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ABSTRACTLazy funtional programs behave di�erently from imper-ative programs and these di�erenes extend to ahe be-haviour. We use hardware ounters and a simple yet au-rate exeution ost model to analyse some large Haskell pro-grams on the x86 arhiteture. The programs do not interatwell with modern proessors|L2 ahe data miss stalls andbranh mispredition stalls aount for up to 60% and 32%of exeution time respetively. Moreover, the program odeexhibits little exploitable instrution-level parallelism.We then use simulation to pinpoint ahe misses at theinstrution level. With this information we apply prefeth-ing to minimise the ost of write misses, speeding up Haskellprograms by up to 22%. We onlude with more ideas forhanging the Glasgow Haskell Compiler and its garbage ol-letor to improve the ahe performane of large programs.
Categories and Subject DescriptorsB.3.3 [Memory Strutures℄: Design Styles|Cahe mem-ories; B.8.2 [Performane and Reliability℄: PerformaneAnalysis and Design Aids; D.3.2 [Language Classi�a-tions℄: Appliative (funtional) languages|Haskell ; D.3.4[Programming Languages℄: Proessors|ompilers, mem-ory management (garbage olletion)
General TermsExperimentation, languages, measurement, performane
KeywordsCahe measurement, ahe simulation, hardware ounters,branh mispredition, Haskell, Glasgow Haskell Compiler
1. INTRODUCTIONCahe misses are expensive. An L2 ahe miss on a mod-ern personal omputer an waste hundreds of CPU yles.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSP 2002 Berlin, Germany
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

While tehniques for optimising the ahe performane ofarray-based programs are mature and well-known, the situ-ation is murkier for general purpose programs.Delarative languages are possible bene�iaries from aheoptimisations. Programs written in delarative languagesare often substantially slower than equivalent programs writ-ten in lower-level languages that are \loser to the mahine".However, given the inreasing omplexity of omputers, be-ing \loser to the mahine" an be bad, sine most pro-grammers will not understand enough about the hardwareto extrat good performane from it. Better deisions mightbe made by a ompiler and/or runtime system, thanks toharateristis of delarative languages suh as strong statityping, a lak of (or limited) mutable data strutures, andgreater exibility in data representation and organisation.In this paper, we investigate the ahe behaviour of pro-grams written in the lazy funtional language Haskell, usingthe Glasgow Haskell Compiler (GHC). Modifying garbageolletion parameters to examine the e�et on ahe be-haviour, we found that a simple exeution ost model issuÆient to determine that programs spend up to 60% oftheir time waiting for L2 ahe data miss stalls. We alsofound that up to 32% of program time is taken up by branhmispredition stalls, together the two stall types aount forup to 67% of program time, and that the generated odeexhibits little exploitable instrution-level parallelism. Inresponse to this, we present detailed simulation-based mea-surements to preisely identify the loations of L2 ahe datamisses, and use prefething to speed up programs by up to22% by reduing the ost of ahe write misses.This work represents the �rst detailed measurement ofthe ahe behaviour of realisti, highly optimised, lazy fun-tional programs. It shows the exeution times of GHC pro-grams1 an be predited aurately with a simple ost exe-ution model, that the impat of L2 ahe misses and branhmispreditions is signi�ant, and that GHC programs inter-at quite poorly with aggressive modern proessors. Exe-ution tehniques supporting lazy evaluation should be re-onsidered; they do not behave well on modern arhiteturesand there is muh room for hardware-targeted optimisationsto improve their performane. It also shows how prefeth-ing an minimise the ost of write misses in systems usingopying garbage olletion.Setion 2 desribes the language Haskell and the GHC1We will use the phrase \GHC programs" to denoteimplementation-spei� behaviour of Haskell programs om-piled with GHC.
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Figure 1: Closure and info tableimplementation, the suite of benhmark programs we mea-sured, and the mahine we used. Setions 3 and 4 anal-yse the programs using information from hardware ounters.Setion 5 introdues a simple exeution ost model to aid theanalysis. Setion 6 uses simulation to pinpoint ahe missloations, and shows the results of prefething. Setion 7disusses related work. Setion 8 disusses further work andonludes.

2. SYSTEM CHARACTERISTICS

2.1 Language and ImplementationHaskell is a polymorphially typed, lazy, purely funtionalprogramming language widely used as a testbed for researh.The Glasgow Haskell Compiler (GHC) [7℄ is a highly opti-mising \industrial-strength" ompiler for Haskell. The om-piler is itself written in Haskell; its runtime system is writ-ten in C. Although its distribution ontains an interpreter,GHC is a true ompiler designed primarily for reating stan-dalone programs. The optimisations it performs inlude fulllaziness, deforestation, let oating, beta redution, lambdalifting and stritness optimisations; it also supports unboxedvalues [17℄. It is widely onsidered to be the fastest imple-mentation of a lazy funtional language [9℄. Beause it ishighly optimising, it is not a soft target. This is important,sine optimising non-optimised systems is always less of ahallenge than optimising optimised systems.
2.2 The STG MachineTo understand the auses of ahe misses requires someunderstanding of GHC's exeution mehanism, the spinelesstagless G-mahine (STG mahine).Programs onsist of two main kinds of objets: evaluatedvalues (funtion and data values), and as-yet unevaluatedsuspensions (alled thunks). All objets are represented uni-formly, as losures (Figure 1). Some losures are stati, andsome are alloated on the heap dynamially. Funtion val-ues are represented by a pointer to a stati info table|whihontains ode for the funtion and some layout informationused during garbage olletion|plus a payload of (pointersto) the values of any free variables. Thunks have the samerepresentation, but when a thunk is evaluated its must up-date its own value (so that it is not evaluated more thanone). The representation of data values is best explainedby the example of a ons ell: a pointer to an info table

