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ABSTRACTLazy fun
tional programs behave di�erently from imper-ative programs and these di�eren
es extend to 
a
he be-haviour. We use hardware 
ounters and a simple yet a

u-rate exe
ution 
ost model to analyse some large Haskell pro-grams on the x86 ar
hite
ture. The programs do not intera
twell with modern pro
essors|L2 
a
he data miss stalls andbran
h mispredi
tion stalls a

ount for up to 60% and 32%of exe
ution time respe
tively. Moreover, the program 
odeexhibits little exploitable instru
tion-level parallelism.We then use simulation to pinpoint 
a
he misses at theinstru
tion level. With this information we apply prefet
h-ing to minimise the 
ost of write misses, speeding up Haskellprograms by up to 22%. We 
on
lude with more ideas for
hanging the Glasgow Haskell Compiler and its garbage 
ol-le
tor to improve the 
a
he performan
e of large programs.
Categories and Subject DescriptorsB.3.3 [Memory Stru
tures℄: Design Styles|Ca
he mem-ories; B.8.2 [Performan
e and Reliability℄: Performan
eAnalysis and Design Aids; D.3.2 [Language Classi�
a-tions℄: Appli
ative (fun
tional) languages|Haskell ; D.3.4[Programming Languages℄: Pro
essors|
ompilers, mem-ory management (garbage 
olle
tion)
General TermsExperimentation, languages, measurement, performan
e
KeywordsCa
he measurement, 
a
he simulation, hardware 
ounters,bran
h mispredi
tion, Haskell, Glasgow Haskell Compiler
1. INTRODUCTIONCa
he misses are expensive. An L2 
a
he miss on a mod-ern personal 
omputer 
an waste hundreds of CPU 
y
les.
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While te
hniques for optimising the 
a
he performan
e ofarray-based programs are mature and well-known, the situ-ation is murkier for general purpose programs.De
larative languages are possible bene�
iaries from 
a
heoptimisations. Programs written in de
larative languagesare often substantially slower than equivalent programs writ-ten in lower-level languages that are \
loser to the ma
hine".However, given the in
reasing 
omplexity of 
omputers, be-ing \
loser to the ma
hine" 
an be bad, sin
e most pro-grammers will not understand enough about the hardwareto extra
t good performan
e from it. Better de
isions mightbe made by a 
ompiler and/or runtime system, thanks to
hara
teristi
s of de
larative languages su
h as strong stati
typing, a la
k of (or limited) mutable data stru
tures, andgreater 
exibility in data representation and organisation.In this paper, we investigate the 
a
he behaviour of pro-grams written in the lazy fun
tional language Haskell, usingthe Glasgow Haskell Compiler (GHC). Modifying garbage
olle
tion parameters to examine the e�e
t on 
a
he be-haviour, we found that a simple exe
ution 
ost model issuÆ
ient to determine that programs spend up to 60% oftheir time waiting for L2 
a
he data miss stalls. We alsofound that up to 32% of program time is taken up by bran
hmispredi
tion stalls, together the two stall types a

ount forup to 67% of program time, and that the generated 
odeexhibits little exploitable instru
tion-level parallelism. Inresponse to this, we present detailed simulation-based mea-surements to pre
isely identify the lo
ations of L2 
a
he datamisses, and use prefet
hing to speed up programs by up to22% by redu
ing the 
ost of 
a
he write misses.This work represents the �rst detailed measurement ofthe 
a
he behaviour of realisti
, highly optimised, lazy fun
-tional programs. It shows the exe
ution times of GHC pro-grams1 
an be predi
ted a

urately with a simple 
ost exe-
ution model, that the impa
t of L2 
a
he misses and bran
hmispredi
tions is signi�
ant, and that GHC programs inter-a
t quite poorly with aggressive modern pro
essors. Exe-
ution te
hniques supporting lazy evaluation should be re-
onsidered; they do not behave well on modern ar
hite
turesand there is mu
h room for hardware-targeted optimisationsto improve their performan
e. It also shows how prefet
h-ing 
an minimise the 
ost of write misses in systems using
opying garbage 
olle
tion.Se
tion 2 des
ribes the language Haskell and the GHC1We will use the phrase \GHC programs" to denoteimplementation-spe
i�
 behaviour of Haskell programs 
om-piled with GHC.
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Figure 1: Closure and info tableimplementation, the suite of ben
hmark programs we mea-sured, and the ma
hine we used. Se
tions 3 and 4 anal-yse the programs using information from hardware 
ounters.Se
tion 5 introdu
es a simple exe
ution 
ost model to aid theanalysis. Se
tion 6 uses simulation to pinpoint 
a
he misslo
ations, and shows the results of prefet
hing. Se
tion 7dis
usses related work. Se
tion 8 dis
usses further work and
on
ludes.

2. SYSTEM CHARACTERISTICS

2.1 Language and ImplementationHaskell is a polymorphi
ally typed, lazy, purely fun
tionalprogramming language widely used as a testbed for resear
h.The Glasgow Haskell Compiler (GHC) [7℄ is a highly opti-mising \industrial-strength" 
ompiler for Haskell. The 
om-piler is itself written in Haskell; its runtime system is writ-ten in C. Although its distribution 
ontains an interpreter,GHC is a true 
ompiler designed primarily for 
reating stan-dalone programs. The optimisations it performs in
lude fulllaziness, deforestation, let 
oating, beta redu
tion, lambdalifting and stri
tness optimisations; it also supports unboxedvalues [17℄. It is widely 
onsidered to be the fastest imple-mentation of a lazy fun
tional language [9℄. Be
ause it ishighly optimising, it is not a soft target. This is important,sin
e optimising non-optimised systems is always less of a
hallenge than optimising optimised systems.
2.2 The STG MachineTo understand the 
auses of 
a
he misses requires someunderstanding of GHC's exe
ution me
hanism, the spinelesstagless G-ma
hine (STG ma
hine).Programs 
onsist of two main kinds of obje
ts: evaluatedvalues (fun
tion and data values), and as-yet unevaluatedsuspensions (
alled thunks). All obje
ts are represented uni-formly, as 
losures (Figure 1). Some 
losures are stati
, andsome are allo
ated on the heap dynami
ally. Fun
tion val-ues are represented by a pointer to a stati
 info table|whi
h
ontains 
ode for the fun
tion and some layout informationused during garbage 
olle
tion|plus a payload of (pointersto) the values of any free variables. Thunks have the samerepresentation, but when a thunk is evaluated its must up-date its own value (so that it is not evaluated more thanon
e). The representation of data values is best explainedby the example of a 
ons 
ell: a pointer to an info table


