The Cache Behaviour of Large Lazy Functional
Programs on Stock Hardware

Nicholas Nethercote
Computer Laboratory
Cambridge University

United Kingdom

njn25@cam.ac.uk

ABSTRACT

Lazy functional programs behave differently from imper-
ative programs and these differences extend to cache be-
haviour. We use hardware counters and a simple yet accu-
rate execution cost model to analyse some large Haskell pro-
grams on the x86 architecture. The programs do not interact
well with modern processors—L2 cache data miss stalls and
branch misprediction stalls account for up to 60% and 32%
of execution time respectively. Moreover, the program code
exhibits little exploitable instruction-level parallelism.

We then use simulation to pinpoint cache misses at the
instruction level. With this information we apply prefetch-
ing to minimise the cost of write misses, speeding up Haskell
programs by up to 22%. We conclude with more ideas for
changing the Glasgow Haskell Compiler and its garbage col-
lector to improve the cache performance of large programs.

Categories and Subject Descriptors

B.3.3 [Memory Structures]: Design Styles—Cache mem-
ories; B.8.2 [Performance and Reliability]: Performance
Analysis and Design Aids; D.3.2 [Language Classifica-
tions]: Applicative (functional) languages—Haskell; D.3.4
[Programming Languages|: Processors—compilers, mem-
ory management (garbage collection)

General Terms

Experimentation, languages, measurement, performance

Keywords

Cache measurement, cache simulation, hardware counters,
branch misprediction, Haskell, Glasgow Haskell Compiler

1. INTRODUCTION

Cache misses are expensive. An L2 cache miss on a mod-
ern personal computer can waste hundreds of CPU cycles.

Permission to make digital or hard copies of all or part o tvork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyuies prior specific
permission and/or a fee.

MSP 2002 Berlin, Germany

Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Alan Mycroft
Computer Laboratory
Cambridge University

United Kingdom

am@ecl.cam.ac.uk

While techniques for optimising the cache performance of
array-based programs are mature and well-known, the situ-
ation is murkier for general purpose programs.

Declarative languages are possible beneficiaries from cache
optimisations. Programs written in declarative languages
are often substantially slower than equivalent programs writ-
ten in lower-level languages that are “closer to the machine”.
However, given the increasing complexity of computers, be-
ing “closer to the machine” can be bad, since most pro-
grammers will not understand enough about the hardware
to extract good performance from it. Better decisions might
be made by a compiler and/or runtime system, thanks to
characteristics of declarative languages such as strong static
typing, a lack of (or limited) mutable data structures, and
greater flexibility in data representation and organisation.

In this paper, we investigate the cache behaviour of pro-
grams written in the lazy functional language Haskell, using
the Glasgow Haskell Compiler (GHC). Modifying garbage
collection parameters to examine the effect on cache be-
haviour, we found that a simple execution cost model is
sufficient to determine that programs spend up to 60% of
their time waiting for L2 cache data miss stalls. We also
found that up to 32% of program time is taken up by branch
misprediction stalls, together the two stall types account for
up to 67% of program time, and that the generated code
exhibits little exploitable instruction-level parallelism. In
response to this, we present detailed simulation-based mea-
surements to precisely identify the locations of L2 cache data
misses, and use prefetching to speed up programs by up to
22% by reducing the cost of cache write misses.

This work represents the first detailed measurement of
the cache behaviour of realistic, highly optimised, lazy func-
tional programs. It shows the execution times of GHC pro-
grams' can be predicted accurately with a simple cost exe-
cution model, that the impact of L2 cache misses and branch
mispredictions is significant, and that GHC programs inter-
act quite poorly with aggressive modern processors. Exe-
cution techniques supporting lazy evaluation should be re-
considered; they do not behave well on modern architectures
and there is much room for hardware-targeted optimisations
to improve their performance. It also shows how prefetch-
ing can minimise the cost of write misses in systems using
copying garbage collection.

Section 2 describes the language Haskell and the GHC

"We will use the phrase “GHC programs” to denote
implementation-specific behaviour of Haskell programs com-
piled with GHC.

Info Table

Closure

Layout Info

| Code |

Free variables

Figure 1: Closure and info table

implementation, the suite of benchmark programs we mea-
sured, and the machine we used. Sections 3 and 4 anal-
yse the programs using information from hardware counters.
Section 5 introduces a simple execution cost model to aid the
analysis. Section 6 uses simulation to pinpoint cache miss
locations, and shows the results of prefetching. Section 7
discusses related work. Section 8 discusses further work and
concludes.

2. SYSTEM CHARACTERISTICS

2.1 Language and Implementation

Haskell is a polymorphically typed, lazy, purely functional
programming language widely used as a testbed for research.
The Glasgow Haskell Compiler (GHC) [7] is a highly opti-
mising “industrial-strength” compiler for Haskell. The com-
piler is itself written in Haskell; its runtime system is writ-
ten in C. Although its distribution contains an interpreter,
GHC is a true compiler designed primarily for creating stan-
dalone programs. The optimisations it performs include full
laziness, deforestation, let floating, beta reduction, lambda
lifting and strictness optimisations; it also supports unboxed
values [17]. It is widely considered to be the fastest imple-
mentation of a lazy functional language [9]. Because it is
highly optimising, it is not a soft target. This is important,
since optimising non-optimised systems is always less of a
challenge than optimising optimised systems.

2.2 The STG Machine

To understand the causes of cache misses requires some
understanding of GHC’s execution mechanism, the spineless
tagless G-machine (STG machine).

Programs consist of two main kinds of objects: evaluated
values (function and data values), and as-yet unevaluated
suspensions (called thunks). All objects are represented uni-
formly, as closures (Figure 1). Some closures are static, and
some are allocated on the heap dynamically. Function val-
ues are represented by a pointer to a static info table—which
contains code for the function and some layout information
used during garbage collection—plus a payload of (pointers
to) the values of any free variables. Thunks have the same
representation, but when a thunk is evaluated its must up-
date its own value (so that it is not evaluated more than
once). The representation of data values is best explained
by the example of a cons cell: a pointer to an info table

containing code that simply returns immediately, followed
by a payload of a head pointer and tail pointer. For more
details see [16].

Most closures are 1-4 words which means that 4-16 can
fit within each 64 byte cache block typical of recent x86
processors. This is enough for the effect of spatial locality
to be important. All info tables have two or three words of
layout information, and most have 1-30 instructions.

This execution mechanism is necessarily quite exotic in
order to support lazy evaulation, and stresses processors in
unusual ways, as we shall see in Sections 4 and 5.