ontaining ode that simply returns immediately, followedby a payload of a head pointer and tail pointer. For moredetails see [16℄.Most losures are 1{4 words whih means that 4{16 an�t within eah 64 byte ahe blok typial of reent x86proessors. This is enough for the e�et of spatial loalityto be important. All info tables have two or three words oflayout information, and most have 1{30 instrutions.This exeution mehanism is neessarily quite exoti inorder to support lazy evaulation, and stresses proessors inunusual ways, as we shall see in Setions 4 and 5.
2.3 Benchmark SuiteTwelve of the the benhmark programs tested ome fromthe \real" part of the nofib suite [15℄ of Haskell programs.These programs were all written to perform an atual task;most are a reasonable size, and none have trivial input or be-haviour. This is important|small and large programs havedi�erent ahe behaviour, and we want to optimise largeand realisti programs. The other program tested was GHCitself, ompiling a large module with and without optimisa-tion. The benhmark programs are desribed in Figure 2,and their sizes in lines of ode (minus blanks and omments)are given. Inputs were hosen so eah program ran for about2{3 seonds, exept for the gh benhmarks, whih were sub-stantially longer. This is long enough to realistially stressthe ahe, but short enough that the programs ran for rea-sonable times when simulated (see Setion 6).Program Desription linesanna Frontier-based stritness analyser 5740aheprof x86 assembly ode annotator 1489ompress LZW text ompression 403ompress2 Text ompression 147fulsom Solid modeller 857gamteb Monte Carlo photon transport 510hidden PostSript polygon renderer 362hpg Random Haskell program generator 761infer Hindley-Milner type inferene 561parser Partial Haskell parser 932rsa RSA �le enryptor 48symalg Symboli algebra program 831gh GHC, no optimisation 78950gh -O GHC, with -O optimisation 78950Figure 2: Haskell program desriptionsGHC an ompile via C, or use its x86 native ode gen-erator; the distintion is unimportant for us, as programsompiled by the two routes have extremely similar ahebehaviour. All programs were ompiled with a reent de-velopment version of GHC (derived from v5.02.2), via Cusing GCC 3.0.4, using the -O optimisation ag. For all ex-periments, they were run with a stak size of 10MB,2 andwith ontext-swithing turned o� (as is sensible for single-threaded programs).
2.4 Machine CharacteristicsThe mahine used for the experiments was an AMDAthlon,running Red Hat Linux 7.1, kernel version 2.4.7|a typial2The stak limit is set to abort exeution in the ase of ai-dental in�nite reursion; it has no e�et on ahe behaviour.



modern system, desribed in Figure 3. The information inthe �rst part of the table was gathered from AMD dou-mentation [1℄ and the results of the CPUID instrution.Arhiteture AMD K7, model 4Clok speed 1400 MHzI1 ahe 64KB, 64B lines, 2-wayD1 ahe 64KB, 64B lines, 2-way, write-alloate, write-bak, 2 64-bit ports,LRUL2 uni�ed ahe 256KB, 64B lines, 8-way, on-die, ex-lusive (ontains only vitim bloks)System bus Pair of unidiretional 13-bit addressand ontrol hannels; bidiretional,64-bit, 200 MHz data busWrite bu�er 4-entry, 64-byteD1 replae time 12 ylesL2 replae time 206 ylesFigure 3: Athlon harateristisNote that the I1 ahe does some prefething|upon amiss both the urrent blok and following blok are readinto the ahe. Also, the L2 ahe is 8-way aording to theCPUID instrution's result, not 16-way as laimed in [1℄.The ahe replae times in the seond part of the tablewere found using Calibrator v0.9e [13℄, a miro-benhmarkwhih performs multiple dependent array aesses with vari-ous \stride" lengths to estimate worst-ase D1 and L2 ahelatenies. Of ourse, a 206 yle L2 replae time does notimply that eah L2 miss will ause a 206 yle stall; in realprograms, out-of-order exeution an hide ahe lateniessomewhat. Nonetheless, we will shortly see the usefulnessof these �gures.
3. VARYING GC PARAMETERSThe ahe behaviour of programs using garbage olletionan vary onsiderably with the olletor's parameters. Be-fore we an properly analyse the hosen Haskell programs,we need to �nd the best garbage olletor on�guration foreah one.GHC's garbage olletor is a highly exible generationalopying olletor with multiple generations eah ontainingmultiple steps; the number of steps and generations is on-�gurable at runtime. The �rst step of the �rst generation isthe alloation area, or nursery. The starting heap size analso be spei�ed, and the heap will then grow and shrink asneessary, guided by heuristis. It also treats large objetsseparately, to avoid opying them.We tried individually varying the olletor's nursery size,the initial heap size, and the number of generations to deter-mine their e�et on program ahe behaviour. This servedthree uses: �rstly, it allowed us to �nd the best garbage ol-letor on�guration for eah program; seondly, it providedinteresting data about the behaviour of the garbage olle-tor; and thirdly, it gave us the insight needed to formulatethe simple exeution ost model desribed in Setion 5.
3.1 Nursery SizeThe most revealing results were seen when hanging thesize of the alloation area. The default nursery size is 256KB;we varied it from 32KB{512KB for eah program. The re-sults are shown in Figures 4 and 5.