ontaining 
ode that simply returns immediately, followedby a payload of a head pointer and tail pointer. For moredetails see [16℄.Most 
losures are 1{4 words whi
h means that 4{16 
an�t within ea
h 64 byte 
a
he blo
k typi
al of re
ent x86pro
essors. This is enough for the e�e
t of spatial lo
alityto be important. All info tables have two or three words oflayout information, and most have 1{30 instru
tions.This exe
ution me
hanism is ne
essarily quite exoti
 inorder to support lazy evaulation, and stresses pro
essors inunusual ways, as we shall see in Se
tions 4 and 5.
2.3 Benchmark SuiteTwelve of the the ben
hmark programs tested 
ome fromthe \real" part of the nofib suite [15℄ of Haskell programs.These programs were all written to perform an a
tual task;most are a reasonable size, and none have trivial input or be-haviour. This is important|small and large programs havedi�erent 
a
he behaviour, and we want to optimise largeand realisti
 programs. The other program tested was GHCitself, 
ompiling a large module with and without optimisa-tion. The ben
hmark programs are des
ribed in Figure 2,and their sizes in lines of 
ode (minus blanks and 
omments)are given. Inputs were 
hosen so ea
h program ran for about2{3 se
onds, ex
ept for the gh
 ben
hmarks, whi
h were sub-stantially longer. This is long enough to realisti
ally stressthe 
a
he, but short enough that the programs ran for rea-sonable times when simulated (see Se
tion 6).Program Des
ription linesanna Frontier-based stri
tness analyser 5740
a
heprof x86 assembly 
ode annotator 1489
ompress LZW text 
ompression 403
ompress2 Text 
ompression 147fulsom Solid modeller 857gamteb Monte Carlo photon transport 510hidden PostS
ript polygon renderer 362hpg Random Haskell program generator 761infer Hindley-Milner type inferen
e 561parser Partial Haskell parser 932rsa RSA �le en
ryptor 48symalg Symboli
 algebra program 831gh
 GHC, no optimisation 78950gh
 -O GHC, with -O optimisation 78950Figure 2: Haskell program des
riptionsGHC 
an 
ompile via C, or use its x86 native 
ode gen-erator; the distin
tion is unimportant for us, as programs
ompiled by the two routes have extremely similar 
a
hebehaviour. All programs were 
ompiled with a re
ent de-velopment version of GHC (derived from v5.02.2), via Cusing GCC 3.0.4, using the -O optimisation 
ag. For all ex-periments, they were run with a sta
k size of 10MB,2 andwith 
ontext-swit
hing turned o� (as is sensible for single-threaded programs).
2.4 Machine CharacteristicsThe ma
hine used for the experiments was an AMDAthlon,running Red Hat Linux 7.1, kernel version 2.4.7|a typi
al2The sta
k limit is set to abort exe
ution in the 
ase of a

i-dental in�nite re
ursion; it has no e�e
t on 
a
he behaviour.



modern system, des
ribed in Figure 3. The information inthe �rst part of the table was gathered from AMD do
u-mentation [1℄ and the results of the CPUID instru
tion.Ar
hite
ture AMD K7, model 4Clo
k speed 1400 MHzI1 
a
he 64KB, 64B lines, 2-wayD1 
a
he 64KB, 64B lines, 2-way, write-allo
ate, write-ba
k, 2 64-bit ports,LRUL2 uni�ed 
a
he 256KB, 64B lines, 8-way, on-die, ex-
lusive (
ontains only vi
tim blo
ks)System bus Pair of unidire
tional 13-bit addressand 
ontrol 
hannels; bidire
tional,64-bit, 200 MHz data busWrite bu�er 4-entry, 64-byteD1 repla
e time 12 
y
lesL2 repla
e time 206 
y
lesFigure 3: Athlon 
hara
teristi
sNote that the I1 
a
he does some prefet
hing|upon amiss both the 
urrent blo
k and following blo
k are readinto the 
a
he. Also, the L2 
a
he is 8-way a

ording to theCPUID instru
tion's result, not 16-way as 
laimed in [1℄.The 
a
he repla
e times in the se
ond part of the tablewere found using Calibrator v0.9e [13℄, a mi
ro-ben
hmarkwhi
h performs multiple dependent array a

esses with vari-ous \stride" lengths to estimate worst-
ase D1 and L2 
a
helaten
ies. Of 
ourse, a 206 
y
le L2 repla
e time does notimply that ea
h L2 miss will 
ause a 206 
y
le stall; in realprograms, out-of-order exe
ution 
an hide 
a
he laten
iessomewhat. Nonetheless, we will shortly see the usefulnessof these �gures.
3. VARYING GC PARAMETERSThe 
a
he behaviour of programs using garbage 
olle
tion
an vary 
onsiderably with the 
olle
tor's parameters. Be-fore we 
an properly analyse the 
hosen Haskell programs,we need to �nd the best garbage 
olle
tor 
on�guration forea
h one.GHC's garbage 
olle
tor is a highly 
exible generational
opying 
olle
tor with multiple generations ea
h 
ontainingmultiple steps; the number of steps and generations is 
on-�gurable at runtime. The �rst step of the �rst generation isthe allo
ation area, or nursery. The starting heap size 
analso be spe
i�ed, and the heap will then grow and shrink asne
essary, guided by heuristi
s. It also treats large obje
tsseparately, to avoid 
opying them.We tried individually varying the 
olle
tor's nursery size,the initial heap size, and the number of generations to deter-mine their e�e
t on program 
a
he behaviour. This servedthree uses: �rstly, it allowed us to �nd the best garbage 
ol-le
tor 
on�guration for ea
h program; se
ondly, it providedinteresting data about the behaviour of the garbage 
olle
-tor; and thirdly, it gave us the insight needed to formulatethe simple exe
ution 
ost model des
ribed in Se
tion 5.
3.1 Nursery SizeThe most revealing results were seen when 
hanging thesize of the allo
ation area. The default nursery size is 256KB;we varied it from 32KB{512KB for ea
h program. The re-sults are shown in Figures 4 and 5.

