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Abstract--There has been a sizable increase of interest
In object-based computer systems recently. Much of
this increase is attributable to DoD's massive commit-
ment to the Ada language project. Though Ada (DoD's
proposed standard language) may not fit everybody's
definition of an object-based language, it does incor-
porate key object-based concepts. In this paper we
attempt to characterize these systems and the underly-
Ing concepts of the object-based design methodology.
We also present case studies of two commerclally avail-
able cbject-oriented computers and point to issues
which require further study.

I. INTRODUCTION

The term ‘“object-based” has been used rather
loosely in several different contexts. In this paper we
will characterize object-based computer architectures
and discuss some of their major implications. While we
will not attempt to rigidly define the phrase "object-
based" as It relates to computer systems, we will explain
several object concepts and show how they are applied
to computer systems. It should be noted that it is actu-
ally the design methodology that is object-based, and
that object-based computer systems refer either to sys-
tems which have been designed using this methodoclogy,
or to systems which provide development cycle and/or
run-time support for object-based concepts. This is,
perhaps, most easlly illustrated in terms of software sys-
tems. There it describes software environments which
incorporate the concepts of data and program abstrac-
tion [1], and protection domains [2] through the use of
"objects.” Objects are singly addressable entities that
uniquely identify their contents. In terms of the IAPX
432's Ada Implementation [3, 4], objects are generally
grouped into packages that provide abstractions for
either programs or data. Smalitalk objects [5] also pro-
vide abstractions, but in a slightly different manner.
Implementations of both Ada and Smalitalk objects will be
discussed later. In terms of hardware, the phrase
"object-based"” is often used to refer to the architec-
tural support provided for data and program abstraction,
and protection domains. One aspect of this support can
be exemplified by an architecture where the primitive
operations for memory management, process dispatching,
Interprocess communication, or other operating system
type features are provided by the hardware. In this
type of system the implementation details of the memory
pool, process dispatching, or interprocess communication
mechanisms are hidden; and a conclse interface in the
form of Instructions which operate on the objects
corresponding to the respective mechanisms s
presented to the software operating system. Another
meaning which has been attached to object-based sys-
tems refers to systems where the object-based design
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ethodology has been used to actually specify the
rchitecture. When carried to an extreme, this idea has
ome very powerful implications. When design automa-
ion tools become sufficiently sophisticated, one might
@ able to economically customize individual batches of
LSl processors towards specific operations which
ppear unusually often in a given (limited) application.
his concept is closely related to the
ardware/software transparency issue which will be dis-
ussed shortly.

There are two major goals in developing object-
based software. The first is to reduce the total life-
cycle software cost. This entalls both increasing pro-
grammer productivity and reducing maintenance costs.
For reducing maintenance costs though, object concepts
alone may not suffice; the syntax used in the program-
ming environment must be such that it maps very closely
to a concise natural language description of the system.
IThe second goal, is to implement software systems which
resist both accidental and malicious corruption attempts.
Protection domalns are used for this purpose.

The major goals for developing object-based
hardware are to provide an efficient execution environ-
ment for the software system. A very attractive addition
to this goal, however, would be to design the system in
such a manner as to be-able to extend the abstraction
mechanism to effect a hardware/software (HW/SW)
transparency. The avallability of HW/SW transparency
would allow system designs to proceed without regard
for the final placement of the HW/SW boundary. The
entire system could be described by a suitable system
implementation language, implemented in software (as far
as physically possible), and then after sufficient perfor-
mance data was acquired appropriate modules could be
shifted to a hardware implementation. If the design
methodology was Iimplemented in the development
environment with sufficient scphistication the migration
from software to hardware would not require any code to
be rewritten, and the interface would already be speci-
fied. The hardware interface could occur at one of three
levels: bus level, similar to current arithmetic coproces-
sors such as the Intel 8087; memory (1/0) level, like
many existing 1/0 devices; or, conceivably, at a level
internal to the CPU involving an actual change in the CPU
architecture.

