Representing Control
A Study of the CPS transformation *

Olivier Danvy Andrzej Filinski
Kansas State University ' Carnegie Mellon University *
(danvy@cis.ksu.edu) (Andrzej.Filinski@cs.cmu.edu)

February 1991; Revised June 1992

Abstract

This paper investigates the transformation of A,-terms into continuation-passing style
(CPS). We show that by appropriate n-expansion of Fischer and Plotkin’s two-pass
equational specification of the CPS transform, we can obtain a static and context-free
separation of the result terms into “essential” and “administrative” constructs. In-
terpreting the former as syntax builders and the latter as directly executable code,
we obtain a simple and efficient one-pass transformation algorithm, easily extended to
conditional expressions, recursive definitions, and similar constructs. This new trans-
formation algorithm leads to a simpler proof of Plotkin’s simulation and indifference
results.

Further we show how CPS-based control operators similar to but more general than
Scheme’s call/ce can be naturally accommodated by the new transformation algo-
rithm. To demonstrate the expressive power of these operators, we use them to present
an equivalent but even more concise formulation of the efficient CPS transformation
algorithm.

Finally, we relate the fundamental ideas underlying this derivation to similar concepts
from other work on program manipulation; we derive a one-pass CPS transformation
of A,-terms; and we outline some promising areas for future research.

*To appear in the journal Mathematical Structures in Computer Science. Technical Report CIS-91-2 (revised
version), Department of Computing and Information Sciences, Kansas State University.

'Department of Computing and Information Sciences, Kansas State University, Manhattan, Kansas 66506, USA.
This work was partly supported by NSF under grant CCR-9102625.

School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.

Contents

1 Introduction and Motivation

2 Classical CPS transformation

2.1 First step
2.2 Second step
2.3 Third step

2.4 Completing the transformation: the other syntactic constructions

2.5 The complete transformation Lo oo

2.6 Tail-calls and np-redexes

3 Reduction properties

Enriching the CPS transformation

4.1 CPS translation of extended and applied A,-terms oo

4.2 On duplicating contexts e

4.3 Currying vs. tupling

4.4 Maulti-argument functions Lo e e e

5 Abstracting Control

5.1 Reynolds’s escape operator L e

5.2 Shift and reset . .
5.3 Control and prompt

5.4 CPS translation of terms that use shift and reset

5.5 Translating control operations in one pass

5.6 The problem of name clashes o oo
5.7 Direct Transformation into CPS

6 Related Work
6.1 CPS transformation
6.2 Primitive operators
6.3 Control operators .

6.4 Partial evaluation .
7 Conclusion and Issues

A Call by Name

A.1 Continuations first

11

12

17
17
18
19
20

21
21
22
22
23
24
25
25

26
26
27
27
28

28

33

List of Figures

O 00 =1 O T = W N =

Fischer & Plotkin’s CPS transformation of A,-terms 5
One-pass CPS transformation of A,-terms 0oL, 9
One-pass, “properly tail-recursive” CPS transformation of A,-terms. 11
One-pass CPS transformation of extended and applied A,-terms. 18
Direct-style, one-pass CPS transformation of A,-terms 26
Plotkin’s CPS transformation of A,-terms 33
One-pass CPS transformation of A -terms L Lo 33
One-pass, “properly tail-recursive” CPS transformation of A,-terms 34

One-pass, “properly tail-recursive” CPS transformation of A,-terms with continua-
tions first . . . oL 35

1 Introduction and Motivation

The usual presentation of the continuation-passing style (CPS) transformation [35] is concise and
simple, but tends to yield unreasonably large residual terms containing a lot of “administrative

> While these redexes turn out to be relatively harmless from a theoretical perspective,

redexes.’
they do require a special twist (the so-called “colon-translation”) for proving certain important
properties of the transformation [35, 39, 31].

In practice, eliminating the administrative redexes is absolutely essential to obtain transformed
terms of a manageable size. However, such a “post-reduction” pass is often integrated with other,
independent simplifications and optimization steps, and leads to relatively complex CPS transform-
ers [43].

In the following, we will consider a systematization of the two-pass CPS transformation by
focusing the attention on redexes that are introduced by the transformation itself, and by explicitly
not reducing what would correspond to redexes in the source A-term. Exploiting this distinction,
we show that it is possible to perform all the administrative reductions “on the fly” in a single pass,
without ever constructing the unreduced terms explicitly.

The CPS transformation permits a simple definition of generalized escape constructs like
Scheme’s call/ce. Such operators are often perceived to eliminate the need for explicit CPS pro-
grams. However, sometimes the greater generality of “genuine” CPS is actually needed to express
an algorithm (e.g., to implement backtracking [28].) Our investigation of the CPS transform leads
naturally to the introduction of two new control operators, shift and reset, which allow the ad-
ditional power of general CPS to be exploited in direct style programs. As an example, we will
show how these operators permit us to express the efficient CPS transformation algorithm derived

in this paper even more concisely.

Prerequisites

In the following, we will assume a basic familiarity with CPS and the A,-calculus, i.e., the ap-
plicative order A-calculus that forms the core of languages such as Scheme [5] and Standard ML
[29].

For convenience in referring to individual applications, we will generally express them with an
explicit operator @, writing @M N instead of the traditional simple juxtaposition M N. This is a
purely syntactical variation: no change or refinement of semantics is implied by the @-notation.

As in Standard ML, but in contrast to Scheme, we will also assume a strict left-to-right eval-
uation order, i.e., that in an application @M N, M is evaluated before N. Where this distinction
matters (i.e., when both M and N are potentially nonterminating or “escaping” terms), the evalu-
ation order of Scheme programs will be considered fixed through a let or a similar construct. Note,
however, that we adopt this convention only to simplify the presentation, not to advocate a general
style of programming which depends implicitly on argument evaluation order.

Occasionally, we will use Reynolds’s notion of “serious” and “trivial” A,-terms [38]. Evaluating
a serious term might loop so this term must be transformed into CPS, whereas evaluating a trivial

one cannot loop so this term does not need to be transformed.

[z] = Mk.@Qrz
[Ae.M] = Ak.Qr(Az.[M])
[@MN] = Ac.Q[M](Am.Q[N](An.Q(@mn)k))

Figure 1: Fischer & Plotkin’s CPS transformation of A,-terms

Finally, let us recall the main property of a CPS A-term: the independence of its reduction order.
Reducing a CPS term with the call-by-name (CBN) or with the call-by-value (CBV) strategies yields

the same evaluation steps [38, 35].

Overview

The rest of this paper is organized as follows. Section 2 describes the stepwise derivation of a
one-pass CPS transformer from Plotkin’s two-pass equational specification. Theorem 1 states that
the one-pass transformer computes a result Sn-equivalent to the original Fischer/Plotkin transfor-
mation. Section 3 investigates the reduction properties of the one-pass transformer. Theorem 2
captures Plotkin’s “Indifference” and “Simulation” theorems for the original CPS translation. Sec-
tion 4 extends the one-pass transformer to handle conditional expressions, recursive definitions, etc.
Section 5 introduces control operators and their CPS transformation. Using these control operators,
it presents a one-pass CPS transformer in direct style. Section 6 reviews related work on continu-
ations and partial evaluation, and Section 7 concludes. Section A reproduces the development of

Section 2 on Plotkin’s CPS transformer for A,-terms.

2 Classical CPS transformation

Let us consider Fischer and Plotkin’s equational specification for transforming a A,-term into CPS
[20, 35], as displayed in Figure 1. Source terms are represented between double brackets and x is
a fresh variable.

Taken literally, this translation yields many artificial “administrative” redexes that must be post-
reduced in a second pass; only then do we obtain a result in what is commonly recognized as
“continuation-passing style” [43]. For example, translating

Af Az Ay.@(Qfy)z

results in

M. Qk (A fAE.Qk (Az. AE.Qk (Ay. Ak @ (Ak.Q(AE.QF f) (Am.Q(Ak.Qk y) (An.Q(@Qmn)k)))
(Am.Q(Ak.Qkz)(An.@Q(@mn)k)))))

whose post-reduction yields

M. @k (Af Ak @k (Az Ak @k (Ay.Ak.Q(Q f y) (Am.Q(Q@mz) k))))

Conversely, an overly enthusiastic post-reducer is likely to perform too many reductions, i.e.,

ones that would correspond to actual reductions in the source term. While this may be useful in

its own right, it should not automatically be considered a part of the CPS transformation proper.
In particular, excessive post-reduction can lead to uncontrolled “code duplication” in the result or,
in the untyped case, even nontermination of the simplification.

In the following, we will therefore concentrate on integrating the first and the second passes
subject to the two constraints: (1) a one-pass translation should not introduce any administrative
redex; and (2) a one-pass translation should not perform any reduction that would correspond to
reducing a source term.

Our derivation is simple. We analyze the original equational specification, identifying where
redexes get built, independently of any actual source A-term. When these redexes are “context-
independent” we reduce them at translation time. When they are “context-dependent” we alter the
translation with meaning-preserving transformations to make the construction of redexes context-
independent. The goal of the game is to stage the CPS transformation into a “translation-time”
part and a “run-time” part.