Consider �rst the graph for 
ompress, in Figure 4. The\A
tual" line gives the number of 
y
les, reported by Rab-bit [10℄, whi
h provides 
ontrol over the Athlon's hardwareperforman
e 
ounters [1℄. (We will explain the other lineson the graphs in Se
tion 5.) The line dips to minimumaround 160KB, before rising again as the nursery size in-
reases. This is due to two 
ompeting e�e
ts that arise asthe nursery size in
reases: �rstly, fewer garbage 
olle
tionsare performed, so the instru
tion 
ount de
reases; se
ondly,the amount of memory tou
hed grows, so the number of
a
he misses in
reases.The se
ond e�e
t be
omes signi�
ant as the nursery sizeapproa
hes 256KB, the size of the L2 
a
he. This mat
hesWilson, Lam and Moher's advi
e to �t the youngest gener-ation of a generational 
olle
tor within the 
a
he [19℄. Thee�e
t starts before the 256KB point is rea
hed be
ause theAthlon's L2 
a
he is uni�ed, 
ontaining both data and 
ode.This graph shape is seen for most of the programs.3
3.2 Initial Heap SizeThe se
ond parameter we varied was the initial heap size.Unlike when 
hanging nursery size, there is no 
lean ex-planation for the four broad trends observed as the initialheap size was in
reased from 0{64MB: relatively 
at graphs,with some 
hanges, but no general trend (e.g. 
a
heprof);graphs with a sudden jump at the start, but 
at afterwards(e.g. hpg); graphs with a downward slope (e.g. 
ompress2);graphs with an upward slope (e.g. rsa).These representative examples are shown in Figure 6. Noone initial heap size is best, although the default of zero gavegood results for most programs.
3.3 Number of GenerationsThe third parameter we varied was the number of gener-ations, from one (giving a standard two-spa
e 
opying 
ol-le
tor) to six. Having one generation gave easily the worstresults, two gave the best, and three to six were marginallyworse than two. The only programs to bu
k this trend were
ompress (one generation gave the best result, and the graphsloped upwards) and infer (the graph was a very shallow`V' shape, with a minimum at three generations). The de-fault 
hoi
e of two generations was 
learly the best.
4. PROGRAM ANALYSISTo 
ount the number of 
a
he misses o

urring duringprogram exe
ution, we again used Rabbit and the Athlon'shardware performan
e 
ounters. The Athlon has 23 do
-umented measurable events, and four 
ounters. AlthoughRabbit 
an use sampling to give approximate results for allevents in a single program run, we did not use this fa
ilityin order to obtain exa
t event 
ounts.4 Instead we dividedthe events into six event sets. Ea
h program was run �vetimes per event set, thirty times in total. The performan
e
ounters measure all events taking pla
e on the CPU, so theevent 
ounts from the fastest of the �ve exe
utions were 
ho-sen to minimise the interferen
e of other pro
esses and theoperating system. In all 
ases the program measured wasrunning for at least 99.5% of the elapsed time.3One 
an see the two e�e
ts 
learly in the \Instr" and \D2"lines; we will return to this point in detail in Se
tion 5.4Although a

ording to [1℄, \the performan
e 
ounters arenot guaranteed to be fully a

urate".
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y
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ountFigure 4: E�e
ts of varying nursery size (I)
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ts of varying nursery size (II)
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Figure 6: E�e
ts of varying initial heap size

The GHC programs were run using the garbage 
olle
tor
on�guration that gave the fastest times, found by varyingthe nursery size from 32KB{512KB in 32KB in
rements andvarying the initial heap size from 0MB{32MB in 4MB in
re-ments (the number of generations was always two).To provide a 
omparison with the GHC programs, �veSML/NJ (v110.0.7) programs and �ve C programs5 weremeasured as well. They are des
ribed in Figure 7.6SML Program Des
ription
ount-graphs Graph manipulationlogi
 Simple Prolog-like interpreterray Ray tra
ersimple Spheri
al 
uid dynami
s simulationtsp Travelling salespersonC Programg

 C 
ompiler, v3.0.4gzip LZ77 
ompression, v1.3latex LATEX2"/TEXv3.14159 typesetterperlparse Assembly 
ode parser (in Perl v5.6.0)vpr FPGA pla
ement and routing toolFigure 7: SML and C program des
riptionsThe results for all programs are given in Figure 8, whi
h
ontains a key explaining the 
olumns. The exe
ution �gures(
olumns 4{5, 9{12) were obtained with the hardware 
oun-ters and the garbage 
olle
tor �gures (
olumns 6{8) withthe -s runtime option.The immediate 
on
lusions are that GHC programs andSML/NJ programs are memory intensive, with higher in-stru
tion / memory a

ess ratios than the C programs. Thisis be
ause they both use 
opying garbage 
olle
tion, and al-lo
ate memory furiously (58{287MB per se
ond of mutatortime for the Haskell programs, even higher for SML/NJ).But the CPI �gures are most 
ompelling|the GHC pro-grams range from 1.0{4.3, with most in the 1.5{3.0 range,
ompared to 1.2{1.6 for SML/NJ programs, and 1.1{1.5 forthe C programs. We will see in Se
tion 5.3 that the GHCprograms' high L2 data miss and bran
h mispredi
tion ratesa