Consider �rst the graph for ompress, in Figure 4. The\Atual" line gives the number of yles, reported by Rab-bit [10℄, whih provides ontrol over the Athlon's hardwareperformane ounters [1℄. (We will explain the other lineson the graphs in Setion 5.) The line dips to minimumaround 160KB, before rising again as the nursery size in-reases. This is due to two ompeting e�ets that arise asthe nursery size inreases: �rstly, fewer garbage olletionsare performed, so the instrution ount dereases; seondly,the amount of memory touhed grows, so the number ofahe misses inreases.The seond e�et beomes signi�ant as the nursery sizeapproahes 256KB, the size of the L2 ahe. This mathesWilson, Lam and Moher's advie to �t the youngest gener-ation of a generational olletor within the ahe [19℄. Thee�et starts before the 256KB point is reahed beause theAthlon's L2 ahe is uni�ed, ontaining both data and ode.This graph shape is seen for most of the programs.3
3.2 Initial Heap SizeThe seond parameter we varied was the initial heap size.Unlike when hanging nursery size, there is no lean ex-planation for the four broad trends observed as the initialheap size was inreased from 0{64MB: relatively at graphs,with some hanges, but no general trend (e.g. aheprof);graphs with a sudden jump at the start, but at afterwards(e.g. hpg); graphs with a downward slope (e.g. ompress2);graphs with an upward slope (e.g. rsa).These representative examples are shown in Figure 6. Noone initial heap size is best, although the default of zero gavegood results for most programs.
3.3 Number of GenerationsThe third parameter we varied was the number of gener-ations, from one (giving a standard two-spae opying ol-letor) to six. Having one generation gave easily the worstresults, two gave the best, and three to six were marginallyworse than two. The only programs to buk this trend wereompress (one generation gave the best result, and the graphsloped upwards) and infer (the graph was a very shallow`V' shape, with a minimum at three generations). The de-fault hoie of two generations was learly the best.
4. PROGRAM ANALYSISTo ount the number of ahe misses ourring duringprogram exeution, we again used Rabbit and the Athlon'shardware performane ounters. The Athlon has 23 do-umented measurable events, and four ounters. AlthoughRabbit an use sampling to give approximate results for allevents in a single program run, we did not use this failityin order to obtain exat event ounts.4 Instead we dividedthe events into six event sets. Eah program was run �vetimes per event set, thirty times in total. The performaneounters measure all events taking plae on the CPU, so theevent ounts from the fastest of the �ve exeutions were ho-sen to minimise the interferene of other proesses and theoperating system. In all ases the program measured wasrunning for at least 99.5% of the elapsed time.3One an see the two e�ets learly in the \Instr" and \D2"lines; we will return to this point in detail in Setion 5.4Although aording to [1℄, \the performane ounters arenot guaranteed to be fully aurate".
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Figure 5: E�ets of varying nursery size (II)
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Figure 6: E�ets of varying initial heap size

The GHC programs were run using the garbage olletoron�guration that gave the fastest times, found by varyingthe nursery size from 32KB{512KB in 32KB inrements andvarying the initial heap size from 0MB{32MB in 4MB inre-ments (the number of generations was always two).To provide a omparison with the GHC programs, �veSML/NJ (v110.0.7) programs and �ve C programs5 weremeasured as well. They are desribed in Figure 7.6SML Program Desriptionount-graphs Graph manipulationlogi Simple Prolog-like interpreterray Ray traersimple Spherial uid dynamis simulationtsp Travelling salespersonC Programg C ompiler, v3.0.4gzip LZ77 ompression, v1.3latex LATEX2"/TEXv3.14159 typesetterperlparse Assembly ode parser (in Perl v5.6.0)vpr FPGA plaement and routing toolFigure 7: SML and C program desriptionsThe results for all programs are given in Figure 8, whihontains a key explaining the olumns. The exeution �gures(olumns 4{5, 9{12) were obtained with the hardware oun-ters and the garbage olletor �gures (olumns 6{8) withthe -s runtime option.The immediate onlusions are that GHC programs andSML/NJ programs are memory intensive, with higher in-strution / memory aess ratios than the C programs. Thisis beause they both use opying garbage olletion, and al-loate memory furiously (58{287MB per seond of mutatortime for the Haskell programs, even higher for SML/NJ).But the CPI �gures are most ompelling|the GHC pro-grams range from 1.0{4.3, with most in the 1.5{3.0 range,ompared to 1.2{1.6 for SML/NJ programs, and 1.1{1.5 forthe C programs. We will see in Setion 5.3 that the GHCprograms' high L2 data miss and branh mispredition ratesaount for muh of this di�erene.
5. AN EXECUTION COST MODELTo understand and explain the results found in the previ-ous setion, we used a simple exeution ost model to deter-mine where proessor time is going in the GHC programs.
5.1 The ModelThe model takes into aount only the four largest om-ponents of exeution time: instrution exeution, stalls dueto L1 and L2 ahe data misses, and stalls due to branhmispreditions. The model is:yles = 0:8I + 12C1 + 206C2 + 10Bwhere I is the number of instrutions exeuted, C1 and C2are the number of D1 ahe misses and L2 ahe data missesrespetively, and B is the number of mispredited branhes.5The program perlparse is written in Perl, but the Perlinterpreter is written in C.6Two of the C programs are used in the SPEC benhmarks;the inputs we used were not from the SPEC benhmarks, buthosen to give similar running times to the Haskell programs.