2.3 Benchmark Suite

Twelve of the the benchmark programs tested come from
the “real” part of the nofib suite [15] of Haskell programs.
These programs were all written to perform an actual task;
most are a reasonable size, and none have trivial input or be-
haviour. This is important—small and large programs have
different cache behaviour, and we want to optimise large
and realistic programs. The other program tested was GHC
itself, compiling a large module with and without optimisa-
tion. The benchmark programs are described in Figure 2,
and their sizes in lines of code (minus blanks and comments)
are given. Inputs were chosen so each program ran for about
2-3 seconds, except for the ghc benchmarks, which were sub-
stantially longer. This is long enough to realistically stress
the cache, but short enough that the programs ran for rea-
sonable times when simulated (see Section 6).

Program Description lines
anna Frontier-based strictness analyser 5740
cacheprof | x86 assembly code annotator 1489
compress LZW text compression 403
compress2 | Text compression 147
fulsom Solid modeller 857
gamteb Monte Carlo photon transport 510
hidden PostScript polygon renderer 362
hpg Random Haskell program generator 761
infer Hindley-Milner type inference 561
parser Partial Haskell parser 932
rsa RSA file encryptor 48
symalg Symbolic algebra program 831
ghc GHC, no optimisation 78950
ghc -0 GHC, with -0 optimisation 78950

Figure 2: Haskell program descriptions

GHC can compile via C, or use its x86 native code gen-
erator; the distinction is unimportant for us, as programs
compiled by the two routes have extremely similar cache
behaviour. All programs were compiled with a recent de-
velopment version of GHC (derived from v5.02.2), via C
using GCC 3.0.4, using the -0 optimisation flag. For all ex-
periments, they were run with a stack size of 10MB,? and
with context-switching turned off (as is sensible for single-
threaded programs).

2.4 Machine Characteristics

The machine used for the experiments was an AMD Athlon,
running Red Hat Linux 7.1, kernel version 2.4.7—a typical

2The stack limit is set to abort execution in the case of acci-
dental infinite recursion; it has no effect on cache behaviour.

modern system, described in Figure 3. The information in
the first part of the table was gathered from AMD docu-
mentation [1] and the results of the CPUID instruction.

Architecture AMD K7, model 4

Clock speed 1400 MHz

I1 cache 64KB, 64B lines, 2-way

D1 cache 64KB, 64B lines, 2-way, write-

allocate, write-back, 2 64-bit ports,
LRU

L2 unified cache | 256 KB, 64B lines, 8-way, on-die, ex-
clusive (contains only victim blocks)
Pair of unidirectional 13-bit address
and control channels; bidirectional,
64-bit, 200 MHz data bus

4-entry, 64-byte

12 cycles

206 cycles

System bus

Write buffer
D1 replace time
L2 replace time

Figure 3: Athlon characteristics

Note that the I1 cache does some prefetching—upon a
miss both the current block and following block are read
into the cache. Also, the L2 cache is 8-way according to the
CPUID instruction’s result, not 16-way as claimed in [1].

The cache replace times in the second part of the table
were found using Calibrator v0.9e [13], a micro-benchmark
which performs multiple dependent array accesses with vari-
ous “stride” lengths to estimate worst-case D1 and L2 cache
latencies. Of course, a 206 cycle L2 replace time does not
imply that each L2 miss will cause a 206 cycle stall; in real
programs, out-of-order execution can hide cache latencies
somewhat. Nonetheless, we will shortly see the usefulness
of these figures.

3. VARYING GC PARAMETERS

The cache behaviour of programs using garbage collection
can vary considerably with the collector’s parameters. Be-
fore we can properly analyse the chosen Haskell programs,
we need to find the best garbage collector configuration for
each one.

GHC’s garbage collector is a highly flexible generational
copying collector with multiple generations each containing
multiple steps; the number of steps and generations is con-
figurable at runtime. The first step of the first generation is
the allocation area, or nursery. The starting heap size can
also be specified, and the heap will then grow and shrink as
necessary, guided by heuristics. It also treats large objects
separately, to avoid copying them.

We tried individually varying the collector’s nursery size,
the initial heap size, and the number of generations to deter-
mine their effect on program cache behaviour. This served
three uses: firstly, it allowed us to find the best garbage col-
lector configuration for each program; secondly, it provided
interesting data about the behaviour of the garbage collec-
tor; and thirdly, it gave us the insight needed to formulate
the simple execution cost model described in Section 5.

3.1 Nursery Size

The most revealing results were seen when changing the
size of the allocation area. The default nursery size is 256 KB;
we varied it from 32KB-512KB for each program. The re-
sults are shown in Figures 4 and 5.

Counsider first the graph for compress, in Figure 4. The
“Actual” line gives the number of cycles, reported by Rab-
bit [10], which provides control over the Athlon’s hardware
performance counters [1]. (We will explain the other lines
on the graphs in Section 5.) The line dips to minimum
around 160KB, before rising again as the nursery size in-
creases. This is due to two competing effects that arise as
the nursery size increases: firstly, fewer garbage collections
are performed, so the instruction count decreases; secondly,
the amount of memory touched grows, so the number of
cache misses increases.

The second effect becomes significant as the nursery size
approaches 256KB, the size of the L2 cache. This matches
Wilson, Lam and Moher’s advice to fit the youngest gener-
ation of a generational collector within the cache [19]. The
effect starts before the 256 KB point is reached because the
Athlon’s L2 cache is unified, containing both data and code.
This graph shape is seen for most of the programs.?

3.2 Initial Heap Size

The second parameter we varied was the initial heap size.
Unlike when changing nursery size, there is no clean ex-
planation for the four broad trends observed as the initial
heap size was increased from 0-64MB: relatively flat graphs,
with some changes, but no general trend (e.g. cacheprof);
graphs with a sudden jump at the start, but flat afterwards
(e.g. hpg); graphs with a downward slope (e.g. compress2);
graphs with an upward slope (e.g. rsa).

These representative examples are shown in Figure 6. No
one initial heap size is best, although the default of zero gave
good results for most programs.

3.3 Number of Generations

The third parameter we varied was the number of gener-
ations, from one (giving a standard two-space copying col-
lector) to six. Having one generation gave easily the worst
results, two gave the best, and three to six were marginally
worse than two. The only programs to buck this trend were
compress (one generation gave the best result, and the graph
sloped upwards) and infer (the graph was a very shallow
‘V’ shape, with a minimum at three generations). The de-
fault choice of two generations was clearly the best.

4. PROGRAM ANALYSIS

To count the number of cache misses occurring during
program execution, we again used Rabbit and the Athlon’s
hardware performance counters. The Athlon has 23 doc-
umented measurable events, and four counters. Although
Rabbit can use sampling to give approximate results for all
events in a single program run, we did not use this facility
in order to obtain exact event counts.? Instead we divided
the events into six event sets. Each program was run five
times per event set, thirty times in total. The performance
counters measure all events taking place on the CPU, so the
event counts from the fastest of the five executions were cho-
sen to minimise the interference of other processes and the
operating system. In all cases the program measured was
running for at least 99.5% of the elapsed time.