ount for mu
h of this di�eren
e.
5. AN EXECUTION COST MODELTo understand and explain the results found in the previ-ous se
tion, we used a simple exe
ution 
ost model to deter-mine where pro
essor time is going in the GHC programs.
5.1 The ModelThe model takes into a

ount only the four largest 
om-ponents of exe
ution time: instru
tion exe
ution, stalls dueto L1 and L2 
a
he data misses, and stalls due to bran
hmispredi
tions. The model is:
y
les = 0:8I + 12C1 + 206C2 + 10Bwhere I is the number of instru
tions exe
uted, C1 and C2are the number of D1 
a
he misses and L2 
a
he data missesrespe
tively, and B is the number of mispredi
ted bran
hes.5The program perlparse is written in Perl, but the Perlinterpreter is written in C.6Two of the C programs are used in the SPEC ben
hmarks;the inputs we used were not from the SPEC ben
hmarks, but
hosen to give similar running times to the Haskell programs.



GHC program Nurs. Heap0 Instr Mem GC Allo
'd Copied L2 Sys BrMis CPIanna 96KB 0MB 1598M 86% 23% 133MB 35MB 7.9 2.0 58 2.1
a
heprof 160KB 0MB 1484M 72% 33% 222MB 33MB 5.7 1.2 30 1.4
ompress 160KB 0MB 3301M 83% 30% 532MB 65MB 5.2 0.8 24 1.2
ompress2 96KB 32MB 972M 73% 46% 169MB 42MB 10.1 8.4 20 2.9fulsom 288KB 28MB 717M 82% 28% 183MB 10MB 9.7 6.9 40 2.9gamteb 128KB 0MB 2301M 73% 17% 350MB 25MB 4.1 0.9 27 1.4hidden 128KB 0MB 1857M 85% 3% 535MB 2MB 5.8 0.4 48 1.5hpg 96KB 0MB 2018M 69% 19% 533MB 23MB 7.5 0.4 23 1.2infer 512KB 32MB 1523M 90% 29% 109MB 35MB 15.7 4.0 59 2.6parser 288KB 32MB 1517M 75% 34% 287MB 41MB 7.2 5.9 38 2.6rsa 128KB 0MB 2853M 52% 6% 188MB 3MB 1.3 0.1 9 1.0symalg 192KB 0MB 1013M 49% 1% 410MB 1MB 6.0 0.3 2 4.3gh
 448KB 32MB 2232M 78% 17% 480MB 32MB 9.8 6.7 46 3.1gh
 -O 320KB 32MB 4580M 79% 23% 922MB 98MB 11.5 7.7 49 3.4SML/NJ program
ount-graphs 256KB 512KB 9598M 78% ? 3122MB 14MB 6.0 0.3 10 1.2logi
 256KB 512KB 1528M 80% ? 534MB 14MB 11.6 1.2 14 1.6ray 256KB 512KB 1003M 64% ? 540MB 347KB 13.2 0.9 12 1.5simple 256KB 512KB 920M 75% ? 269MB 157KB 8.4 1.1 9 1.3tsp 256KB 512KB 1943M 59% ? 25MB 3MB 8.5 1.1 7 1.5C programg
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tions (Athlon event 0x
0)Mem: Data 
a
he a

esses / Retired instru
tions (0x40 / 0x
0)GC: Garbage 
olle
tor time %Allo
'd: Megabytes allo
ated on heapCopied: Megabytes 
opied during garbage 
olle
tionL2: Data 
a
he re�lls from L2 / Retired instru
tions � 1000 (0x42 / 0x
0 � 1000)Sys: Data 
a
he re�lls from system / Retired instru
tions � 1000 (0x43 / 0x
0 � 1000)BrMis: Retired bran
hes mispredi
ted / Retired instru
tions � 1000 (0x
5 / 0x
0 � 1000)CPI: Cy
les / instru
tion retired (
y
les / 0x
0)Figure 8: Program 
hara
teristi
sThe 
onstants were 
hosen for the following reasons: 12 and206 for the 
a
he misses be
ause they are the worst-
asenumbers reported by Calibrator; 10 for bran
h mispredi
-tions be
ause page 208 of [1℄ says \In the event of a mis-predi
t, the minimum penalty is ten 
y
les"; and 0.8 forunstalled instru
tions quite arbitrarily (a three-way ma
hinewith multiple fun
tional units 
ould retire unstalled instru
-tions faster than this).
5.2 JustificationOne would expe
t that this model is far too simple for theAthlon, an aggressive, out-of-order, three-way supers
alarpro
essor with nine fun
tional units. And yet, it is surpris-ingly a

urate. Returning to the graphs in Figures 4{6, thefour 
omponents are shown as the \Instr", \D1", \D2" and\Bran
h" lines. The \Sum" line is their sum.Consider the results from varying nursery size in Figures 4and 5. For eleven of the fourteen programs, the model givesa 
orre
tly shaped graph that is almost spot on the realvalue (e.g. hpg) or underestimates by a small 
onstant fa
-

tor (e.g. fulsom). For 
ompress the model be
omes a littleless a

urate as the nursery size in
rease; for hidden it be-
omes more a

urate. The graphs in Figure 6 also show animpressive mat
h between \Sum" and \A
tual" values.Only for symalg in Figure 5 are the predi
tions badlywrong. This is be
ause 8.3% of its instru
tions are divinstru
tions|from the GNU multi-pre
ision library whi
hGHC uses to implement in�nite pre
ision integers|whi
htake 42 
y
les on the Athlon ([1℄ p. 270). If we assume0.8 
y
les per unstalled instru
tion for the remaining 91.7%,the average 
y
les per unstalled instru
tion jumps to 4.3; ifwe took this into a

ount the \Sum" line would be mu
h
loser to the \A
tual" line, although its shape would still bewrong.What 
an we dedu
e from this surprising a