There are a few commercially available computer
systems which incorporate various object-based con-
cepts. The most notable of these systems, the Intel
IAPX 432, and the IBM System/38 [6] will be described
In case studies which appear later In the text. The
PP260 [7] was designed by Plessey Telecommunications
Research Laboratories for applications in telephone
switching systems. As such, it had to meet very
stringent reliability standards requiring the inclusion of
software error detection and recovery facilities, which
were achleved through the use of a capability [8]
mechanism. Another commercial entry |s the Apollo net-
work system [9]. It employs an object oriented network




operating system which supports a total address space
of 296 bytes. This space is comprised of an object name
of 64 bits which is unique in both space and time, and an
address space of 32 bits within each object. Several
universities have also developed systems which employ
object-based concepts. The most recent projects in
this group include Cm* [10], C.mmp [11] and cap [12]
Like most of their predecessors, these machines utilize
capability addressing techniques to Implement secure
protection domains. These protection domains (pack-
ages in Ada) can then be appropriately structured to
provide data and program abstractions.

Object-based machines are particularly well suited
to applications which have stringent requirements for
data security and program integrity. The high degree of
abstraction provided by the architecture also facilitates
the interconnection of several processors into either
tightly coupled multiprocessor systems and/or distri-
buted networks. Through the use of process/processor
abstraction Intel has achieved software transparent mul-
tiprocessing in their iAPX 432 system. In addition, the
Cm* system provides an example employing both tightly
coupled multiprocessing and distributed networking con-
cepts in one system.

Of course, all of the benefits of an object-based
system do not come without their price. All present sys-
tems rely on some form of capability addressing. In
current implementations these addressing mechanisms
greatly increase the address generation and translation
times, even when translation look-aside and caching
schemes are employed. For example, to copy a capabil-
ity on Cm* requires ten memory references [13], and on
the iAPX 432 nine memory references are required.

The following section discusses some key "object”
concepts and their implementations in more detail. Sec-
tion 1l contains case studies of two commercially avail-

able systems, the Intel IAPX 432 and the IBM Sys- |

tem/38. Concluding remarks, Including comments on
areas of further research, are made in section IV.

11. OBJECT-BASED CONCEPTS

design methodology and, hence, occurs at many levels.
The most common of these levels being data, programs, |
and in the case of Apollo-type network systems, entire|
programming environments. Of these, data abstraction Is‘
the most widely used and best understood.

In terms of Ada, data abstraction provides the useri
with a "private” (hidden) type and operations on objects
of that type [14]. Mary Shaw gives a more expanslve}
definition of an abstract data type [1]. An abstract
data type consists of a program unit that includes thé
following information:

Visible outside the type definition: the name of th;
type and the names and routine headers of all
operations (procedures and functlons) that are ;n:_-rl
mitted to use the representation of the type; some
languages (e.g. Ada) also include formal specifica‘-
tions of the values that variables of this type may
assume and of the properties of the operations. [

Not visible outside the type definition: the
representation of the type in terms of built-in data
types or other defined types, the bodies of the visi-
ble routines, and hidden routines that may be called
only from within the module.

Abstraction plays a central role in the object-based ‘

\ The efficient use of abstract data types requires
substantial support from the programming language.
ome of the more important areas of support include:
aming and scope rules, type checking (including across
compilation boundaries if separate compilations are sup-
Rorted), formal specification notations, and distributed
properties. Enforcement of naming and scope rules is
often implemented through the use of protection
domains, which will be discussed later. Type checking
between actual and formal parameters is more camplex
for abstract data types because new types may be
peflned during the compilation process. Notations for
formal specifications of the abstract data types must be
provided so that the users of the types are provided
iwith all necessary information. Finally, support must be
|provided by the abstract data types for any type-
‘speclfic interpretations required by the various con-
structs of the programming language, such as storage
‘allocation and synchronization.

‘ The construct for implementing abstract data types
in Ada is the package. The Ada package [15] effec-
‘tlvely places a wall around a group of declarations and
| only permits access to those declarations which were
intended to be visible. Ada packages actually come in
two parts, the specification and the body. The package
specification formally specifies the abstract data type
and its interface to the outside world. The body of the
package contains the hidden implementation details. The
relationship between Ada packages and objects (in the
context of the iIAPX 432) will be discussed in the IAPX
432 case study.

Data abstraction in Smalltalk also fits the definition
given above. However, the implementation is very dif-
| ferent. Data abstraction is very integrally related to the
concept of Smalltalk objects [5, 18], so a brief introduc-
tion to objects will precede the references to data
abstraction.

