valid

probes probes answers answers
A 9224 8727 15339 136423 76619 76181

B 9237 8827 15528 357102 293881 292564

C 9261 8847 15578 258695 199185 198197

D 9139 8708 15332 286231 273716 272231

E 9153 8708 15320 285325 270179 268786

F 9141 8727 15325 278741 259009 257740

G 9206 8771 15481 274755 249958 249042

H 9226 8778 15486 269030 242725 241569

I 9224 8735 15388 253228 218831 217979

Table 4: DDoS emulation experiments [34]; DDoS start, durations and probe interval are given in minutes.

 0

 4000

 8000

 12000

 16000

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

a
n
s
w

e
rs

minutes after start

AA

CC

CA

Figure 7: Timeseries of answers for Experiment B

filled between times 10 and 50 minutes. This can actually be

seen in Figure 7, where we show a timeseries of the answers

for Experiment B, where we see CC (correct cache responses)

between times 60 and 90.

Third, we see an increase in the number of CA queries

that are answered by the cache with expired TTLs (Figure 7).

This increase is due to servers serving stale content.

Caches Eventually All Expire: Finally, we carry out

a third emulation but with half the cache lifetime (1800 s

or 30minutes rather than the full hour). Figure 6c shows

response over time. These results are similar to Experiment

B, with rapid fall-off when the attack starts as caches age.

After the attack has been underway for 30minutes all caches

must have expired andwe see only a few (about 2.6%) residual

successes.

5.3 Discussion of Complete Failures
Overall we see that caching is partially successful in protecting
during a DDoS. With full, valid caches, half or or more VPs

get service. However, caches are filled at different times and

expire, so an operator cannot count on a full cache duration

for any customers, even for popular (“always in the cache”)

domains. The protection provided by caches depends on

their state in the recursive resolver, something outside the

operator’s control. In addition, our evaluation of caching in

§3 showed that caches will end early for some VPs.

Second, we were surprised that a tiny fraction of VPs are

successful after all caches should have timed out (after the

80 minutes period in Experiment A, and between 90 and

110 minutes in Experiment C). These successes suggest an

early deployment of “serve stale”, something currently under

review in the IETF [18] is to serve a previously known record

beyond its TTL if authoritatives are unreachable, with the

goal of improving resilience under DDoS. We investigated

the Experiment C, where see see that 732 answers of the 2390

successes in the second half of the outage. These successes

are from two 4 IP addresses corresponding to the OpenDNS

and Google public DNS servers, suggesting experimentation

not yet widespread.

5.4 Client Reliability During Partial
Authoritative Failure

The previous section examined DDoS attacks that result in

complete failure of all authoritatives, but often DDoS attacks

result in partial failure, with 50% or 90% packet loss. (For

example, consider the November 2015 DDoS attack on the

DNS Root [22].) We next study experiments with partial

failures, showing that caching and retries together nearly
fully protect 50% DDoS events, and protect half of VPs even
during 90% events.
We carry out several Experiments D to I in Table 4 We

follow the procedure outlined in §5.1, looking at the DDoS-

driven loss rates of 50%, 75%, and 90% with TTLs of 1800 s,

300 s and 60 s. Graphs omitted due to space can be found in

Appendix D.

Near-Full Protection from Caches During Moderate
Attacks:Wefirst consider Experiment E, a “mild” DDoSwith

50% loss, a with VP success over time in Figure 8a. In spite of

a loss rate that would be crippling to TCP, nearly all VPs are

successful in DNS. This success is due to two factors: first, we

know thatmany clients are served from caches, as was shown

9

in Experiment A with full loss (Figure 6a). Second, most

recursives retry queries, so they recover from loss of a single

packet and are able to provide an answer. Together, these

mean that failures during the first 30 minutes of the event is

8.5%, slightly higher than the 4.8% fraction of failures before

the DDoS. For this experiment, the TTL is 1800 s (30minutes),

so we might expect failures to increase halfway through the

DDoS.We do not see any increase in failures because caching

and retries are synergistic, a successful retried query will

place the answer in a cache for a later query. The importance

of this result is that DNS can survive moderate-size attacks
when caching is possible. While a positive, retries do increase

latency, something we study in §5.5.

Attack Intensity Matters: While clients do quite well

with 50% loss at all authoritatives, failures increase with the

intensity of the attack.

Experiments F and H, shown in Figure 8b and Figure 8c

increase the loss rate to 75% and 90%. We see the number

of failures increases to about 19.0% with 75% loss and 40.3%

with 90% loss. It is important to note that roughly 60% the
clients are still served even with 90% loss.
We also see that this level of success is consistent over

the entire hour-long DDoS event, even though the cache

duration is only 30minutes. This consistency confirms the

importance of caching and retries in combination.

To verify the effects of this interaction, Experiment I changes

the caching duration to 60 s, less than one round or probing.

Comparing Experiment I in Figure 8d with H in Figure 8c,

we see that the failure rate increases from 30% to about 63%.

Still, with no caching in fact, we can see that roughly 37% of

queries still are answered. We investigate retries in §6.

5.5 Client Latency During Partial
Authoritative Failure

We showed that client reliability is higher than expected

during failures (§5.4) due to a combination of caching and

retries. We next consider client latency. Latency will increase
during the DDoS because of retries and queueing delay, but

we will show that latency increases less than one might

expect due to caching.

To examine latency we return to Experiments D through I

(Table 4), but look at latency (time to complete a query) rather

that success. Another metric to measure client’s experience

during a DDoS is how long it takes to resolve queries,i.e., the
round-trip time (RTT). Figures 9a to 9d show latency dur-

ing each emulated DDoS scenario (experiments with figures

omitted here are in Appendix D Latencies not evenly dis-

tributed, since some requests get through immediately while

others must be retried one or more times, so in addition to

mean, we show 50, 75 and 90% quantiles to characterize the

tail of the distribution.

 0

 5000

 10000

 15000

 20000

0 10 20 30 40 50 60 70 80 90 100110120130140150160170

50% packet loss
(both NSes)

normal normal

an
sw

er
s

minutes after start

OK SERVFAIL No answer

(a) Experiment E (1800-50p-10min): 50% packet loss

 0

 5000

 10000

 15000

 20000

0 10 20 30 40 50 60 70 80 90 100110120130140150160170

75% packet loss
(both NSes)

normal normal

A
ns

w
er

s
minutes after start

OK SERVFAIL No answer

(b) Experiment F (1800-75p-10min): 75% packet loss

 0

 5000

 10000

 15000

 20000

0 10 20 30 40 50 60 70 80 90 100110120130140150160170

90% packet loss
(both NSes)

normal normal

an
sw

er
s

minutes after start

OK SERVFAIL No answer

(c) Experiment H (1800-90p-10min): 90% packet loss

 0

 5000

 10000

 15000

 20000

0 10 20 30 40 50 60 70 80 90 100110120130140150160170

90% packet loss
(both NSes)

normal normal

an
sw

er
s

minutes after start

OK SERVFAIL No answer

(d) Experiment I (60-90p-10min): 90% packet loss

Figure 8: Answers received during DDoS attacks; 1st
and 2nd vertical lines show start and end of DDoS.

10

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100 120 140 160

la
te

n
c
y
 (

m
s
)

minutes after start

Median RTT
Mean RTT
75%ile RTT
90%ile RTT

(a) Experiment E: 50% packet loss (1800s TTL)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100 120 140 160

la
te

n
c
y
 (

m
s
)

minutes after start

Median RTT
Mean RTT
75%ile RTT
90%ile RTT

(b) Experiment F: 75% packet loss (1800s TTL)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100 120 140 160

la
te

n
c
y
 (

m
s
)

minutes after start

Median RTT
Mean RTT
75%ile RTT
90%ile RTT

(c) Experiment H: 90% packet loss(1800s TTL)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100 120 140 160

la
te

n
c
y
 (

m
s
)

minutes after start

Median RTT
Mean RTT
75%ile RTT
90%ile RTT

(d) Experiment I: 90% packet loss (60s TTL)

Figure 9: Latency results; Shaded area indicates the in-
terval of an ongoing DDoS attack.