30mne can see the two effects clearly in the “Instr” and “D2”
lines; we will return to this point in detail in Section 5.
*Although according to [1], “the performance counters are
not guaranteed to be fully accurate”.

cycles

cycles

cycles

4e+09

3e+09

2e+09

le+09

6e+09

5e+09

4e+09

3e+09

2e+09

le+09

3e+09

2e+09

1e+09

anna
T T T T T T T T T T
G._. o »e_o»,o,.,o/e*O"O’*e-o
. o OTOT L e m- - m-m_m
L LR B Rl Instr —+— |
D1 --->--
D2 ---
Branch &
Sum --m—-

- Actual ---e-- |
IR = o B = B - R S o e B =] .
ol i L L Al AN TN NN
(o] 50 100 150 200 250 300 350 400 450 500 550
nursery size (KB)
compress
T T T T T 03/0’9764077@79_'0

. - -E-— B - - -
g-" - Instr —+—
- B 4 D1 ---x--
N / D2 -
= hE e L - Branch =)

L o8 .
L * .
B o T B S = S S S S

Ko KoKW
faianie AN 1 i i < i F 1
0 50 100 150 200 250 300 350 400 450 500 550
nursery size (KB)
fulsom
T T T T T T T T T T
e -0 O -0-9
N o - 070’._‘ BN T SRS b
¢ N e Instr ——
D1 --->--
L D2 ---=x _
Branch &
Sum —-m-—
Actual ---o--
L
& B B B i Y S s RO N S
XXy 1 I I aNEAS 1 I 1
(o] 50 100 150 200 250 300 350 400 450 500 550

nursery size (KB)

cycles

cycles

cycles

3e+09

2e+09

1e+09

5e+09

4e+09

3e+09

2e+09

1le+09

5e+09

4e+09

3e+09

2e+09

1le+09

0

Instr: 0.8 x Retired instructions (event 0xc0)

D1: 12 x Data cache refills from L2 (event 0x42)

D2: 206 x Data cache refills from system (event 0x43)
Branch: 10 x Retired branches mispredicted (event 0xc5)
Sum: Instr + D1 + D2 + Branch

Actual: Actual cycle count

cacheprof

T T T T T T T T T
g g™
Q’—"i Instr ——
i D1 —--x—-
g e D2 %
T g Branch -~
- Sum -—-m-—-
Actual ---&--
- X) - -
,'*’
=R
= =t = =B = B e B
XopX 1 1 I 1 i 1 N 1
(] 50 100 150 200 250 300 350 400 450 500 550
nursery size (KB)
compress2
T T T T T T T T T T
LN P~ —fie
\‘;1!)'/.1115,: a g =l S R S
L Instr —+— |
D1 --->--
D2 -----
Branch &
L Sum --m—- |
Actual ---o--
KooK K
%
D’E»Da-ggmmmﬁﬁgugﬁg
ol o 1 1 I ol i 1 1 1
0o 50 100 150 200 250 300 350 400 450 500 550
nursery size (KB)
gamteb
T T T T T T T T T T
o--0 -0 -0-9-0--C -0
. o - A - E - |
Lo - Instr —+—
° e D1 -
RS TP e D2 ---%
| ®-e g . Branch @ |
Sum —-=-
Actual ---&--
T
- KKK K KKK
— * -
(RS = e = =] 0 =] = =
g;¥ (=) (=) B (2=} = = =) =
P 5 L 1 fa 1) 1 f 1
(0] 50 100 150 200 250 300 350 400 450 500 550

nursery size (KB)

Figure 4: Effects of varying nursery size (I)

cycles

cycles

cycles

cycles

5e+09

4e+09

3e+09

2e+09

le+09

6e+09

5e+09

4e+09

3e+09

2e+09

1e+09

4e+09

3e+09

2e+09

le+09

le+10
9e+09
8e+09
7e+09
6e+09
5e+09
4e+09
3e+09
2e+09
le+09

hidden
T T T T T T T T T T
P]
s«'/ Instr —— |
¥ D1 ---x--
/ D2 -
-8 Branch &
o Sum --m-
6. o o
=g e g goE =°l Actual
— ; ; oy A‘é%_,o‘ S
BB e G B B @ @ B B B B G B 88
o K K- i 1 2aS 1 °F 1
50 100 150 200 250 300 350 400 450 500 550

nursery size (KB)

infer

100 150 200 250

nursery size (KB)

rsa

300 350 400 450 500

550

—
Instr —— |
1 -
D2 -----
Branch &
Sum ---m--
Actual ---o---
K
R = B B o e B = = S = S = S R
I - y,,ac"'*. £ y K- 4 SE .EI
50 100 150 200 250 300 350 400 450 500 550
nursery size (KB)
ghc
GJ_ T T T T T T T T T
O"0~@’ T g0 e @O e ©
-
L Ry -, g - ®

O

X KoK

&=

B 2 N - B = SO

(=)

=)

Instr —+—

D1 - |
D2 -----
Branch & i
Sum --m--

Actual ---o--

13) L |

i

T el

50

100 150 200 250 300 350 400 450 500 550
nursery size (KB)

cycles

cycles

cycles

cycles

550

550

6e+09 T T T T T T T T T T
5e+09 B
4e+09 |- B
3e+09 |- B
L
R R 2 Lo
2e+09 +\\+“+‘¥#7 . i
+ —
X
le+09 - * 1
O o R %' e Ny S = S o S = S o
0 I . R ST | 1 1 1 h 1
(o} 50 100 150 200 250 300 350 400 450 500
nursery size (KB)
parser
6e+09 T T T T T T T T T T
5e+09 B
4e+09 |- —
3e+09 B
Actual ---o--
2e+09 SR e Ko e
S
le+09 |- X * B
I e = e = B B O SO = A = S
0 1 A I 1 o T Fkaninles Sl el
(o] 50 100 150 200 250 300 350 400 450 500 550
nursery size (KB)
symalg
5e+09 T T T T T T T T T T
R Rt R S s R T s i
4e+09 |- D1 ---x--
D2 ---3--
Branch &
Sum --m—-
3e+09 Actual ---&--- 7
2e+09 I
_ -
="
/‘/.
1409 I~ wom--m o !7‘7:'>T R S - * 7
w X
0 L . .- K
(o] 50 100 150 200 250 300 350 400 450 500
nursery size (KB)
ghc-O
2.4e+10 S T T T T T T T T T T
2.2e+10 | B
G.. . o.
2e+10 - ™ © o i = R b RN TN SV
1.8e+10 L e L B TR T
1.6e+10 F Instr —+— |
D1 --->--
1.4e+10 | D2 - -
Branch &
1.2e+10 Sum ——m—- |
le+10 [Actual ---o-- 4
8e+09 L KKKk
6e+09 - * 7 B
4e+09 - o B
S St = S RO R S R R - |
2e+09 - B
0 A Saie| 1 (e al i i i oF [
0O 50 100 150 200 250 300 350 400 450 500