For precision and conciseness in the text, let us label the six lambdas and the six applications
of this specification:

[z] = Mk.@'sa
[Me.M] = Mk.Q*k(Nz.[M])
[@M N] = Mr.@[M](A°m.Q*[N](An.@*(@%mn)k))

Our development is structured in three steps.

2.1 First step

As can be observed, the result of each elementary transformation (of a variable; of an abstraction;

of an application) is an abstraction.

Question 1 Where can the abstractions A\, A%, and A* occur in the residual CPS lerm before

post-reduction?

Answer — by cases: (a) as the body of A%; (b) as the first argument of @?; (c) as the first argument
of @*. In cases (b) and (c) the translation is building a redex that can be simplified by S-reduction.
In case (a) no simplification can take place immediately.

As a consequence, whether the abstractions A', A%, and A* are post-reducible is context-

dependent.
Question 2 Can we get rid of this dependence?

Answer — yes, by introducing one 5-redex in the definitional translation of abstractions. This new

redex will exhibit the continuation of the body:

[Me.M] = Mk.Q*x (N2 \E.Q[M]E)

The new redex is safe (in the sense of preserving operational behavior under both CBN and CBV)
because [M] is itself a A-abstraction. (Expanding “@fa” to “Az.@Q(@Qfa)z” is not in general

meaning-preserving, even if “@Q fa” has a functional type. Expanding “f” to “Az.@Q f2” or “Ay.F”

to “Az.@Q(Ay.E)z” is safe.)

Remark: Such an n-expansion may be felt as a step backwards in optimizing the
translation, since 7-reduction is usually perceived as an actual optimization step. In fact,
and as illustrated by this development, the premature optimization in the translation

of A-abstractions contributes to muddying the water in the translated terms.
Now let us repeat Question 1:

Question 3 Where can the abstractions resulting from each elementary transformation occur in

the residual term?

Answer — by cases: (a) as the first argument of @7; (b) as the first argument of @3; (c) as the first
argument of @4,

Therefore, the translation is building a g-redex. This redex can be simplified unconditionally.

2.2 Second step

Since the three A-abstractions A', A\?, and A* will be reduced at translation time, let us enumerate

their possible arguments.
Question 4 Which syntactic constructs can be denoted by x in A\, A%, and *?

Answer — by cases: (a) the second argument of @7 is an identifier &; (b) the second argument of
@3 is A%; (c) the second argument of @* is A°.

Again, the situation is irregular: if the argument of these applications (i.e., the value denoted
by k) later gets applied, this application will be reducible in cases (b) and (c) only, i.e., in a

context-dependent fashion.
Question 5 Can we get rid of this dependence?

Answer — yes, by introducing another n-redex in the translation of abstractions. This redex will

exhibit the application of the continuation.

[Ne.M] = Mk.Q*%(Nz\EQT[M](Am.Q%m))
Now let us repeat Question 4:
Question 6 Which syntactic constructs can be denoted by x?

Answer — by cases (a) the second argument of @7 is A¥; (b) the second argument of @3 is A%; (c)
the second argument of @* is A6,

Now the different occurrences of k are ensured to denote A-abstractions only.

2.3 Third step

Question 7 Where do these k occur?

Answer — by cases: (a) as the first argument of @!; (b) as the first argument of @2; (c) as the
second argument of @°>. In cases (a) and (b), the translation is building a redex that can be
simplified by §-reduction. In case (c) no simplification can take place immediately.

As a consequence, whether the application of a x is post-reducible is context-dependent since

in case (c) k does not occur in function position in an application.
Question 8 Can we get rid of this dependence?

Answer — yes, by introducing a last n-redex in the definitional translation of applications. The

redex will exhibit sending the result of an application to the continuation.

[@MN] = Mx@[M](AMm.Q*[N](A\°n.@%(@mn)(A\a.@%ka)))
Now let us repeat Question 7:
Question 9 Where do the k occur?

Answer — by cases: (a) as the first argument of @!; (b) as the first argument of @%; (c) as the first
argument of @,

As a consequence, because by construction the translation is building a A-abstraction which is
ensured to occur in function position in an application, we can classify these A-abstractions and
applications to be simplifiable unconditionally.

To summarize, let us overline the A-abstractions and the applications that will be reduced
unconditionally as a part of the translation. Since they exist only at translation time we refer to
them as “static.”

[z] = Mk.Qlkz
[Ae.M] = FH.@H(/\SCC./\?]C.@[[IM]] (Fm.@Sk m))
[@M NJ M. @[M](Nom.Q4[N](A6n.@°(@%mn) (A\%a.Q%a)))

2.4 Completing the transformation: the other syntactic constructions

We can also list the possible arguments of the x: they are the second arguments of @', @2, and
@9, i.e., (a) an identifier z; (b) A%; (c) an identifier a. These may be bound to m in A°, n in A8,

and m in 3.
e In \°, m occurs as the first argument of @,

— If m is bound to z or @ no simplification is possible.

— If mis bound to A\® then a B-reduction is possible but it would correspond to a reduction
in the original term; therefore we do not want to perform it. Thus @° must be classified

as irreducible and so is A% and thus \7.

[...] : [syntax — syntax] — syntax
[zr] = Ms.@Qkaz
[Az.M] A&.Qk (Az Nk Q[M] (Am.Qkm))
[@M N] = Ac.Q[M](Am.Q[N](An.@(@mn)(la.@ra)))

Figure 2: One-pass CPS transformation of A,-terms

e In A%, n occurs as the second argument of @® which is irreducible.

o In A3, m occurs as the second argument of @® that cannot be reduced since the first argument
is the identifier k.

As a consequence, the first argument of @® is irreducible and thus @® is irreducible. As another
consequence, the second argument of @® must be irreducible.

To summarize, let us underline the abstractions and the applications that will be built uncon-
ditionally as a part of the translation. Since they are part of the transformed term, we refer to
them as “dynamic.”

[t] = Mk.@lkz
[Me.M] = X2k.@26(A2 Ak.QT[M](A83m.Q% m))
[@M NJ Mg, @3[M](Aom.QI[N](A6n.@5%(@%mn) (A\%.Q%a)))

As a simple inspection of this two-level specification shows, the only application that could
possibly be a dynamic B-redex (i.e., a redex in the resulting CPS term) is @°. This happens if
and only if m is bound to a dynamic A, which again happens if and only if M is a A-abstraction,
so the source term contains a -redex at this point. We do not want to reduce a dynamic g-redex
because it would correspond to reducing a (-redex in the source term, which is not the job of the

CPS transformation.

2.5 The complete transformation

To conclude, Figure 2 shows the final version of the transformer, without labels since they were only
used for expository purposes. With its static/dynamic annotations, it can be read as a two-level
specification @ la Nielson and Nielson [34]. Operationally, the overlined A’s and @’s correspond
to functional abstractions and applications in the translation program, while only the underlined
occurrences represent abstract-syntax constructors.

Transforming a A-term into CPS amounts to representing contexts (i.e., A-terms with a hole) as
A-abstractions. An empty context (e.g., top-level) is represented with the identity function. An
arbitrary (“dynamic”) context is represented with some continuation k.

The result of transforming a term M into CPS in an empty context is given by

Q[M](Am.m)

whereas the result of transforming a term M into CPS in a dynamic context is given by
Me.@Q[M] (Am.@km)

As can be noticed, both initial contexts are represented with translation-time A-abstractions, as
dictated by the answer to Question 6. In the rest of this section, we refer to such translation-time
A-abstractions as static conlinuations.

This instrumented new translation yields terms without extraneous redexes, in one pass. The
static/dynamic distinction aimed at defining all the administrative §-redexes. These administrative
[B-redexes are bound at translation time and therefore they do not occur in residual terms.

The above development is summarized in the following theorem.

Theorem 1 This equational specification, i.e., Me.@Q[M](Am.@km), computes a result fn-equiva-

lent to the original Fischer/Plotkin transformation.

Proof: We started from Fischer & Plotkin’s specification and altered it in a meaning-preserving
way, by introducing three 7-redexes. We obtained a staged specification where static and dynamic
constructs are not only distinct but context-independent. (Using Nielson and Nielson’s terminology
[34, 33], our two-level specification is “well-typed.”) We can now reduce away all the static §-
redexes.

Moreover, since the specification is compositional, a simple typing argument suffices to show
that it is well-defined for all source terms, i.e., that the static reductions do in fact terminate.
Only the static lambdas and applications matter; for the purpose of termination, the dynamic
lambdas/applications are just uninterpreted constructors. And the static part of the transformation
is simply typed, with a single base type “syntax”; the x’s all have type “syntax — syntax” and
the other static variables just have type “syntax”. In particular, given an initial continuation &,
@[M]~ is a strongly normalizable term of type “syntax”. Thus, when interpreted as a functional
program, the transformation always terminates (and in essentially linear time, since none of the
static data is ever duplicated).