GHC program Nurs. Heap0 Instr Mem GC Allo'd Copied L2 Sys BrMis CPIanna 96KB 0MB 1598M 86% 23% 133MB 35MB 7.9 2.0 58 2.1aheprof 160KB 0MB 1484M 72% 33% 222MB 33MB 5.7 1.2 30 1.4ompress 160KB 0MB 3301M 83% 30% 532MB 65MB 5.2 0.8 24 1.2ompress2 96KB 32MB 972M 73% 46% 169MB 42MB 10.1 8.4 20 2.9fulsom 288KB 28MB 717M 82% 28% 183MB 10MB 9.7 6.9 40 2.9gamteb 128KB 0MB 2301M 73% 17% 350MB 25MB 4.1 0.9 27 1.4hidden 128KB 0MB 1857M 85% 3% 535MB 2MB 5.8 0.4 48 1.5hpg 96KB 0MB 2018M 69% 19% 533MB 23MB 7.5 0.4 23 1.2infer 512KB 32MB 1523M 90% 29% 109MB 35MB 15.7 4.0 59 2.6parser 288KB 32MB 1517M 75% 34% 287MB 41MB 7.2 5.9 38 2.6rsa 128KB 0MB 2853M 52% 6% 188MB 3MB 1.3 0.1 9 1.0symalg 192KB 0MB 1013M 49% 1% 410MB 1MB 6.0 0.3 2 4.3gh 448KB 32MB 2232M 78% 17% 480MB 32MB 9.8 6.7 46 3.1gh -O 320KB 32MB 4580M 79% 23% 922MB 98MB 11.5 7.7 49 3.4SML/NJ programount-graphs 256KB 512KB 9598M 78% ? 3122MB 14MB 6.0 0.3 10 1.2logi 256KB 512KB 1528M 80% ? 534MB 14MB 11.6 1.2 14 1.6ray 256KB 512KB 1003M 64% ? 540MB 347KB 13.2 0.9 12 1.5simple 256KB 512KB 920M 75% ? 269MB 157KB 8.4 1.1 9 1.3tsp 256KB 512KB 1943M 59% ? 25MB 3MB 8.5 1.1 7 1.5C programg { { 2250M 59% { { { 3.6 1.6 21 1.5gzip { { 3189M 46% { { { 13.1 0.3 10 1.1latex { { 1741M 69% { { { 2.7 0.4 17 1.2perlparse { { 1778M 67% { { { 3.7 0.1 27 1.4vpr { { 1958M 70% { { { 5.3 0.2 14 1.3Nurs: Nursery size (KB)Heap0: Initial heap size (MB)Instr: Retired instrutions (Athlon event 0x0)Mem: Data ahe aesses / Retired instrutions (0x40 / 0x0)GC: Garbage olletor time %Allo'd: Megabytes alloated on heapCopied: Megabytes opied during garbage olletionL2: Data ahe re�lls from L2 / Retired instrutions � 1000 (0x42 / 0x0 � 1000)Sys: Data ahe re�lls from system / Retired instrutions � 1000 (0x43 / 0x0 � 1000)BrMis: Retired branhes mispredited / Retired instrutions � 1000 (0x5 / 0x0 � 1000)CPI: Cyles / instrution retired (yles / 0x0)Figure 8: Program harateristisThe onstants were hosen for the following reasons: 12 and206 for the ahe misses beause they are the worst-asenumbers reported by Calibrator; 10 for branh mispredi-tions beause page 208 of [1℄ says \In the event of a mis-predit, the minimum penalty is ten yles"; and 0.8 forunstalled instrutions quite arbitrarily (a three-way mahinewith multiple funtional units ould retire unstalled instru-tions faster than this).
5.2 JustificationOne would expet that this model is far too simple for theAthlon, an aggressive, out-of-order, three-way supersalarproessor with nine funtional units. And yet, it is surpris-ingly aurate. Returning to the graphs in Figures 4{6, thefour omponents are shown as the \Instr", \D1", \D2" and\Branh" lines. The \Sum" line is their sum.Consider the results from varying nursery size in Figures 4and 5. For eleven of the fourteen programs, the model givesa orretly shaped graph that is almost spot on the realvalue (e.g. hpg) or underestimates by a small onstant fa-