We emulate DDoS by dropping requests (§5.1) and, hence,

latencies reflect retries and loss, but not queueing delay,

underrepresenting latency in real-world attacks. However,

their shape (some low latency and a few long) is consistent

with and helps explain what has been seen in the past [22].

Beginning with Experiment E, the moderate attack in Fig-

ure 9a, we see no change to median latency. This result is

consistent with many queries being handled by the cache,

and half of those not handled by the cache getting through

anyway.We do see higher latency in the 90%ile tail, reflecting

successful retries. This tail also increases the mean some.

This trend increases in Experiment F in Figure 9b, where

75% of queries are lost. Now we see the 75%ile tail has in-

creased, as has the number of unanswered queries, and the

90%ile is twice as long as in Experiment E.

We see the same latency in Experiment H with DDoS

causing 90% loss. RIPE Atlas has a fixed number of timeouts,

so the larger attack results in more unsuccessful queries, but

latency for successful queries is not much worse than with

75% loss. Median latency is still low due to cached replies.

Finally, Experiment I greatly reduces opportunities for

caching by reducing cache lifetime to one minute. Figure 9d

shows that loss of caching increases median RTT and signif-

icantly increases the tail latency. Compared with Figure 9c

(same packet loss ratio but 1800 s TTL), we can clearly see

the benefits of caching in terms of latency (in addition to

reliability): a half-hour TTL value reduced the latency from

1300ms to 390ms.

Summary: DDoS effects often increase client latency. For

moderate attacks, increased latency is seen only by a few

“unlucky” clients whose do not see a full cache and whose

queries are lost. Caching has an important role in reducing

latency during DDoS, but while it can often mitigate most

reliability problems, it cannot avoid latency penalties for all

VPs. Even when caching is not available, roughly 40% of

clients get an answer, either by serving stale or retries as we

investigate next.

6 THE AUTHORITATIVE’S PERSPECTIVE
Results of partial DDoS events (§5.4) show that DNS is sur-

prisingly reliable well—even with a DDoS resulting in 90%

packet loss, about 40% of VPs get answers (Figure 8d). We

suggested this success is possible because of a combination

of caching and retries. We next examine this from the per-

spective of the authoritative server.

6.1 Recursive-Authoritative Traffic during
a DDoS

We first ask: what is the cost of these retries on the author-

itative servers? To investigate this question, we return the

partial DDoS experiments and look at how many queries

are sent to the server. We measure queries before they are

11

 0

 50000

 100000

 150000

 200000

0 10 20 30 40 50 60 70 80 90 100110120130140150160170

75% packet loss
(both NSes)

normal normal

q
u
e
ri
e
s

minutes after start

NS
A-for-NS

AAAA-for-NS
AAAA-for-PID

(a) Experiment F: 1800-75p-10min, 75% packet loss

 0

 50000

 100000

 150000

 200000

0 10 20 30 40 50 60 70 80 90 100110120130140150160170

90% packet loss
(both NSes)

normal normal

q
u
e
ri
e
s

minutes after start

NS
A-for-NS

AAAA-for-NS
AAAA-for-PID

(b) Experiment H: 1800-90p-10min, 90% packet loss

 0

 50000

 100000

 150000

 200000

0 10 20 30 40 50 60 70 80 90 100110120130140150160170

90% packet loss
(both NSes)

normal normal

q
u
e
ri
e
s

minutes after start

NS
A-for-NS

AAAA-for-NS
AAAA-for-PID

(c) Experiment I: 60-90p-10min, 90% packet loss

Figure 10: Number of received queries by the authori-
tative servers. Shaded area indicates the interval of an
ongoing DDoS attack.

dropped by our simulated DDoS. Recursives must make mul-

tiple queries to resolve a name. We break out each type of

query: for the nameserver (NS), the nameserver’s IPv4 and

v6 addresses (A-for-NS and AAAA-for-NS), and finally the

desired query (AAAA-for-PID). Note that the authoritative

is IPv4 only; so AAAA-for-NS is non-existent and subject

to negative caching, while the other records exist and use

regular caching.

We begin with the DDoS causing 75% loss in Figure 10a.

During the DDoS, queries increase by about 3.5×. We expect

4 trials, since the expected number of tries until success with

loss rate p is (1−p)−1. For this scenario, results are cached for

up to 30minutes, so successful queries are reused in recursive

caches. This increase occurs both for the target AAAA record,

and also for the non-existent AAAA-for-NS records. Negative

caching for our zone is configured to 60 s, making caching of

NXDOMAINs for AAAA-for-NS less effective than positive

caches.

The offered load on the server increases further with more

loss (90%), as shown in Experiment H (Figure 10b). The higher

loss rate results in a much higher offered load on the server,

average 8.2× normal.

Finally, in Figure 10c we reduce the effects of caching at

a 90% DDoS and with a TTL of 60s. Here we see also about

8.1×more queries at the server before the attack. Comparing

this case to Experiment H, caching reduces the offered load

on the server by about 40%.

Implications: The implication of this analysis is that le-

gitimate clients “hammer” with retries the already-stressed

server during a DDoS. For clients, retries are important to get

reliability; and each client independently chooses to retry.

The server is already under stress due to the DDoS, so

these retries add to that stress. However, a server experienc-

ing 90% loss is already at 10× its capacity, and maximum

capacity is often 10× normal load (for example, see [7]), so

additional traffic of 10× normal load is perhaps increases

the attack traffic by only 10%. This multiplier depends on

the implementations stub and recursive resolver, as well as

application-level retries and defection (users hitting reload

in their browser, and later giving up). Our experiment omits

application-level retries and likely gives a lower bound. We

next examine specific recursive implementations to see their

behavior.

6.2 Sources of Retries: Software and
Multi-level Recursives

Experiments in the prior section showed that recursive re-

solvers “hammer” authoritatives when queries are dropped.

We reexamine DNS software (since 2012 [50]), and addition-

ally show deployments amplify retries.

Recursive Software: Prior work showed that recursive

servers retry many times when an authoritative is unrespon-

sive [50], with evaluation of BIND 9.7 and 9.8, DNSCache,

Unbound, WindowsDNS and PowerDNS. We studied retries

in BIND 9.10.3 and Unbound 1.5.8 to quantify the number

of retries. Examining only requests for AAAA records, we

see that normal requests with a responsive authoritative

ask for the AAAA records for all authoritatives and the tar-

get name (3 total requests when there are 2 authoritatives).

When all authoritatives are unavailable, we see about 7×

more requests before the recursives time out. (Exact num-

bers vary in different runs, but typically each request is made

6 or 7 times.) Such retries are appropriate, provided they are

paced (both use exponential backoff), they explain part of

12

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160 180
 1

 10

 100

 1000

R
n
-p

e
rP

ID

A
A

A
A

-f
o
r-

P
ID

minutes after start

Rn-per-PID-median
Rn-per-PID-90%-tile
Rn-per-PID-max

AAAA-for-PID-median
AAAA-for-PID-90%-tile
AAAA-for-PID-max

Figure 11: Rn recursives and AAAA queries used in Ex-
periment I, normalized by the number of probe IDs.

the increase in legitimate traffic during DDoS events. Full

data is in Appendix G.

Recursive Deployment: Another source of extra retries
is complex recursive deployments. We showed that operators

of large recursives often use complex, multi-level resolution

infrastructure (§3.5). This infrastructure can amplify the num-

ber of retries during reachability problems at authoritatives.