ura
y?1. The L2 
a
he data stall times are believable. If thepenalty of 206 
y
les was an overestimate or under-estimate, the shape of the \Sum" and \A
tual" lineswould not mat
h so well for the programs in whi
h inthe number of L2 misses 
hanges a lot while the other




omponents do not 
hange very mu
h (e.g. gamteb,hpg, rsa). Little if any useful work is being done dur-ing L2 data miss stalls.2. A similar argument 
an be made for the �gure of 0.8
y
les per unstalled instru
tion, else the shape of the\Sum" and \A
tual" lines would not mat
h so 
loselyfor the programs in whi
h the number of instru
tionsexe
uted 
hanges a lot (e.g. parser, 
ompress2 in Fig-ure 6). This 
omponent 
overs instru
tion exe
utiontime plus anything else proportional to the number ofinstru
tions, su
h as instru
tion fet
h stalls.3. The bran
h mispredi
tion times should be an a

u-rate lower bound, assuming ten 
y
les is the minimummispredi
tion penalty. This 
omponent may be under-estimated; it is hard to tell due to the the 
atness ofthe \Bran
h" lines.4. The D1 
a
he stall times may be wrong. Unlike the\Bran
h" 
ase, there is no minimum penalty for a D1miss. The \D1" line is not likely to be an underes-timate, sin
e the 12 
y
le �gure used is a worst-
aselaten
y, the D1 
a
he has two ports and the pro
es-sor may be able to do some useful work when an D1
a
he miss o

urs. Either way, D1 stall times havelittle impa
t on overall exe
ution times.5. For those programs in whi
h the \Sum" line falls shortof the \A
tual" line, there is a 
onstant \everythingelse" 
omponent that is independent of the number ofinstru
tions and L2 
a
he misses. This 
ould in
ludeany underestimation of bran
h mispredi
tion penalty.The ina

urate graphs are also worth 
onsidering. For
ompress, the model overestimates the 
ost of an unstalledinstru
tion, underestimates the 
ost of an L2 
a
he datamiss, or possibly both. For hidden, the model overestimatesthe 
ost of an L2 
a
he data miss. For symalg, on
e the
ost of the div instru
tions is fa
tored in, the model greatlyoverestimates the 
ost of an L2 
a
he data miss; as a 
ounter-example of a program where the pro
essor 
an mask the 
ostof an L2 miss by doing other useful work, it emphasises howlittle the pro
essor 
an do for the more normal programs.The interested reader may 
are to re-inspe
t Figures 4{6to see how the intera
tion between instru
tion 
ounts and
a
he misses a�e
t program speed for the di�erent garbage
olle
tor 
on�gurations.
5.3 Using the ModelThe model is far from perfe
t. However, we believe it isa

urate enough that we 
an state with 
on�den
e the pro-portion of exe
ution time taken up by L2 miss and bran
hmispredi
tion stalls|the stalls that we have found to be sig-ni�
ant for GHC programs|just from the 
ounts providedby the hardware 
ounters.Figure 9 shows the proportion of exe
ution times takenup by L2 miss and bran
h mispredi
tion stalls for the GHCprograms. The numbers were dedu
ed from the exe
ution
ost model, using the same optimal nursery and initial heapsizes as in Figure 8.L2 
a
he data stalls a

ount for 1{60% of exe
ution time.Not surprisingly, the programs that use more memory tendto have worse 
a
he behaviour. Bran
h mispredi
tion stallsa

ount for 0{32% of exe
ution time. Together the two kinds
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L2 stalls Branch stalls Real workL2 stalls %: 206 � Data 
a
he re�lls from system/ Cy
lesBran
h stalls %: 10 � Retired bran
hes mispredi
ted/ Cy
lesReal work %: 100 � L2 stalls % � Bran
h stalls %Figure 9: Exe
ution time lost to hardware stallsof stall a

ount for 1{67% of time, with most programs inthe range 30{60%.Finally, the \Real work" 
ategory a

ounts for the major-ity of the time taken by most of these programs. AlthoughL2 
a
he miss and bran
h mispredi
tion stalls are a big fa
-tor in the high CPI rates of these programs, this \Real work"
ategory should not be ignored; a CPI of around 0.8 for un-stalled instru
tions (as shown by model) is not very good.If that �gure 
ould be improved the programs would all runmu
h faster.
5.4 ExplanationWhy is the model so a

urate? What has happened tothe Athlon's aggressive three-way, out-of-order exe
ution?It is not 
lear what the exa
t e�e
ts are. But we havesome ideas. Firstly, part of the high 
a
he miss rate is dueto GHC's intense memory use, thanks to its high allo
ationrates and use of 
opying garbage 
olle
tion. But the 
a
hemiss rates seen in Figure 8 
ompare unfavourably to theSML/NJ programs whi
h use memory in a similar way. Itmay be that laziness is a large fa
tor. Intuitively, lazy pro-grams may tend to \hang onto" data longer than for stri
tlanguages, sin
e program exe
ution does not pro
eed in adire
t fashion.Se
ondly, for the high bran
h mispredi
tion rates, manyjumps at the end of 
losures are indire
t, and their targetaddresses 
hange frequently, so the bran
h predi
tion unitshave little 
han
e of 
orre
tly predi
ting them. GHC uses ate
hnique 
ommonly used to support lazy evaluation, thatof jumping into a 
losure's 
ode to determine if it is evalu-ated, and returning immediately if so. If GHC, for example,instead used one of the spare two bits on the end of word-aligned pointers to indi
ate whether a 
losure has been eval-uated, these expensive jumps might be able to be repla
edby a better predi
ted lo
al dire
t jump in the 
ase where a