tor (e.g. fulsom). For ompress the model beomes a littleless aurate as the nursery size inrease; for hidden it be-omes more aurate. The graphs in Figure 6 also show animpressive math between \Sum" and \Atual" values.Only for symalg in Figure 5 are the preditions badlywrong. This is beause 8.3% of its instrutions are divinstrutions|from the GNU multi-preision library whihGHC uses to implement in�nite preision integers|whihtake 42 yles on the Athlon ([1℄ p. 270). If we assume0.8 yles per unstalled instrution for the remaining 91.7%,the average yles per unstalled instrution jumps to 4.3; ifwe took this into aount the \Sum" line would be muhloser to the \Atual" line, although its shape would still bewrong.What an we dedue from this surprising auray?1. The L2 ahe data stall times are believable. If thepenalty of 206 yles was an overestimate or under-estimate, the shape of the \Sum" and \Atual" lineswould not math so well for the programs in whih inthe number of L2 misses hanges a lot while the other



omponents do not hange very muh (e.g. gamteb,hpg, rsa). Little if any useful work is being done dur-ing L2 data miss stalls.2. A similar argument an be made for the �gure of 0.8yles per unstalled instrution, else the shape of the\Sum" and \Atual" lines would not math so loselyfor the programs in whih the number of instrutionsexeuted hanges a lot (e.g. parser, ompress2 in Fig-ure 6). This omponent overs instrution exeutiontime plus anything else proportional to the number ofinstrutions, suh as instrution feth stalls.3. The branh mispredition times should be an au-rate lower bound, assuming ten yles is the minimummispredition penalty. This omponent may be under-estimated; it is hard to tell due to the the atness ofthe \Branh" lines.4. The D1 ahe stall times may be wrong. Unlike the\Branh" ase, there is no minimum penalty for a D1miss. The \D1" line is not likely to be an underes-timate, sine the 12 yle �gure used is a worst-aselateny, the D1 ahe has two ports and the proes-sor may be able to do some useful work when an D1ahe miss ours. Either way, D1 stall times havelittle impat on overall exeution times.5. For those programs in whih the \Sum" line falls shortof the \Atual" line, there is a onstant \everythingelse" omponent that is independent of the number ofinstrutions and L2 ahe misses. This ould inludeany underestimation of branh mispredition penalty.The inaurate graphs are also worth onsidering. Forompress, the model overestimates the ost of an unstalledinstrution, underestimates the ost of an L2 ahe datamiss, or possibly both. For hidden, the model overestimatesthe ost of an L2 ahe data miss. For symalg, one theost of the div instrutions is fatored in, the model greatlyoverestimates the ost of an L2 ahe data miss; as a ounter-example of a program where the proessor an mask the ostof an L2 miss by doing other useful work, it emphasises howlittle the proessor an do for the more normal programs.The interested reader may are to re-inspet Figures 4{6to see how the interation between instrution ounts andahe misses a�et program speed for the di�erent garbageolletor on�gurations.
5.3 Using the ModelThe model is far from perfet. However, we believe it isaurate enough that we an state with on�dene the pro-portion of exeution time taken up by L2 miss and branhmispredition stalls|the stalls that we have found to be sig-ni�ant for GHC programs|just from the ounts providedby the hardware ounters.Figure 9 shows the proportion of exeution times takenup by L2 miss and branh mispredition stalls for the GHCprograms. The numbers were dedued from the exeutionost model, using the same optimal nursery and initial heapsizes as in Figure 8.L2 ahe data stalls aount for 1{60% of exeution time.Not surprisingly, the programs that use more memory tendto have worse ahe behaviour. Branh mispredition stallsaount for 0{32% of exeution time. Together the two kinds
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L2 stalls Branch stalls Real workL2 stalls %: 206 � Data ahe re�lls from system/ CylesBranh stalls %: 10 � Retired branhes mispredited/ CylesReal work %: 100 � L2 stalls % � Branh stalls %Figure 9: Exeution time lost to hardware stallsof stall aount for 1{67% of time, with most programs inthe range 30{60%.Finally, the \Real work" ategory aounts for the major-ity of the time taken by most of these programs. AlthoughL2 ahe miss and branh mispredition stalls are a big fa-tor in the high CPI rates of these programs, this \Real work"ategory should not be ignored; a CPI of around 0.8 for un-stalled instrutions (as shown by model) is not very good.If that �gure ould be improved the programs would all runmuh faster.
5.4 ExplanationWhy is the model so aurate? What has happened tothe Athlon's aggressive three-way, out-of-order exeution?It is not lear what the exat e�ets are. But we havesome ideas. Firstly, part of the high ahe miss rate is dueto GHC's intense memory use, thanks to its high alloationrates and use of opying garbage olletion. But the ahemiss rates seen in Figure 8 ompare unfavourably to theSML/NJ programs whih use memory in a similar way. Itmay be that laziness is a large fator. Intuitively, lazy pro-grams may tend to \hang onto" data longer than for stritlanguages, sine program exeution does not proeed in adiret fashion.Seondly, for the high branh mispredition rates, manyjumps at the end of losures are indiret, and their targetaddresses hange frequently, so the branh predition unitshave little hane of orretly prediting them. GHC uses atehnique ommonly used to support lazy evaluation, thatof jumping into a losure's ode to determine if it is evalu-ated, and returning immediately if so. If GHC, for example,instead used one of the spare two bits on the end of word-aligned pointers to indiate whether a losure has been eval-uated, these expensive jumps might be able to be replaedby a better predited loal diret jump in the ase where a