To quantify amplification, we count both the number of

Rn recursives and AAAA queries for each probe ID reaching

our authoritatives. Figure 11 show the results. These values

represent the amplification in two ways: during stress, more

Rn recursives will be used for each probe ID and these Rnwill
generate more queries to the already stressed authoritatives.

As the figures shows, the median number of Rn recursives

employed doubles (from 1 to 2) during the DDoS event, as

does the 90%ile (from 2 to 4). The maximum rises to 39. The

number of queries for each probe ID grows more than 3×,

from 2 to 7. Worse, the 90%ile grows more than 6× (3 queries

to 18). Themaximum grows 53.5×, reaching up to 286 queries

for one single probe ID. This value, however, is a lower bound,

given there is large number of A and AAAA queries that ask

for NS records, and not the probe ID (AAAA and A-for NS

in Figure 10).

Most complex resolution infrastructure is proprietary (as

far as we know only one study has examined them [43]), so

we cannot make recommendations about how large recursive

resolvers ought to behave. We suggest that the aggregate

traffic of large resolvers should strive to be within a con-

stant factor of single resolvers, perhaps a factor of 4. We

also encourage additional study of large resolvers, and their

operators to share information about their behavior.

7 RELATEDWORK
Caching by Recursives: Several groups have shown that

DNS caching can be imperfect. Hao and Wang analyzed the

impact of nonce domains on DNS recursive’s caches [13].

Using two weeks of data from two universities they showed

that filtering one-time domains improves cache hit rates. In

two studies, Pang et al. [27, 28] reported that web clients and
local recursives do not always honor TTL values provided

by authoritatives. Almeida et al. [2] analyzed DNS traces of

a mobile operator, and used a mobile application to see TTLS

in practice. They find that most domains have short TTLs

(less than 60 s), and report and evidence of TTL manipulation

by recursives. Schomp et al. [43] demonstrate widespread

use of multi-level recursives by large operators, as well as

TTL manipulation. Our work builds on this prior work, ex-

amining caching and TTL manipulation systematically and

considering its effects on resilience.

DNS client behavior: Yu et al.investigated how stubs and

recursives select authoritative servers, and were the first to

demonstrate the large number of retries when all authori-

tatives are unavailable [50]. We also [24] investigated how

recursives select authoritative servers in the wild and found

that recursives tend to prefer authoritatives with shorter la-

tency, but query all authoritatives for diversity. We confirm

Yu’s work and focus on authoritative selection during DDoS

from several perspectives.

Authoritatives during DDoS: We investigated how the

Root DNS service behaved during the Nov. 2015 DDoS at-

tacks [22]. This report focuses on the interactions of IP any-

cast and both latency and reachability, as seen from RIPE

Atlas. Rather than look at aggregate behavior and anycast,

our methodology here examines how clients interact with

their recursive resolvers, while this prior work focused on

authoritatives only, bypassing recursives. In addition, here

we have full access to clients and authoritatives traffic during

our experiments, and we evaluate DDoS with controlled loss

rates. The prior study has incomplete data and focuses on

specific results of two events. These differences stem from

their study of natural experiments from real-world events

and our controlled experiments.

8 IMPLICATIONS
We evaluated DNS resilience, showing that caches and retries

can cover up the effects of a DDoS attack; provided the cache

is full and some requests can get to authoritative servers.

Recent attacks on DNS services have had somewhat dif-

ferent outcomes for users. The Root Server System has often

been a target, with recent attacks in Nov. 2015 [37] and

June 2016 [38]. The DNS Root has 13 authoritative “letters”,

each an authoritative “server” implemented with some or

many IP anycast instances. Analysis of these DDoS events

showed that their effects were uneven across letters, with

some or all anycast instances of many letters showing high

loss, while others showed little or no effects (see Moura

et al. [22] for details). However, the Root Operators report
“There are no known reports of end-user visible error condi-

tions during, and as a result of, this incident. Because the DNS

protocol is designed to cope with partial reachability. . . ” [37].

13

In Oct. 2016, a much larger attack was directed at Dyn, a

provider of DNS service for many second-level domains [14].

Although Dyn has a capable infrastructure and immediately

took steps to address service problems, there were reports of

user-visible service disruption in the technical and even pop-

ular press [30]. Reports describe intermittent failure of promi-

nent websites including “Twitter, Netflix, Spotify, Airbnb,

Reddit, Etsy, SoundCloud and The New York Times”.

Our work can partially explain these very different out-

comes. The Root DNS saw few or no user-visible problems be-

cause data in the root zone is cachable for a day or more, and

because multiple letters and many anycast instances were

continuously available. (All measurements in this paragraph

are as of 2018-05-22.) Records in the root zone have TTLs of

1 to 6 days, and www.root-servers.org reports 922 anycast

instances operating across the 13 authoritative servers. Dyn

also operates a large infrastructure (https://dyn.com/dns/ne

twork-map/ reports 20 “facilities”), and faced a larger attack

(reports of 1.2 Tb/s [42], compared to estimates of 35Gb/s

for the Nov. 2015 root attack [22]). But a key difference is all
of the Dyn’s customers listed above use DNS-based CDNs

(for a description, see [8]) with multiple, Dyn-hosted DNS

components with TTLs that range from 120 to 300 s.

Our experiments can explain the root cause behind these

different outcomes. Users of the root benefited from caching

and saw performance like Experiment E (Figure 8a), because

root contents (TLDs like .com and country codes) are pop-

ular and certainly cached in recursives, and because some

root letters were always available to refresh caches. By con-

trast, users requiring domains with very short TTLs (like the

websites that had problems) receive performance more like

Experiment I (Figure 8d) or Experiment C (Figure 6c). Even

though these services are very popular, short TTLs allow

them very little benefit from caching during an extended

interruption of DNS service.

This example shows the importance DNS’s multiple meth-

ods of resilience (caching, retries, and at least partial avail-

ability of one authoritative). It suggests that CDN operators

may wish to consider longer timeouts (Experiment H sug-

gests 30 minutes, Figure 8c), to allow caching to serve some

role, giving DNS operators deploy defenses.

Finally, this evaluation helps complete our picture of DNS

latency and reliability for DNS services that may consist of

multiple authoritatives, some or all using IP anycast with

multiple sites. To minimize latency, prior work has shown

a single authoritative using IP anycast should maximize ge-

ographic dispersion of sites [41]. The latency of an overall

DNS service with multiple authoritatives can be limited by

the one with largest latency [24]. Prior work about resilience

to DDoS attack has shown that individual IP anycast sites

will suffer under DDoS as a function of the attack traffic

that site receives relative to its capacity [22]. We show that

the overall reliance of a DNS service composed of multiple

authoritatives using IP anycast tends to be as resilient as

the strongest individual authoritative. The reason for these

opposite results is that, in both cases, recursive resolvers will

try all authoritatives of a given service. For latency, they will

sometimes chose a distant authoritative, but for resilience,

they will continue until they find the most available authori-

tative.

9 CONCLUSIONS
This paper represents the first study of how the DNS resolu-

tion system behaves when authoritative servers are under

DDoS attack. Caching and retries at recursive resolvers are

key factors in this behavior. We show that together, caching

and retries by recursive resolvers greatly improve the re-

silience of the DNS as a whole. In fact, they can largely cover

over partial DDoS attacks for many users. As one example,

we show that half of users continue to receive service even

when all authoritative servers for a given domain are under

a DDoS that causes 90% request loss. The primary cost of

DDoS for users can be greater latency, but even this penalty

is uneven across users, with a few getting much greater la-

tency while some see no or little change. Finally, we show

that one result retries is that traffic from legitimate users

to authoritatives greatly increases (up to 8×) during service

interruption, and that this effect is magnified by complex,

multi-layer recursives resolver systems. The key outcome

of work is to quantify the importance of caching in recur-

sives to resilience, encouraging use of at least moderate TTLs

wherever possible.