Finally, no redexes of the original term are reduced: the “Az” of an abstraction in the source
term is always translated into a dynamic “Az”, (i.e., a syntax constructor) in the corresponding

CPS term, and hence is never reduced away. a
Observation 1 A A, -term and its CPS counterpart are related as follows:

o A wvariable is translated into itself.

o A A-abstraction is translated into two \-abstractions and one application.

o An application is translated into two applications and one A-abstraction.

This observation provides a simple correspondence between the size of a term and its CPS
counterpart. Moreover, since for all of the new A-abstractions introduced by the translation, the
abstracted variable occurs exactly once in the body, this relationship extends directly to the number

of reduction steps performed during evaluation of the two terms (more about this in Section 3).

10

[...] : [syntax — syntax] — syntax
[z] = Mk.@Qrz
M. M] = Ak.@r(Az.)E.Q[M]'E)
[@M N] = Mc.Q[M](Am.Q[N](An.@(@mn)(Aa.Qra)))

[..]' : syntax — syntax
[z]' = Me.Qkz
[Me.M]" = Me.@Qk(Az.\E.Q[M]'k)
[@M N] = Xe.Q[M](Am.Q[N](Mn.Q(@mn)k))

Figure 3: One-pass, “properly tail-recursive” CPS transformation of A,-terms

2.6 Tail-calls and 5-redexes

While introducing n-redexes is crucial to avoid building 3-redexes in residual terms, in one simple
case it yields extra n-redexes in the transformed program. Not surprisingly this arises for tail-calls,

as illustrated here:
Q[Af.Qfz](Am.m) = AfAE.Q(Qfz)(Na.Qka)

instead of Af Ak.Q(Qfz)k

Four straightforward possibilities come to the mind. We can leave these n-redexes where they are
(which might be actually useful if the term is subjected to further transformation or if Observation
1 is used since tail-call optimizations change the number of reduction steps.) We can detect when
a newly constructed A-abstraction is actually an n-redex and simplify it at this time. We can
instrument the translation with an inherited attribute identifying tail-call contexts, eliminating the
dynamic tests on term structure entirely. Or equivalently we can duplicate the rules to account for
tail-call contexts, as in Figure 3, and in a way reminiscent of Clinger’s double induction proof in

his Scheme compiler [4].

Rationale: The auxiliary translation [...]" is used when the static continuation would
have the form Am.@k m; this avoids building an n-redex in the transformation of appli-

cations (hence the term “properly tail-recursive” [43]).
The result of transforming a term M into CPS in an empty context is still given by
Q[M](Am.m)
whereas the result of transforming a term M into CPS in a dynamic context is now simply

MNe. @[M]'k

11

By construction, this instrumented new translation yields terms without extraneous 7n-redexes,
and of course with no f-redexes, in one completely syntax-directed pass. And since the only
difference with the transformation in Figure 2 is the elimination of trivial n-redexes, the new

translation preserves the statement of Theorem 1.

3 Reduction properties

We can now formulate results about the new CPS translation analogous to the ones for the original
specification. Moreover, since we have eliminated all administrative redexes “once and for all”, the
proofs become considerably simpler than for the unoptimized translation.

It may be worth quickly going over why administrative redexes raise problems in the original

translation [35, 39]. Ideally, the following implication would hold:
M —, N = Q[M](Az.z) =% Q[N](Az.x)

Unfortunately, the administrative redexes get in the way of such a result. What really happens
is the following: first, by a sequence of administrative reductions, Q[M](Az.z) —% M'. Then
M' —, N', corresponding to the original redex. However, there is no reason to expect than N’
now reduces to @Q[N](Az.z); in fact, it would have to ezpand back to recreate the administrative
redexes of the latter.

One therefore has to prove instead that the implication above holds “modulo administrative
reductions”. This is formalized by the so-called “colon-translation” developed by Plotkin [35]. For
any term M and value K, one defines syntactically a term M : K and proves it equal to Q[M] K
with the first series of administrative reductions performed (i.e., corresponding to the term M’
above). One then proves that if M —, N then M : K —% N : K. Finally, for every reduction

sequence
My —, My — ... =, V
where V' is a non-functional value, one can take K = Az.z and get
Q[Mo](Az.x) =% Mo : (Az.x) =% My (Az.z) =5 .. =2 Vi(Aze) = QAz.a)V —, V

It is crucial to note that the colon-translation only removes enough redexes to “expose” the
first real reduction. In particular, it never removes redexes within A-abstractions. Nor does it have
to, since it only acts as a proof technique, not a “code optimization” pass. In the new translation,
on the other hand, we get a direct correspondence between reduction steps in the original and the

translated term.

Remark: It does seem possible to modify the colon-translation to perform more ad-
ministrative reductions at translation time [22]. Nevertheless, a practical translation
(i.e., for a full language like Scheme) based on such an approach could be awkward be-
cause of the combinatorial explosion arising from translation-time distinctions between

values and non-values in source terms.

12

Let us first observe a few elementary properties of the two-level translation. To simplify the

presentation, we will generally treat a-equivalent dynamic terms as equal.

Definition 1 IfV is a value (i.e., either a variable or an abstraction), we define

Y(V)=@Q[V](Az.z)

(This differs from Plotkin’s ¥ in that the latter does not eliminate administrative redezes inside

transformed A-abstractions). It is immediate that V(V') is itself a value.

Lemma 1 IfV is a value and P is not a value (i.e., an application), the following simple properties
hold (where K is any term, that is, a term of type syntax and k a static continuation, that is, a
term of type syntax — syntax):
Q[V]sk = Qr(¥(V))
QV]'K = QK (¥(V))
Q[P]s = @Q[P]) (Aa.@ka)

Proof: Immediate in all cases. O
Let us write substitution of N for 2 in M as M[z—N]. Now, we need to show that the static

parts of the translation do not interfere with substitution.

Definition 2 We say that a variable x occurs free in a static continuation k if for some M it
occurs free in @k M but not in M. k is called schematic if for any terms M and N, and variable
x not occurring free in K,

(@k M)[z+—N] = @x(M[z—N])

(informally, this ensures that x preserves the syntactic structure of its argument, and does not

capture any free variables occurring in it).

One easily sees that any x defined using only static abstraction, static application, and the
syntax constructors (with any dynamic abstractions introducing only “new” variables) is schematic.
We can now formalize how substitution of arbitrary values for identifiers commutes with CPS-

translation:

Lemma 2 Let M be a term, V a value, x a variable, and let k be a schematic conlinuation and
K any term. Then
Q[M[zV]]x = (QM[z—2']]r)[z' ¥ (V)]
Q[M[z—V]]' K (Q[M[z—2"1] K)[z'—¥ (V)]

where @' is a new variable (the renaming is necessary to take care of the case when x occurs free

ink or K).

Proof: By induction on M. All cases are straightforward (let y # z):

13

Qz[z=V]]k = Q[V]s = Qr(¥(V)) = Qr(a[a"<=¥(V)])
= (Qr2)[2'—9(V)] = (Qz[z—a']]x)[z'—¥(V)]

Aylz=Vlle = Qyls = (Qylz—a]r)[z"—¥(V)]
Q[(Az.M)[z=V]]x = (same as y[z—V])
Q[y.M)z=V][k = @QAy.M[z=V]]x = Qr(Ay.Ak.Q[M[zV]]'k)
K (Ay Mk (Q[M[z 2] k)[z'—¥(V)])
Ay e.Q[M[z 2] k) [z —¥ (V)]

(@x
= (QQy.M[z—2']]K)[z' ¥ (V)]
(@[(A\y.M)[z—2]]k)[z"—¥ (V)]

Q@M N)[z=V]]ls = Q[@(M[z=V])(N[z=V])]~x

= Q[M[z<V]](Am.Q[N[z=V]](An.Q(@mn)(Aa.Qra)))

= (Q[M[z—2"]](Am.(Q[N[z—z']] (An.
O(@mn) (Aa.Tra)))[o'— (V) ['—W(V)

= (Q[M[z—2"]](Am.Q[N[z—=2']] (An.
Q(@mn)(Aa.Qka))))[z'—¥(V)]

~ (@[8(M[e—a')) (N]z—a D])[e'—¥(V)]

— (@(OM N)[p—a5)['—B(V)

The cases for the second equation are analogous.

Let us now recall the formal definition of the reduction strategies [35]:

Definition 3 One-step by-value reduction is defined as follows:

M —, M’ N —, N'
QMN —, QM'N QV N —, QV N/

QA M)V —, Mz—V]

(where V' is a value), and similarly one-step by-name reduction:
M —, M’ N —, N/
QMN —, QM'N @z N —, @Qz N’
We write M —, N if both M —, N and M —, N. For any of the three reduction relations —,

we use —t and —* to refer to its transitive and reflexive-transitive closure, respectively.

QN M)N —, M[z—N]|

Lemma 3 Let M and N be terms such that M —, N, and let K be a schematic continuation.
Then

14

Q[M]x —t Q[N]&
(in fact, in either two or three reductions).