In Smallitalk all information is represented in the form
of objects. An cbject is defined as a package containing
information and descriptions of all the manipulations that
may be performed on the information. The manipulation
of information is controlled by the passing of messages
between objects. A Smalltalk message is defined as a
selection of one particular manipulation of an object.
The object containing the information to be manipulated
is called the receiver of the message. When an object
receives a message, it examines a symbolic name con=
tained in the message called a selector. The selector
names the desired manipulation, but it does not specify
how it is to be performed. The description of how the
manipulation is to be performed is contained in the object
itself. In Smalltalk, the programmer sends a message to
invoke a manipulation instead of calling a procedure.
However, the sending of a Smalltalk message differs from
a procedure call in that the message only names the
manipulation while a procedure contains the detailed
steps to be performed in the manipulation. Another
important difference Is that in a conventional
procedure-oriented system the same manipulation is per-
formed each time a named procedure is called, while
sending Smalltalk messages with the same selectors
(same names) to different objects may result in different
manipulations, since it is the receiver which determines
exactly what manipulation is to be performed.

In addition to a selector, a message may contain the
names of other objects that take part in the manipula-
tion. These names are called the message arguments.
For example, If the object is named 'student,” the



operating system which supports a total address space
of 296 bytes. This space is comprised of an object name
of 64 bits which is unique in both space and time, and an
address space of 32 bits within each object. Several
universities have also developed systams which employ
object-based concepts. The most recent projects In
this group include Cm* [10], C.mmp [11] and CAP [12].
Like most of their predecessors, these machines utilize
capability addressing techniques to Implement secure
protection domains. These protection domains (pack-
ages Iin Ada) can then be appropriately structured to
provide data and program abstractions.

Object-based machines are particularly well suited
to applications which have stringent requirements for
data security and program integrity. The high degree of
abstraction provided by the architecture also facilitates
the interconnection of several processors Into either
tightly coupled multiprocessor systems and/or distri-
buted networks. Through the use of process/processor
abstraction Intel has achieved software transparent mul-
tiprocessing in their IAPX 432 system. In addition, the
Cm* system provides an example employing both tightly
coupled multiprocessing and distributed networking con-
cepts in one system.

Of course, all of the benefits of an object-based
system do not come without their price. All present sys-
tems rely on some form of capability addressing. In
current implementations these addressing mechanisms
greatly increase the address generation and translation
times, even when translation look-aside and caching
schemes are employed. For example, to copy a capabil-
ity on Cm* requires ten memory references [13], and on
the IAPX 432 nine memory references are required.

The following section discusses some key "object"”
concepts and their implementations in more detail. Sec-
tion 11l contains case studies of two commercially avail-
able systems, the Intel IAPX 432 and the 1BM Sys-
tem/38. Concluding remarks, Including comments on
areas of further research, are made in section IV.

11, OBJECT-BASED CONCEPTS

Abstraction plays a central role in the object-based
design methodology and, hence, occurs at many levels.
The most common of these levels being data, programs,
and in the case of Apollo-type network systems, entire
programming environments. Of these, data abstraction is
the most widely used and best understood.

In terms of Ada, data abstraction provides the user
with a "private” (hidden) type and operations on objects
of that type [14]). Mary Shaw gives a more expansive
definition of an abstract data type [1]. An abstract
data type consists of a program unit that includes the
following information:

Visible outside the type definition: the name of the
type and the names and routine headers of all
operations (procedures and functlons) that are per-
mitted to use the representation of the type; some
languages (e.g. Ada) also Include formal specifica-
tions of the values that variables of this type may
assume and of the properties of the operations.

Not visible outside the type definition: the
representation of the type in terms of built-in data
types or other defined types, the bodies of the visi-
ble routines, and hidden routines that may be called
only from within the module.

The efficient use of abstract data types requires
gjubstantial support from the programming language.
Some of the more important areas of support include:
Hamlng and scope rules, type checking (including across
Jompllatlon boundaries if separate compilations are sup-
ported), formal specification notations, and distributed
properties. Enforcement of naming and scope rules is
often implemented through the use of protection
domains, which will be discussed later. Type checking
Between actual and formal parameters is more complex
for abstract data types because new types may be
efined during the compilation process. Notations for
'ormal specifications of the abstract data types must be
rovided so that the users of the types are provided
ith all necessary information. Finally, support must be
rovided by the abstract data types for any type-
pecific interpretations required by the various con-
$tructs of the programming language, such as storage
gllocaticn and synchronization.

The construct for Implementing abstract data types
In Ada is the package. The Ada package [16] effec-
ively places a wall around a group of declarations and
only permits access to those declarations which were
intended to be visible. Ada packages actually come in
two parts, the specification and the body. The package
specification formally specifies the abstract data type
[
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ind its interface to the ocutside world. The body of the
»ackage contains the hidden implementation detalls. The
elationship between Ada packages and objects (in the
sontext of the IAPX 432) will be discussed in the IAPX
132 case study.