Figure 5: Effects of varying nursery size (II)

nursery size (KB)

cycles

cycles

cycles

cycles

cacheprof
3e+09 T T T T T T
S g
¢ v Instr —+——
D1 --->--
D2 ------
2e+09 - Branch & 7
Sum ---m--
Actual ---o--

1e+09 [,

0
70
hpg
7e+09 T T T T T T
l/-j:~fl»— 77777 —— . - _
Ge+09 BTG L TR DI IS
/
5e+09 -]1 T
!
| kK e F
4e+09 x Instr —+—
. D1 ---x---
K D2 x|
3e+09 Branch -8
! Sum --m-—-
2e+09 | Actual ---o-- |
a
le+09 [7
pegg] g g g
0 1 1 1 1 1 1
(o] 10 20 30 40 50 60 70
initial heap size (MB)
compress2
5e+09

4e+09

3e+09
2e+09 T
le+09
(0]
rsa
6e+09 . . i i : .
- -0
5e+09 /'/,o"“‘,,l—' a
T ™ nstr —+—
Lo T D1 ---x--
4e+09 e T D2 - o
_o Tl Branch &
ST Sum --m-
3e+09 BEE Actual --o-- |
2e+09 |- Sk u
LK
le+09 |- ke u
s xe X
o b R g p— R e
(] 10 20 30 40 50 60

initial heap size (MB)

Figure 6: Effects of varying initial heap size

70

The GHC programs were run using the garbage collector
configuration that gave the fastest times, found by varying
the nursery size from 32KB-512KB in 32KB increments and
varying the initial heap size from 0MB-32MB in 4MB incre-
ments (the number of generations was always two).

To provide a comparison with the GHC programs, five
SML/NJ (v110.0.7) programs and five C programs® were

measured as well

. They are described in Figure 7.°

SML Program | Description

count-graphs | Graph manipulation

logic Simple Prolog-like interpreter

ray Ray tracer

simple Spherical fluid dynamics simulation
tsp Travelling salesperson

C Program

gece C compiler, v3.0.4

gzip LZ77 compression, v1.3

latex ITEX2e / TEXv3.14159 typesetter
perlparse Assembly code parser (in Perl v5.6.0)
vpr FPGA placement and routing tool

Figure 7: SML and C program descriptions

The results for all programs are given in Figure 8, which
contains a key explaining the columns. The execution figures
(columns 4-5, 9-12) were obtained with the hardware coun-
ters and the garbage collector figures (columns 6-8) with
the -s runtime option.

The immediate conclusions are that GHC programs and
SML/NJ programs are memory intensive, with higher in-
struction / memory access ratios than the C programs. This
is because they both use copying garbage collection, and al-
locate memory furiously (58-287MB per second of mutator
time for the Haskell programs, even higher for SML/NJ).

But the CPI figures are most compelling—the GHC pro-
grams range from 1.0-4.3, with most in the 1.5-3.0 range,
compared to 1.2-1.6 for SML/NJ programs, and 1.1-1.5 for
the C programs. We will see in Section 5.3 that the GHC
programs’ high L2 data miss and branch misprediction rates
account for much of this difference.

5. AN EXECUTION COST MODEL

To understand and explain the results found in the previ-
ous section, we used a simple execution cost model to deter-
mine where processor time is going in the GHC programs.

5.1 The Model

The model takes into account only the four largest com-
ponents of execution time: instruction execution, stalls due
to L1 and L2 cache data misses, and stalls due to branch
mispredictions. The model is:

cycles = 0.8 + 12C + 206C> + 10B

where I is the number of instructions executed, Cy and Cs
are the number of D1 cache misses and L2 cache data misses
respectively, and B is the number of mispredicted branches.

®The program perlparse is written in Perl, but the Perl
interpreter is written in C.

®Two of the C programs are used in the SPEC benchmarks;
the inputs we used were not from the SPEC benchmarks, but
chosen to give similar running times to the Haskell programs.

GHC program Nurs. Heapo Instr Mem | GC Alloc’d Copied L2 Sys BrMis | CPI
anna 96KB OMB | 1598M 86% | 23% 133MB 35MB 79 20 58 2.1
cacheprof 160KB OMB | 1484M 72% | 33% 222MB 33MB 5.7 1.2 30 14
compress 160KB OMB | 3301M 83% | 30% 532MB 65MB 52 0.8 24 1.2
compress2 96KB 32MB 972M 73% | 46% 169MB 42MB | 10.1 84 20 2.9
fulsom 288KB 28MB TITM 82% | 28% 183MB 10MB 9.7 6.9 40 2.9
gamteb 128KB OMB | 2301M 73% | 17% 350MB 25MB 4.1 0.9 27 1.4
hidden 128KB OMB | 187M 85% 3% 535MB 2MB 5.8 0.4 48 1.5
hpg 96KB OMB | 2018M 69% | 19% 533MB 23MB 7.5 04 23 1.2
infer 512KB 32MB | 1523M 90% | 29% 109MB 35MB | 15.7 4.0 59 2.6
parser 288KB 32MB | 1517TM 75% | 34% 287MB 41MB 72 59 38 2.6
rsa 128KB OMB | 2853M 52% 6% 188MB 3MB 1.3 0.1 9 1.0
symalg 192KB OMB | 1013M 49% 1% 410MB 1MB 6.0 0.3 2 4.3
ghc 448KB 32MB | 2232M 8% | 17% 480MB 32MB 9.8 6.7 46 3.1
ghc -0 320KB 32MB | 4580M 79% | 23% 922MB 98MB | 11.5 7.7 49 3.4
SML/NJ program

count-graphs 256KB 512KB | 9598M 78% ? 3122MB 14MB | 6.0 0.3 10 | 1.2
logic 256KB 512KB | 1528M 80% ? 534MB 14MB | 11.6 1.2 14 1.6
ray 256KB 512KB | 1003M 64% ? 540MB 347KB | 13.2 0.9 12 1.5
simple 256KB 512KB 9220M 75% ? 269MB 157KB 84 1.1 9 1.3
tsp 256KB 512KB | 1943M 59% ? 25MB 3MB 8.5 1.1 7 1.5
C program

gece - — | 2250M 59% - - -1 36 1.6 21 1.5
gzip - — | 3189M 46% - - -1131 0.3 10 1.1
latex - — | 1741 69% - - - 2.7 04 17 1.2
perlparse - — | 1778M 67% - - -1 3.7 0.1 27 | 14
vpr - — | 1958M 70% — — -1 53 0.2 14 1.3
Nurs: Nursery size (KB)