Proof: By induction on the derivation of —:

e Base case: @Q(Az. M)V —, M[z—V].
Qa(Az.M)V]k

[Nz M](Am.@[V] (An.@(@mn)(Aa.Qka)))
[VI(An.Q(Q(A\z. Ak.Q[M]'k)n)(Aa.Qka))
Q(AzME.Q[M]' E)(¥(V)))(Aa.Qka)
Me(Q[M] k)[z—¥(V)])(Aa.Qka)
Me(Q[M [z 2] B)[z' —¥(V)]) (Aa.@r a)
Me.@Q[M[z—V]]'k)(Na.Qka)

M[z—V]]' (Aa.@ra)

4
sl oa

4

Now the following two cases arise:

— MJz+V]is not a value. Then by Lemma 1, the last term is equal to Q[M[z—V]] &, as
required. The two reductions correspond to transferring the argument value and return
continuation (if we use uncurried CPS translation, as in Section 4.3, only one reduction
is needed).

— M[z<V]is a value. Then again Lemma 1 gives

Q[M[z=V]] (Aa.@ra) = Q(Aa.Qra)(¥(M[zV]))

o Qr(¥(M[z=V]))

= @[M[z—V]]x

—

The additional reduction in this case corresponds to an application of the return contin-

uation to the value just computed.

o Inductive case 1: @M N —, QM'N because M —, M'.
Q@M N]k = Q[M](Am.Q[N](M.Q(@mn)(Ae.Qka)))
—+ Q[M'](Am.Q[N](An.Q(@mn)(da.Qra)))
= Q[aM'N]«x

o Inductive case 2: QV N —, @V N’ because N —, N'.
@Jav N]« QV](Am.Q[N](An.@(@mn)(Ae.Qka)))
= Q[N](An.Q(Q(¥(V))n)(Aa.Qra))
TN (RB(@(¥(V))n) (Aa.Tra))
= V1w BN (Fn.8(8mn) (Aa.Tra)))
= @[av N']x

15

O

If we restrict evaluation to closed terms, any term is either already a value or contains a redex.

However, the results extend easily to open terms, with free variables treated as uninterpreted

constants (i.e., with no associated é-rules). In this case, there is a third possibility: evaluation may
halt at a non-value term like @z y from which no further progress is possible.

Following Plotkin, we define:

Definition 4 A (necessarily open) term S is said to be stuck under a given strategy if it is neither a
value nor reducible by any of the reduction rules for thatl strategy. A quick inspection of Definition 3
shows that such terms must be of the following form (where V is a value and N is any term):

S, = @zV |@QS,N|av.s, (for call-by-value)
Sn QzV | @S, N |QxS§, (for call-by-name)

We note that every term stuck under CBN is also stuck under CBYV.

Lemma 4 Let M be any term and k a static continuation. If M is stuck under CBV then Q[M]k

s stuck under any strategy.

Proof: By structural induction on the stuck term M.
Base case, M = Qz V:
Q[@zV]s = Qz](Am.Q[V](An.@(@mn)(Aa.Qkra)))

by
= @(Qz(¥(V)))(Aa.@ra)

where the inner application, and hence the entire term, is stuck.
Inductive case 1, M = QS N:
Q[@SN]x = Q[S](Am.Q[N](An.Q(Q@mn)(Aa.Qka)))

which is stuck, by the induction hypothesis.
Inductive case 2, M = QV 5"
Q[av S]k = Q[V](Am.Q[S](An.Q(@mn)(Aa.Qka)))
Q[S](An.@(@(¥(V))n)(Ae.Qra))

which again is stuck by induction hypothesis. a

Remark: In a statically-typed setting, the above problem does not occur: the typing
rules ensure that a non-functional constant will never be applied to an argument. How-
ever, the argument extends easily to languages with the possibility of runtime errors
(e.g., division by zero). A simple refinement of the proof shows that the CPS translation
can even distinguish properly between different error conditions, i.e., if evaluation of
the original program causes a specific error, so does evaluation of the CPS-transformed

program.

We can now state the main result, analogous to Plotkin’s “Indifference” and “Simulation”

theorems for the original CPS translation:

16

Theorem 2 Let M be any A-term (not necessarily closed) and V a value. If M —75 V then
Q[M](Az.x) =% Q[V](Az.z) = ¥(V) (and in at most three times as many steps). In particular,
if V is a free variable of the original term, M evaluates to ¥(V') = V. Conversely, if M does not
evaluale to a value under the call-by-value stralegy, then for no strategy will Q[M](Az.x) evaluate

to one.

Proof: The first part follows immediately from Lemma 3 applied to every step of the reduc-
tion. Conversely, any infinite value-reduction sequence starting from M gives rise to an infinite,
strategy-independent reduction sequence starting from @[M](Az.z). Finally, if the original reduc-
tion sequence stops at a CBV-stuck term 5, the corresponding CPS reduction sequence ends in the

term @[S](Az.z) which is stuck under any strategy (Lemma 4). o

4 Enriching the CPS transformation

This section investigates the translation of A-terms as found in usual applicative-order functional

languages and the problem of currying functions ws. tupling arguments.

4.1 CPS translation of extended and applied \,-terms

We now turn to translating A,-terms applied over constants and (pure) primitive operations and
extended with conditional expressions, let and letrec expressions (restricting the values that are
bound recursively to be functions). Such applied and extended A-terms come straight from Scheme
and Standard ML.

Following the line of Section 2, Figure 4 displays a one-pass equational specification of the CPS
transformation. Primitive operations are treated differently from ordinary applications to simplify
the equations. If a primitive operator ¢ is to be passed as a functional value, it must be written
with an explicit abstraction Az.¢(z) — which can be done at syntax-analysis time.

Again, the result of transforming a term M into CPS in an empty context is given by
Q[M](Am.m)
and the result of transforming M in a dynamic context is given by
Me.@Q[M] (Am.@km)

This instrumented new translation yields terms without extraneous redexes (if tail-calls are
handled as in Section 2.6), in one pass. We obtained these equations by analyzing the binding
times of the valuation functions of a continuation semantics of the A,-calculus, along the line of
Section 2. The simulation and indifference properties of CPS-transformed terms generalize to the
above translation, but with one exception: unless the primitive operations are also transformed into
continuation-passing versions, there is no longer a direct correspondence between §-reductions in
the original and the CPS-transformed term. Thus, the optimized translation for primitives should

only be used for “completely pure” operations (see also Section 6.2).

17

[...] : [syntax — syntax] — syntax
[z] = M.Qrz

[Ma.M] = Xs.@x(Az.Mk.Q[M](Am.Qkm))

[@MN] = Mc.Q[M](Am.Q[N](An.@(@mn)(Aa.@ra)))

[P—M,N] = Xc.@[P](Ap.p=Q[M]x,Q[N]x)
[q] = As.@Qrg
(M) = FwBIM] (T (g(m))
04,01 = T G TN Ty)
[let z = Nin M] = Mk.Q[N](An.letz’ in Q[M[z—2a']]x)
Az

[letrec f = Az.Nin M] = JAx.letrec f' = Az.)\k. [[[[f—f](An.@kn))
in G[M[f]

Figure 4: One-pass CPS transformation of extended and applied A,-terms

As always with non-trivial symbolic reductions in A-calculus, we face the problem of name
clashes. These can occur when a context is moved inside the scope of a binding construct, as

illustrated in the following example:

Q([Az.z+ (let z = 3inz)])(Av.w) = Az Mkleta’ = 3in Qk(z + 2')

Had we not renamed the z introduced by the let, we would have inadvertently captured a free
variable of the static continuation x. However, variables declared in A-abstractions do not need to
be renamed because contexts are never moved inside the scope of a A-abstraction.

Let us also note that if the subterm N in the translation of a let-expression is a value (notably,
an abstraction), the corresponding variable in the transformed term will also be let-bound (as
opposed to A-bound) to (N). Thus, the translation seems compatible with a restricted variant of

ML-style polymorphism in which generalization can only be applied to values [24].

4.2 On duplicating contexts

The CPS translation above duplicates contexts for each conditional expression:

[P—M, N] = Xc.@Q[P](Ap.p—Q[M]k,Q[N]k)

which increases the size of residual terms, as pointed out by Steele [43]. For example, translating

the direct style expression

Qf((z—y, z)—4,5)

yields the more voluminous

Ak.z — (y—Q(Qf4)(Av.Qkv), Q(Qf5)(Av.Qkv)),
(z—=Q(Qf4)(Av.Qkv), Q(Qf5)(Av.Qkwv))

and thus a bigger term to compile and correspondingly more object code to produce. For this reason,

compiler writers usually refrain from duplicating contexts by introducing a dynamic let-expression

18

to share the static continuation between the two branches of the conditional:
[P—M,N] = Mx.letk =)a.Qka
in Q[P (Ap.p = Q[M](Am.Qkm), @[N] (An.Qkn))

where we have inserted the appropriate n-redexes, in the line of Section 2. This modification
restores the linearity property of the static part of the translation, i.e., that bound variables of
static A-abstractions are used only once in their bodies, and thus maintains a linear relationship
between the sizes of the original and transformed terms.