Data abstraction in Smalitalk also fits the definition
iven above. However, the Implementation is very dif-
erent. Data abstraction is very integrally related to the
oncept of Smalltalk objects [5, 18], so a brief introduc-
lon to objects will precede the references to data
bstraction.

In Smalitalk all information is represented in the form
f objects. An object is defined as a package containing
formation and descriptions of all the manipulations that
ay be performed on the information. The manipulation
of information is controlled by the passing of messages
between objects. A Smalltalk message is defined as a
selection of one particular manipulation of an object.
1
f

[he object containing the information to be manipulated
called the receiver of the message. When an object
eceives a message, it examines a symbolic name con-
ained in the message called a selector. The selector
ames the desired manipulation, but it does not specify
ow it is to be performed. The description of how the
anipulation is to be performed is contained in the object
self. In Smalltalk, the programmer sends a message to
voke a manipulation Instead of calling a procedure.
wever, the sending of a Smalltalk message differs from
procedure call in that the message only names the
anipulation while a procedure contains the detailed
teps to be performed in the manipulation. Another
portant difference Is that in a conventional
rocedure-oriented system the same manipulation is per-
ormed each time a named procedure is called, while
ending Smalitalk messages with the same selectars
same names) to different objects may result in different
anipulations, since It Is the receiver which determines
xactly what manlpulation is to be performed.

In addition to a selector, a message may contain the
ames of other objects that take part in the manipula-
tion. These names are called the message arguments.
For example, if the object is named "student,” the




programmer might send a message with the selector
"abuse.” The message could also contain an argument
which specifies how the student is to be abused.

The description of a single type of manipulation of
the information in an object is called a method. A method
is similar to a procedure in that it describes a sequence
of actions to be performed, but unlike a procedure It
cannot be separated from the object. Methods may only
be performed as the result of receiving a message. Thus
a method cannot call another method directly; it must
send a message to the object contalning the method.

Smalltalk objects use the concept of data abstrac-
tion. From "outside”” an object the only thing that can be
done is to send it a message. The detalils of its informa-
tlon and its methods are hidden. An object's set of mes-
sages that it can receive are called its protocol. The
external view of an object is strictly limited to its proto~
col. Internaily, an object consists of its methods and a
sat of variables that refer to other cbjects. These vari-
ables are called the object's private variables. The
methods and the private variables are analogous to the
procaduras and the data In a procedure-oriented system.
Howevaer, the distinction between procedures and data is
localized strictly to the inside of the object.

Programs and subprograms provide another common
level of abstraction. Program abstraction provides
operations on structuraes of objects where the reprasen-
tation of the structure as well as access to the object
itself are hidden from the user. This provides a stronger
form of hiding than data abstraction since access to the
object as well as its structured representation is hidden.

Program abstraction in Ada is realized through gen-
eric package instantiation. The generic package is really
a template for packages which will accept abstractions
(usually data, but in the case of Intel's extended Ada it
could be another package) as actual parameters. This
rapresents a slightly higher level of abstraction than
data abstraction, because the structure of the object(s)
being manipulated Is completely hidden within the pack-
age body. The hidden object structure is accessed
through the internal non-local variables of the operations
declared in the package specification. Manipulation of
the object structure occurs as a controlled side effect,
which is strictly contained within the package body, of
the requested operation. In this manner, generic program
abstraction supports an environment in which the speci-
fied (public) operations either directly or indirectly
transform a hidden internal state which depends only on
past operations applied to the initial state of the system.

While it is apparent that Smalltalk objects have
already met the definition of program abstraction, we
have not shown how the relationship between objects of
similar characteristics can be exploited. This is essen-
tial if the concept of program abstraction is to have any
significant practical value. When program abstraction is
efficiently Implemented it leads to the elimination of
redundant programming effort (e.g. a sort routine need
be written only once, regardless of the different types
of objects to be sorted) and a reduction of maintenance
costs (e.g. Improvements to our sort routine are made in
only one piece of code). Operations on objects of dif-
ferent types, but with similar characteristics, are real-
ized through the use of classes and instances. A class
Is a description of a type of object, while an instance is
an object of a particular class. Every object is an
instance of a class, and it is possible to have multiple
instances of a particular class. The methods of an

gbject are found in its class, so all instances of a partic-
lar class have the same protocol. The class may also
pecify some of the private variables for cbjects in the
lass. These are called class variables and they are
hared by all instances of the class. A class of objects
ay also include private variables which are specified
dividually for each instance. These are cailed instance
ariables. All instances of a class have the same number
f instance variables, but their values may differ
etween instances. A Smalltaik program is, then, organ-
ed as a set of class templates which define all user
efined object classes. The class templates include the
class names, instance variable names, and methods. A
method is described by its message pattern, which
speacifies the selector used to invoke It, its temporary
variable names, which specify dynamic local variables,
nd a sequence of expressions.