Heapo: Initial heap size (MB)

Instr: Retired instructions (Athlon event 0xc0)

Mem: Data cache accesses / Retired instructions (0x40 / 0xc0)

GC: Garbage collector time %

Alloc’d: Megabytes allocated on heap

Copied: Megabytes copied during garbage collection

L2: Data cache refills from L2 / Retired instructions x 1000 (0x42 / 0xc0 x 1000)

Sys: Data cache refills from system / Retired instructions x 1000 (0x43 / 0xcO x 1000)

BrMis: Retired branches mispredicted / Retired instructions x 1000 (0xc5 / 0xcO x 1000)

CPL: Cycles / instruction retired (cycles / 0xc0)

Figure 8: Program characteristics

The constants were chosen for the following reasons: 12 and
206 for the cache misses because they are the worst-case
numbers reported by Calibrator; 10 for branch mispredic-
tions because page 208 of [1] says “In the event of a mis-
predict, the minimum penalty is ten cycles”; and 0.8 for
unstalled instructions quite arbitrarily (a three-way machine
with multiple functional units could retire unstalled instruc-
tions faster than this).

5.2 Justification

One would expect that this model is far too simple for the
Athlon, an aggressive, out-of-order, three-way superscalar
processor with nine functional units. And yet, it is surpris-
ingly accurate. Returning to the graphs in Figures 4-6, the
four components are shown as the “Instr”, “D1”, “D2” and
“Branch” lines. The “Sum” line is their sum.

Consider the results from varying nursery size in Figures 4
and 5. For eleven of the fourteen programs, the model gives
a correctly shaped graph that is almost spot on the real
value (e.g. hpg) or underestimates by a small constant fac-

tor (e.g. fulsom). For compress the model becomes a little
less accurate as the nursery size increase; for hidden it be-
comes more accurate. The graphs in Figure 6 also show an
impressive match between “Sum” and “Actual” values.

Only for symalg in Figure 5 are the predictions badly
wrong. This is because 8.3% of its instructions are div
instructions—from the GNU multi-precision library which
GHC uses to implement infinite precision integers—which
take 42 cycles on the Athlon ([1] p. 270). If we assume
0.8 cycles per unstalled instruction for the remaining 91.7%,
the average cycles per unstalled instruction jumps to 4.3; if
we took this into account the “Sum” line would be much
closer to the “Actual” line, although its shape would still be
wrong.

What can we deduce from this surprising accuracy?

1. The L2 cache data stall times are believable. If the
penalty of 206 cycles was an overestimate or under-
estimate, the shape of the “Sum” and “Actual” lines
would not match so well for the programs in which in
the number of L2 misses changes a lot while the other

components do not change very much (e.g. gamteb,
hpg, rsa). Little if any useful work is being done dur-
ing L2 data miss stalls.

2. A similar argument can be made for the figure of 0.8
cycles per unstalled instruction, else the shape of the
“Sum” and “Actual” lines would not match so closely
for the programs in which the number of instructions
executed changes a lot (e.g. parser, compress2 in Fig-
ure 6). This component covers instruction execution
time plus anything else proportional to the number of
instructions, such as instruction fetch stalls.

3. The branch misprediction times should be an accu-
rate lower bound, assuming ten cycles is the minimum
misprediction penalty. This component may be under-
estimated; it is hard to tell due to the the flatness of
the “Branch” lines.

4. The D1 cache stall times may be wrong. Unlike the
“Branch” case, there is no minimum penalty for a D1
miss. The “D1” line is not likely to be an underes-
timate, since the 12 cycle figure used is a worst-case
latency, the D1 cache has two ports and the proces-
sor may be able to do some useful work when an D1
cache miss occurs. Either way, D1 stall times have
little impact on overall execution times.

5. For those programs in which the “Sum” line falls short
of the “Actual” line, there is a constant “everything
else” component that is independent of the number of
instructions and L2 cache misses. This could include
any underestimation of branch misprediction penalty.

The inaccurate graphs are also worth considering. For
compress, the model overestimates the cost of an unstalled
instruction, underestimates the cost of an L2 cache data
miss, or possibly both. For hidden, the model overestimates
the cost of an L2 cache data miss. For symalg, once the
cost of the div instructions is factored in, the model greatly
overestimates the cost of an L2 cache data miss; as a counter-
example of a program where the processor can mask the cost
of an L2 miss by doing other useful work, it emphasises how
little the processor can do for the more normal programs.

The interested reader may care to re-inspect Figures 46
to see how the interaction between instruction counts and
cache misses affect program speed for the different garbage
collector configurations.

5.3 Using the Model

The model is far from perfect. However, we believe it is
accurate enough that we can state with confidence the pro-
portion of execution time taken up by L2 miss and branch
misprediction stalls—the stalls that we have found to be sig-
nificant for GHC programs—just from the counts provided
by the hardware counters.

Figure 9 shows the proportion of execution times taken
up by L2 miss and branch misprediction stalls for the GHC
programs. The numbers were deduced from the execution
cost model, using the same optimal nursery and initial heap
sizes as in Figure 8.

L2 cache data stalls account for 1-60% of execution time.
Not surprisingly, the programs that use more memory tend
to have worse cache behaviour. Branch misprediction stalls
account for 0-32% of execution time. Together the two kinds

anna

cachepr of

conpr ess

conpr ess2

ful som

gant eb
hi dden

hpg
infer

par ser

‘. L2 stalls 1 Branch stalls [_| Real work

L2 stalls %: 206 x Data cache refills from system
/ Cycles

Branch stalls %: 10 x Retired branches mispredicted
/ Cycles

Real work %: 100 — L2 stalls % — Branch stalls %

Figure 9: Execution time lost to hardware stalls

of stall account for 1-67% of time, with most programs in
the range 30-60%.

Finally, the “Real work” category accounts for the major-
ity of the time taken by most of these programs. Although
L2 cache miss and branch misprediction stalls are a big fac-
tor in the high CPI rates of these programs, this “Real work”
category should not be ignored; a CPI of around 0.8 for un-
stalled instructions (as shown by model) is not very good.
If that figure could be improved the programs would all run
much faster.

5.4 Explanation

Why is the model so accurate? What has happened to
the Athlon’s aggressive three-way, out-of-order execution?

It is not clear what the exact effects are. But we have
some ideas. Firstly, part of the high cache miss rate is due
to GHC’s intense memory use, thanks to its high allocation
rates and use of copying garbage collection. But the cache
miss rates seen in Figure 8 compare unfavourably to the
SML/NJ programs which use memory in a similar way. It
may be that laziness is a large factor. Intuitively, lazy pro-
grams may tend to “hang onto” data longer than for strict
languages, since program execution does not proceed in a
direct fashion.