Acknowledgments
The authors would like to thank Jelte Jansen, Benno Overeinder,

Marc Groeneweg, and Wes Hardaker for their valuable comments

on paper drafts.

Giovane C. M. Moura and Moritz Müller, and Marco Davids

developed this work as part of the SAND project (http://www.sand

-project.nl).

This research has been partially supported by measurements

obtained from RIPEAtlas, an openmeasurements platform operated

by RIPE NCC.

John Heidemann’s research is partially sponsored by the Air

Force Research Laboratory and the Department of Homeland Se-

curity under agreements number FA8750-17-2-0280 and FA8750-

17-2-0096. The U.S. Government is authorized to reproduce and

distribute reprints for Governmental purposes notwithstanding any

copyright notation thereon.

REFERENCES
[1] 1.1.1.1. The Internet’s Fastest, Privacy-First DNS Resolver. https:

//1.1.1.1/, Apr. 2018.

[2] Almeida, M., Finamore, A., Perino, D., Vallina-Rodriguez, N., and

Varvello, M. Dissecting DNS Stakeholders in Mobile Networks. In

Proceedings of the 13th International Conference on Emerging Network-
ing EXperiments and Technologies (New York, NY, USA, 2017), CoNEXT

14

www.root-servers.org
https://dyn.com/dns/network-map/
https://dyn.com/dns/network-map/
.com
http://www.sand-project.nl
http://www.sand-project.nl
https://1.1.1.1/
https://1.1.1.1/

’17, ACM, pp. 28–34.

[3] Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein,

E., Cochran, J., Durumeric, Z., Halderman, J. A., Invernizzi, L.,

Kallitsis, M., Kumar, D., Lever, C., Ma, Z., Mason, J., Menscher, D.,

Seaman, C., Sullivan, N., Thomas, K., and Zhou, Y. Understanding

the Mirai botnet. In Proceedings of the 26th USENIX Security Symposium
(Vancouver, BC, Canada, Aug. 2017), USENIX, pp. 1093–1110.

[4] Arbor Networks. Worldwide infrastructure security report. Tech.

Rep. 2012 Volume VIII, Arbor Networks, Sept. 2012.

[5] Bajpai, V., , Eravuchira, S., Schönwälder, J., Kisteleki, R., and

Aben, E. Vantage Point Selection for IPv6 Measurements: Benefits and

Limitations of RIPE Atlas Tags. In IFIP/IEEE International Symposium
on Integrated Network Management (IM 2017) (Lisbon, Portugal, May

2017).

[6] Bajpai, V., Eravuchira, S. J., and Schönwälder, J. Lessons learned

from using the RIPE Atlas platform for measurement research. SIG-
COMM Comput. Commun. Rev. 45, 3 (July 2015), 35–42.

[7] Bush, R., Karrenberg, D., Kosters, M., and Plzak, R. Root name

server operational requirements. RFC 2870, Internet Request For

Comments, June 2000. (also Internet BCP-40).

[8] Calder, M., Flavel, A., Katz-Bassett, E., Mahajan, R., and Padhye,

J. Analyzing the performance of an anycast CDN. In Proceedings of
the ACM Internet Measurement Conference (Tokyo, Japan, Oct. 2015),
ACM.

[9] de Oliveira Schmidt, R., Heidemann, J., and Kuipers, J. H. Any-

cast Latency: How Many Sites Are Enough? In Passive and Active
Measurements (PAM) (2017), pp. 188–200.

[10] DNS OARC. DITL Traces and Analysis. https://www.dns-oarc.net/in

dex.php/oarc/data/ditl/2018, Apr. 2018.

[11] Elz, R., Bush, R., Bradner, S., and Patton,M. Selection andOperation

of Secondary DNS Servers. RFC 2182 (Best Current Practice), July

1997.

[12] Google. Public DNS. https://developers.google.com/speed/public-d

ns/, Jan. 2018.

[13] Hao, S., and Wang, H. Exploring Domain Name Based Features on

the Effectiveness of DNS Caching. SIGCOMM Comput. Commun. Rev.
47, 1 (Jan. 2017), 36–42.

[14] Hilton, S. Dyn analysis summary of Friday October 21 attack. Dyn

blog https://dyn.com/blog/dyn-analysis-summary-of-friday-october

-21-attack/, Oct. 2016.

[15] ICANN. RSSAC002: RSSAC Advisory on Measurements of the Root

Server System. https://www.icann.org/en/system/files/files/rssac

-002-measurements-root-20nov14-en.pdf, Nov. 2014.

[16] Kottler, S. February 28th DDoS Incident Report | Github Engineering,

Mar. 2018. . https://githubengineering.com/ddos-incident-report/.

[17] Lawrence, D., and Kumari, W. Serving Stale Data to Improve DNS

Resiliency. https://tools.ietf .org/html/draft-tale-dnsop-serve-stale-02,

Oct. 2017.

[18] Lawrence, D., and Kumari, W. Serving Stale Data to Improve DNS

Resiliency-02. Internet Draft, Oct. 2017. https://www.ietf .org/archive

/id/draft-tale-dnsop-serve-stale-02.txt.

[19] Mockapetris, P. Domain names - concepts and facilities. RFC 1034

(Internet Standard), Nov. 1987. Updated by RFCs 1101, 1183, 1348, 1876,

1982, 2065, 2181, 2308, 2535, 4033, 4034, 4035, 4343, 4035, 4592, 5936,

8020.

[20] Mockapetris, P. Domain names - implementation and specification.

RFC 1035 (Internet Standard), Nov. 1987. Updated by RFCs 1101, 1183,

1348, 1876, 1982, 1995, 1996, 2065, 2136, 2181, 2137, 2308, 2535, 2673,

2845, 3425, 3658, 4033, 4034, 4035, 4343, 5936, 5966, 6604, 7766.

[21] Morales, C. February 28th DDoS Incident Report | Github

EngineeringNETSCOUT Arbor Confirms 1.7 Tbps DDoS

Attack; The Terabit Attack Era Is Upon Us, Mar. 2018.

https://www.arbornetworks.com/blog/asert/netscout-arbor-c

onfirms-1-7-tbps-ddos-attack-terabit-attack-era-upon-us/.

[22] Moura, G. C. M., de O. Schmidt, R., Heidemann, J., de Vries, W. B.,

Müller, M.,Wei, L., andHesselman, C. Anycast vs. DDoS: Evaluating

the November 2015 root DNS event. In Proceedings of the ACM Internet
Measurement Conference (Nov. 2016).

[23] Moura, G. C. M., Heidemann, J., Müller, M., de O. Schmidt, R., and

Davids, M. Datasets from “when the dike breaks: Dissecting DNS

defenses during DDoS”. Web page https://ant.isi.edu/datasets/dns/#

Moura18a_data, May 2018.

[24] Müller, M., Moura, G. C. M., de O. Schmidt, R., and Heidemann,

J. Recursives in the wild: Engineering authoritative DNS servers. In

Proceedings of the ACM Internet Measurement Conference (London, UK,
2017), pp. 489–495.

[25] OpenDNS. Setup Guide: OpenDNS. https://www.opendns.com/setu

pguide/, Jan. 2018.

[26] Pan, J., Hou, Y. T., and Li, B. An overview of dns-based server se-

lections in content distribution networks. Computer Networks 43, 6
(2003), 695–711.

[27] Pang, J., Akella, A., Shaikh, A., Krishnamurthy, B., and Seshan, S.