We have seen that the concepts of data and pro-
ram abstraction in Smalltalk are essentially one in the
ame. It has been proposed that these concepts be
erged together In Ada as well [14]. In fact, Intel has
Iready taken a big step in this direction with their
xtensions to the Ada language [16]. The merging of
rogram and data abstraction concepts would result in a
nified abstraction mechanism that would eliminate two
elatively orthogonal concepts. The software designer
ould then be relieved of the artificial choice between
brogram-oriented or data-oriented programming metho-
fologies.

A higher, though perhaps less sophisticated, level of
bstraction is provided in the Apollo computer system
9]. Apocllo provides an object-oriented network operat-
ng system to coordinate the user's access to network
ide facllities. Objects are used to represent programs,
ata files, or even entire programming environments. The
etwork global object spaces are selectively mapped
nto a process virtual address space on a given node of
the system. The objects are network wide; whereas, the
processes are all on a particular node running on behalf
pf a particular user. The address space mapping
represents the only primitive in which processes can
relate to objects. For the most part the operating sys-
tem and all higher level views of the system relate to
pbjects rather than processes.

Protection domains, and the inherent security that
they provide, are another key object concept. The basis
For secure and error-tolerant execution environments lies
n the principle of system closure [2]. This principle
basically states that the effects of all operations on a
closed system shall remain strictly within that system.
One common construct used for providing system closure
s the protecticn domain [17]. Briefly stated, a protec-
ion domain is an environment or context that defines the
et of access rights that are currently available to a
pecific user for objects of the system. Capability
ased addressing schemes are the most efficient known
echanism for implementing protection domains.

Protection domain schemes generally provide facili-
ies for error confinement, error detection and categori-
ation, reconfiguration, and restarting. Error confinement
and security) strategies generally involve both process
solation and resource control. The basic premise of pro-
ess isolation is that processes are given only the capa-
ilitles necessary to complete their required tasks. This
mplies that interactions with any external objects (e.g.
ending messages to other processes) must be strictly
formalized and controlled. Resource control refers to the
binding of physical resource units to computational
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cbjects. Examples of this include the binding of
processes to processors, or the assignment of memory to
currently executing contexts. The idea here is to
ensure that when the resource units are released, or
preempted, that all information contained within the unit
is returned to a null state. This prevents any information
from "leaking” out of a protection domain by being inno-
cently left in an area that will eventually become acces-
sible to other users. Error confinement also aids the pro-
gram debugging process, since bugs should be located in
the same module which contains the resulting error. Pro-
gram maintenance also benefits since the protection
domain defines the maximal set of modules which could
be affected by a modification to the system. Error
detection and categorization involves dynamic checking
for object type Inconsistencies and access constraint
violations In executing procedures. The categorization
of detected errors can then be used to aid in restoring
the system to a known consistent state. Reconfigura-
tion facilities attempt to restore the system to an oper-
able state by removing from service the failed com-
ponent, be it hardware or software. If the reconfigura-
tion attempt is successful, the system is then restarted.

The most efficient known mechanism for implement-
ing protection domains is the capability mechanism.
While much can be done at compile time to enforce the
concepts of protection domains, there are many cases
where a dynamic enforcement mechanism Is essential.
The real-time sharing of data between programs provides
an ocbvious example. But compile-time protection
enforcement also lacks the ability to support the detec-
tion of, and recovery from, fallures in the run-time sys-
tem. A brief description of the capability mechanism fol-
lows in the next paragraph.

A capabllity can be thought of as a name of an
object. An object cannot be accessed (and, in fact, its
existence cannot even be determined) unless its name is
possessed. The capability also contains the access
rights to the object (e.g. read, write, or capability copy
rights). The only subsequent modification allowed is the
restriction of these rights. Capabilities are created
along with their respective objects. The initial control of
the capability, hence the object, belongs sclely to the
creating context. Specific Implementation details are
given in the case studies.