losure has been evaluated.Finally, the level of instru
tion-level parallelism in GHCprogram 
ode exploitable by modern pro
essors is quite low;a high proportion of instru
tions tou
h memory, many ofwhi
h simply move data between the heap and the sta
k.Values loaded are usually needed immediately, and whilethese frequent loads and stores are happening there is little\real" work that 
an be done by the pro
essor's fun
tionalunits. This explains the high CPI values for the programs,and also why L2 
a
he misses stalls are not \masked" at all.All these fa
tors mean that GHC programs do not inter-a
t well with the aggressive modern pro
essors, and that
hanges to GHC's exe
ution me
hanism may improve itsperforman
e.
6. SIMULATIONPerforman
e 
ounters are very useful for �nding 
a
hemiss ratios, and the exe
ution 
ost model let us determinethe proportion of time 
aused by hardware stalls. But to im-prove the 
a
he behaviour we need information about wherethe misses o

ur. This required the use of software simula-tion.
6.1 MethodExe
ution-driven simulation is one popular te
hnique. Weused the tool Valgrind [18℄ as the starting point for our sim-ulation. Valgrind's 
ore is a JIT 
ompiler for x86/Linuxprograms; it uses a RISC-like intermediate language, whi
hprovides an ex
ellent platform for simulation. We extendedValgrind to perform 
a
he pro�ling, naming the resultingtool \Ca
hegrind".Ca
hegrind instruments ea
h memory referen
ing instru
-tion with a 
all to a C fun
tion that updates the simulated
a
hes (I1, D1 and uni�ed L2). It also 
olle
ts 
a
he a

essand miss 
ounts for ea
h instru
tion and prints them to �le,whi
h allows line-by-line annotation of the program's sour
e�les.7 Programs run around 50 times slower than normalunder Ca
hegrind.
6.2 ShortcomingsCa
hegrind's simulation su�ers several short
omings.� It only measures 
a
he a

esses visible at the pro-gram level. For example, it does not a

ount for extra
a
he a

esses that o

ur upon a TLB miss, nor 
a
hea

esses that take pla
e under instru
tions exe
utedspe
ulatively that are later annulled.� The addresses used for the simulation are virtual; itdoes not 
onsider virtual-to-physi
al address mappingsat all. The simulated 
a
he state will not exa
tlymat
h the real 
a
he state. This is hard to avoid;even the extremely rigorous Alpha 21264 simulationof Desikan, Burger and Ke
kler [5℄ does not model it.� It does not model the Athlon's 
a
he semanti
s ex-a
tly. For example, upon an instru
tion 
a
he missthe Athlon loads the missed blo
k and also prefet
hesthe following blo
k; this is not a

ounted for.7The \pre
ise event-based sampling" of the Pentium 4 [11℄
an provide line-level detail. Unfortunately, we do not havea

ess to any Pentium 4 ma
hines and have not been ableto try this.

We quanti�ed these di�eren
es with a dire
t 
omparison ofthe results from hardware 
ounters and software simulation.Figure 10 shows the results.Program Instr Ref D1 miss D2 missanna 99.4% 71.6% 92.7% 80.2%
a
heprof 99.5% 82.6% 92.5% 69.5%
ompress 99.4% 84.0% 97.0% 64.5%
ompress2 99.4% 83.3% 94.7% 94.1%fulsom 99.5% 78.3% 89.8% 72.8%gamteb 99.2% 81.8% 91.5% 71.0%hidden 99.2% 74.5% 94.6% 54.3%hpg 97.4% 80.8% 98.1% 38.2%infer 99.0% 76.3% 96.0% 90.6%parser 99.3% 81.1% 89.2% 81.5%rsa 99.4% 91.4% 97.3% 83.1%symalg 99.2% 96.8% 96.8% 45.7%gh
 99.4% 78.6% 87.3% 88.0%gh
 -O 100.0% 78.3% 86.6% 81.2%Figure 10: Ratios between hardware 
ounter andsoftware simulation event 
ountsColumn two gives the ratio of instru
tions 
ounted byCa
hegrind to retired instru
tions 
ounted by Rabbit (event0x
0). This is the best 
omparison of the two te
hniques,as they are measuring exa
tly the same event. As expe
ted,Ca
hegrind gave marginally lower 
ounts than Rabbit, be-
ause unlike Rabbit it does not measure other pro
esses andthe kernel. Despite this, Ca
hegrind 
ounted more than 99%of the events 
ounted by Rabbit for all programs ex
ept hpg,for whi
h it 
ounted 97.4%.Column three 
ontains the memory referen
e ratios, whereRabbit measures the number of data 
a
he a

esses (event0x40). Ca
hegrind falls further short here, by 3{28%. Aspreviously mentioned, this is be
ause some 
a
he a

essesare o

urring that are not visible at the program level, su
has those from TLB misses.Columns four and �ve give the D1 
a
he miss and L2
a
he data miss ratios, where Rabbit is measuring the num-ber of data 
a
he re�lls from L2 and data 
a
he re�lls fromsystem (Athlon events 0x42, 0x43). Ca
hegrind underesti-mates these misses by 3{62%.With this simulation, we are only aiming for a general pi
-ture of where 
a
he misses o

ur for ma
hines with this kindof setup, rather than mat
hing exa
tly every miss that o
-
urs for the Athlon. We believe that although Ca
hegrind'sresults are not perfe
t, they give a very good indi
ation ofwhere 
a
he misses are o

urring in these programs.
6.3 AnnotationsWe used Ca
hegrind to annotate ea
h program line8 withits number of read and write referen
es and misses, when runwith the optimal garbage 
olle
tor 
on�guration as before.We 
on
entrated on L2 data misses be
ause data missesare mu
h more frequent than instru
tion misses, and L2misses are mu
h more 
ostly than L1 misses. Most datamisses are 
on
entrated in 
ertain pla
es; the proportions ofL2 data misses in di�erent lo
ations are shown in Figure 11and explained in the following se
tions. The �rst seven partsof ea
h bar are read misses, and marked with \(r)". The8At the assembler level for the 
ompiled GHC 
ode, and theC level for the runtime system.