Secondly, for the high branch misprediction rates, many
jumps at the end of closures are indirect, and their target
addresses change frequently, so the branch prediction units
have little chance of correctly predicting them. GHC uses a
technique commonly used to support lazy evaluation, that
of jumping into a closure’s code to determine if it is evalu-
ated, and returning immediately if so. If GHC, for example,
instead used one of the spare two bits on the end of word-
aligned pointers to indicate whether a closure has been eval-
uated, these expensive jumps might be able to be replaced
by a better predicted local direct jump in the case where a

closure has been evaluated.

Finally, the level of instruction-level parallelism in GHC
program code exploitable by modern processors is quite low;
a high proportion of instructions touch memory, many of
which simply move data between the heap and the stack.
Values loaded are usually needed immediately, and while
these frequent loads and stores are happening there is little
“real” work that can be done by the processor’s functional
units. This explains the high CPI values for the programs,
and also why L2 cache misses stalls are not “masked” at all.

All these factors mean that GHC programs do not inter-
act well with the aggressive modern processors, and that
changes to GHC’s execution mechanism may improve its
performance.

6. SIMULATION

Performance counters are very useful for finding cache
miss ratios, and the execution cost model let us determine
the proportion of time caused by hardware stalls. But to im-
prove the cache behaviour we need information about where
the misses occur. This required the use of software simula-
tion.

6.1 Method

Execution-driven simulation is one popular technique. We
used the tool Valgrind [18] as the starting point for our sim-
ulation. Valgrind’s core is a JIT compiler for x86/Linux
programs; it uses a RISC-like intermediate language, which
provides an excellent platform for simulation. We extended
Valgrind to perform cache profiling, naming the resulting
tool “Cachegrind”.

Cachegrind instruments each memory referencing instruc-
tion with a call to a C function that updates the simulated
caches (I1, D1 and unified L2). It also collects cache access
and miss counts for each instruction and prints them to file,
which allows line-by-line annotation of the program’s source
files.” Programs run around 50 times slower than normal
under Cachegrind.

6.2 Shortcomings

Cachegrind’s simulation suffers several shortcomings.

e It only measures cache accesses visible at the pro-
gram level. For example, it does not account for extra
cache accesses that occur upon a TLB miss, nor cache
accesses that take place under instructions executed
speculatively that are later annulled.

e The addresses used for the simulation are virtual; it
does not consider virtual-to-physical address mappings
at all. The simulated cache state will not exactly
match the real cache state. This is hard to avoid;
even the extremely rigorous Alpha 21264 simulation
of Desikan, Burger and Keckler [5] does not model it.

e It does not model the Athlon’s cache semantics ex-
actly. For example, upon an instruction cache miss
the Athlon loads the missed block and also prefetches
the following block; this is not accounted for.

"The “precise event-based sampling” of the Pentium 4 [11]
can provide line-level detail. Unfortunately, we do not have
access to any Pentium 4 machines and have not been able
to try this.

We quantified these differences with a direct comparison of
the results from hardware counters and software simulation.
Figure 10 shows the results.

Program Instr Ref D1 miss D2 miss
anna 99.4% 71.6% 92.7% 80.2%
cacheprof 99.5% 82.6% 92.5% 69.5%
compress 99.4% 84.0% 97.0% 64.5%
compress2 | 99.4% 83.3% 94.7% 94.1%
fulsom 99.5% 78.3% 89.8% 72.8%
gamteb 99.2% 81.8% 91.5% 71.0%
hidden 99.2% 74.5% 94.6% 54.3%
hpg 97.4% 80.8% 98.1% 38.2%
infer 99.0% 76.3% 96.0% 90.6%
parser 99.3% 81.1% 89.2% 81.5%
rsa 99.4% 91.4% 97.3% 83.1%
symalg 99.2% 96.8% 96.8% 45.7%
ghc 99.4% 78.6% 87.3% 88.0%
ghc -0 100.0% 78.3% 86.6% 81.2%
Figure 10: Ratios between hardware counter and

software simulation event counts

Column two gives the ratio of instructions counted by
Cachegrind to retired instructions counted by Rabbit (event
0xc0). This is the best comparison of the two techniques,
as they are measuring exactly the same event. As expected,
Cachegrind gave marginally lower counts than Rabbit, be-
cause unlike Rabbit it does not measure other processes and
the kernel. Despite this, Cachegrind counted more than 99%
of the events counted by Rabbit for all programs except hpg,
for which it counted 97.4%.

Column three contains the memory reference ratios, where
Rabbit measures the number of data cache accesses (event
0x40). Cachegrind falls further short here, by 3-28%. As
previously mentioned, this is because some cache accesses
are occurring that are not visible at the program level, such
as those from TLB misses.

Columns four and five give the D1 cache miss and L2
cache data miss ratios, where Rabbit is measuring the num-
ber of data cache refills from L2 and data cache refills from
system (Athlon events 0x42, 0x43). Cachegrind underesti-
mates these misses by 3-62%.

With this simulation, we are only aiming for a general pic-
ture of where cache misses occur for machines with this kind
of setup, rather than matching exactly every miss that oc-
curs for the Athlon. We believe that although Cachegrind’s
results are not perfect, they give a very good indication of
where cache misses are occurring in these programs.

6.3 Annotations

We used Cachegrind to annotate each program line® with
its number of read and write references and misses, when run
with the optimal garbage collector configuration as before.

We concentrated on L2 data misses because data misses
are much more frequent than instruction misses, and L2
misses are much more costly than L1 misses. Most data
misses are concentrated in certain places; the proportions of
L2 data misses in different locations are shown in Figure 11
and explained in the following sections. The first seven parts
of each bar are read misses, and marked with “(r)”. The

8 At the assembler level for the compiled GHC code, and the
C level for the runtime system.

next three are write misses, marked with “(w)”. The last
part is the proportion of read and write misses unannotated
(the GNU multi-precision library code was not annotated,
which explains the high unannotated proportions for rsa
and symalg). We will distinguish between “in-program”
misses and those in the runtime system.

6.4 Data Read Miss Locations

Data read misses occur in seven main ways.

1. In-program ‘mov’ read misses: occur mostly when read-
ing from the stack, and reading closure fields.

2. In-program ‘jmp’ read misses: call/return instructions
are never used in the STG machine. All code blocks
end with a direct or indirect jump to the code of the
next closure to be executed. The first kind of jmp that
causes many read misses is an indirect jump to another
closure’s code, of the form jmp *(/esi). Register %esi
points to a closure C', and this instruction jumps to the
code in the info table pointed to by C. If C is not in
the cache at that point, a miss occurs.