On the Responsiveness of DNS-based Network Control. In Proceedings
of the 4th ACM SIGCOMM Conference on Internet Measurement (New
York, NY, USA, 2004), IMC ’04, ACM, pp. 21–26.

[28] Pang, J., Hendricks, J., Akella, A., De Prisco, R., Maggs, B., and

Seshan, S. Availability, usage, and deployment characteristics of

the domain name system. In Proceedings of the 4th ACM SIGCOMM
Conference on Internet Measurement (New York, NY, USA, 2004), IMC

’04, ACM, pp. 1–14.

[29] Paul Vixie and Gerry Sneeringer and Mark Schleifer. Events of

21-oct-2002, Oct. 2002. http://c.root-servers.org/october21.txt.

[30] Perlroth, N. Hackers used new weapons to disrupt major websites

across U.S. New York Times (Oct. 22 2016), A1.
[31] Perlroth, N. Tally of cyber extortion attacks on tech companies grows.

New York Times Bits Blog, http://bits.blogs.nytimes.com/2014/06/19/ta

lly-of-cyber-extortion-attacks-on-tech-companies-grows/, June 2016.

[32] Peterson, A. Ec2 resolver changing ttl on dns answers? Post on the

DNS-OARC dns-operations mailing list, https://lists.dns-oarc.net/pipe

rmail/dns-operations/2017-November/017043.html, Nov. 2017.

[33] Quad9. Quad9 | Internet Security & Privacy In a Few Easy Steps.

https://quad9.net, Jan. 2018.

[34] RIPE NCC. RIPE Atlas measurement IDS. https://atlas.ripe

.net/measurements/ID, Dec. 2017. ID is the experiment ID:

TTL60: 10443671, TTL1800: 10507676, TTL3600: 10536725, TTL86400:

10579327, TTL3600-10min: 10581463, A:10859822, B: 11102436, C

:11221270, D:11804500, E: 11831403, F: 11831403, G: 12131707,

H:12177478 , I: 12209843.

[35] RIPE NCC Staff. RIPE Atlas: A Global Internet Measurement Network.

Internet Protocol Journal (IPJ) 18, 3 (Sep 2015), 2–26.

[36] RIPE Network Coordination Centre. RIPE Atlas - Raw data struc-

ture documentations,https://atlas.ripe.net/docs/data_struct/, 2018.

[37] Root Server Operators. Events of 2015-11-30, Nov. 2015. http:

//root-servers.org/news/events-of-20151130.txt.

[38] Root Server Operators. Events of 2016-06-25. Tech. rep., Root

Server Operators, June 29 2016.

[39] Root Server Operators. Root DNS, Feb. 2017. http://root-servers.o

rg/.

[40] Santanna, J. J., van Rijswijk-Deij, R., Hofstede, R., Sperotto, A.,

Wierbosch, M., Granville, L. Z., and Pras, A. Booters—an analysis

of DDoS-as-a-Service attacks. In Proceedings of the 14th IFIP/IEEE
Interatinoal Symposium on Integrated Network Management (Ottowa,
Canada, May 2015), IFIP.

[41] Schmidt, R. d. O., Heidemann, J., and Kuipers, J. H. Anycast latency:

15

https://www.dns-oarc.net/index.php/oarc/data/ditl/2018
https://www.dns-oarc.net/index.php/oarc/data/ditl/2018
https://developers.google.com/speed/public-dns/
https://developers.google.com/speed/public-dns/
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://www.icann.org/en/system/files/files/rssac-002-measurements-root-20nov14-en.pdf
https://www.icann.org/en/system/files/files/rssac-002-measurements-root-20nov14-en.pdf
https://githubengineering.com/ddos-incident-report/
https://tools.ietf.org/html/draft-tale-dnsop-serve-stale-02
https://www.ietf.org/archive/id/draft-tale-dnsop-serve-stale-02.txt
https://www.ietf.org/archive/id/draft-tale-dnsop-serve-stale-02.txt
https://www.arbornetworks.com/blog/asert/netscout-arbor-confirms-1-7-tbps-ddos-attack-terabit-attack-era-upon-us/
https://www.arbornetworks.com/blog/asert/netscout-arbor-confirms-1-7-tbps-ddos-attack-terabit-attack-era-upon-us/
https://ant.isi.edu/datasets/dns/#Moura18a_data
https://ant.isi.edu/datasets/dns/#Moura18a_data
https://www.opendns.com/setupguide/
https://www.opendns.com/setupguide/
http://c.root-servers.org/october21.txt
http://bits.blogs.nytimes.com/2014/06/19/tally-of-cyber-extortion-attacks-on-tech-companies-grows/
http://bits.blogs.nytimes.com/2014/06/19/tally-of-cyber-extortion-attacks-on-tech-companies-grows/
https://lists.dns-oarc.net/pipermail/dns-operations/2017-November/017043.html
https://lists.dns-oarc.net/pipermail/dns-operations/2017-November/017043.html
https://quad9.net
https://atlas.ripe.net/measurements/ID
https://atlas.ripe.net/measurements/ID
https://atlas.ripe.net/docs/data_struct/
http://root-servers.org/news/events-of-20151130.txt
http://root-servers.org/news/events-of-20151130.txt
http://root-servers.org/
http://root-servers.org/

 0
 2500
 5000
 7500

 10000
 12500
 15000
 17500
 20000

 0 20 40 60 80 100

an
sw

er
s

mintues after start

AA AC CC CA

(a) TTL 60 s

 0
 2500
 5000
 7500

 10000
 12500
 15000
 17500
 20000

 0 20 40 60 80 100

an
sw

er
s

mintues after start

AA AC CC CA

(b) TTL 1800 s

 0
 2500
 5000
 7500

 10000
 12500
 15000
 17500
 20000

 0 20 40 60 80 100

an
sw

er
s

mintues after start

AA AC CC CA

(c) TTL 3600 s

 0
 2500
 5000
 7500

 10000
 12500
 15000
 17500
 20000

 0 20 40 60 80 100

an
sw

er
s

mintues after start

AA AC CC CA

(d) TTL 86400 s (1 day)

 0

 2500

 5000

 7500

 10000

 12500

 15000

 17500

 20000

 0 20 40 60 80 100

a
n

s
w

e
rs

mintues after start

AA AC CC CA

(e) TTL 3600 s (1 hour), Probing Interval T=10min

Figure 12: Fraction of query answer types over time

How many sites are enough? In Proceedings of the Passive and Ac-
tive Measurement Workshop (Sydney, Australia, Mar. 2017), Springer,

pp. 188–200.

[42] Schneier, B. Lessons from the Dyn DDoS attack. blog https://www.sc

hneier.com/essays/archives/2016/11/lessons_from_the_dyn.html, Nov.

2016.

[43] Schomp, K., Callahan, T., Rabinovich, M., and Allman, M. On

measuring the client-side DNS infrastructure. In Proceedings of the
2015 ACM Conference on Internet Measurement Conference (Oct. 2013),
ACM, pp. 77–90.

[44] Sengupta, S. After threats, no signs of attack by hackers. New York
Times (Apr. 1 2012), A1.

[45] SIDN Labs. .nl stats and data, Mar. 2017. http://stats.sidnlabs.nl/#net

work.

[46] Unbound. Unbound Documentation. https://www.unbound.net/docu

mentation/unbound.conf.html, Jan. 2018.

[47] Wei, L., and Heidemann, J. Does anycast hang up on you? In IEEE
International Workshop on Traffic Monitoring and Analysis (Dublin,
Ireland (June 2017).

[48] Weinberg, M., Wessels, D. Review and analysis of attack traffic

against A-root and J-root on November 30 and December 1, 2015. In:

DNS OARC 24 – Buenos Aires, Argentina. https://indico.dns-oarc.net/

event/22/session/4/contribution/7, April 2016.