next three are write misses, marked with \(w)". The lastpart is the proportion of read and write misses unannotated(the GNU multi-pre
ision library 
ode was not annotated,whi
h explains the high unannotated proportions for rsaand symalg). We will distinguish between \in-program"misses and those in the runtime system.
6.4 Data Read Miss LocationsData read misses o

ur in seven main ways.1. In-program `mov' read misses: o

ur mostly when read-ing from the sta
k, and reading 
losure �elds.2. In-program `jmp' read misses: 
all/return instru
tionsare never used in the STG ma
hine. All 
ode blo
ksend with a dire
t or indire
t jump to the 
ode of thenext 
losure to be exe
uted. The �rst kind of jmp that
auses many read misses is an indire
t jump to another
losure's 
ode, of the form jmp *(%esi). Register %esipoints to a 
losure C, and this instru
tion jumps to the
ode in the info table pointed to by C. If C is not inthe 
a
he at that point, a miss o

urs.3. The se
ond jmp that 
auses read misses, with the formjmp *-k(%eax), is an indire
t jumps for a ve
toredreturn. -k is an o�set into a stati
 ve
tor of returnaddresses (
alled a vtbl) pointed to by register %eax.When a data 
onstru
tor is evaluated, in some 
ir
um-stan
es its 
ode returns to the appropriate member ofa ve
tor of return addresses rather than returning to amulti-way jump. If the vtbl is not in the 
a
he, a readmiss o

urs.4. eva
uate(): during garbage 
olle
tion, before a 
lo-sure is eva
uated from the old step to the new step itslayout must be determined from its info table. Thisrequires two a

esses: one of the 
losure to get its infotable pointer and one of the info table layout informa-tion. The �rst a

ess 
auses around ten times as manymisses as the se
ond.5. 
opy(): eva
uate() 
alls 
opy() to do the 
opying ofea
h 
losure to the next step. Usually eva
uate() willhave dragged the entire 
losure into the 
a
he, but ifthe 
losure straddles a 
a
he line boundary, 
opyingthe se
ond half 
an 
ause a read miss.6. s
avenge*(): various s
avenge fun
tions are used toeva
uate any 
losures pointed to by an eva
uated 
lo-sure. When a 
losure is s
avenged it will 
ause a readmiss if it is not already in the 
a
he.7. Other read misses are s
attered about, mostly in theruntime system.The number of read misses in eva
uate() is high. Thismay be 
aused by putting layout data dire
tly next to 
odein info tables. Info tables are read-only, so there is never any
oheren
y problems if a single blo
k is pla
ed in both theI1 and D1 
a
hes; however, the split 
a
hes are polluted byuseless words. In parti
ular, when garbage 
olle
ting, theinfo table of every 
losure that is eva
uated is read. Sin
ethe 
ode part of an info table is often mu
h larger than thedata part (e.g. 10 or more instru
tions versus 2 or 3 wordsof data), this might kno
k out mu
h data from the D1 
a
hethat would soon be referen
ed. We plan to try separating

the data and 
ode parts of info tables (a form of stru
turesplitting [3℄). Instru
tion level miss identi�
ation will beinvaluable for measuring the e�e
ts of this 
hange.
6.5 Data Write Miss LocationsData write misses o

ur in three main ways.1. In-program `mov' write misses: most write misses o
-
ur when allo
ating and initialising new 
losures onthe heap. Be
ause of the sequential allo
ation, mostwrites hit the 
a
he; misses only o

ur when a 
a
heline boundary is 
rossed. Allo
ation of an N byte 
lo-sure 
auses a miss N times out of 64 (the blo
k size is64 bytes).2. 
opy(): during garbage 
olle
tion.3. Other write misses are in the runtime system, and areonly signi�
ant for gamteb, rsa and symalg; for thesethree most of the write misses o

ur in a fun
tionstgAllo
ForGMP() whi
h allo
ates memory requiredby the GNU multi-pre
ision library.This distribution re
e
ts how writes o

ur|most happenat allo
ations, as only a fra
tion of 
losures survive to begarbage 
olle
ted.
6.6 Avoiding Data Write MissesMost write misses are unne
essary. Heap writes are se-quential, both when initialising 
losures, and when 
opyingthem during garbage 
olle
tion. Write misses o

ur only forthe �rst word in a 
a
he line. There is no need to read thememory blo
k into the D1 
a
he upon a write miss, as isdone in a write-allo
ate 
a
he; the rest of the line will soonbe overwritten. It would be better to write the word dire
tlyto the D1 
a
he and invalidate the rest of the 
a
he line.This 
an be a
hieved by using a write-allo
ate 
a
he withsub-blo
k pla
ement, as noted by Diwan et al. [6℄. However,su
h 
a
hes are now a rarity. An equally e�e
tive approa
hwould be to use a write-invalidate instru
tion instead of anormal write. Some ar
hite
tures have write-invalidate in-stru
tions, but unfortunately the x86 is not one of them.An alternative is to use prefet
hing. Be
ause writes aresequential it is simple to insert prefet
hes to ensure memoryblo
ks are in the 
a
he by the time they are written to. Weperformed some preliminary experiments with the Athlon'sprefet
hw instru
tion, fet
hing ahead 64 bytes ea
h time anew 
losure is allo
ated or 
opied by the garbage 
olle
tor.The 
hanges required were simple, and in
reased 
ode sizesby only 0.8{1.6%. Figure 12 shows the results: 
olumns 2{4give the improvement when the prefet
hing is applied to justthe garbage 
olle
tor, just program allo
ations, and both.The improvements are quite respe
table: programs ran upto 22% faster, and none slowed down when prefet
hes wereadded to in-program 
ode and the runtime system.If a write-invalidate instru
tion existed that 
ost no morethan a normal write, we 
an estimate the potential speed-up it would provide by multiplying the proportion of writemisses by the proportion of exe
ution time taken up by L2data 
a
he stalls (from Figure 9), whi
h gives the expe
tedspeed-ups shown in 
olumn 5 of Figure 12. The prefet
hingte
hnique|whi
h is appli
able to any program using 
opy-ing garbage 
olle
tion, not just GHC programs|obtainedhalf or more of this theoreti
al �gure for almost all pro-grams, as shown by 
olumn 6 whi
h gives the ratio between
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mov (r) jmp1 (r) jmp2 (r) evac (r) copy (r) scav (r) Other (r) mov (w) copy (w) Other (w) Unann.Figure 11: Read and write miss lo
ationsProgram GC Prog Both Theory Ratioanna 3% 0% 4% 5% 0.8
a
heprof 3% 1% 5% 9% 0.6
ompress 2% 2% 5% 7% 0.7
ompress2 3% 9% 12% 25% 0.5fulsom 1% 17% 17% 31% 0.6gamteb 0% -0% 0% 6% 0.0hidden 1% 3% 2% 3% 0.7hpg 4% 1% 4% 3% 1.3infer 3% 8% 9% 8% 1.1parser 1% 19% 22% 28% 0.8rsa 3% -1% 2% < 1%symalg 1% 1% 1% < 1%gh
 1% 17% 17% 27% 0.6gh
 -O 2% 12% 14% 24% 0.6Figure 12: E�e
t of prefet
hingtheoreti
al and a
tual speed-ups. This is pleasing sin
e moreprefet
hes are performed than ne
essary (one per 
losure al-lo
ated/
opied, about six per 
a
heline), and prefet
hingin
reases memory bandwidth requirements.
7. RELATED WORKSeveral other works have been published about the 
a
hebehaviour of de
larative languages, some of whi
h 
onsid-ered the e�e
ts of generational 
opying garbage 
olle
tion.Wilson, Lam and Moher measured a byte
ode S
heme im-plementation [19℄ that used a 
opying generational garbage
olle
tor, and simulated multiple 
a
he 
on�gurations. They
on
luded that �tting the allo
ation area in 
a
he would helplo
ality greatly.Koopman, Lee and Siewiorek [12℄ evaluated various 
a
he
on�gurations for an SK-
ombinator graph redu
tion lan-guage. Examining very small programs, they found thatwrite-allo
ate 
a
hes gave mu
h better performan
e than