3. The second jmp that causes read misses, with the form
jmp *-k(%eax), is an indirect jumps for a vectored
return. -k is an offset into a static vector of return
addresses (called a vtbl) pointed to by register %eax.
When a data constructor is evaluated, in some circum-
stances its code returns to the appropriate member of
a vector of return addresses rather than returning to a
multi-way jump. If the vtbl is not in the cache, a read
miss occurs.

4. evacuate(): during garbage collection, before a clo-
sure is evacuated from the old step to the new step its
layout must be determined from its info table. This
requires two accesses: one of the closure to get its info
table pointer and one of the info table layout informa-
tion. The first access causes around ten times as many
misses as the second.

5. copy(): evacuate() calls copy() to do the copying of
each closure to the next step. Usually evacuate () will
have dragged the entire closure into the cache, but if
the closure straddles a cache line boundary, copying
the second half can cause a read miss.

6. scavenge*(): various scavenge functions are used to
evacuate any closures pointed to by an evacuated clo-
sure. When a closure is scavenged it will cause a read
miss if it is not already in the cache.

7. Other read misses are scattered about, mostly in the
runtime system.

The number of read misses in evacuate() is high. This
may be caused by putting layout data directly next to code
in info tables. Info tables are read-only, so there is never any
coherency problems if a single block is placed in both the
I1 and D1 caches; however, the split caches are polluted by
useless words. In particular, when garbage collecting, the
info table of every closure that is evacuated is read. Since
the code part of an info table is often much larger than the
data part (e.g. 10 or more instructions versus 2 or 3 words
of data), this might knock out much data from the D1 cache
that would soon be referenced. We plan to try separating

the data and code parts of info tables (a form of structure
splitting [3]). Instruction level miss identification will be
invaluable for measuring the effects of this change.

6.5 Data Write Miss Locations

Data write misses occur in three main ways.

1. In-program ‘mov’ write misses: most write misses oc-
cur when allocating and initialising new closures on
the heap. Because of the sequential allocation, most
writes hit the cache; misses only occur when a cache
line boundary is crossed. Allocation of an N byte clo-
sure causes a miss N times out of 64 (the block size is
64 bytes).

2. copy(): during garbage collection.

3. Other write misses are in the runtime system, and are
only significant for gamteb, rsa and symalg; for these
three most of the write misses occur in a function
stgAllocForGMP() which allocates memory required
by the GNU multi-precision library.

This distribution reflects how writes occur—most happen
at allocations, as only a fraction of closures survive to be
garbage collected.

6.6 Avoiding Data Write Misses

Most write misses are unnecessary. Heap writes are se-
quential, both when initialising closures, and when copying
them during garbage collection. Write misses occur only for
the first word in a cache line. There is no need to read the
memory block into the D1 cache upon a write miss, as is
done in a write-allocate cache; the rest of the line will soon
be overwritten. It would be better to write the word directly
to the D1 cache and invalidate the rest of the cache line.

This can be achieved by using a write-allocate cache with
sub-block placement, as noted by Diwan et al. [6]. However,
such caches are now a rarity. An equally effective approach
would be to use a write-invalidate instruction instead of a
normal write. Some architectures have write-invalidate in-
structions, but unfortunately the x86 is not one of them.

An alternative is to use prefetching. Because writes are
sequential it is simple to insert prefetches to ensure memory
blocks are in the cache by the time they are written to. We
performed some preliminary experiments with the Athlon’s
prefetchw instruction, fetching ahead 64 bytes each time a
new closure is allocated or copied by the garbage collector.
The changes required were simple, and increased code sizes
by only 0.8-1.6%. Figure 12 shows the results: columns 2-4
give the improvement when the prefetching is applied to just
the garbage collector, just program allocations, and both.
The improvements are quite respectable: programs ran up
to 22% faster, and none slowed down when prefetches were
added to in-program code and the runtime system.

If a write-invalidate instruction existed that cost no more
than a normal write, we can estimate the potential speed-
up it would provide by multiplying the proportion of write
misses by the proportion of execution time taken up by L2
data cache stalls (from Figure 9), which gives the expected
speed-ups shown in column 5 of Figure 12. The prefetching
technique—which is applicable to any program using copy-
ing garbage collection, not just GHC programs—obtained
half or more of this theoretical figure for almost all pro-
grams, as shown by column 6 which gives the ratio between

anna

cachepr of

conpress

conpr ess2

ful som

gant eb

hi dden

hpg

infer

par ser

rsa

symal g

ghc

ghc-0O

‘. mov () [imp1() [Jjmp2(r) [Jevac(r) M copy () [Mscav(r) []Other(r) [|mov (w) [l copy (w) [l Other (w)[]Unann.

Figure 11: Read and write miss locations

Program GC Prog Both | Theory | Ratio
anna 3% 0% 4% 5% 0.8
cacheprof | 3% 1% 5% 9% 0.6
compress 2% 2% 5% 7% 0.7
compress2 | 3% 9% 12% 25% 0.5
fulsom 1% 1% 1% 31% 0.6
gamteb 0% -0% 0% 6% 0.0
hidden 1% 3% 2% 3% 0.7
hpg 4% 1% 4% 3% 1.3
infer 3% 8% 9% 8% 1.1
parser 1% 19% 22% 28% 0.8
rsa 3% -1% 2% < 1%

symalg 1% 1% 1% < 1%

ghc 1% 17% 1% 27% 0.6
ghc -0 2% 12% 14% 24% 0.6

Figure 12: Effect of prefetching

theoretical and actual speed-ups. This is pleasing since more
prefetches are performed than necessary (one per closure al-
located/copied, about six per cacheline), and prefetching
increases memory bandwidth requirements.

7. RELATED WORK

Several other works have been published about the cache
behaviour of declarative languages, some of which consid-
ered the effects of generational copying garbage collection.

Wilson, Lam and Moher measured a bytecode Scheme im-
plementation [19] that used a copying generational garbage
collector, and simulated multiple cache configurations. They
concluded that fitting the allocation area in cache would help
locality greatly.

Koopman, Lee and Siewiorek [12] evaluated various cache
configurations for an SK-combinator graph reduction lan-
guage. Examining very small programs, they found that
write-allocate caches gave much better performance than

write-no-allocate caches, because most data is referenced al-
most immediately after allocation.

Diwan, Tarditi and Moss made very detailed simulation of
Standard ML programs, including the effects of parts of the
memory system usually ignored such as the write buffer and
TLB [6]. They compared different write-miss strategies, and
found that using sub-block placement cut cache miss rates
significantly.

Gongalves and Appel also made detailed measurements
of Standard ML programs [8]. They found the miss rates of
SML/NJ programs could be lower than SPEC92 C and For-
tran programs. Necula and George also measured SML/NJ
programs [14], on a DEC Alpha with performance coun-
ters. They found that stalls caused by data cache misses
accounted for 24% of execution time.