losure has been evaluated.Finally, the level of instrution-level parallelism in GHCprogram ode exploitable by modern proessors is quite low;a high proportion of instrutions touh memory, many ofwhih simply move data between the heap and the stak.Values loaded are usually needed immediately, and whilethese frequent loads and stores are happening there is little\real" work that an be done by the proessor's funtionalunits. This explains the high CPI values for the programs,and also why L2 ahe misses stalls are not \masked" at all.All these fators mean that GHC programs do not inter-at well with the aggressive modern proessors, and thathanges to GHC's exeution mehanism may improve itsperformane.
6. SIMULATIONPerformane ounters are very useful for �nding ahemiss ratios, and the exeution ost model let us determinethe proportion of time aused by hardware stalls. But to im-prove the ahe behaviour we need information about wherethe misses our. This required the use of software simula-tion.
6.1 MethodExeution-driven simulation is one popular tehnique. Weused the tool Valgrind [18℄ as the starting point for our sim-ulation. Valgrind's ore is a JIT ompiler for x86/Linuxprograms; it uses a RISC-like intermediate language, whihprovides an exellent platform for simulation. We extendedValgrind to perform ahe pro�ling, naming the resultingtool \Cahegrind".Cahegrind instruments eah memory referening instru-tion with a all to a C funtion that updates the simulatedahes (I1, D1 and uni�ed L2). It also ollets ahe aessand miss ounts for eah instrution and prints them to �le,whih allows line-by-line annotation of the program's soure�les.7 Programs run around 50 times slower than normalunder Cahegrind.
6.2 ShortcomingsCahegrind's simulation su�ers several shortomings.� It only measures ahe aesses visible at the pro-gram level. For example, it does not aount for extraahe aesses that our upon a TLB miss, nor aheaesses that take plae under instrutions exeutedspeulatively that are later annulled.� The addresses used for the simulation are virtual; itdoes not onsider virtual-to-physial address mappingsat all. The simulated ahe state will not exatlymath the real ahe state. This is hard to avoid;even the extremely rigorous Alpha 21264 simulationof Desikan, Burger and Kekler [5℄ does not model it.� It does not model the Athlon's ahe semantis ex-atly. For example, upon an instrution ahe missthe Athlon loads the missed blok and also prefethesthe following blok; this is not aounted for.7The \preise event-based sampling" of the Pentium 4 [11℄an provide line-level detail. Unfortunately, we do not haveaess to any Pentium 4 mahines and have not been ableto try this.

We quanti�ed these di�erenes with a diret omparison ofthe results from hardware ounters and software simulation.Figure 10 shows the results.Program Instr Ref D1 miss D2 missanna 99.4% 71.6% 92.7% 80.2%aheprof 99.5% 82.6% 92.5% 69.5%ompress 99.4% 84.0% 97.0% 64.5%ompress2 99.4% 83.3% 94.7% 94.1%fulsom 99.5% 78.3% 89.8% 72.8%gamteb 99.2% 81.8% 91.5% 71.0%hidden 99.2% 74.5% 94.6% 54.3%hpg 97.4% 80.8% 98.1% 38.2%infer 99.0% 76.3% 96.0% 90.6%parser 99.3% 81.1% 89.2% 81.5%rsa 99.4% 91.4% 97.3% 83.1%symalg 99.2% 96.8% 96.8% 45.7%gh 99.4% 78.6% 87.3% 88.0%gh -O 100.0% 78.3% 86.6% 81.2%Figure 10: Ratios between hardware ounter andsoftware simulation event ountsColumn two gives the ratio of instrutions ounted byCahegrind to retired instrutions ounted by Rabbit (event0x0). This is the best omparison of the two tehniques,as they are measuring exatly the same event. As expeted,Cahegrind gave marginally lower ounts than Rabbit, be-ause unlike Rabbit it does not measure other proesses andthe kernel. Despite this, Cahegrind ounted more than 99%of the events ounted by Rabbit for all programs exept hpg,for whih it ounted 97.4%.Column three ontains the memory referene ratios, whereRabbit measures the number of data ahe aesses (event0x40). Cahegrind falls further short here, by 3{28%. Aspreviously mentioned, this is beause some ahe aessesare ourring that are not visible at the program level, suhas those from TLB misses.Columns four and �ve give the D1 ahe miss and L2ahe data miss ratios, where Rabbit is measuring the num-ber of data ahe re�lls from L2 and data ahe re�lls fromsystem (Athlon events 0x42, 0x43). Cahegrind underesti-mates these misses by 3{62%.With this simulation, we are only aiming for a general pi-ture of where ahe misses our for mahines with this kindof setup, rather than mathing exatly every miss that o-urs for the Athlon. We believe that although Cahegrind'sresults are not perfet, they give a very good indiation ofwhere ahe misses are ourring in these programs.
6.3 AnnotationsWe used Cahegrind to annotate eah program line8 withits number of read and write referenes and misses, when runwith the optimal garbage olletor on�guration as before.We onentrated on L2 data misses beause data missesare muh more frequent than instrution misses, and L2misses are muh more ostly than L1 misses. Most datamisses are onentrated in ertain plaes; the proportions ofL2 data misses in di�erent loations are shown in Figure 11and explained in the following setions. The �rst seven partsof eah bar are read misses, and marked with \(r)". The8At the assembler level for the ompiled GHC ode, and theC level for the runtime system.