Because the let-expression introduces an explicit name for the context, each conditional branch
de facto occurs in a dynamic context, just like the body of translated A-abstractions. As in Section
2.6, we can use the special “tail-call” translation for these contexts:

[P—M,N] = Xkletk = Xa.Qrain Q[P](Ap.p—Q[M]'k, Q[N]'k)

For example, the expression above is translated into
Ak’o. let]{?1 = A’Uo. let k’g = A’Ul.@(@fvl)k’o
in vg— @ky 4, @ky5
inz— @k y, Qk; 2

Still there is room left for further simplification, e.g., in the case of let-expressions. As revealed
by a simple inspection of the equations, translating let-expressions whose headers are an application
or a conditional expression will produce identity let expressions. These redundant let-expressions

can be prevented at translation time:

[let 2 = QNg Ny in M| = Ak.@Q[No] (Ang.@Q[N1](An1.Q(Qngny) (A’ . Q[M[z—2']]x)))

4.3 Currying vs. tupling

For practical applications of the CPS transformation algorithm described above, we need the slight
refinement considered in this section.

In a call-by-name language, there is a one-to-one correspondence between curried and non-
curried forms of multi-argument functions, but for call-by-value this property is lost: there may
be several, non-equivalent ways of “currying” a function. For example, the curried form of the

two-argument function
g=Ma,b).(Qfa) +b
can be written as either of the two terms:
g1 = Aa.Ab.(Qfa)+ b or go=Aaletz =Q@fain bz + b
Both of these qualify as curried forms of ¢, in the sense that for any pair of values a and b,
Q(Qgra)b = @(Qgya)b = Qg(a,b)

but g1 and go behave differently if applied to only a single argument a for which f fails to terminate.
Since the CPS transform clearly needs to accommodate curried functions like g3 above, programs

with “simple” curried functions appear unnecessarily complex. For example, curried addition

19

Aa.Ab.(a+b)
must be translated to the somewhat awkward
Aa k. QK (AbAE QK (a + b))

instead of the more natural

Aa.Ab.Mk.@k (a + b)

The problem is that a higher-order type like 7y — [, — 73] does not make it clear whether the

outermost function is “serious” or “trivial”, as in these two last examples. This can be solved

by extending the source language with either a product type or a new “trivial function space”

(restoring the equivalence between “trivially curried” and uncurried forms of functions).
Moreover, the result of translating a function of type

o — T

into CPS with “answer” type o, can itself be expressed in either “curried CPS”:

o' —[r'—o0]—o

or “uncurried CPS:”

o' x[t'—=o0]—o

The functions resulting from the curried CPS transform can be easily checked to be always trivial
(i.e., immediately return a closure), but this is not clear from their type. Thus, if we want to treat
the transformation result itself as a call-by-value term, the uncurried form of the translation is

more precise.

4.4 Multi-argument functions

For languages like Standard ML, which have an explicit product type for expressing functions of
several arguments, we can essentially use the equations of Figure 4 directly. Multiple variables
in A-abstractions can be treated as syntactic sugar for projections from a single argument, and
tuple construction becomes a new primitive operator. For a Scheme-like language, however, the
“argument tuple” is not an autonomous entity, but is closely tied in with functional abstraction
and application. We thus need to adjust the CPS equations of these two constructs slightly if we

want an uncurried source-to-source transformation:

Mz, ..., zn). F] A6.@r (AN21, ..o, T, k).Q[E] (Az.Qk 7))
[[@EO (El, ,En)]] = XK@[[E()]]
(Af.Q[E] (Aay. ...Q[E,] (Aa,.Qf (ay, ..., an, A2.QK 2))))

More precisely, an argument list is translated as follows:

[0 = *.@x()
[E = B = MW.G[E](AG[E] (M.@k(hT1)))

20

and a full application as:

[QEq(Ey,.... E))] = Ae.G[E](N.G[(E, ..., En)]*(N.Qf (15 [Az.@kz])))
where ¢ represents list concatenation.

Remark: To make the Scheme-style connection between lists and argument tuples
even closer, we could put the continuation argument first in the argument list rather

than last. This would allow us to translate “variadic procedures” such as
(lambda 1 (cdr 1)) or (lambda (a b . 1) b)
directly into
(lambda (k . 1) (k (cdr 1))) and (lambda (k ab . 1) (k b))

respectively. However, readability appears to suffer when the continuation argument,
which is often large, must be followed by others in an application. Making continuations
occur first is used sometimes to compile functional programs by program transformation
[21]. Tt is simple to write a one-pass CPS transformer where continuations precede
values — just swap values and continuations in any of the specifications displayed in

the figures.

5 Abstracting Control

So far we have been investigating how to perform the CPS transformation. This section explores

properties and extensions of the transformation function.

5.1 Reynolds’s escape operator

Not every A-calculus term is obtainable as a result of the CPS transformation. Some of the “unused”
terms correspond to control operators in the source language. For example, the operator escape
(interdefinable with Scheme’s call/cc) can be defined by the equation:

[escape ¢ in M] = Ak.letc = Aa. s'.@rain Q[M[c—]]x

As a control operator, escape captures the current continuation and provides a representation of
this current continuation as if it were a function in the source program. Applying this function to
a value amounts to abandoning the current context of computation and passing this value to the

captured continuation. For example, transforming the term
Af.escape cin 14 (Qfc)
into CPS in an empty context (and unfolding the let) yields
AfAe.@QQf (Az. Ak.Qcz)) (Av.Qe(1l + v))

As can be observed in the equation above, escape duplicates the code for the current continu-

ation. Along the lines of Section 4.2, this can be prevented by the following equation:

[escape ¢ in M] = Ax.letk = Ma.@kainlet ¢ = Aa. Ak .@Qka in Q[M](Am.Qkm)

In the rest of this section, we shall waive concerns about such duplications of contexts.

21

5.2 Shift and reset

Let us note that even with escaping constructs, the result of the translation is in “ordinary” CPS
form, ¢.e., with no nested function applications. This suggests that there is still a considerable
amount of untapped expressive power in the CPS formalism, reflecting control structures whose
translations are more general A-terms. In particular, we can define the two operators shift and
reset, conceptually serving as composition and identity for continuation functions:
[shift ¢ in M] = Ak.letc= Aa.Ax'.@k'(@ka)in Q[M](Am.m)
(M) = Ak.Qr(Q[M](Am.m))

Shift abstracts the current context as an ordinary, composable procedure (in contrast to the ex-
ceptional, non-composable procedures yielded by escape) and reset delimits the scope of such
a context. Shift also differs from escape by not implicitly duplicating the current continuation
(Felleisen’s C-operator introduced the behavior of not duplicating continuations [17]).

For example,
14 (10 + shift ¢ in @c(@c100)) = 14 (10+ (104 100)) = 121

With the fuller control over contexts afforded by these two operators, we can express in a func-
tional style many control structures that would otherwise have required us to either rewrite the
program extensively or introduce side effects. For example, let us consider a functional represen-
tation of “applicative” nondeterministic (in the sense of backtracking) programming, as embodied,
e.g., in the programming language Icon [23].

Let us define a basic “nondeterministic choice” procedure:

flip = A().shift ¢ in Qc & vV Qc ff

When invoked, flip will “return” twice: once with each possible truth value. Here, we have specified
that the final answer of the nondeterministic program should be true if either of these two return
values causes the context to evaluate to true. For a canonical example, let ¢ be a boolean expression
with free variables by, ...,b,. To determine whether ¢ is satisfiable (i.e., whether there exists an
assignment of truth values to the variables making the whole expression true), we can now simply

evaluate the natural direct-style program

(let by = Qflip()in ... let b, = Qflip() in ¢)

This approach to nondeterministic programming also easily handles irregular search structures,
where further tests may depend on outcome of previous “guesses”, e.g., for simulating a nondeter-

ministic finite automaton [10].

5.3 Control and prompt

While shift and reset are very similar to Felleisen’s operators control and prompt [14], there is a
significant semantical difference between shift /reset and control/prompt: the context abstracted
by shift is determined statically by the static program text, while control captures the context

up to the nearest dynamically enclosing prompt.

22

The difference between shift and control is probably best displayed by the following two
characteristic equations:
(Qf(shift cin M)) = (letc=Az.(Qfz)in M)
(@f(control cin M)) = (letc=Az.Qfzin M)

Now if f is bound to a procedure that itself abstracts control, the context it will capture with
the shift semantics is still determined by the context where ¢ is defined. On the other hand, with
the control semantics, a control operator occurring in f will capture the context at the point where
¢ is applied; in particular, it can capture part of M. (In the case where f is a simple procedure
with no control effects, the effects of the two operators coincide.)