The main differences between this work and previous work
is that we have considered large programs in a lazy language,
we have identified cache misses down to the level of individ-
ual instructions, we have used prefetching to avoid cache
misses, and we have also considered branch mispredictions
and instruction-level parallelism.

8. FURTHER WORK AND CONCLUSION

8.1 Data Write Misses

We found that write misses typically account for 50-60%
of L2 cache data misses in GHC programs. Using very sim-
ple prefetching, we mitigated the cost of cache write misses
by around half, improving the speed of GHC programs by
up to 22%. With a write-invalidate instruction, we could
potentially obtain greater speed-ups.

8.2 Data Read Misses

The remaining data misses are read misses. Firstly, re-
moving GHC's use of code next to data may improve cache
behaviour by avoiding polluting the data caches with useless
instructions during garbage collection.

After that there are two general ways to reduce data cache
misses. The first is to improve program locality, which can
reduce read misses. At first, we hoped to use Chilimbi and
Larus’ technique of using low-overhead real-time profiling
information to guide data reorganisation during garbage col-
lection [4]. Unfortunately, closure access in GHC programs
is extremely lightweight, and the real-time profiling that
worked for Java and Cecil programs would be too expen-
sive. It is not clear whether this technique can be modified
for languages with such lightweight data access, e.g. by sam-
pling only a small fraction of closure accesses.

Also, many data accesses in GHC programs are to static
structures—some closures, and all info tables and vtbls. Per-
haps these structures can be laid out in a way that aids the
locality of programs, using static analysis and/or heuristics.

The second general approach to avoiding cache misses
(both read and write) is to reduce memory footprints by
representing data more compactly. Old techniques invented
to avoid page faults could be recycled. For example, a big-
bag-of-pages (BIBOP) scheme [2], where the heap is segre-
gated into different areas by type could help; a single info
table pointer could be shared between all closures in the
page. This would, for example, shrink a cons cell from three
words to two. Putting same-typed closures together might
also improve locality. The extra costs are that it requires
multiple heap pointers, and it requires some kind of test to
determine if a closure is in a special page or not. It may also
be tricky to determine how closures should be distributed
between pages.

8.3 Other Hardware Optimisations

Although this work began as an investigation into the
cache behaviour of Haskell, we found that branch mispre-
diction stalls account for up to 32% of program time, and
that there is little exploitable instruction-level parallelism
exhibited by closure code. GHC’s execution mechanism, the
STG machine, was designed over ten years ago, when pro-
cessors were substantially different. It is time to reconsider
techniques used in GHC programs (such as always entering
a closure, and immediately returning if it is already evalu-
ated) in the light of the changing strengths and weaknesses
of modern hardware, as the potential for further significant
performance improvements are excellent.

9. ACKNOWLEDGMENTS

Many thanks to: Julian Seward for all his help with Val-
grind and GHC, Simon Marlow for help with GHC, Simon
Peyton Jones and the anonymous referees for valuable com-
ments on earlier versions of this paper, Don Heller for help
with Rabbit, Ian Pratt for his hardware expertise, and Dave
Scott for help with SML. The first author gratefully acknowl-
edges the financial support of Trinity College, Cambridge.

10. REFERENCES
[1] Advanced Micro Devices, Inc. AMD Athlon processor

x86 code optimization guide, July 2001.
http://www.amd. com.

[2] H. G. Baker. Optimizing allocation and garbage
collection of spaces. In Winston and Brown, editors,
Artificial Intelligence, An MIT Perspective, volume 2,
pages 391-396. MIT Press, 1979.

[3] T. M. Chilimbi, B. Davidson, and J. R. Larus.
Cache-conscious structure definition. In Proceedings of

[5]

[6]

[13]

[14]

[17]

[18]

[19]

the SIGPLAN 99 Conference on Programming
Languages Design and Implementation (PLDI), pages
13-24, Atlanta, Georgia, USA, May 1999.

T. M. Chilimbi and J. R. Larus. Using generational
garbage collection to implement cache-conscious data
placement. In Proceedings of ISMM-98, pages 37-48,
Vancouver, Canada, Oct. 1998. ACM Press.

R. Desikan, D. Burger, and S. W. Keckler. Measuring
experimental error in microprocessor simulation. In
Proceedings of ISCA-28, pages 266-277, July 2001.
A. Diwan, D. Tarditi, and E. Moss. Memory-system
performance of programs with intensive heap
allocation. ACM Transactions on Computer Systems,
13(3):244-273, Aug. 1995.

The Glasgow Haskell Compiler.
http://www.haskell.org/ghc.

M. J. R. Gongalves and A. W. Appel. Cache
performance of fast-allocating programs. In
Proceedings of FPCA’95, pages 293-305, La Jolla,
California, USA, June 1995. ACM Press.

P. H. Hartel, et al. Benchmarking implementations of
functional languages with “Pseudoknot” a
float-intensive benchmark. Journal of Functional
Programming, 6(4):621-655, 1996.

D. Heller. Rabbit: A performance counters library for
Intel/AMD processors and Linux.
http://www.scl.ameslab.gov/Projects/Rabbit/.
Intel. IA-32 Intel architecture software developer’s
manual, 2001. Order number 245472.
http://www.intel.com.

P. J. Koopman, Jr., P. Lee, and D. P. Siewiorek.
Cache behavior of combinator graph reduction. ACM
Transactions on Programming Languages and
Systems, 14(2):265-297, Apr. 1992.

S. Manegold and P. Boncz. Cache-memory and TLB
calibration tool.
http://www.cwi.nl/“manegold/Calibrator/.

G. C. Necula and L. George. Accounting for the
performance of Standard ML on the DEC Alpha.
Technical report, AT&T Bell Labs, Murray Hill, New
Jersey, USA, Sept. 1994.

W. Partain. The nofib benchmark suite of Haskell
programs. In J. Launchbury and P. Sansom, editors,
Proceedings of the 1992 Glasgow Workshop on
Functional Programming, pages 195-202, Ayr,
Scotland, July 1992. Springer-Verlag.

S. L. Peyton Jones. Implementing lazy functional
languages on stock hardware: the spineless tagless
G-machine. Journal of Functional Programming,
2(2):127-202, Apr. 1992.

S. L. Peyton Jones and A. L. M. Santos. A
transformation-based optimiser for Haskell. Science of
Computer Programming, 32(1-3):3-47, Sept. 1998.

J. Seward. Valgrind, an open-source memory debugger
for x86-GNU/Linux.

http://developer.kde.org/~ jseward/.

P. R. Wilson, M. S. Lam, and T. G. Moher. Caching
considerations for generational garbage collection. In
Proceedings of the 1992 ACM Conference on Lisp and
Functional Programming, pages 32—42, San Francisco,
California, USA, June 1992.