I1l. CASE STUDIES

A. Intel iAPX 432

The Intel IAPX 432 Is an object-based micrccom-
puter system, developed in an effort to curb the rising
costs of software. Measured as a percentage of total
system costs, the cost of software has been rising
dramatically for the past several years. Intel attributes
much of this increase to four commen requirements that
are characteristic of modern software systems [19]:

(1) Demand for systems embodying many large pro-
grams with complex interactions.

(2) Demand for increased system security.

(3) Demand for efficient concurrent programming sup-
port.

(4) Demand for truly transparent multiprocessing, where
changing the number of processors In the system
does not require any software modifications.

The object-based design methodologies embodied in, and
supported by, the IAPX 432 provide solutions for these

problems. Furthermore, it is hoped that the underlying
architectural support for object-based programming
ethodologies will help to provide the environment
pcessary to aid in controlling the rise of software

All information in the iAPX 432 system s
ppresented by typed objects. An object is defined by

a data structure containing organized information.
jects also define the set of operations which may be
erformed on themselves. In fact, these are the only
operations that are allowed. The third characteristic of
iAPX 432 objects Is that they are referenced as a single
entity, regardless of the length of the object. Finalily,
gvery object has a unique label that contains the infor-
ation about its type.

Objects are implemented as a collection of one or
ore segments. Segments are of variable length, and
come in one of three hardware recognized forms, access
only, data only, or a combination of both. Segment types
are identified by header information which is stored in
the segment itself, but Is virtually (in the address sense)
invisible to the software. In the case of -combination
gments, the location of the boundary between the
access and data parts is also stored with the type.
cess segments (or parts of segments) can contain

tors are the "capabilities” in the IAPX 432 system. Data
spgments contain all of the other information in the sys-
tem, inciuding things such as instructions or process
status information.

The ability of the hardware to identify access seg-
ents is one of the key mechanisms used by the IAPX
432 to enforce protection domain security. Any
attempts to modify access segments can be closely
onitored. The security mechanisms inherent in the IAPX
432 architecture are not limited to the above, however.
As an example, we will consider the protection against
»xacuting data. The cumrently executing process refer-
nces instructions via two indices, one of which is an
instruction pointer that provides an offset into the
current instruction object. The other is an index which

pe consistency is guaranteed by checking the object
pe of the instruction object referenced by the indexed
apability. This needs to be done only when the current
instruction object index Is modified, that is, only when an
intersegment branch is executed.

There are a number of hardware (microcode, actu-
ly) recognized objects in the iAPX 432 which are pri-
arlly used to support the object-based concepts dis-
ciussed in section !ll. This includes objects which
rgpresent instructions, protection domains, activation
rgcords, procasses, and even physical processors. Two
of the more interesting ones are the context and domain
objects; these represent activation records and protec-
tion domains, respectively. The domain objects and con-
text objects are used to realize the concept of type
nagers, the system's primary mechanism for imple-~
nting data and program abstraction concepts. Type
nagers are modules that provide information hiding (or
data encapsulation) by containing a data structure and
all the necessary procedures to manipulate that data




structure. By allowing only a strictly controlled set of
procedures to be invoked from outside of the protection
domain (i.e. the domain object), the implementation of the
data structure and the procedures which directly mani-
pulate it are effectively "hidden’” from the outside world.
The domain object represents a type manager's static
structure via an object complex (a tree-like structure
objects, in this case, with the domain cbject as its root).
This object complex Incorporates instruction objects and
data objects, referenced via the domain object access
segment, which contains all object references in the
domain, both public and private. The private references
are completely Inaccessible to objects ocutside the
domain, and thus, realize data abstraction. Since the
domain object contains the data cobject and aill the
instruction objects that operate on it, we can see that
standard Ada packages map directly onto domaln
objects. Additionally, since all generic Ada packages are
instantlated at complle time, each Instantiation Is
represented by its own unique domain object.

The context object contains the dynamic run-time
information which describes the execution environment
of an invoked procedure; thus every activated procedure
in the system has a context object associated with it.
When a procedure Is called, a context object is automat-
lcally created; conversely, when a procedure returns,
the context object is automatically destroyed. Intel pro-
vides an extension of Ada In the form of package types.
Through the use of the hardware-supported domain and
context objects, package types can be passed as
parameters to other packages [16]. This allows dynami-
cally defined entities, such as dynamic generic package
Instantiations, to be easily handled in the IAPX 432. For
example, a user may wish to write a procedure that
manipulates objects of an unknown arbitrary structure
by performing very general operations on them, e.g., a
garbage collection algorithm. Standard Ada requires all
types to remain static, and to be known at compile time.
The IAPX 432, through Intel's extended Ada, supports
dynamic applications using arbitrary types directly.
Another possibility is for an operating system to define
its 1/O devices as packages types. Then, as devices
are added or removed, the system coculd dynamically
reconfigure itself without operator intervention.