The shift /reset approach is based on viewing a program as computing a function expressed
in CPS, i.e., on representing control with a function: the continuation. In contrast, prompt and
control were introduced independently of CPS and therefore they admit no such simple static
interpretation. Their two denotational descriptions introduce an algebra of control and lead to
a representation of continuations as prompt-delimited sequences of activation frames, and their
composition as the concatenation of these sequences [18]. Earlier on, prompts were specified with
an operational description in terms of textual reductions [14]. In general, these static vs. dynamic
interpretations lead to different behaviors [8].

In our framework, reset naturally is the direct style counterpart of initializing the continuation
of a CPS A-term with the identity function. Reset seems to be equivalent to prompt, but terms

using control in general have no CPS counterpart.

5.4 CPS translation of terms that use shift and reset

Let us note that the definitions of shift and reset do not yield CPS terms (because continuations
may be applied to non-values). Therefore the defining terms lose the important property of enforcing
strict call-by-value evaluation ensured by proper CPS. However, we can restore that property by
translating the defining (pure A,-calculus) terms once more into CPS, yielding a term in “meta-
continuation passing style.” Here, the x is treated as an ordinary functional parameter, while the
proper evaluation order is ensured by a new continuation.
For example, and leaving the @-notation aside for readability, the following term occurring in
an empty context
let f = Az.shift £ in k(k(z))
in 14 (10 + f(100))
gets CPS-transformed into
let f. = Az Ak.k(k(z))
in 14 (f.100 (Av.10 + v))
As can be noticed, this term is not in CPS because the call to f. is not a tail-call and there is a
nested call to k in the definition of f.. But the second CPS transformation now gives a proper CPS

term (with A as the continuation parameter):

let f.. = Az Ak Ah.kz (Aa.kah)
in f.. 100 (Av.AR.A(10 + v)) (Aa.1 4 a)

23

Remark: Iterating this construction leads to “extended CPS” and a whole hierarchy
of control operators [10]. This is the real forte of a CPS-based approach to advanced
control structures: we obtain a natural notion of “levels” of control, allowing us to
express, €.¢., collections over all paths of a nondeterministic subcomputation, as defined

in Section 5.2.

5.5 Translating control operations in one pass

Following a binding time analysis of the equations of Section 5.2 (as in Section 2), let us express
the CPS transformation of control operations using two-level A-terms:
[escape c in M] = Ak.letc = Aa.Ak'.Qkain Q[M[c—c']]x
[shift c in M] = Axletc = Ma.Mx'".Qk' (Q@ra)in Q[M[c—c]] (Am.m)
(M) = Xs.@r(Q[M](Am.m))

The CPS transformation now introduces let-expressions. These could be unfolded by substi-
tuting the control abstractions for the identifiers in the translated terms, as we first specified it
[10]:

[escape ¢ in M] = Ax.(Q[M[c—c'|]k)[c'—Aa.Ax".QKa]
[shift ¢ in M] = Mk (Q[M[c—c]](Am.m))[c'—ra.\x".QK (Qra)]

However, these substitutions introduce residual g-redexes when control abstractions are applied

within the scope of their declaration. For example,

@[Az.shift ¢ in 1+ (Qcz)](Am.m) = Az.Ae.@(@(Aa.Mk.1+ (Qka))z)e

instead of the preferable Az.Ac.1 + (Qcx)

To keep this §-reduction at translation time, but again at the risk of duplicating contexts (as
in shift ¢ in (Qcl) + (@Qc2)), we can distinguish between identifiers that are declared within a
A-abstraction and identifiers that are declared within a control abstraction. Unfortunately, this
decision clutters the transformation, much in the same way as introducing “first-class” primitive
operators (cf. Section 4.1). We adopt the same simple solution: at syntax-analysis time, occurrences
of identifiers declared within a control abstraction are guaranteed to occur only in application
position, which we single out by tagging this application with throw, as in Standard ML of New

Jersey [13].
[escape ¢ in M] = A&.(Q[M[c—c]]k)[c¢'—
[shift ¢ in M]
[throw ¢ M] =

Lol
VIR
E
ol B
=&
R
3]
ol =
@IQ
53
> 3

To avoid dealing with substitutions over translated terms, we can introduce a translation-time
environment mapping identifiers to a translation-time A-abstraction if they are declared within a

control abstraction. The following is the corresponding version of the CPS transformer, completed

24

with the translation-time environment. The other equations are unchanged, except for the addition

of an environment p passively transmitted everywhere.

env = var — syntax — [syntax — syntax] — syntax
[-.] : env— [syntax — syntax] — syntax
[escape c in M]] = Ap.As.@(Q[M[c—C|][¢ = Aa.Ax".Qra]p)k
[shift ¢ in M]] = MpAk.Q(Q[M[c—c]] [= Aa. Ak . QK (@K a)]p) (Am.m)
[throw ¢ M]] = ApAk.Q(Q[MT]p)(Am.Q(@(Qpc)m)k)

Note how all the terms in the translation are static. All administrative reductions are performed

at translation time, and no (-redexes are built for applications of control abstractions.

5.6 The problem of name clashes

Now only one problem remain: name clashes. These can occur when a control operator moves part

of the context inside the scope of any binding construct, as illustrated in the following example:

@Q(Q[Az.Qf (escape ¢ in Af.throw ¢ [)]po)(Av.v) = Az Ak.Qk(Af'AK.Q(Qf f')k)

The simplest solution is thus probably to systematically rename all bound variables.

5.7 Direct Transformation into CPS

We can view the CPS transformation of Section 4.1 as an applicative order program expressing
the transformation algorithm. This program is expressed in a CPS-like style. This might lead
one to believe that this program could be expressed more concisely using a “traditional” control
operator like call/cec. Unfortunately, this is not quite possible because this program is not in
CPS. Notably, in the translation of @M N the continuation application @xa is a subterm of the
syntaz-constructor Aa.---. Conversely, in [Az.M], the continuation s is applied to a potentially
non-trivial term. Neither of these situations can arise from the translation of any conventional
direct-style term (i.e., A-calculus 4+ escape). However, with shift/reset we can express exactly
such behavior. Let us rewrite the transformation equations using implicit continuations. The result
is displayed in Figure 5.

The result of transforming a term M into CPS in an empty context is given by
(1)
Similarly, the result of transforming M in an arbitrary context is given by
Me (@Qk[M])

The CPS counterpart of the applicative-order program expressing this transformation algorithm
(using the equations of Section 4.1 and the first set of equations of Section 5.5) can be verified easily
to coincide with the original translator. Thus, the two transformers yield textually the same output

for a given input; only their internal organization differs.

25

[«] = «
[ANe.M] = Az Mk(QE[M])
[@M N] = shift ¢ in Q(Q[M][N])(Xe.Qca)
[P—M,N] = shift ¢ in [P]=(Qc[M]),(Qc[NT)
[4]
[o(M)] = o([M])
[o(M, N)] = o([M],[N])
[let z = Nin M] = shift ¢ in let 2’/ = [N]in (Qc[M[z—2']])
[letrec f = Az.N in M] = shift ¢ in letrec f’ = Az.Ak. <@k [M[f=rD
in (@c[M[f—f"])
[escape k in M] = shift ¢ in let &’ = Av. \E".@cv in (Qc[M[k—kF]])
[shift & in M] = shift ¢ in let &' = \v.M\k".Qk" (Qcv) in ([M[k—E']])
(] = M)

=)

Figure 5: Direct-style, one-pass CPS transformation of A,-terms

This set of equations can be seen as a meta-circular compiler from a language with the new con-
trol operators into its purely functional subset. Alternatively (by omitting the equations for shift
and reset), it translates terms of a Scheme-like language (i.e., A-calculus 4 escape) into standard
CPS. Such a transformation has a practical interest for compiling, e.g., Scheme or Standard ML
programs [43, 1], and thus constitutes a significant example of using shift/reset: even the pure
CPS translation is expressed naturally using the new control operators.

As with all meta-circular definitions, we need to bootstrap it. If we have an interpreter for
a language with shift/reset, we can use it to execute the translator on itself, obtaining a CPS
transformer written in pure A-calculus. On the other hand, we can get an interpretive semantics
for the extended language by translating a trivial (i.e., defining shift in terms of shift, etc.) self-
interpreter into extended CPS [10]. This correspondence helps to ensure consistency between the

two methods of language definition.

6 Related Work

6.1 CPS transformation

Two other works have independently employed CPS translations similar to the one presented here.
The first one is Appel’s CPS transformer in the Standard ML of New Jersey compiler [1]. The
second one is Wand’s combinator-based compilation technique [45]. But neither motivate their
transformer, e.g., as we do in Section 2, nor extend it to control operators or normal order, as we
do in Sections 5 and A.

As revealed in the source code of the SML/NJ compiler, the CPS transformer operates in one

26

pass by keeping a translation time continuation, based on 7-redexes identical to those in Section
2. However, in contrast to our work, the goal is not to aim at the “exact” continuation-passing
counterparts of source programs but to simplify them as much as possible, even if some of the
simplifications correspond to source reductions. Still no particular care is taken to avoid building
extraneous 7-redexes, such as those pointed out in Section 4.2. Instead, the compiler relies on a
powerful and blind simplifier of CPS terms that processes both these redexes and what corresponds
to source reductions. It would be interesting to measure whether and how much our more precise
CPS transformer relieves the simplifier.