[49] Wullink, M., Moura, G. C., Müller, M., and Hesselman, C. Entrada:

A high-performance network traffic data streaming warehouse. In Net-
work Operations and Management Symposium (NOMS), 2016 IEEE/IFIP
(Apr. 2016), IEEE, pp. 913–918.

[50] Yu, Y., Wessels, D., Larson, M., and Zhang, L. Authority server

selection in dns caching resolvers. SIGCOMM Comput. Commun. Rev.
42, 2 (Mar. 2012), 80–86.

A TTL MANIPULATIONS ACROSS
DATASETS

In §3.4, we saw that there are a number of AC-type answers—

queries that are answered by the authoritative even though

we expected them to be served from a cache. We now inves-

tigate the relation between the number of AC-answers with

regards the TTL used for the DNS records.

Figure 12 shows response types over time for our four

different TTLs. Analyzing these figures, we can see that with

exception of a 60 s, where all queries go to the AA, the num-

ber of AC answers is relatively constant. This consistency

suggests cache fragementation across the datasets. We also

see that AA and CC values alternate, given as caches entries

expires new queries are forwarded to the authoritatives.

B LIST OF PUBLIC RESOLVERS
We use the following list of public resolvers in §3.4. This list

is obtained by searching DuckDuckGo for “public” and “dns”

on 2018-01-06.

198.101.242.72 Alternate DNS

23.253.163.53 Alternate DNS

205.204.88.60 BlockAid Public DNS (or PeerDNS)

178.21.23.150 BlockAid Public DNS (or PeerDNS)

91.239.100.100 Censurfridns

89.233.43.71 Censurfridns

2001:67c:28a4:: Censurfridns

2002:d596:2a92:1:71:53:: Censurfridns

213.73.91.35 Chaos Computer Club Berlin

16

https://www.schneier.com/essays/archives/2016/11/lessons_from_the_dyn.html
https://www.schneier.com/essays/archives/2016/11/lessons_from_the_dyn.html
http://stats.sidnlabs.nl/#network
http://stats.sidnlabs.nl/#network
https://www.unbound.net/documentation/unbound.conf.html
https://www.unbound.net/documentation/unbound.conf.html
https://indico.dns-oarc.net/event/22/session/4/contribution/7
https://indico.dns-oarc.net/event/22/session/4/contribution/7

209.59.210.167 Christoph HochstÃďtter

85.214.117.11 Christoph HochstÃďtter

212.82.225.7 ClaraNet

212.82.226.212 ClaraNet

8.26.56.26 Comodo Secure DNS

8.20.247.20 Comodo Secure DNS

84.200.69.80 DNS.Watch

84.200.70.40 DNS.Watch

2001:1608:10:25::1c04:b12f DNS.Watch

2001:1608:10:25::9249:d69b DNS.Watch

104.236.210.29 DNSReactor

45.55.155.25 DNSReactor

216.146.35.35 Dyn

216.146.36.36 Dyn

80.67.169.12 FDN

2001:910:800::12 FDN

85.214.73.63 FoeBud

87.118.111.215 FoolDNS

213.187.11.62 FoolDNS

37.235.1.174 FreeDNS

37.235.1.177 FreeDNS

80.80.80.80 Freenom World

80.80.81.81 Freenom World

87.118.100.175 German Privacy Foundation e.V.

94.75.228.29 German Privacy Foundation e.V.

85.25.251.254 German Privacy Foundation e.V.

62.141.58.13 German Privacy Foundation e.V.

8.8.8.8 Google Public DNS

8.8.4.4 Google Public DNS

2001:4860:4860::8888 Google Public DNS

2001:4860:4860::8844 Google Public DNS

81.218.119.11 GreenTeamDNS

209.88.198.133 GreenTeamDNS

74.82.42.42 Hurricane Electric

2001:470:20::2 Hurricane Electric

209.244.0.3 Level3

209.244.0.4 Level3

156.154.70.1 Neustar DNS Advantage

156.154.71.1 Neustar DNS Advantage

5.45.96.220 New Nations

185.82.22.133 New Nations

198.153.192.1 Norton DNS

198.153.194.1 Norton DNS

208.67.222.222 OpenDNS

208.67.220.220 OpenDNS

2620:0:ccc::2 OpenDNS

2620:0:ccd::2 OpenDNS

58.6.115.42 OpenNIC

58.6.115.43 OpenNIC

119.31.230.42 OpenNIC

200.252.98.162 OpenNIC

217.79.186.148 OpenNIC

81.89.98.6 OpenNIC

78.159.101.37 OpenNIC

203.167.220.153 OpenNIC

82.229.244.191 OpenNIC

216.87.84.211 OpenNIC

66.244.95.20 OpenNIC

207.192.69.155 OpenNIC

72.14.189.120 OpenNIC

2001:470:8388:2:20e:2eff:fe63:d4a9 OpenNIC

2001:470:1f07:38b::1 OpenNIC

2001:470:1f10:c6::2001 OpenNIC

194.145.226.26 PowerNS

77.220.232.44 PowerNS

9.9.9.9 Quad9

2620:fe::fe Quad9

195.46.39.39 SafeDNS

195.46.39.40 SafeDNS

193.58.251.251 SkyDNS

208.76.50.50 SmartViper Public DNS

208.76.51.51 SmartViper Public DNS

78.46.89.147 ValiDOM

88.198.75.145 ValiDOM

64.6.64.6 Verisign

64.6.65.6 Verisign

2620:74:1b::1:1 Verisign

2620:74:1c::2:2 Verisign

77.109.148.136 Xiala.net

77.109.148.137 Xiala.net

2001:1620:2078:136:: Xiala.net

2001:1620:2078:137:: Xiala.net

77.88.8.88 Yandex.DNS

77.88.8.2 Yandex.DNS

2a02:6b8::feed:bad Yandex.DNS

2a02:6b8:0:1::feed:bad Yandex.DNS

109.69.8.51 puntCAT

C CACHING OF REFERRALS
In §4.1, we analyzed the caching of A records for ns[1-5].dns

.nl. In this section, we analyze the caching of referrals of two
popular domains under .nl: google.nl and www.google.nl.

Whenever a recursive asks for the A record of google.nl

to a .nl authoritative server, it does not get an IPv4 address

as answer (or its A or AAAA record). Instead, it obtains

NS records for the authoritative servers of google.nl (dig
@ns1.dns.nl A google.nl illustrates that). In DNS, these

NS answers to A queries are known as referral, since a client
is referred to another authoritative server.

In this section, we analyze queries for A records of goog

le.nl and www.google.nl — which are both answered with

referrals by our .nl servers – using the same methodology

as in §4.1.These referrals have a TTL of 3600 s (1 hour) and

contain the NS records ns1-ns4.google.com.

After receiving these referrals, the client (or its recursive)

will need to perform two tasks:

(1) Retrieve A (or AAAA) records for ns1-ns4.google.com,

which have a TTL of 4 days (172800 s).

(2) Ask directly the IP address of the previous answer

(#1) for the A record of google.nl and www.google.nl,

17

ns[1-5].dns.nl
ns[1-5].dns.nl
.nl
google.nl
www.google.nl
google.nl
.nl
google.nl
google.nl
google.nl
www.google.nl
.nl
ns1-ns4.google.com
ns1-ns4.google.com
google.nl
www.google.nl

 0

 5000

 10000

 15000

 20000

 25000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

cache-onlynormal normal

an
sw

er
s

minutes after start

OK SERVFAIL No answer

(a) Experiment D: 1800-50p-10min-ns1; arrows indicate DDoS
start and recovery

 0

 5000

 10000

 15000

 20000

 25000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

cache-onlynormal normal

an
sw

er
s

minutes after start

OK SERVFAIL No answer

(b) Experiment G: 300-75p-10min-2Nses; arrows indicate DDoS
start and recovery

Figure 14: Answers received during DDoS attacks (ex-
tra graphs).