To enforce system security, Intel employed capablil-
ity addressing in the IAPX 432, All of the object refer-
ences for a glven protection domain exist in the domain
object's access segment, or indirectly, in access seg-
ment objects which are referenced from the domain. In
order to implement the domain object as a single object
and still allow for public and private regions, Intel uses
an object refinement mechanism. This allows a contigu-
ous section of an object to be treated as a whole object
In terms of capability rights. Thus when a domain object
Is referenced by an "‘outside" procedure, the calling pro-
cedure will be using a capabillity for the public refinement
area of the domain access segment. By prohibiting
capabllities for the private area to be given out, that
area will remain inaccessible from outside the domain. In
the public area, capabilities reside for the Instruction
objects that are public information.

One of the design decisions that is interesting to
compare among object-based systems is the implemen-
tation of the addressing scheme. Addressing in the iAPX
432 is accomplished through a serles of indexed table

lpok-ups, similar to segment tables In a segmented
emory architecture. Address translation Is a two level
apping. A system-wide table known as the object table
irectory exists at a known, physical address. This
ble represents the first level of the mapping process
nd contains the base addresses of all the object tables
in the system (maximum of 4096). Object tables
present the second level of the mapping process and -
ontain object descriptors for all the objects associated
ith that object table. Roughly speaking, there is one-
-one correspondence between processes and object
ables. The object descriptors found within the object
tables contain a 24-bit physical base address, length,
type, and other informatlon for their respective objects.
A data reference in the iAPX 432 instruction stream
consists of a 18-bit access selector and a 16-bit dis-
placement [21, 22] (see figure 1). The access selector
1
i

run through a content-addressable memory (CAM) and
a match occurs, the base address of the object Is
btalned. The 16-bit displacement is then applied and
he data element retrieved. If there is no match, then a
ther lengthy address translation takes place. The
ccess selector is broken up into a 14-bit displacement
nd a 2-bit select field. The two bits select one of four
ntered access segments (EAS's), which are in on-chip
egisters. These EAS's hold access descriptors (AD's,
apabilities) for access segments. The 14-bit displace-
ent provides an index into the selected segment to
btain the AD for the requested data object. Once the
hysical base address for the data object is translated,
he 168-bit offset from the instruction stream Is added to
ik to select the actual byte(s) referenced. The above
description Implicitly included the translation of two AD's,
one for the access segment, the other for the actual
ata object. Each one of these translations consists of:
using the first 12-bit field in the AD to index into the
object table directory to select a object descriptor for
an object table; then using the other 12-bit field in the
AD to index into the specified object table and select a
object descriptor for the desired cbject, either the
access segment or the data ocbject. The above address-
ing scheme provides a total virtual address space of 2%
bytes, this comprises the 212 object tables which can
each contaln 212 object descriptors for objects that are
p to 28 bytes in length. However, at any one instant
f tine a process's logical address space is limited to
032 pytes. This is because there are only four (22) EAS
tegisters which hold AD's for access segments that each
tontain 214 AD's for the actually addressable objects
which are up to 216 bytes in length.

One can see from the diagram that six off-chip
memory references are needed to retrieve a plece of
Hata if its address is not availabie in the cache. Once
the AD for the access segment is retrieved from the
appropriate on-chip EAS register, three memory refer-
ences are needed to obtain the AD for the data object.
Two more references are then required to get the base
address of the data object and finally, one more gets the
actual piece of data. Once an object is referenced, its
pase address and length are stored in the cache. Once
the object is cached, the number of memory references
needed for data retrieval is reduced to two. While secu-
ity is strongly desired In teday's complex software sys-
tems, It Is seen that the addressing of information In
such a secure system can lead to complex and lengthy
1ddress translation mechanisms.