Similarly, devising a particular representation of run time procedures and their application
(instead of our A and @), Wand also compiles programs based on a CPS transformer with the same
n-redexes as in Section 2, but again without motivating them.

Today Sabry and Felleisen are also investigating the CPS transformation in one pass, and Lawall

and the first author are investigating the inverse “Direct Style” transformation [9, 11, 40].

6.2 Primitive operators

Most CPS-based compilers [43, 1, 45] and program analyzers [41] also use continuation-passing
forms of even the primitive operators. However, the practical justification of such a “radical CPS”
transform is not completely clear. In particular, the oft-quoted advantage of having explicit names
for all subexpressions can be realized equally well with let-expressions. Clearly, side-effecting op-
erators need to be tied down by explicit conversion to continuation-passing variants. However,
expressing “trivial computations” like tuple construction/destruction or arithmetic in CPS intro-
duces unnecessary sequentialization and obscures the fact that such computations can be rearranged

or even eliminated or duplicated without affecting the meaning of the program.

Remark: A possible problem here concerns primitive operators like division that
can signal error conditions, but are otherwise “pure”. Clearly, the translation should
preserve any exception-raising behavior of the original program, and not compromise
the order-of-evaluation independence of CPS terms. On the other hand, going to full
CPS for such almost-functional operators may still be overkill, for the reasons outlined
above. However, it often seems possible to factor the original operator into two aspects:
the control behavior (the process of computation, possibly error-raising) to be expressed
in CPS and the pure (and hence freely rearrangable) function computed, in which case

we actually get the best of both worlds.

6.3 Control operators

From Reynolds’s escape to call/cc in Scheme, control operators are nicely introduced within
the CPS transformation [38, 16]. However, because CPS appears to constrain expressive power,
Felleisen and others have successively proposed new control operators to compose continuations
[15] and to limit their extent [14]. As later shown by Sitaram and Felleisen [42], inclusion of

control delimiters is also necessary to obtain fully abstract models of control for CPS models with

27

escape. The motivation for shift and reset was somewhat different: rather than devising new
theories, new models, and new representations of control, we have set out to explore CPS more
thoroughly. In particular, shift and reset are introduced together as representing composition and
identity on continuation functions respectively; proper CPS form is restored by iterating the CPS

transformation [10].

6.4 Partial evaluation

Partial evaluation (or more accurately: program specialization [25]) makes heavy use of binding
time information to process the static and the dynamic semantics of source programs [6], as we do
here. Recent work by Bondorf and the first author emphasize the issues of code duplication and
termination properties [3], and use the technique of enumerating finitary constructs [2], as we do
in Sections 2 and 4.2. The latter is also central to Shivers’s work on higher-order flow analysis [41].
All these concepts were pervasive in our derivation of a one-pass CPS transformer. In particular,
the notion of a two-level A-calculus as advocated in Nielson and Nielson’s TML [34] proves useful to
develop and to express new CPS transformations that distinguish properly between translation-time
and run-time constructs.

With respect to partial evaluation, this development illustrates the connection between a CPS
transformer and a A-calculus interpreter expressed in CPS. The former is a two-level version of the
latter.

Moreover, our derivation illustrates a new trend in partial evaluation: using CPS to improve
binding time properties of source programs, leading to better specialization [7]. Work is going on

to further automate the process.

7 Conclusion and Issues

As proven constructively in this paper, transforming A-terms into CPS can be expressed in one
pass by moving administrative redexes to translation time in a context-free way. While the actual
transformation algorithm seems to have been independently discovered several times in slightly
different forms, we believe that ours is the first systematic derivation and analysis of its correctness
and properties. The translation is easily extended to the usual constructs of applicative order
functional languages and also to account for control operators. And using two control operators
shift and reset derived naturally from the CPS formalism, the translation can be formulated even
more concisely and directly.

The role of continuations in programming language design and implementation has long been
dominated by pragmatic concerns. In the last few years, however, the subject has seen renewed
theoretical interest, especially with the introduction of concepts and methods from mathematical
logic and category theory, e.g., [22, 31, 19]. We believe that any investigation of advanced control
structures based on the CPS transform will be able to pick up and integrate such developments
more directly than a free-standing approach derived from more intuitively “desirable” operational

behavior could. And in fact, recent developments seem to support this conviction [32].

28

Moreover, there is a close relationship between computational monads [30] and “generalized
CPS”, as suggested in “Abstracting Control” [10] and properly formalized by Wadler [44]. Ef-
fectively, this implies that CPS-based control operators like shift and reset can by themselves
uniformly express a rich class of computational behaviors, including partiality, nondeterminism,
and state. It seems natural to take this as another indication that both the theoretical and prac-
tical significance of functional representations of control will only grow stronger in the years to

come.

Acknowledgements

We are grateful to the editor and the three referees. Thanks are also due to Karoline Malmkjaer

and Dave Schmidt for their patience and to Chet Murthy for his enthusiasm.

References

[1] Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[2] Anders Bondorf. Automatic autoprojection of higher-order recursive equations. Science of
Computer Programming, 17:3-34,1991.

[3] Anders Bondorf and Olivier Danvy. Automatic autoprojection of recursive equations with
global variables and abstract data types. Science of Computer Programming, 16:151-195,
1991.

[4] William Clinger. The Scheme 311 compiler, an exercise in Denotational Semantics. In Con-
ference Record of the 1984 ACM Symposium on Lisp and Functlional Programming, pages
356-364, Austin, Texas, August 1984.

[5] William Clinger and Jonathan Rees (editors). Revised* report on the algorithmic language
Scheme. LISP Pointers, IV(3):1-55, July-September 1991.

[6] Charles Consel and Olivier Danvy. Static and dynamic semantics processing. In POPL’91 [36],
pages 14-24.

[7] Charles Consel and Olivier Danvy. For a better support of static data flow. In Proceedings of
the Fifth ACM Conference on Functional Programming and Computer Architeclure, number
523 in Lecture Notes in Computer Science, pages 496-519, Cambridge, Massachusetts, August
1991.

[8] Olivier Danvy. Programming with tighter control. Special issue of the BIGRE journal: Putling
Scheme to Work, (65):10-29, July 1989.

[9] Olivier Danvy. Back to direct style. In Bernd Krieg-Briickner, editor, Proceedings of the Fourth
Furopean Symposium on Programming, number 582 in Lecture Notes in Computer Science,
pages 130-150, Rennes, France, February 1992.

[10] Olivier Danvy and Andrzej Filinski. Abstracting control. In LFP’90 [26], pages 151-160.
[11] Olivier Danvy and Julia L. Lawall. Back to direct style II: First-class continuations. In LFP’92
[27].

29

[12] Olivier Danvy and Carolyn L. Talcott, editors. Proceedings of the ACM SIGPLAN Workshop
on Continualions, San Francisco, California, June 1992. Technical report STAN-CS-92-1426,
Stanford University.

[13] Bruce F. Duba, Robert Harper, and David MacQueen. Typing first-class continuations in ML.
In POPL’91 [36], pages 163-173.

[14] Matthias Felleisen. The theory and practice of first-class prompts. In Proceedings of the
Fifteenth Annual ACM Symposium on Principles of Programming Languages, pages 180-190,
San Diego, California, January 1988.

[15] Matthias Felleisen, Daniel P. Friedman, Bruce Duba, and John Merrill. Beyond continuations.
Technical Report 216, Computer Science Department, Indiana University, Bloomington, Indi-
ana, February 1987.

[16] Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker, and Bruce Duba. Reasoning with
continuations. In Proceedings of the Firsl Symposium on Logic in Compuler Science, pages
131-141, Cambridge, Massachusetts, June 1986. IEEE.

[17] Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker, and Bruce Duba. A syntactic
theory of sequential control. Theoretical Computer Science, 52(3):205-237, 1987.

[18] Matthias Felleisen, Mitchell Wand, Daniel P. Friedman, and Bruce F. Duba. Abstract contin-
uations: A mathematical semantics for handling full functional jumps. In Proceedings of the
1988 ACM Conference on Lisp and Functional Programming, pages 52-62, Snowbird, Utah,
July 1988.

[19] Andrzej Filinski. Linear continuations. In POPL’92 [37], pages 27-38.

[20] Michael J. Fischer. Lambda calculus schemata. In Proceedings of the ACM Conference on Prov-
ing Assertions about Programs, pages 104-109. SIGPLAN Notices, Vol. 7, No 1 and SIGACT
News, No 14, January 1972.

[21] Pascal Fradet and Daniel Le Métayer. Compilation of functional languages by program trans-
formation. ACM Transaclions on Programming Languages and Systems, 13:21-51, 1991.

[22] Timothy G. Griffin. A formulae-as-types notion of control. In Proceedings of the Seventeenth
Annual ACM Symposium on Principles of Programming Languages, pages 47-58, San Fran-
cisco, California, January 1990. ACM Press.