write-no-allo
ate 
a
hes, be
ause most data is referen
ed al-most immediately after allo
ation.Diwan, Tarditi and Moss made very detailed simulation ofStandard ML programs, in
luding the e�e
ts of parts of thememory system usually ignored su
h as the write bu�er andTLB [6℄. They 
ompared di�erent write-miss strategies, andfound that using sub-blo
k pla
ement 
ut 
a
he miss ratessigni�
antly.Gon�
alves and Appel also made detailed measurementsof Standard ML programs [8℄. They found the miss rates ofSML/NJ programs 
ould be lower than SPEC92 C and For-tran programs. Ne
ula and George also measured SML/NJprograms [14℄, on a DEC Alpha with performan
e 
oun-ters. They found that stalls 
aused by data 
a
he missesa

ounted for 24% of exe
ution time.The main di�eren
es between this work and previous workis that we have 
onsidered large programs in a lazy language,we have identi�ed 
a
he misses down to the level of individ-ual instru
tions, we have used prefet
hing to avoid 
a
hemisses, and we have also 
onsidered bran
h mispredi
tionsand instru
tion-level parallelism.
8. FURTHER WORK AND CONCLUSION

8.1 Data Write MissesWe found that write misses typi
ally a

ount for 50{60%of L2 
a
he data misses in GHC programs. Using very sim-ple prefet
hing, we mitigated the 
ost of 
a
he write missesby around half, improving the speed of GHC programs byup to 22%. With a write-invalidate instru
tion, we 
ouldpotentially obtain greater speed-ups.
8.2 Data Read MissesThe remaining data misses are read misses. Firstly, re-moving GHC's use of 
ode next to data may improve 
a
hebehaviour by avoiding polluting the data 
a
hes with uselessinstru
tions during garbage 
olle
tion.



After that there are two general ways to redu
e data 
a
hemisses. The �rst is to improve program lo
ality, whi
h 
anredu
e read misses. At �rst, we hoped to use Chilimbi andLarus' te
hnique of using low-overhead real-time pro�linginformation to guide data reorganisation during garbage 
ol-le
tion [4℄. Unfortunately, 
losure a

ess in GHC programsis extremely lightweight, and the real-time pro�ling thatworked for Java and Ce
il programs would be too expen-sive. It is not 
lear whether this te
hnique 
an be modi�edfor languages with su
h lightweight data a

ess, e.g. by sam-pling only a small fra
tion of 
losure a

esses.Also, many data a

esses in GHC programs are to stati
stru
tures|some 
losures, and all info tables and vtbls. Per-haps these stru
tures 
an be laid out in a way that aids thelo
ality of programs, using stati
 analysis and/or heuristi
s.The se
ond general approa
h to avoiding 
a
he misses(both read and write) is to redu
e memory footprints byrepresenting data more 
ompa
tly. Old te
hniques inventedto avoid page faults 
ould be re
y
led. For example, a big-bag-of-pages (BIBOP) s
heme [2℄, where the heap is segre-gated into di�erent areas by type 
ould help; a single infotable pointer 
ould be shared between all 
losures in thepage. This would, for example, shrink a 
ons 
ell from threewords to two. Putting same-typed 
losures together mightalso improve lo
ality. The extra 
osts are that it requiresmultiple heap pointers, and it requires some kind of test todetermine if a 
losure is in a spe
ial page or not. It may alsobe tri
ky to determine how 
losures should be distributedbetween pages.
8.3 Other Hardware OptimisationsAlthough this work began as an investigation into the
a
he behaviour of Haskell, we found that bran
h mispre-di
tion stalls a

ount for up to 32% of program time, andthat there is little exploitable instru
tion-level parallelismexhibited by 
losure 
ode. GHC's exe
ution me
hanism, theSTG ma
hine, was designed over ten years ago, when pro-
essors were substantially di�erent. It is time to re
onsiderte
hniques used in GHC programs (su
h as always enteringa 
losure, and immediately returning if it is already evalu-ated) in the light of the 
hanging strengths and weaknessesof modern hardware, as the potential for further signi�
antperforman
e improvements are ex
ellent.
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