next three are write misses, marked with \(w)". The lastpart is the proportion of read and write misses unannotated(the GNU multi-preision library ode was not annotated,whih explains the high unannotated proportions for rsaand symalg). We will distinguish between \in-program"misses and those in the runtime system.
6.4 Data Read Miss LocationsData read misses our in seven main ways.1. In-program `mov' read misses: our mostly when read-ing from the stak, and reading losure �elds.2. In-program `jmp' read misses: all/return instrutionsare never used in the STG mahine. All ode bloksend with a diret or indiret jump to the ode of thenext losure to be exeuted. The �rst kind of jmp thatauses many read misses is an indiret jump to anotherlosure's ode, of the form jmp *(%esi). Register %esipoints to a losure C, and this instrution jumps to theode in the info table pointed to by C. If C is not inthe ahe at that point, a miss ours.3. The seond jmp that auses read misses, with the formjmp *-k(%eax), is an indiret jumps for a vetoredreturn. -k is an o�set into a stati vetor of returnaddresses (alled a vtbl) pointed to by register %eax.When a data onstrutor is evaluated, in some irum-stanes its ode returns to the appropriate member ofa vetor of return addresses rather than returning to amulti-way jump. If the vtbl is not in the ahe, a readmiss ours.4. evauate(): during garbage olletion, before a lo-sure is evauated from the old step to the new step itslayout must be determined from its info table. Thisrequires two aesses: one of the losure to get its infotable pointer and one of the info table layout informa-tion. The �rst aess auses around ten times as manymisses as the seond.5. opy(): evauate() alls opy() to do the opying ofeah losure to the next step. Usually evauate() willhave dragged the entire losure into the ahe, but ifthe losure straddles a ahe line boundary, opyingthe seond half an ause a read miss.6. savenge*(): various savenge funtions are used toevauate any losures pointed to by an evauated lo-sure. When a losure is savenged it will ause a readmiss if it is not already in the ahe.7. Other read misses are sattered about, mostly in theruntime system.The number of read misses in evauate() is high. Thismay be aused by putting layout data diretly next to odein info tables. Info tables are read-only, so there is never anyohereny problems if a single blok is plaed in both theI1 and D1 ahes; however, the split ahes are polluted byuseless words. In partiular, when garbage olleting, theinfo table of every losure that is evauated is read. Sinethe ode part of an info table is often muh larger than thedata part (e.g. 10 or more instrutions versus 2 or 3 wordsof data), this might knok out muh data from the D1 ahethat would soon be referened. We plan to try separating

the data and ode parts of info tables (a form of struturesplitting [3℄). Instrution level miss identi�ation will beinvaluable for measuring the e�ets of this hange.
6.5 Data Write Miss LocationsData write misses our in three main ways.1. In-program `mov' write misses: most write misses o-ur when alloating and initialising new losures onthe heap. Beause of the sequential alloation, mostwrites hit the ahe; misses only our when a aheline boundary is rossed. Alloation of an N byte lo-sure auses a miss N times out of 64 (the blok size is64 bytes).2. opy(): during garbage olletion.3. Other write misses are in the runtime system, and areonly signi�ant for gamteb, rsa and symalg; for thesethree most of the write misses our in a funtionstgAlloForGMP() whih alloates memory requiredby the GNU multi-preision library.This distribution reets how writes our|most happenat alloations, as only a fration of losures survive to begarbage olleted.
6.6 Avoiding Data Write MissesMost write misses are unneessary. Heap writes are se-quential, both when initialising losures, and when opyingthem during garbage olletion. Write misses our only forthe �rst word in a ahe line. There is no need to read thememory blok into the D1 ahe upon a write miss, as isdone in a write-alloate ahe; the rest of the line will soonbe overwritten. It would be better to write the word diretlyto the D1 ahe and invalidate the rest of the ahe line.This an be ahieved by using a write-alloate ahe withsub-blok plaement, as noted by Diwan et al. [6℄. However,suh ahes are now a rarity. An equally e�etive approahwould be to use a write-invalidate instrution instead of anormal write. Some arhitetures have write-invalidate in-strutions, but unfortunately the x86 is not one of them.An alternative is to use prefething. Beause writes aresequential it is simple to insert prefethes to ensure memorybloks are in the ahe by the time they are written to. Weperformed some preliminary experiments with the Athlon'sprefethw instrution, fething ahead 64 bytes eah time anew losure is alloated or opied by the garbage olletor.The hanges required were simple, and inreased ode sizesby only 0.8{1.6%. Figure 12 shows the results: olumns 2{4give the improvement when the prefething is applied to justthe garbage olletor, just program alloations, and both.The improvements are quite respetable: programs ran upto 22% faster, and none slowed down when prefethes wereadded to in-program ode and the runtime system.If a write-invalidate instrution existed that ost no morethan a normal write, we an estimate the potential speed-up it would provide by multiplying the proportion of writemisses by the proportion of exeution time taken up by L2data ahe stalls (from Figure 9), whih gives the expetedspeed-ups shown in olumn 5 of Figure 12. The prefethingtehnique|whih is appliable to any program using opy-ing garbage olletion, not just GHC programs|obtainedhalf or more of this theoretial �gure for almost all pro-grams, as shown by olumn 6 whih gives the ratio between
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mov (r) jmp1 (r) jmp2 (r) evac (r) copy (r) scav (r) Other (r) mov (w) copy (w) Other (w) Unann.Figure 11: Read and write miss loationsProgram GC Prog Both Theory Ratioanna 3% 0% 4% 5% 0.8aheprof 3% 1% 5% 9% 0.6ompress 2% 2% 5% 7% 0.7ompress2 3% 9% 12% 25% 0.5fulsom 1% 17% 17% 31% 0.6gamteb 0% -0% 0% 6% 0.0hidden 1% 3% 2% 3% 0.7hpg 4% 1% 4% 3% 1.3infer 3% 8% 9% 8% 1.1parser 1% 19% 22% 28% 0.8rsa 3% -1% 2% < 1%symalg 1% 1% 1% < 1%gh 1% 17% 17% 27% 0.6gh -O 2% 12% 14% 24% 0.6Figure 12: E�et of prefethingtheoretial and atual speed-ups. This is pleasing sine moreprefethes are performed than neessary (one per losure al-loated/opied, about six per aheline), and prefethinginreases memory bandwidth requirements.
7. RELATED WORKSeveral other works have been published about the ahebehaviour of delarative languages, some of whih onsid-ered the e�ets of generational opying garbage olletion.Wilson, Lam and Moher measured a byteode Sheme im-plementation [19℄ that used a opying generational garbageolletor, and simulated multiple ahe on�gurations. Theyonluded that �tting the alloation area in ahe would helploality greatly.Koopman, Lee and Siewiorek [12℄ evaluated various aheon�gurations for an SK-ombinator graph redution lan-guage. Examining very small programs, they found thatwrite-alloate ahes gave muh better performane than