[23] Ralph E. Griswold and Madge T. Griswold. The Icon Programming Language. Prentice-Hall,
1983.

[24] Bob Harper and Mark Lillibridge. Polymorphic type assignment and CPS conversion. In
Danvy and Talcott [12]. Technical report, Stanford University.

[25] Neil D. Jones, Peter Sestoft, and Harald Sendergaard. MIX: A self-applicable partial evaluator
for experiments in compiler generation. LISP and Symbolic Computation, 2(1):9-50, 1989.

[26] Proceedings of the 1990 ACM Conference on Lisp and Functional Programming, Nice, France,
June 1990.

[27] Proceedings of the 1992 ACM Conference on Lisp and Functional Programming, San Francisco,
California, June 1992.

30

[28] Chris Mellish and Steve Hardy. Integrating Prolog in the POPLOG environment. In John A.
Campbell, editor, Implementations of PROLOG, pages 147-162. Ellis Horwood, 1984.

[29] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. The MIT
Press, 1990.

[30] Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of the Fourth
Annual Symposium on Logic in Compuler Science, pages 14-23, Pacific Grove, California,
June 1989. IEEE.

[31] Chetan R. Murthy. FEztracting Constructive Content from Classical Proofs. PhD thesis, De-
partment of Computer Science, Cornell University, 1990.

[32] Chethan R. Murthy. Control operators, hierarchies, and pseudo-classical type systems: A-
translation at work. In Danvy and Talcott [12]. Technical report, Stanford University.

[33] Flemming Nielson. Two-level semantics and abstract interpretation. Theoretical Computer
Science, 69(2):117-242, 1989.

[34] Flemming Nielson and Hanne Riis Nielson. Two-level semantics and code generation. Theo-
retical Computer Science, 56(1):59-133, January 1988.

[35] Gordon D. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical Computer
Science, 1:125-159, 1975.

[36] Proceedings of the Fighteenth Annual ACM Symposium on Principles of Programming Lan-
guages, Orlando, Florida, January 1991. ACM Press.

[37] Proceedings of the Nineteenth Annual ACM Symposium on Principles of Programming Lan-
guages, Albuquerque, New Mexico, January 1992. ACM Press.

[38] John C. Reynolds. Definitional interpreters for higher-order programming languages. In Pro-
ceedings of 25th ACM Nalional Conference, pages 717-740, Boston, 1972.

[39] Jon G. Riecke. Should a function continue? Master’s thesis, Department of Electrical Engineer-
ing and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts,
January 1989.

[40] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style.
In LFP’92 [27].

[41] Olin Shivers. The semantics of Scheme control-flow analysis. In Paul Hudak and Neil D.
Jones, editors, Symposium on Partial Fvaluation and Semantics-Based Program Manipulation,
SIGPLAN Notices, Vol. 26, No 9, pages 190-198, New Haven, Connecticut, June 1991. ACM,
ACM Press.

[42] Dorai Sitaram and Matthias Felleisen. Reasoning with continuations II: Full abstraction for
models of control. In LFP’90 [26], pages 161-175.

[43] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Technical Report AI-TR-474, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts,
May 1978.

[44] Philip Wadler. The essence of functional programming. In POPL’92 [37], pages 1-14.

31

[45] Mitchell Wand. Correctness of procedure representations in higher-order assembly language.
In Steve Brookes, Michael Main, Austin Melton, Michael Mislove, and David Schmidt, edi-
tors, Mathematical Foundations of Programming Semantics, volume 598 of Leclure Notes in
Computer Science, Pittsburgh, Pennsylvania, March 1991. 7th International Conference.

32

[z] = =
[Ae.M] = Ak.Qr(Az.[M])
[@MN] = Mc.Q[M](Am.Q(@m[N])k)

Figure 6: Plotkin’s CPS transformation of A,-terms

[...] : [syntax — syntax] — syntax
[z] = Ak.Qz()la.Qka)
[Nz.M] = Xk.@Qr(Az.\E.Q[M](Am.Qkm))
[@MN] = As.Q[M](Am.Q(@m(M.Q[N](An.Qkn)))(Aa.Qra))

Figure 7: One-pass CPS transformation of A,-terms

A Call by Name

Let us consider Plotkin’s equational specification for transforming a A,-term into CPS [35], as
displayed in Figure 6. We want to apply the method of Section 2 to stage the CPS, -transformation.
Again, taken literally, this translation yields artificial redexes that must be post-reduced in a second

pass, although the size explosion is not as drastic as for call-by-value. For example, translating

Af Az y.@(Qfy)z

yields
Ak QE (A fAE.Qk (Az. Ak.Qk (Ay A k. Q(AE.Q f(Am.Q(Qmy)k)) (Am.Q(Qmz)k))))

whose post-reduction yields

Ak @k (A f Ak.Qk (Az Ak @k (Ay.Ak.Q f(Am.@(@my) (Am.Q(@maz)k)))))

This CPS counterpart of the A,-term can be equally evaluated using call-by-name or call-by-
value. As a simple consequence, the continuation can be implemented as a strict function without
altering the meaning of the original A,-term.

Can we subject the original specification to the same treatment as in Section 2 and get a one-
pass CPS transformer? The answer is yes but the resulting transformation shows less immediate
success. The original specification can be transformed into the one in Figure 7 which does not build
any (-redex.

The result of transforming a term M into CPS in an empty context is then given by
Q[M](Am.m)

Again, this specification, viewed as an applicative order program, can be re-expressed using shift

and reset.

33

[...] : [syntax — syntax] — syntax
[z] = Mk.Qz(Xa.Qka)
[Ae.M] = Xk.@Qr(A2.[M]")
[@M N] = Mc.Q[M](Am.Q(@m[N]")(Ae.Qka))

[..]7 : syntax
[2]" = =
[Ma.M]" = XMe.@Qk(Ax.[M]")
[@M N]" = M.Q[M](Am.Q(@m[N]")k)

Figure 8: One-pass, “properly tail-recursive” CPS transformation of A,-terms

However this new CPS translation suffers from a deficiency, as pinpointed by the following

observation.

Observation 2 A A, -term and its CPS counterpart are related as follows:
o A wvariable is translated into one application and one A-abstraction.
o A A-abstraction is translated into two A-abstractions and one application.
o An application is translated into three applications and two A-abstractions.

Whereas the two last points also hold for Plotkin’s specification, the first point reveals that the new
translation actually produces more redexes! However, the new specification only produces more
n-redexes, which are not nearly as hard to get rid of as the g-redexes produced by the original
translation, as outlined now.

n-redexes are only constructed in tail-contexts, for identifiers occurring as A-abstraction bodies,
and as arguments of functions (this corresponds to the ALGOL 60 situation of “suspending a

suspension”). As in Section 2.6, they can eliminated at translation time by duplicating the rules

(cf. Figure 8).

Rationale: The auxiliary translation [M]” is used for the special case

Me.@[M] (Am.@km), thereby avoiding the construction of extraneous n-redexes.
The result of transforming a term M into CPS in an empty context is then given by
Q[M](Am.m)
whereas the result of transforming a term M into CPS in a dynamic context is given by
[My]”

By construction, this instrumented new translation yields terms without g-redexes, in one pass.

34

[...] : [syntax — syntax] — syntax
[z] = Mk.Qz(Xa.Qka)
[Ae.M] = Xk.@r(Ak.Az.Q[M]'k)
[@M N] = Ic.Q[M](Am.Q(@m(Ae.Qka))[N]")

[..]' : syntax — syntax

[z] = Me.Qzk
[MNe.M]" = Me.@k(Mk.DAz.Q[M]'k)
[@M N] = Xe.Q[M](Am.Q(@mkE)[N]")

[..]7 : syntax
[Ma.M]" = Me.@Qk(MkAz.Q[M]'k)
[@M N]" = Me.@Q[M](Am.Q(@mk)[N]")

Figure 9: One-pass, “properly tail-recursive” CPS transformation of A,-terms with continuations
first

A.1 Continuations first

Making continuations occur first introduces a new opportunity for extraneous 7-redexes in residual
CPS terms. The result of transforming a term can occur (1) in function position where the argument
is a static lambda that will be applied to a static continuation; (2) in function position where the
argument is a static lambda that will be applied to a dynamic continuation; and (3) not in function
position. These cases can be handled by a suitable series of tests on intermediate result or again
by duplicating the rules as in Figure 9. Notice how [...] terms correspond to case (1), [...]’ terms
correspond to case (2), and [...]” terms correspond to case (3). This suggests that a Clinger-style
compiler for A,-terms would be proven using a triple induction hypothesis [4].

As usual, the result of transforming a term M into CPS in an empty context is then given by
Q[M](Am.m)

whereas the result of transforming a term M into CPS in a dynamic context is given by
Ak.Q[M]'k
or better, by
[Mm]"

This final translation yields terms without g-redexes nor new 5-redexes, in one pass.

35