B\




B.1BM System/38

The I1BM System/38 was designed for general pur-
pose data processing, supporting both batch and time-
sharing environments. System/38 is aimed toward busi-
ness applications rather than numerically intensive
sclentific applications. Consequently, the system needs
to provide functions such as task management, inter-
task communication, and high-level data-base manipula-
tions. The System/38 provides this support at the
hardware/architecture level. This high-level machine
interface is implemented through the use of objects.
High-level machine instructions are provided that manipu-
late objects rather than simple data types such as byte
strings. This allows the execution of complicated func-
tions such as inter-task communication to be performed
with just one instruction.

There are two major types of cbjects in the Sys-
tem/38, system and program objects. System objects
are used to perform machine functions such as
message-queuing, process initiations, and 1/0 opera-
tions. Program objects are used for operations such as
operand accessing, branching, and exception handling.
System and program objects, respectively, will be con-
sidered in more detall In the following two paragraphs.

All system objects support data abstraction to some
extent. This is done by Implementing every system
object with a functicnal portion and an associated data
space--an exception to this is a space object which
contains an associated space only. The functional por-
tion of the object contains information concerning the
operations allowed on the object and the microcode
needed to perform those operations. This Is analogous to
the type manager concept supported in the Intel IAPX
432.

Pointer data objects contain pointers which are
used to access both system and program objects. A
specific type of pointer, the system pointer, is used to
access a system object. It can be in one of two modes:
resolved or unresolved. In the unresoclved state the sys-
tem pointer contains the name of an object. When an
unresoived system polnter Is referenced, a search is
made in a context object to associate a location with
the object name. This location is then placed in the
pointer, changing its state to resolved. Each process
has a name resolution list, which specifies which context
object(s) to search when resolving system pointers.
This Is useful for easily changing the environment for dif-
ferent instantiations of the same process. Additionally,
data pointers, which are used to access data in objects,
can also be unresolved [23)]. Using unresolved data
pointers allows programs to operate on data whose attri-
butes are dynamic. This implies that executing code can
operate on dynamically changing data types, as on the
IAPX 432. Thus, the use of unresolved pointers in the
System/38 allows for a form of program abstraction.

The System/38 uses a form of capability address-
ing to enforce system security requirements. Pointers
and user profiles (UP) together form the capability for an
object. All processes execute under control of a
specific UP. This user profile contains the authorization
list for all permanent cbjects owned by the given user.
Pointers basically provide the addressability for an
objact, white the UP decides if a module has the author-
ity to perform the desired operation. To increase

afficiency, the rights information contained in the UP is
llowed to be passed into the system pointer. If this is
one, the UP can no longer retract authorization for
pecific modules. Thus, the ability to place an object
t

uthorization in an system pointer is itself an authoriza-
tjon which may or may not be granted by the UP.

The 1BM System/38 employs a segmented page
pe memory architecture. Pages are 612 bytes long
nd segments are from 128 to 32K pages. The virtual-
-physical address mapping is a two-level mapping
cheme, similar to the past memory architectures from

IBM. The hash table is the first level of mapping and pro-

ides an index into the page directory (see figure 2).
e page directory is the second level of mapping and

yields the most significant bits of the physical address.

An operand reference in the System/38 is a lengthy
ocess, as in the IAPX 432. In the instruction stream,
operand field specifies an entry into both the object
finition table and the object mapping table. The object
rectory table entry yields a 4-byte object descriptor
d, optionally, an extension of this descriptor. The
opbject mapping table provides a 6-byte virtual address
for the required system pointer. The virtual address is-
then run through the virtual address translation mechan-
ism. The 39 most significant bits are run through a hash
generator which outputs an index into the page direc-
tory. The page directory contains a linked list of virtuai
ge addresses for all entries having identical hash
pbdes. The page directory gives a page address which,
hen concatenated with the nine least significant bits of
e virtual address, ylelds a physical address. This
tidress provides the system pointer which contains the
rtual address for the data object. After passing this
dress through the virtual-to-physical address transla-
tion mechanism, the physical address of the operand is
obtained. As in the IAPX 432, the use of a capability
afldressing scheme to ensure tight system security leads
lengthy address translations.

DWWt E QOO

IV. CONCLUSION

In this paper we have characterized object-based
computer architectures. This was done by lilustrating
k@y concepts with examples drawn from hardware and
software systems. The concept of an object was illus-
trated rather than defined to avold associating yet
afiother definition with this term. A case was made for
object-based systems reducing system development
costs and providing a secure execution environment.
These benefits require the use of an elaborate address-
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Figure 1
Intel IAPX 432 Addressing Mechanism
Operand Retrieval
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IBM System/38 Addressing Mechanism
Operand Retrieval
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