��
����
����
����
����
����
����
����
����
����

��

�� ���� ����� ����� ����� ����� ����� ����� �����

�
�
�

���

Figure 13: ECDF of ∆t (ms) for recursives with at least
5 queries to the delegated domains google.nl and ww
w.google.nl. TTL A record 300 s, TTL NS record 4 days,
TTL delegation 1 hour.

which have a TTL of 300 s (5 minutes) at the time of

this analysis.

Thus, the A record answer for google.nl and www.google

.nl is valid for 300s. Once expired, the recursive will need to

ask again to ns1-ns4.google.com. As such, if caching works

as expected, we should not see the same recursive asking for

the A record answer for google.nl and www.google.nl to the

authoritative servers of .nl within one hour interval (given

the answer will be referrals that are valid for 1 hour).

However, we observed at the authoritatives of .nl more

than 6,600 recursives that send 80,492 queries the A record

of google.nl and www.google.nl before 1 hour,i.e., the TTL
of the referral.

Figure 13 shows the ECDF of time in between queries for

the same recursive (∆t). By definition, in this measurement

interval of 6 hours, we should expect that a recursive would

send only up to 6 to the .nl authoritatives. As such, any

recursive that sends more than this already suggest that

caching is not working as expected. Thus, in this figure, we

only show recursives that are not caching as expected.

Analyzing Figure 13, we observe that 33% of the recursives

re-send a query within 300 s which is ∼ to the TTL of the A

record google.nl and www.google.nl.

The implication of these findings for the operators of zones

that contain many delegations, like TLD operators, is that

their query load is not only influenced by the TTL of their

records, but also by the TTL of their delegated zones (since

caching does not work as expected all the time). The impact

of a DDoS attack against authoritatives of delegating zones

like .nl becomes visible to many recursives already after the

TTL of the delegated zones, like google.nl expires.

D EXTRA GRAPHS FROM PARTIAL
DDOS

Although we carried out all experiments listed in Table 4

(§5), the body of the paper provides graphs for key results

only. In this section, we include the graphs for experiments

D and G.

Figure 14 shows the number of answers for experiments D

and G, while Figure 15 shows the latency results. We can see

at Figure 14a that when 1NS fails (50%), there is no significant

changes in the number of answered queries. Besides, most

of the users will not notice in terms of latency (Figure 15a).

Figure 14b shows the results for Experiment G, in which

the TTL is 300s (thus half of the probing interval). Similarly

to experiment I, this experiment should not have caching

active given the TTL is shorter. Moreover, it has a pakce loss

rate of 75%. At this rate, we can see that the far majority (72%)

of users obtain an answer, with a certain latency increase

(Figure 15b).

E VPS EXPERIENCE DURING FAILURE
In §5.3 we discuss complete failures. So far we have ana-

lyze the behavior of the entire measurement. However, a

closer understanding of user experience can be understood

by analyzing what each VP experiences. Table 5 shows the

distribution of successful queries (correctly answered) for

18

google.nl
www.google.nl
www.google.nl
google.nl
www.google.nl
www.google.nl
ns1-ns4.google.com
google.nl
www.google.nl
.nl
.nl
google.nl
www.google.nl
.nl
google.nl
www.google.nl
.nl
google.nl

Min. q1 Med. Mean q3 Max. Max-AT Samples
A 1 3 6 4.97 7 14 1 18

B 1 18 19 18.84 19 25 18 24

C 1 12 13 12.72 13 18 12 18

Table 5: Distribution of OK queries per VP (Max-AT
refers to the number of queries that could be answered
by authoritatives when authoritatives were (partially)
reachable)

at1 at2

rn1 rn2 rn3 rn4 rn5 rn6 rn7 rn8

r1a r1b r1c

probe

authoritative
servers

recursives

stub resolver
atlas probe

Figure 16: probe 284777 on dataset i. all r1’s are con-
nected to all rn’s, which are connected to all at ’s.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100 120 140 160

la
te

nc
y

(m
s)

minutes after start

Median RTT
Mean RTT
75%ile RTT
90%ile RTT

(a) Experiment D: 50% packet loss on 1 NS only (1800s TTL)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100 120 140 160

la
te

nc
y

(m
s)

minutes after start

Median RTT
Mean RTT
75%ile RTT
90%ile RTT

(b) Experiment G: 75% packet loss (300s TTL)

Figure 15: Latency results; Shaded area indicates the
interval of an ongoing DDoS attack (extra graphs)

our datasets. The Max-authoritative value is the reference

value we use for comparison: it denotes that maximum value

of answers that could be achieved with no caching, only

answered by the authoritatives (essentially, the number of

measurement points minus the measurement points when

authoritatives were totally unreachable). And samples value

denotes the number of data points each VP may have as

maximum value.

For Experiment A, it can be seen that, without caching

caching, VPs would only have 1 answer out of 18 sent, for

the 15k+ VPs (Table 4). However, in this scenario, a median

VP has 6 queries answered, largely due to effects of caching.

And to retrieve these 6 answers, it takes 60 minutes (given

our probing interval is 10minutes), which is exactly the TTL

of the record (3600 s, or 60minutes).

However, for Experiments B and C, we see a different be-

havior: the median value of OK answers is only incremented

by 1 in comparison with Max-AT,i.e., if there would be no

caching. This is because the DDoS starts at t = 60m, upon of

which queries should be about to expire on most VPs (given

they had TTLs of 60m and 30m). Thus, in this case, caching

helped, but not as much. Without caching, Experiments B

and C would have obtained 18 and 12 answers correctly,

respectively. Thus, what we can learn from this is that oper-

ators cannot assume the TTL of their zone determines how

long all their clients will be covered in case of DDoS; it actu-

ally determines the upper bound (scenario A). The state of

each cache will determine that actual value.

F ANALYSIS OF RETRIES FROM A
SPECIFIC PROBE

In §6 we examined changes in legitimate traffic during a

DDoS event, showing traffic greatly increases because of

retries by each of possibly several recursive resolvers. That

analysis looked at aggregate statistics. We next examine a

specific probe to confirm our evaluation.

We consider RIPE Atlas Probe 28477, in Experiment I. This

probe is located in Australia. It has three “local recursives”

(R1a , R1b , R1c) and 8 “last layer” recursives (the ones that

ultimately send queries to authoritatives, Rn1–Rn8), as can
be seen in Figure 16.

In this section, we analyze all the incoming queries ar-

riving on our authoritatives for AAAA records of 28477.ca

chetest.nl. We do not analyze NS queries, since we cannot

associate them to this probe.

19

28477.cachetest.nl
28477.cachetest.nl

We then analyze data collected at both the client side (Ripe

Atlas probes) and the server side (Authoritative servers). We

show the summary of the results in Table 6. In this table, we

highlight in light color the probing intervals T in which the

simulated DDoS started (dataset I, 90% packet drop on both

authoritative servers – Table 4)).

Client Side: Analyzing this table, we can learn the fol-

lowing from the Client side:

During normal operations, we see 3:3:3 at the client side
(3 queries, 3 answers, and 3 R1n used in the answers). By

default, each Ripe Atlas probe sends a DNS query to each

R1n.
During the DDoS, this slightly change: we see 2 answers

from 2 R1s – the other either times out or SERVFAIL. Thus,

at 90% packet loss on both authoritatives, still 2 of 3 queries

are answered at the client (and there is no caching since the

TTL of records is shorter than the probing interval).

This is in fact a good result given the simulated DDoS.