write-no-alloate ahes, beause most data is referened al-most immediately after alloation.Diwan, Tarditi and Moss made very detailed simulation ofStandard ML programs, inluding the e�ets of parts of thememory system usually ignored suh as the write bu�er andTLB [6℄. They ompared di�erent write-miss strategies, andfound that using sub-blok plaement ut ahe miss ratessigni�antly.Gon�alves and Appel also made detailed measurementsof Standard ML programs [8℄. They found the miss rates ofSML/NJ programs ould be lower than SPEC92 C and For-tran programs. Neula and George also measured SML/NJprograms [14℄, on a DEC Alpha with performane oun-ters. They found that stalls aused by data ahe missesaounted for 24% of exeution time.The main di�erenes between this work and previous workis that we have onsidered large programs in a lazy language,we have identi�ed ahe misses down to the level of individ-ual instrutions, we have used prefething to avoid ahemisses, and we have also onsidered branh mispreditionsand instrution-level parallelism.
8. FURTHER WORK AND CONCLUSION

8.1 Data Write MissesWe found that write misses typially aount for 50{60%of L2 ahe data misses in GHC programs. Using very sim-ple prefething, we mitigated the ost of ahe write missesby around half, improving the speed of GHC programs byup to 22%. With a write-invalidate instrution, we ouldpotentially obtain greater speed-ups.
8.2 Data Read MissesThe remaining data misses are read misses. Firstly, re-moving GHC's use of ode next to data may improve ahebehaviour by avoiding polluting the data ahes with uselessinstrutions during garbage olletion.



After that there are two general ways to redue data ahemisses. The �rst is to improve program loality, whih anredue read misses. At �rst, we hoped to use Chilimbi andLarus' tehnique of using low-overhead real-time pro�linginformation to guide data reorganisation during garbage ol-letion [4℄. Unfortunately, losure aess in GHC programsis extremely lightweight, and the real-time pro�ling thatworked for Java and Ceil programs would be too expen-sive. It is not lear whether this tehnique an be modi�edfor languages with suh lightweight data aess, e.g. by sam-pling only a small fration of losure aesses.Also, many data aesses in GHC programs are to statistrutures|some losures, and all info tables and vtbls. Per-haps these strutures an be laid out in a way that aids theloality of programs, using stati analysis and/or heuristis.The seond general approah to avoiding ahe misses(both read and write) is to redue memory footprints byrepresenting data more ompatly. Old tehniques inventedto avoid page faults ould be reyled. For example, a big-bag-of-pages (BIBOP) sheme [2℄, where the heap is segre-gated into di�erent areas by type ould help; a single infotable pointer ould be shared between all losures in thepage. This would, for example, shrink a ons ell from threewords to two. Putting same-typed losures together mightalso improve loality. The extra osts are that it requiresmultiple heap pointers, and it requires some kind of test todetermine if a losure is in a speial page or not. It may alsobe triky to determine how losures should be distributedbetween pages.
8.3 Other Hardware OptimisationsAlthough this work began as an investigation into theahe behaviour of Haskell, we found that branh mispre-dition stalls aount for up to 32% of program time, andthat there is little exploitable instrution-level parallelismexhibited by losure ode. GHC's exeution mehanism, theSTG mahine, was designed over ten years ago, when pro-essors were substantially di�erent. It is time to reonsidertehniques used in GHC programs (suh as always enteringa losure, and immediately returning if it is already evalu-ated) in the light of the hanging strengths and weaknessesof modern hardware, as the potential for further signi�antperformane improvements are exellent.
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