Authoritative side: Now, let’s consider the authoritative
side:

In normal operation (before the DDoS), we see that the 3

queries sent by the clients (client view) lead to 3 to 6 queries

to be send by the Rn , which reach the authoritatives. Every

query is answered, and both authoritatives are used (# ATs).

We also see that the number of Rn used before the attack

changes from 2 to 6 (# Rn). This choice depends on how R1∗
choose their upper layer recursives (Rn−1) and ultimately

how Rn−1 chooses Rn.
We also can observe how each Rn chooses each author-

itative (# Rn-AT): this metric show the number of unique

combinations ofRn and authoritatives observed. For example,

for T = 1, wee see that three queries reach the authorita-

tives, but only 2 Rn were used. By looking at the number

of unique recursive-AT combination, we see that there are

three. As a consequence, one of the Rn must have used both

authoritatives.

During the DDos, however, things change: we see that the
still 3 queries send by probe 28477 (client side) now turn

into 11–29 queries received at the authoritatives, from the

maximum of 6 queries before the DDoS. The client remains

unaware of this.

We see three factors at play here:

(1) Increase in number of usedRn: we see that the num-

ber of number of used Rn also increases a little (3.6

average before to 4.5 during). (However, not all Rn
are used all the time during the DDoS. We have not

enough data of why this happens – but surely is how

the lower layer recursives chooses these ones, or how

they are set up.)

(2) Increase in the number of authoritatives used by
each Rn: Each Rn, in turns, contacts an average of 1.13

authoritatives before the attack (average of UniqRn-

AT/UniqRn). During the DDos, this number increases

to 1.37.

(3) Retrials by each recursive, either by switching au-

thoritatives or not: we found this to be the most im-

portant factor for this probe. We show the number of

queries sent by the top 2 recursives (QueriesTop2Rn)

and see that compared to the total number of queries,

they comprise the far majority.

For this probe, the answer of why so many queries is a

combination of factors, being the retrials by Rn the most

important one. From the client side, there is no strong indica-

tion that the client’s queries are leading to such an increase

in the number of queries to authoritatives during a DDoS.

G ADDITIONAL INFORMATION ABOUT
SOURCES OF RETRIES

In §6.2, we summarized sources of retries. Here we provide

additional experiments to confirm prior work by Yu et al. [50]

still holds. We next examine two popular recursive resolver

implementations: BIND 9.10.3 and Unbound 1.5.8.

To evaluate these implementations we deploy our own

recursive resolvers, and record traffic with the authoritatives

(cachetest.nl) up and then with them inaccessible. (We ignore

traffic from the recursives to other authoritatives.) For consis-

tency, we only retrieve AAAA records from our authoritative

servers. The recursives operates normally, learning about

the authoritatives from .nl and querying one or both based

on its internal algorithms. All queries are made with a cold

cache.

Figure 17 shows the results of this experiment, with nor-

mal behavior in the left two groups, and the inaccessible

DDoS attempts in the right two. Each group of bars counts

different types of queries that are made.

From this figure we see that, in normal operation, a few

queries are required to look up the target domain: the server

looks up AAAA records for both nameservers and then

queries the AAAA record for the target. This request is

with a cold cache, and because the AAAA-ns records do not

exist. Negative information will be cached for the AAAA-ns

requests, allowing those queries to be skipped for other, sub-

sequent requests to the domain. (And the AAAA-pid query

would be skipped if it was immediately re-requested.)

The two groups on the right show much more aggressive

queries during server failure. Both bind and unbound make

each specific request 6 or 7 times from each authoritative as

it tries to get the AAAA records for each of both nameservers

and the target record. This experiment is consistent with our

observation that we see 7× more traffic than usual during

near-complete failure.

We do not mean to suggest that these retries are incorrect—

recursives need to retry to account for packet loss. Both

20

cachetest.nl
.nl

T
Client View (Atlas probe) Authoritative Server View

Queries Answers # R1 Queries Answers # AT s # Rn
Max. (% total) Queries

(Rn −AT) (Que(Rn −AT)) (top-2 Rn’s)

1 3 3 3 3 3 2 2 3 1 (33.3%) 2;1

2 3 3 3 5 5 2 4 5 1 (20.0%) 2;1

3 3 3 3 6 6 2 6 6 1 (16.7%) 1;1

4 3 3 3 5 5 2 2 3 2 (40.0%) 4;1

5 3 3 3 3 3 2 3 3 1 (33.3%) 1;1

6 3 3 3 6 6 2 5 5 2 (33.3%) 2;1

7 3 2 2 29 3 2 2 4 10 (34.5%) 15;14

8 3 2 2 22 6 2 7 9 7 (31.8%) 10;7

9 3 2 2 21 1 2 3 6 9 (42.9%) 16;3

10 3 2 2 11 4 2 3 4 6 (54.5%) 8;2

11 3 2 2 21 3 2 4 6 15 (71.4%) 17;2

12 3 2 2 23 1 2 8 8 15 (65.2%) 15;2

13 3 3 3 3 3 2 3 3 1 (33.3%) 1;1

14 3 3 3 4 2 2 4 4 1 (25.0%) 1;1

15 3 3 3 8 8 2 7 7 7 (87.5%) 1;1

16 3 3 3 9 9 2 3 3 6 (66.7%) 6;3

17 3 3 3 9 9 2 5 5 5 (55.6%) 5;1

Table 6: Client and Authoritative view of AAAA queries (probe 28477, measurement I)

 0

 2

 4

 6

 8

 10

 12

 14

 16

BIND(Nor.) Unbound(Nor.) BIND-DDOS Ubound-DDOS

q
u

e
ri
e

s

AAAA(PID) to NS1
AAAA(PID) to NS2
AAAA(ns) to NS1
AAAA(ns) to NS2

Figure 17: Histogram of Queries from to cachetest.nl
authoritative servers

 0

 10

 20

 30

 40

 50

 0.1 1 10 100

q
u

e
ri
e

s
 s

e
n

t
(c

u
m

u
la

ti
v
e

)

time in between in seconds (log scale)

BIND

Unbound

Figure 18: Exponential back-off: queries timeseries
from BIND and Unbound to authoritative under total
failure. Points show switching from one authoritative
to another.

implementations do exponential backoff in the timing of

these requests – this can be seen in Figure 18. We point

out that exponential backoff is important, and encourage

all implementations to be careful about traffic to apparently

down authoritatives.

21

cachetest.nl

	Abstract
	1 Introduction
	2 Background
	2.1 DNS Resolvers: Stubs, Recursives, and Authoritatives
	2.2 Authoritative Replication and IP Anycast
	2.3 DNS Caching with Time-to-Live (TTLs)

	3 DNS Caching In Controlled Experiments
	3.1 Potential Impediments to Caching
	3.2 Measurement Design
	3.3 Datasets
	3.4 TTL distribution: expected vs. observed
	3.5 Public Recursives and Cache Fragmentation

	4 Caching in a Production Zone
	4.1 Requests at .nl's Authoritatives
	4.2 Requests at the DNS Root

	5 The Client's View of Authoritatives Under DDoS
	5.1 Emulating DDoS
	5.2 Clients During Complete Authoritatives Failure
	5.3 Discussion of Complete Failures
	5.4 Client Reliability During Partial Authoritative Failure
	5.5 Client Latency During Partial Authoritative Failure

	6 The Authoritative's Perspective
	6.1 Recursive-Authoritative Traffic during a DDoS
	6.2 Sources of Retries: Software and Multi-level Recursives

	7 Related Work
	8 Implications
	9 Conclusions
	References
	A TTL Manipulations across datasets
	B List of public resolvers
	C Caching of Referrals
	D Extra graphs from Partial DDoS
	E VPs Experience During Failure
	F Analysis of Retries from A Specific Probe
	G Additional Information about Sources of Retries

